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Abstract The role of the protein TcdC in pathogenicity of the bacterium Clostridium
difficile is currently unclear: conflicting reports suggest it is either a negative regulator
of toxin production or, on the other hand, has no effect on virulence at all. We exploit a
theoretical approach by taking what is known about the network of proteins surround-
ing toxin production by C. difficile and translating this into a mathematical model.
From there it is possible to investigate a range of possible interactions (using numer-
ical and asymptotic analyses), identifying properties of TcdC which would make it
a realistic candidate as a toxin inhibitor. Our findings imply that if TcdC is really
an inhibitor of toxin production then TcdC production should be at least as fast as
that of the protein TcdR and TcdC should remain in the cells throughout growth.
These are experimentally-testable hypotheses and are equally applicable to alternative
candidates for toxin production inhibition.
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1 Introduction

1.1 Clostridium difficile and its pathogenicity

Clostridium difficile is a leading cause of hospital-associated infections in Europe,
the United States and beyond. Infection generally occurs as a result of antibiotic use
by a patient for a preceding infection: treatment causes disruption of the intestinal
microflora, allowing colonisation by C. difficile in the gut (Rupnik et al. 2009). This
Gram-positive organism has a range of effects on the host, from mild diarrhoea to
pseudomembranous colitis (severe inflammation in areas of the colon) and thousands
of cases every year in the United Kingdom alone are ultimately fatal (Statistical Bul-
letin 2011). Additionally, in surviving patients, infections often subsequently recur
for months or years, even when treated with antibiotics. Worryingly, community out-
breaks have begun to arise: C. difficile infection is no longer restricted to health care
settings and a rise in what some believe are hypervirulent strains has been noted (Rup-
nik et al. 2009). Furthermore, antibiotic resistant strains are increasingly prevalent
(French 2010). Evidently, as is the case with a growing number of bacterial species,
novel drugs must be sought urgently.

One crucial obstacle to the development of targeted anti-C. difficile treatments
is a general lack of knowledge about the virulence mechanisms used by this bac-
terium. Our understanding of the gene regulation networks governing pathogene-
sis in Clostridium species falls somewhat behind that of similar Bacillus species
due to historical difficulties in genetically manipulating this bacterium. However,
as more clostridial manipulation techniques are developed (Heap et al. 2007, 2010;
O’Connor et al. 2006), one may expect to see an increase in the level of detail
uncovered.

1.2 The PaLoc

In this study, we focus our attention on the subset of the overall network controlling C.
difficile virulence that is most directly responsible for determining toxin production:
the Pathogenicity Locus (PaLoc) comprising the five genes tcdA, tcdB, tcdC, tcdE and
tcdR (see Fig. 1 and Hundsberger et al. 1997, for example).

The gene products TcdA and TcdB are the precursors for Toxins A and B respec-
tively, the two principal toxins involved in C. difficile infection (Lyras et al. 2009;
Kuehne et al. 2010; Carter et al. 2010).1 Transcription of tcdA and tcdB is positively
controlled by TcdR, which also auto-regulates (Mani and Dupuy 2001; Mani et al.
2002). Conflicting reports exist surrounding the role of TcdE: it may (Tan et al. 2001;
Govind and Dupuy 2012) or may not (Olling et al. 2012) be required for secretion of
the toxins into the extracellular environment. Similarly, as we discuss below, recent
publications have poured controversy on the role of TcdC.

1 A third, the binary toxin CDT (C. difficile transferase), plays a much less pronounced role (Carter
et al. 2007) and is not known to interact with the proteins in Fig. 1. It is accordingly neglected from the
model.
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Properties of TcdC required for it to be a negative regulator 775

Fig. 1 A representation of the
PaLoc proteins and their mutual
interactions. Disputed
mechanisms are displayed with
dashed lines. White arrow heads
illustrate secretion and black
ones transcription induction.
Extracellular toxins are given in
the star shapes, while
intracellular proteins are ovals

Toxin A Toxin B

TcdE

TcdA TcdB

TcdC

TcdR

1.3 The role of TcdC

Before precise gene manipulation techniques were available for C. difficile, stud-
ies examining the role of TcdC had to be performed in a surrogate host, namely C.
perfringens. Such work generated the hypothesis that TcdC negatively regulates toxin
production via interference with the positive action of TcdR upon transcription of tcdA
and tcdB (Dupuy et al. 2008; Matamouros et al. 2007). This was further supported
with the discovery that (‘hypervirulent’) strains of C. difficile, believed to produce
significantly higher toxin levels than previously seen strains, had a naturally occurring
mutation in their tcdC gene, suggesting that these strains contain a non-functional
TcdC protein that cannot temper toxin levels (Carter et al. 2011). However, two more
recent studies in C. difficile itself (Cartman et al. 2012; Bakker et al. 2012) found
that TcdC did not affect toxin levels in either the standard or ‘hypervirulent’ strains,
drawing into question the role TcdC may have in regulating the amount of Toxin A and
Toxin B produced. In addition, a mechanism of interaction between TcdC and TcdR
has proved tricky to identify (van Leeuwen et al. 2013). Thus the role of TcdC, which
could be crucial in C. difficile infection and in finding novel drug targets, remains
unclear.

Mathematical modelling is increasingly being used as a means by which to glean
information from gene regulation networks. Translating what is known about the
system into a set of mathematical equations, and investigating various alternative
assumptions about the more ambiguous elements, allows predictions to be made about
the role of particular genes or proteins in the network and the effects of altering the
expression levels of these genes and post-translational modifications to the system.
We exploit this approach here to investigate the role of TcdC in the PaLoc and hence
on toxin production by C. difficile.
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Table 1 Definitions of the
model variables and their
nondimensional scalings
required to obtain
Eqs. (10)–(17). In addition, time
(t) is scaled with r (the rate of
cell growth) to give the
nondimensional τ = r t

Variable Concentration Nondimensional form

N Number of cells N ′ = (1/K )N

E TcdE E ′ = (r/cE )E

A Intracellular TcdA A′ = (r/cl
A)A

R TcdR R′ = (r/cl
R)R

C TcdC C ′ = (r/cC )C

X Secreted toxin X ′ = (r/K cl
A)X

2 Model development

A standard procedure to build deterministic ordinary-differential-equation models of
gene regulation networks in either prokaryotic or eukaryotic systems is to employ
conventional mass-action kinetic theory (Karlebach and Shamir 2008, for example):
the rate of a reaction is proportional to the product of the concentrations involved
in the reaction. Variable and parameter definitions are provided in Tables 1 and 2.
The following information and assumptions are used here to build (and in some cases
simplify) a model of the PaLoc.

– The cells follow logistic growth (at rate r with carrying capacity K ) meaning that
after an initial burst of exponential growth, the bacteria will settle into a stationary
phase. This is appropriate for cells grown in batch culture over our time period of
interest (roughly 24 h say).

– We assume TcdE is responsible for toxin secretion causing cell death in the process
as per Govind and Dupuy (2012). Toxins are released following Michaelis–Menten
kinetics at maximum rate μ with Michaelis constant η.

d N

dt
= r N

(
1 − N

K

)
− μ

(
E

E + η

)
N , (1)

d X

dt
= μA

(
E

E + η

)
N . (2)

– Protein levels are proportional to their respective mRNA levels in terms of their
dynamics (evidence suggests that this is the case at least for TcdA, TcdB and
TcdC—Dupuy and Sonenshein (1998), Govind et al. (2006)). This allows us to
include mRNA in the model implicitly, thus reducing the number of equations.

– Since we focus on qualitative implications, we consider only TcdA for simplicity
(rather than both TcdA and TcdB), since they are believed to have the same dynam-
ics but possibly at different quantitative levels (Dupuy and Sonenshein 1998).

– TcdA and TcdR are produced initially at a basal level during early growth (at
rates cl

A and cl
R respectively) and at a higher rate induced by TcdR (ch

A and ch
R)

when TcdR is present in sufficient levels later in growth (Dupuy and Sonenshein
1998; Mani et al. 2002). TcdE, on the other hand, is produced basally at rate cE

throughout, while tcdC transcription appears during exponential growth and is
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Table 2 Definitions of the parameters, their dimensions and their nondimensional representations in (10)–
(17) . We also include an estimate of the relative sizes of the nondimensional parameters

Parameter Rate of Dimensions Nondimensional
equivalent

Size

r Cell growth Time−1 1 O(1)

μ Toxin secretion Time−1 μ′ = μ/r O(ε)

η Toxin secretion
saturation
constant

Concentration η′ = ηr/cE O(1)

cl
A Constitutive TcdA

production
Concentration time −1 1 O(1)

ch
A TcdR-induced

TcdA
production

Concentration time −1 c = ch
A/cl

A O(1/ε)

cE Constitutive TcdE
production

Concentration time −1 1 O(1)

cl
R Constitutive TcdR

production
Concentration time −1 1 O(1)

ch
R TcdR-induced

TcdR
production

Concentration time −1 cR = ch
R/cl

R O(1/ε)

cC Constitutive TcdC
production

Concentration time −1 1 O(1)

λx Degradation of
protein x

Time−1 λ′
x = λx /r O(1)

λC Degradation of
TcdC

Time−1 λ′
C = λC /r O(ε)

β Binding of TcdC
and TcdR

Concentration−1 time−1 β ′ = βcC /r2 O(1)

Parameter Rate constant for Dimensions Nondimensional
equivalent

Size

K Cell carrying
capacity

Concentration 1 O(1)

Ux /Bx
(x is A or R)

Ratio of the
separation to
binding of TcdR
from promoter
site of tcdx

Concentration U ′
x = Ux r/Bx cl

R O(1)

UC/BC Ratio of
separation to
binding of TcdC
from promoter
site of tcdR

Concentration U ′
C = UCr/BC cC O(1)

– Ratio of TcdC to
basal TcdR
production

– cR
C = cC /cl

R O(1/ε)

suppressed upon entry to stationary phase (Hundsberger et al. 1997; Govind et al.
2006; Carter et al. 2011). Indeed the last of these cited studies indicates that TcdC
is present in the cells for the first 12 h of growth; this corresponds to the onset of
stationary phase. We mark the transition between exponential and stationary phase
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(i.e. as the number of cells begins to settle off to the carrying capacity K ), at time
t∗, with a step function F :

F =
{

1 if t < t∗
0 otherwise,

(3)

but investigate also the possibility that TcdC is produced throughout growth.
– All proteins are subject to natural degradation (at rate λx for variable x) and dilution

as a result of cell division during growth.

d E

dt
= cE − λE E − r E

(
1 − N

K

)
, (4)

d A

dt
= cl

A + ch
A R

R + UA/BA
− λA A − r A

(
1 − N

K

)
. (5)

– If TcdC does indeed interfere with TcdR dynamics, the mechanism by which this
would occur is unclear. In Carter et al. (2011), evidence suggests that TcdC operates
at the transcriptional level, whereas van Leeuwen et al. (2013) indicate that TcdC
is actually unlikely to bind the tcdR gene. Unless otherwise stated, we assume a
functional TcdC protein inhibits toxin production by forming a heterodimer with
TcdR (at rateβ) thus blocking the positive action of TcdR on its own gene and on the
toxin genes. This process whereby a protein is inactivated by heterodimerisation is
known as molecular titration and is a common mechanism in regulatory networks
to switch on or off a relevant response. See, for example, Buchler and Louis
(2008) for a mathematical model demonstrating this. To model a strain with a non-
functional TcdC protein, we simply use β = 0. We assume binding is irreversible
to examine functional TcdC at maximum efficiency. We include some simulations
to illustrate that our conclusions apply also to the case where TcdC instead blocks
tcdR transcription but limit this to numerical solutions for brevity.

d R

dt
= cl

R + ch
R R

R + UR/BR
− βC R − λR R − r R

(
1 − N

K

)
, (6)

dC

dt
= cC F − βC R − λC C − rC

(
1 − N

K

)
. (7)

In the cases where TcdC acts at the transcriptional level, (6) and (7) are replaced
respectively by

d R

dt
= cl

R + ch
R(UC/BC )R

(R + UR/BR)(C + UC/BC )
− λR R − r R

(
1 − N

K

)
, (8)

dC

dt
= cC F − λC C − rC

(
1 − N

K

)
. (9)

Given the lack of relevant quantitative data for the PaLoc, rather than attempting
to obtain precise estimates for the parameters, we exploit asymptotic methods which
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Properties of TcdC required for it to be a negative regulator 779

require only the relative sizes of groups of parameters to be estimated. For this, we
must nondimensionalise the system so that groupings are compared like for like (i.e.
their dimensions are the same). Nondimensional scalings are listed in Tables 1 and 2
and the resulting nondimensional system becomes (dropping primes)

d N

dτ
= N (1 − N ) − εμ̂

(
E

E + η

)
N , (10)

d E

dτ
= 1 − λE E − E(1 − N ), (11)

d A

dτ
= 1 + 1

ε

ĉR

(R + UA)
− λA A − A(1 − N ), (12)

d R

dτ
= 1 + 1

ε

ĉR R

(R + UR)
− βC R − λR R − R(1 − N ), (13)

dC

dτ
= F − ε

β

ĉR
C

C R − ελ̂C C − C(1 − N ), (14)

d X

dτ
= εμ̂A

(
E

E + η

)
N , (15)

with

dR

dτ
= 1 + 1

ε

ĉRUC R

(R + UR)(C + UC )
− λR R − R(1 − N ), (16)

dC

dτ
= F − ελ̂C C − C(1 − N ) (17)

replacing (13) and (14) if TcdC inhibits TcdR production at the transcriptional level.
We include, in the above, scalings of the nondimensional parameters (denoted by hats)
according to a small parameter ε which arises naturally in the ratio of constitutive to
TcdR-induced transcription levels, the first of which is naturally much smaller than
the second. The scalings for c = ch

A/cl
A and cR = ch

R/cl
R follow. To increase the

possibility that TcdC has an effect upon the system dynamics, we choose also to use
cR

C = O(1/ε) and λC = O(ε). Finally, since we assume cells die through lysis when
toxins are secreted, we take the rate of toxin secretion, μ, to be relatively slow to avoid
the population dying out unrealistically quickly.

3 Results

3.1 Intracellular dynamics

We solve the nonlinear system (10)–(15) numerically (using ode23 in Matlab) to yield
a first level of insight into the dynamics of the components of the PaLoc. Since the
time taken for the cells to enter stationary phase in our simulations is roughly τ = 10,
we choose this as our cut-off point for TcdC transcription, i.e.
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Fig. 2 Numerical solutions to (10)–(15) using ε = 0.1 (i.e. small, as required) and a range of values of β,
representing the rate of TcdC binding to TcdR. Large values of β lead to lowered TcdA and toxin levels
while TcdC is present in the cells, but they ultimately cannot prevent toxin levels attaining those seen for
β = 0, albeit at a later time point. Here, and henceforth, we use the arbitrary initial conditions N (0) = 0.01,
X (0) = 0, A(0) = E(0) = R(0) = C(0) = 0.25 representing the cells not producing substantial levels of
toxins initially

F =
{

1 if τ < 10
0 otherwise,

(18)

(though using a step function generates a rather sharp transition in TcdC levels, the
qualitative conclusions are not affected by adopting a smoother function to represent
this switch).

In order to investigate the role of TcdC in toxin production we consider various
values of β (the rate of TcdR inactivation by TcdC), see Fig. 2. We find

– for sufficiently large values of β, toxin production can be lowered in the presence
of functional TcdC, but as soon as TcdC disappears from the cells through natural
degradation (around τ ≈ 20), toxin levels are restored to the level achieved if
TcdC cannot bind TcdR (compare to the dotted line of Fig. 2). The strength of
TcdR to activate toxin production in this phase is further increased by the fact it is
positively auto-regulated, meaning that by the later stages of growth TcdR levels
increase significantly.

– When toxin levels are lowered (in τ < 20), they reach extremely low levels (con-
sistent with the ultra-sensitive nature of switches that can be induced by mole-
cular titration—Buchler and Louis 2008) which may not be realistic—the non-
hypervirulent strains of C. difficile involved in infection are indeed still virulent,
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Fig. 3 Numerical solution to (10)–(15) when F = 1 for all τ , ε = 0.1 and varying β values. When TcdC
is produced throughout growth, it can have a long-term negative effect on toxin levels, even for low values
of β

implying that at least some toxins are present, as is the case in all studies of TcdC
(regardless of the findings regarding its role).

– For all positive values of β, toxin production eventually reaches the levels seen for
β = 0 (i.e. the ‘hypervirulent’ case, dotted line), merely at a later time point.

– For lower values of β (see the dot-dash line), toxin production is barely reduced
even in early growth and very quickly attains ‘hypervirulent’ levels.

Figure 3 enables us to visualise what would arise if TcdC production were to occur
constitutively throughout cell growth (i.e. if F = 1 for all τ ).

– As TcdC approaches its non-zero steady state, TcdR proteins are impeded, pre-
venting a long-term increase in TcdA and subsequently toxin levels.

– Setting β = 0 and removing this TcdC-induced obstruction (dotted line) induces
significantly higher toxin levels, both during the transient dynamics and in the
steady state of TcdA (notice that toxin levels even for β = 1, given by the dot-dash
line, are markedly lower than those for β = 0).

The fact that low toxin production cannot be maintained once TcdC vanishes from
the cells suggests that the system is monostable in our parameter range and Fig. 4
confirms this for varying β (this steady-state plot was created using the bifurcation
and continuation software XPPAUT).

We observe that if TcdC is produced constitutively throughout growth and β is
greater than roughly 3 (for ε = 0.1) then TcdC has a significant negative effect on
TcdA (and consequently on toxins). However, as alluded to earlier, if β is sufficiently
large, it is possible that it actually reduces TcdA to unrealistically low levels, leaving
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Fig. 4 A steady-state plot of the system in response to changes in β (ε = 0.1) if TcdC is produced
throughout growth (F = 1 for all τ ). We omit extracellular toxin levels from these solutions since they
never achieve steady state under our assumptions (as we assume toxins are secreted as long as cells and TcdA
are present), but any effect on toxin levels can be inferred from the solution for TcdA (since extracellular
toxins are downstream of the rest of the system, this has no consequence on any other variable). Notice
that the dip in TcdC levels occurs because TcdC is free (unbound) at low β, while for large β TcdR is
sequestered sufficiently early for TcdC to be produced and remain free in the cell with no additional TcdR
to bind. Intermediate values of β result in a decrease in TcdC as a result of binding to TcdR. Given that the
system is monostable, our simple choice of initial conditions given in Fig. 2 does not affect the steady state
of the system

only a small interval of β that would yield results that might be observed in practice.
We shall see in Sect. 3.3, where we shift our focus to the parameter ĉR

C , that altering
production rather than binding rates could produce more realistic levels.

These numerical results suggest that for non-functional TcdC to be the cause of
any hypervirulence in C. difficile, it should be produced throughout growth. If TcdC is
produced only in early growth then β must be sufficiently large for it to have any effect
in the short to medium term, but eventually maximum toxin levels will be achieved
once TcdC disappears from the cells, preventing functional TcdC from being the cause
of lower toxin levels in the long term.

In all these simulations, we have assumed the mode of inhibition by TcdC is through
binding to TcdR. In Figs. 5 and 6 we illustrate that equivalent conclusions hold if TcdC
instead blocks tcdR transcription, though in this case toxin levels never reach amounts
as low as in the previous case.

In the following sections we exploit asymptotic analyses to uncover the timescale on
which any effect on toxin production by TcdC could first manifest itself (Sect. 3.2) and
how fast TcdC must be produced (in relation to the other proteins in the PaLoc) for it to
have a long-term effect on toxin levels (Sect. 3.3). In the interests of brevity, we limit
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Fig. 5 Time-dependent numerical solution to the full system, assuming TcdC inhibits TcdR production at
the transcriptional level (Eqs. (10)–(12) and (15)–(17) with ε = 0.1). The solid line represents full inhibition
(UC = 1), while the dashed (UC = O(1/ε)) and dotted (UC = O(1/ε2)) lines illustrate an increasing
inability for TcdC to bind and block tcdR transcription (i.e. this represents the hypervirulent case). Toxin
production is only mildly suppressed while TcdC is present in the cells

this to the model representing TcdC-TcdR heterodimerisation but the methods applied
therein are equally applicable to the model whereby TcdC acts via transcription.

3.2 Time-dependent asymptotic analysis

In this section we split the full transient solution into distinct timescales where different
reactions dominate in each case (see Jabbari et al. 2010 for an additional example of
such time-dependent asymptotic analysis in the context of gene regulation networks).
This enables mathematical visualisation of when TcdC first has an effect on toxin
levels, providing an estimate for the minimum time TcdC must exist in the cells for
it to exert its hypothesised effect. In addition, the simple analytical expressions will
facilitate parameter inference from time course measurements of protein levels or gene
expression in future work. Three timescales emerge from the asymptotic analysis; the
final two must be split into three cases depending on the value of what we will show
to be a key combination of parameters: FĉR

C − ĉR (in fact when this is negative the
system resolves to steady state already on the second timescale). We summarise the
analysis in Table 3 and include full details in the Appendix.

Given that secreted toxin levels never achieve steady state under our assumptions,
for simplicity we drop this variable from the remainder of the study and infer all results
from TcdA, the precursor to secreted toxins.
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Fig. 6 Time-dependent numerical solution to the full system, assuming TcdC inhibits TcdR production at
the transcriptional level and is produced throughout growth (Eqs. (10)–(12) and (15)–(17) with ε = 0.1 and
F = 1 for all τ ). The solid line represents full inhibition (UC = 1), while the dashed (UC = O(1/ε)) and
dotted (UC = O(1/ε2)) lines illustrate an increasing inability for TcdC to bind and block tcdR transcription
(i.e. this represents the hypervirulent case). As with the case where TcdC binds TcdR, in this scenario toxin
production can be lowered in the long term

Table 3 A summary of the scalings required for the time-dependent asymptotic analysis of Sect. 3.2
and the large time behaviour of each variable on each timescale (since this facilitates derivation of the
scalings for the subsequent timescale). The final two timescales differ depending on the value of FĉR

C − ĉR .

When FĉR
C − ĉR < 0, the system settles to steady state already on the second timescale. We have that

ρ = λ̂C + μ̂/(1 + ηλE ) − FURβ/ĉR and θ = FλR/β. We replace the steady state approximations for A,
R and C by the relevant equation number for the final timescale of Case III in the interests of space

Timescale FĉR
C − ĉR Scalings Large τ behaviour

τ N E A R C N E A R C

1 – ετ̂ – – – – – N (0) E(0) ĉτ̂ ĉR τ̂ C(0)

2, Case I <0 τ̃ – – ε−1 Ã ε−1 R̃ – 1 1
λE

ĉ
λA

ĉR−FĉR
C

λR

FĉR
C λR

β(ĉR−FĉR
C )

2, Case II =0 τ̃ – – ε−1 Ã ε−1 R̃ – 1 1
λE

ĉ
λA

FĉR
C

β

(
2FλR

β
τ̃
)− 1

2
(

2FλR
β

τ̃
) 1

2

2, Case III >0 τ̃ – – ε−1 Ã ε−1 R̃ – 1 1
λE

ĉ
λA

ĉR ĉR
C

β(FĉR
C −ĉR )τ̃

(
FĉR

C −ĉR

ĉR
C

)
τ̃

3, Case II =0 ε−1 τ̌ – – ε−1 Ã ε
− 1

2 Ř ε
− 1

2 Č 1 1
λE

ĉ
λA

ĉR
β

√
ρ
θ

√
θ
ρ

3, Case III >0 ε−1 τ̌ – – ε−1 Ã Ř ε−1Č 1 1
λE

(61) (60) (59)
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3.2.1 Timescale 1: τ = ετ̂

On this first timescale, all variables except τ are O(1). The system (10)–(14) becomes

d N

d τ̂
= εN (1 − N ) − ε2μ̂

(
E

E + η

)
N , (19)

d E

d τ̂
= ε − ελE E − εE(1 − N ), (20)

d A

d τ̂
= ε + ĉR

R + UA
− ελA A − ε A(1 − N ), (21)

d R

d τ̂
= ε + ĉR R

R + UR
− εβC R − ελR R − εR(1 − N ), (22)

dC

d τ̂
= εF − ε2λ̂C C − ε2 β

ĉR
C

C R − εC(1 − N ), (23)

meaning that the O(1) (i.e. the largest) terms yield the following leading-order behav-
iour:

N = N (0), E = E(0), C = C(0), (24)

R + UR ln(R) = ĉR τ̂ + R(0) + UR ln(R(0)), (25)

A =
∫

ĉR

R + UA
d τ̂ . (26)

Only TcdA and TcdR dynamics evolve on this very early timescale, both seeing the
positive influence of TcdR upon their production rates. Notably, TcdC remains at its
initial value. These approximations to the behaviour on an early timescale are depicted
in Figs. 7, 8, and 9 (division into parameter-led subcases on subsequent timescales
requires multiple plots).

3.2.2 Timescale 2: τ̂ = ε−1τ̃ , A = ε−1 Ã, R = ε−1 R̃

The influence of TcdR upon TcdA and its own production results in A and R increasing
on this timescale. The resulting rescaled problem reads

d N

d τ̃
= N (1 − N ) − εμ̂

(
E

E + η

)
N , (27)

d E

d τ̃
= 1 − λE E − E(1 − N ), (28)

d Ã

d τ̃
= ε + ĉ R̃

R̃ + εUA
− λA Ã − Ã(1 − N ), (29)

d R̃

d τ̃
= ε + ĉR R̃

R̃ + εUR
− βC R̃ − λR R̃ − R̃(1 − N ), (30)
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Fig. 7 Time-dependent numerical solution to the full system (Eqs. (10)–(15), solid line), with the asymptotic
approximations on the first (dotted line) and second (dashed line) timescales when ĉR

C = 0.5, i.e. Case I,
and ε = 0.01 (we use a smaller value of ε in this section to demonstrate better the close fit of the asymptotic
approximations). Initial conditions on the first timescale are as stated for Fig. 2 while on the second timescale,
the matching conditions N (0) = 0.01, E(0) = C(0) = 0.25, A(0) = R(0) = 0 hold

dC

d τ̃
= F − ελ̂C C − β

ĉR
C

C R̃ − C(1 − N ). (31)

Notice that the equations for N , E and A decouple from the remaining system at
leading order and can be solved to give

N = N (0)eτ̃

1 + N (0)(eτ̃ − 1)
, (32)

E =
(

1 − N (0)

eτ̃ (λE +1)
+ N (0)

eλE τ̃

) ∫
eτ̃ (λE +1)

1 − N (0) + N (0)eτ̃
d τ̃ , (33)

Ã =
(

1 − N (0)

eτ̃ (λA+1)
+ N (0)

eλA τ̃

) ∫
ĉeτ̃ (λA+1)

1 − N (0) + N (0)eτ̃
d τ̃ , (34)

where

N ∼ 1, E ∼ 1

λE
, Ã ∼ ĉ

λA
(35)

for large τ̃ . At leading order therefore, cell number is governed solely by the logis-
tic equation, toxin production not being significant enough to negatively impact on
growth.
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Fig. 8 Time-dependent numerical solution to the full system (solid line), with the asymptotic approxima-
tions on the first (dotted line), second (dashed line) and third (dot-dashed line) timescales when ĉR

C = 1,
i.e. Case II, and ε = 0.01. We depict the approximations for TcdR twice to better illustrate how they match
the full solution on distinct timescales
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Fig. 9 Time-dependent numerical solution to the full system (solid line), with the asymptotic approxima-
tions on the first (dotted line), second (dashed line) and third (dot-dashed line) timescales when cR

C = 1.5,
i.e. Case III, and ε = 0.01
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Adopting (35) and combining the leading-order terms of (30) and (31) enables us
to obtain the large τ̃ behaviour of C and R̃:

d

d τ̃
(ĉR

C C − R̃) ∼ (FĉR
C − ĉR) + λR R̃. (36)

The dynamics of these two variables are determined by whether FĉR
C − ĉR is negative,

zero or positive. We examine each case separately (note that (35) holds for all three
scenarios outlined below).

Case I: FĉR
C < ĉR

If FĉR
C < ĉR , the leading-order system evolves to steady state on this second

timescale, namely

R̄ ∼ ĉR − FĉR
C

λR
, C̄ ∼ FĉR

CλR

β(ĉR − FĉR
C )

, (37)

see Fig. 7. TcdA is not affected by any parameters relating to TcdC at leading order
since TcdR is produced at a faster rate than TcdC, thus rendering TcdC ineffective.
Instead, throughout the whole time course of the simulation TcdA is governed solely
by its own production rate, balanced by its loss rate.

Case II: FĉR
C = ĉR

Following the analysis detailed in the Appendix, we find

C ∼
(

2FλR

β
τ̃

) 1
2

(38)

and

R̃ ∼ FĉR
C

β

(
2FλR

β
τ̃

)− 1
2

, (39)

for large τ̃ . In this instance, ĉR
C is influencing TcdR levels on this intermediary timescale

but the effect has not yet filtered through to TcdA.

Case III: FĉR
C > ĉR

Under this parameter regime,

C ∼
(

FĉR
C − ĉR

ĉR
C

)
τ̃ (40)
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and

R̃ ∼ ĉR ĉR
C

β(FĉR
C − ĉR)τ̃

(41)

hold for large τ̃ . As above, ĉR
C is not yet affecting TcdA on this timescale, but it does

have a significant effect on both TcdC and TcdR, with the difference between ĉR
C

and ĉR being key to determining the rates at which these proteins are produced. In
addition, in contrast to Case II where an increase in the rate of binding of TcdR and
TcdC negatively impacts on the levels of both of these proteins, here (where TcdC
production occurs faster than that of TcdR) β affects only TcdR at leading order
because TcdC is produced in sufficient quantities for it to be replenished following
loss through complex formation. This will prove to be a key property of TcdC for it
to be a negative regulator of toxin production in this study.

3.2.3 Timescale 3

Case I: FĉR
C < ĉR

When FĉR
C < ĉR , the system has already evolved to steady state on Timescale 2

and therefore no further discussion is needed here.

Case II: FĉR
C = ĉR , τ̃ = ε−1τ̌ , C = ε− 1

2 Č , R̃ = ε
1
2 Ř

On the third timescale, if the rates of TcdC and TcdR production are identical, we
have

ε
d N

d τ̌
= N (1 − N ) − εμ̂

(
E

E + η

)
N , (42)

ε
d E

d τ̌
= 1 − λE E − E(1 − N ), (43)

ε
d Ã

d τ̌
= ε + ĉ Ř

Ř + ε
1
2 UA

− λA Ã − Ã(1 − N ), (44)

ε
3
2

d Ř

d τ̌
= ε + ĉR Ř

Ř + ε
1
2 UR

− βČ Ř − ε
1
2 λR Ř − ε

1
2 Ř(1 − N ), (45)

ε
dČ

d τ̌
= ε

1
2 F − ελ̂C Č − ε

1
2

β

ĉR
C

Č Ř − Č(1 − N ). (46)

The first three of these equations give

N ∼ 1 − εμ̂

(
1

1 + ηλE

)
, (47)

(the O(ε) term being needed to obtain the leading-order balance in (46)),
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E ∼ 1

λE
, Ã ∼ ĉ

λA
, (48)

meaning that, again, TcdA is not affected by TcdC at leading order at any point in the
time course. We find (see Appendix)

Č ∼
√

ρθ(1 − e−2ρτ̌ )

ρ
, (49)

Ř ∼ ĉRρ
√

ρθ(1 − e−2ρτ̌ )

βρθ(1 − e−2ρτ̌ )
, (50)

where

ρ = λ̂C + μ̂

1 + ηλE
− FURβ

ĉR
and θ = FλR

β
. (51)

The resulting approximations are depicted in Fig. 8.
Remember that in this scenario FĉR

C = ĉR , which in terms of the dimensional
parameters requires that the rate of TcdC production is exactly the same as the fastest
rate of TcdR production. Though it is nigh impossible that this occur in reality, we
include the analysis here for mathematical completeness. Given that the rate of protein
production is unlikely to be absolutely constant, this could in theory cater for the
scenario where the production rates of TcdC and TcdR waver around similar values.

Case III: FĉR
C > ĉR , τ̃ = ε−1τ̌ , C = ε−1Č , R̃ = ε Ř

In this case, where TcdC production occurs at a faster rate than that of TcdR, we
have on the final timescale:

ε
d N

d τ̌
= N (1 − N ) − εμ̂

(
E

E + η

)
N , (52)

ε
d E

d τ̌
= 1 − λE E − E(1 − N ), (53)

ε
d Ã

d τ̌
= ε + ĉ Ř

Ř + UA
− λA Ã − Ã(1 − N ), (54)

ε2 d Ř

d τ̌
= ε + ĉR Ř

Ř + UR
− βČ Ř − ελR Ř − ε Ř(1 − N ), (55)

ε
dČ

d τ̌
= εF − ελ̂C Č − ε

β

ĉR
C

Č Ř − Č(1 − N ), (56)

so that (47) holds also in this case. The remaining approximations are given by

E ∼ 1

λE
, Ř ∼ ĉR

βČ
− UR, Ã ∼ ĉ

λA

(
ĉR − URβČ

ĉR + (UA − UR)βČ

)
, (57)
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Č ∼ (FĉR
C − ĉR)(1 + ηλE )

(1 + ηλE )(βUR − λ̂C ĉR
C ) − μ̂ĉR

C

(
exp((

βUR

ĉR
C

− λ̂C − μ̂

1 + ηλE
)τ̌ ) − 1

)
,

(58)

The approximations for Ř and A follow.
At steady state therefore we have

¯̌C = (FĉR
C − ĉR)(1 + ηλE )

(1 + ηλE )(λ̂C ĉR
C − βUR) + μ̂ĉR

C

, (59)

¯̌R = (1 + ηλE )(βUR FĉR
C − λ̂C ĉR

C ĉR) − ĉR
C ĉRμ̂

β(ĉR − FĉR
C )(1 + ηλE )

, (60)

¯̃A = ĉĉR
C

λA

(
(1 + ηλE )(ĉRλR − βUR F) + μ̂ĉR

C

(1 + ηλE )(ĉR ĉR
C λ̂C + UAβ(FĉR

C − ĉR) − URβFĉR
C ) + μ̂ĉR ĉR

C

)
.

(61)

ĉR
C has a direct influence on A at leading order on this timescale (τ = O(1/ε)) meaning

that TcdC must remain in the cells for this length of time for it to have any effect upon
toxin levels (even when, given that FĉR

C > ĉR , TcdC production is faster than that of
TcdR). We note from Fig. 9 that this is beyond the onset of stationary phase.

The above workings make it explicit that the value of FĉR
C − ĉR is crucial for

determining the overall behaviour of the PaLoc. TcdC can only be effective in lowering
toxin production if it is produced at a faster rate than TcdR (FĉR

C > ĉR). Otherwise the
system will settle to a steady state with TcdA present in high levels. If TcdC production
is switched off at some stage of cell growth (F = 0 for some τ ) then only Case I can
ever arise, and TcdC does not affect toxin levels.

Though providing useful suggestions for experiments already, it would be inter-
esting to extend this study to consider the possibility that the value of FĉR

C − ĉR is
not constant throughout growth, but rather is subject to variations. If high-frequency
experimental time course data were available to suggest that this were the case, this
would provide a fascinating extension to the asymptotic analysis.

3.3 Steady-state approximations

Nonlinear systems of the kind presented in this study rarely have explicit steady-state
solutions from which information can be gleaned about the influence of specific para-
meters on the system as a whole. We have already seen in the previous section how
the leading-order terms of each equation (these vary depending upon the parame-
ter regime and timescale of interest) can be extracted to obtain tractable asymptotic
approximations to the full steady state. These expressions enable clear insight into
which parameters, variables and reactions are dominating the behaviour of the full
system in the long-term. We extend these approximations here to include lower order
terms. We thus summarise our findings of the previous section whilst also gleaning
further information about the system, in addition to tracking the steady state of the
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Fig. 10 A steady-state plot of TcdR, TcdC and TcdA for varying ĉR
C with ε = 0.01. The solid line

illustrates the numerically-derived steady-state of the full system, while the markers depict our analytical
approximations (62)–(75)

system in response to variations to the key parameter identified earlier, ĉR
C : the ratio

of TcdC to TcdR production—see Fig. 10.
Following the results of Sect. 3.2 which illustrate that TcdC must be present through-

out growth for it to affect toxin levels, we here further exploit the aforementioned
asymptotic techniques to infer properties of TcdC which would enable it to affect
toxin production at steady state if this were indeed the case (i.e., F = 1 for all τ ).
For this we require expressions for C , R and A (toxin levels follow directly from
intracellular TcdA levels and we have seen from Sect. 3.2 that E and N are given at
steady state by the appropriate expressions in (47) and (48)). We are able to unravel
the magnitude of TcdC’s contribution to the steady-state of the system as a whole in
the regimes outlined in the previous section.

Taking cR
C = O(1/ε) as before (and cR = O(1/ε) to be fixed), we must consider

two regimes: ĉR
C < 1 and ĉR

C > 1 (we omit ĉR
C = 1 for brevity: the leading-order steady

states can be obtained from Sect. 3.2.3). In both regimes, we derive the asymptotic
expansions of the variables to second order to gain a full picture of the effect of varying
ĉR

C on the system and to glean an estimate of the size of TcdC’s contribution on toxin
levels.

3.3.1 Regime 1: ĉR
C < 1

When cR
C = 1

ε
ĉR

C and ĉR
C < 1 both TcdC and TcdR production rates are fast but

that of TcdC is lower (similar to Case I in Sect. 3.2). The following scalings and
approximations hold (bars denote variables at steady state):

R̄ = 1

ε
r−1 + r0, C̄ = c0 + εc1, Ā = 1

ε
a−1 + a0 (62)

where

r−1 = ĉR − FĉR
C

λR
, (63)
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r0 = 1

λR(ĉR − FĉR
C )2

(
ĉR(1 − URλR) − FĉR

C − ĉR2
C FλR

β

(
λ̂C + μ̂

2

))
− μ̂

2λR
2 ,

(64)

c0 = FĉR
CλR

β(ĉR − FĉR
C )

, (65)

c1 = ĉR2
C λR

2 F

β(ĉR − FĉR
C )2

(
λ̂C

β
− r0 − μ̂

2β

)
, (66)

a−1 = ĉ

λA
, (67)

a0 = 1

λA

(
1 − ĉUAλR

ĉR − FĉR
C

− ĉμ̂

2λA

)
, (68)

(notice that the leading-order terms, r−1, c0 and a−1, concur with (35) and (37) from
the dynamic solutions of Sect. 3.2). These approximations are marked by crosses in
Fig. 10.

For each variable, the scaling of the leading-order terms with respect to ε reflects its
magnitude. Hence in this parameter range, levels of TcdR and TcdA are significantly
higher than those of TcdC. Significantly larger amounts of TcdR over TcdC mean
that the former has more influence over TcdA levels, preventing TcdC from exerting
a negative influence and resulting in high levels of TcdA. Crucially, ĉR

C only appears
in the approximation for A at second order, thus rendering any effect TcdC has to be
small relative to that of R via the parameter ĉ (the rate of TcdA production).

3.3.2 Regime 2: ĉR
C > 1

In this scenario TcdC is produced in higher amounts than TcdR (corresponding with
Case III of Sect. 3.2) and hence their orders of magnitude switch around and TcdC is
able to exert an influence over TcdA. The scalings and approximations are given by

R̄ = r0 + εr1, C̄ = 1

ε
c−1 + c0, Ā = 1

ε
a−1 + a0, (69)

where

r0 = (1 + ηλE )(βUR FĉR
C − λ̂C ĉR

C ĉR) − ĉR
C ĉRμ̂

β(ĉR − FĉR
C )(1 + ηλE )

, (70)

r1 = (r0 + UR)(r0λR − 1)(ĉR
C μ̂/(1 + ηλE ) − (λ̂C ĉR

C + βr0))

β2c−1r0(r0 + UR) + (ĉR − βc−1(2r0 + UR))(μ̂ĉR
C /(1 + ηλE ) − λ̂C ĉR

C − βr0)
,

(71)

c−1 = (FĉR
C − ĉR)(1 + ηλE )

(1 + ηλE )(λ̂C ĉR
C − βUR) + μ̂ĉR

C

, (72)
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c0 = − (1 + ηλE )βc−1r1

ĉR
C μ̂ + λ̂C ĉR

C + βr0
, (73)

a−1 = ĉr0

λA(r0 + UA)
, (74)

a0 = (1 + ηλE )((r0 + UA) − r1a−1λA) − (r0 + UA)μ̂a−1

(1 + ηλE )(r0 + UA)λA
. (75)

(69)–(75) are depicted in Fig. 10 with circles; it is evident that these track very closely
the true steady state of the full system. In this instance, TcdC levels are notably higher
than those of TcdR, and although it is still O(1/ε), TcdA is now affected by ĉR

C at
leading order (notice the dependence of r0 on ĉR

C , and consequently of a−1). With
an increase to ĉR

C rather than β (as investigated in Sect. 3.1 and Figs. 2, 3 where
TcdA levels quickly become negligible), TcdA levels can be lowered but do remain
at significant levels in the cell, thus a negative regulator acting via binding to TcdR
and produced in much higher amounts than TcdR could feasibly be responsible for
the difference between toxin levels in so-called hypervirulent and non-hypervirulent
strains (we stress again, however, that the negative regulator must be present throughout
growth).

Since TcdA remains at O(1/ε), somehow inducing tcdC transcription would not be
successful in eliminating toxin production, even if TcdC is indeed a negative regulator.
An implication being that this approach is unlikely to be a viable option for a novel
therapeutic strategy.

In summary, for ĉR
C to influence TcdA levels at leading order, we see that ĉR

C must
be greater than one. Remembering that we have already scaled cR

C to be O(1/ε), this
amounts to the unscaled nondimensional cR

C being at least O(1/ε). Translating this
into dimensional parameters, we have that

cC

cl
R

≥ O(1/ε). (76)

From our original parameter choice, we also have

cR = ch
R

cl
R

= O(1/ε). (77)

Taking (76) and (77) together, it is evident that the rate of TcdC production (cC )

must be at least as high as the highest rate of TcdR production (ch
R) for it to have a

noticeable negative effect upon toxin levels at steady state. This could be investigated
experimentally in order to identify if TcdC is produced in sufficient quantities to exert
its proposed negative effect. Likewise, this property could be applied to any other
protein that is identified as a possible candidate for inhibiting toxin production in this
manner: it must be produced at a faster rate than TcdR.
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4 Discussion

Different experimental approaches have yielded conflicting results regarding the role
of TcdC in the PaLoc. In this complementary theoretical study, we have shown how a
mathematical model can assist in unravelling the purpose of particular proteins in such
networks. While in silico conclusions cannot be assumed automatically to translate
into in vivo knowledge, they can be used to recommend experiments for corroboration
or simply to provide guidance on the optimal way to obtain more information experi-
mentally. We have indicated that TcdC production should be faster than that of TcdR
for it to be able to inhibit TcdR action effectively (if it acts via binding), in addition
to the duration of time over which TcdC must actually be produced for it to have a
long-term effect (longer than the onset of stationary phase). Both of these things can be
investigated experimentally to determine whether TcdC really is a potential candidate
for toxin inhibition. These results are equally applicable to alternative proteins, and
thus could be used as a generic indicator of potential candidates for toxin inhibition
via TcdR-binding.

Current experimental results suggest that TcdC is produced only in early growth
(Hundsberger et al. 1997; Govind et al. 2006; Carter et al. 2011) in a laboratory
setting (i.e. in batch culture) but it should be considered a possibility that an in vivo
infection could consist of cells entirely in exponential growth and thus TcdC could
be produced throughout infection. However, this cannot explain the discrepancy in
experimental results which suggest that when TcdC is produced only in early growth,
it can have a long-term effect on toxin levels. Our findings imply that if TcdC does block
TcdR action, then toxin production should only be delayed in this setting, agreeing
therefore with Bakker et al. (2012) and Cartman et al. (2012) that TcdC is unlikely to
be responsible for lowered toxin levels.

The range of β (the rate of TcdC binding to TcdR) which allows for a potentially
realistic response to TcdC if it were a negative regulator of toxin production (i.e. some
inhibition, but not a complete block) is fairly narrow under our parameter regime,
suggesting that this would be a very sensitive mechanism (and perhaps therefore
somewhat risky if a total switch is not what is required) for C. difficile to employ.
However, any complete block could be caused by our assumption that, once bound,
TcdC and TcdR do not separate (in doing so we were assuming TcdC operates at
maximum efficiency, thus if it cannot lower toxin production in the long-term under
this assumption we can be more certain it cannot do this under more slack conditions).
Importantly, this result could mean that a novel drug which acts by binding TcdR and
consequently blocking its action could be effective in quenching C. difficile infection
via molecular titration. Overexpressing production of a negative regulator, whether
it acts by binding the protein or blocking tcdR transcription, appears to be a less
promising strategy since in our simulations toxin production was not abolished in
these cases.

Of course, a number of additional assumptions were made in the formulation of the
model, but we stress that these do not affect our results. For instance, TcdE may not
actually be responsible for toxin secretion and therefore the formation of extracellular
toxins (as argued by Olling et al. 2012), but all of our conclusions regarding toxin
levels can be drawn from the variables representing intracellular TcdA (extracellu-

123



796 S. Jabbari et al.

lar quantities were really only considered in Sect. 3.1 for completeness). Similarly,
including TcdB in the model would have given identical qualitative results to those
seen for TcdA.

This study highlights the benefits of using a combined numerical and asymptotic
approach to investigate gene regulation networks. While both enable a visualisation
of the dynamics of the system, including investigating a range of parameter values,
the asymptotic analysis permits significant insight into which reactions, variables and
parameters are actually determining the behaviour of the system. The generation of
smaller and less complicated subsystems which capture the behaviour of the full
system on timescales or parameter regimes of interest are useful not only to improve
our understanding of the system as a whole and to simplify the underlying mathematics,
but also to pinpoint elements worthy of further experimental investigation.

5 Summary

If elements of the pathogenesis-related regulatory network of C. difficile are to be used
as targets of novel drugs (in order to minimise the likelihood of the bacteria developing
resistance to the drugs), it is crucial that efforts across a range of disciplines be adopted
to ensure we fully understand the implications of interfering with the life-cycle of this
important bacterium.

TcdC has long been assumed to play a pivotal role in toxin production with only
more recent studies suggesting that its contribution is in fact negligible. Our findings
here support the hypothesis that TcdC negatively regulates toxin production in con-
ventional (i.e. non-hypervirulent) strains and that a lack of its functionality could be
responsible for any increase in toxins in hypervirulent strains only if it is produced
throughout growth and in higher quantities than TcdR. We thus present model-derived
properties which can be investigated in a laboratory environment to lend support to
either of the biological hypotheses. This will yield experimental data which can further
inform the model and strengthen the reliability of future predictions.
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Appendix A: Time-dependent asymptotic analysis

We here provide the mathematical detail behind the asymptotic analysis on the system
below, as outlined in Sect. 3.2.

d N

dτ
= N (1 − N ) − εμ̂

(
E

E + η

)
N , (78)

d E

dτ
= 1 − λE E − E(1 − N ), (79)
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d A

dτ
= 1 + 1

ε

ĉR

(R + UA)
− λA A − A(1 − N ), (80)

d R

dτ
= 1 + 1

ε

ĉR R

(R + UR)
− βC R − λR R − R(1 − N ), (81)

dC

dτ
= F − ε

β

ĉR
C

C R − ελ̂C C − C(1 − N ). (82)

A.1 Timescale 1: τ = ετ̂

On this first timescale, all variables except τ are O(1). The scaling τ = ετ̂ enables the
appearance of the fastest reactions to appear here at leading order. We assume all initial
conditions are O(1) implying that the bacteria do not produce toxins in significant
quantities initially and do not require scaling. The system (78)–(82) becomes

d N

d τ̂
= εN (1 − N ) − ε2μ̂

(
E

E + η

)
N , (83)

d E

d τ̂
= ε − ελE E − εE(1 − N ), (84)

d A

d τ̂
= ε + ĉR

R + UA
− ελA A − ε A(1 − N ), (85)

d R

d τ̂
= ε + ĉR R

R + UR
− εβC R − ελR R − εR(1 − N ), (86)

dC

d τ̂
= εF − ε2λ̂C C − ε2 β

ĉR
C

C R − εC(1 − N ), (87)

meaning that the O(1) terms yield the following leading-order behaviour:

N = N (0), E = E(0), C = C(0), (88)

R + UR ln(R) = ĉR τ̂ + R(0) + UR ln(R(0)), (89)

A =
∫

ĉR

R + UA
d τ̂ . (90)

In order to link to the following timescale we must derive the long-term behaviour
of each variable and match these to the subsequent short-term dynamics: we have that

R ∼ ĉR τ̂ and A ∼ ĉτ̂ for large τ̂ (91)

on this timescale, while the other variables remain constant. This informs our choice
of variable scalings on the subsequent timescale: since both R and A behave like τ̂ for
large τ̂ , they must be scaled with the same power of ε as is τ̂ to move to the second
timescale. The relevant power of ε is chosen to bring the mathematically appropriate
terms into the leading-order behaviour on the second timescale.
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A.2 Timescale 2: τ̂ = ε−1τ̃ , A = ε−1 Ã, R = ε−1 R̃

When identifying the scalings required to move to a next timescale, it is helpful to
examine the comparisons between the approximations on the previous timescale and
the full system (Figs. 7, 8, 9). It is clear that the approximations for A and R grow too
fast on the first timescale. Similarly, those for N , E and C do not grow at all. These
facilitate the derivation of the above scalings for the second timescale. The rescaled
problem reads

d N

d τ̃
= N (1 − N ) − εμ̂

(
E

E + η

)
N , (92)

d E

d τ̃
= 1 − λE E − E(1 − N ), (93)

d Ã

d τ̃
= ε + ĉ R̃

R̃ + εUA
− λA Ã − Ã(1 − N ), (94)

d R̃

d τ̃
= ε + ĉR R̃

R̃ + εUR
− βC R̃ − λR R̃ − R̃(1 − N ), (95)

dC

d τ̃
= F − ελ̂C C − β

ĉR
C

C R̃ − C(1 − N ). (96)

Notice that the equations for N , E and A decouple from the remaining system at
leading order and can be solved to give

N = N (0)eτ̃

1 + N (0)(eτ̃ − 1)
, (97)

E =
(

1 − N (0)

eτ̃ (λE +1)
+ N (0)

eλE τ̃

) ∫
eτ̃ (λE +1)

1 − N (0) + N (0)eτ̃
d τ̃ , (98)

Ã =
(

1 − N (0)

eτ̃ (λA+1)
+ N (0)

eλA τ̃

) ∫
ĉeτ̃ (λA+1)

1 − N (0) + N (0)eτ̃
d τ̃ , (99)

where

N ∼ 1, E ∼ 1

λE
, Ã ∼ ĉ

λA
(100)

for large τ̃ .
Adopting (100) and combining the leading-order terms of (95) and (96) enables us

to obtain the large τ̃ behaviour of C and R̃:

d

d τ̃
(ĉR

C C − R̃) ∼ (FĉR
C − ĉR) + λR R̃. (101)

The dynamics of these two variables are determined by whether FĉR
C − ĉR is negative,

zero or positive. We examine each case separately (note that (100) holds for all three
scenarios outlined below).
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A.2.1 Case I: FĉR
C < ĉR

If FĉR
C < ĉR , the leading-order system evolves to steady state on this second timescale,

namely

R̄ ∼ ĉR − FĉR
C

λR
, C̄ ∼ FĉR

CλR

β(ĉR − FĉR
C )

, (102)

(see Fig. 7) and therefore no further timescales are required for this parameter regime.

A.2.2 Case II: FĉR
C = ĉR

Examination of the numerical solutions illustrates that in (101) d R̃/d τ̃ is negligible
in relation to the other terms. Thus,

R̃ ∼ ĉR
C

λR

dC

d τ̃
. (103)

Substituting (103) back into the leading order terms of (96) (again, using N ∼ 1)
gives for large τ̃

(
1 + β

λR
C

)
dC

d τ̃
∼ F. (104)

However, because C � 1,

C ∼
(

2FλR

β
τ̃

) 1
2

. (105)

From (103) this gives

R̃ ∼ FĉR
C

β

(
2FλR

β
τ̃

)− 1
2

. (106)

A.2.3 Case III: FĉR
C > ĉR

Examination of the numerical solution to the equations shows that both d R̃/d τ̃ and
λR R̃ become negligible in relation to the other terms in (101) under this parameter
regime. Thus

dC

d τ̃
∼ FĉR

C − ĉR

ĉR
C

(107)
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which gives

C ∼
(

FĉR
C − ĉR

ĉR
C

)
τ̃ , (108)

and hence from (95) and (100) (remembering that the contributions of d R̃/d τ̃ and
λR R̃ are negligible in relation to other terms in (95) also)

R̃ ∼ ĉR ĉR
C

β(FĉR
C − ĉR)τ̃

(109)

for large τ̃ .

A.3 Timescale 3

A.3.1 Case I: FĉR
C < ĉR

When FĉR
C < ĉR , the system has already evolved to steady state on Timescale 2 and

therefore no further discussion is needed here.

A.3.2 Case II: FĉR
C = ĉR, τ̃ = ε−1τ̌ , C = ε− 1

2 Č, R̃ = ε
1
2 Ř

On the previous timescale

C ∼ τ̃
1
2 and R ∼ τ̃− 1

2

(see (105) and (106)). Thus, if τ̃ is scaled with εα then C must be scaled with ε
α
2

and R with ε− α
2 . The above scalings (that set α = −1 to achieve a new balance by

bringing to leading-order TcdR production and TcdC loss–see Fig. 8) abide to this
rule. On this third timescale, therefore, if the rates of TcdC and TcdR production are
identical, we have

ε
d N

d τ̌
= N (1 − N ) − εμ̂

(
E

E + η

)
N , (110)

ε
d E

d τ̌
= 1 − λE E − E(1 − N ), (111)

ε
d A

d τ̌
= ε + ĉ Ř

Ř + ε
1
2 UA

− λA A − A(1 − N ), (112)

ε
3
2

d Ř

d τ̌
= ε + ĉR Ř

Ř + ε
1
2 UR

− βČ Ř − ε
1
2 λR Ř − ε

1
2 Ř(1 − N ), (113)

ε
dČ

d τ̌
= ε

1
2 F − ελ̂C Č − ε

1
2

β

ĉR
C

Č Ř − Č(1 − N ). (114)
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The first three of these equations give

N ∼ 1 − εμ̂

(
1

1 + ηλE

)
, (115)

(the O(ε) term being needed to obtain the leading-order balance in (114)),

E ∼ 1

λE
, A ∼ ĉ

λA
. (116)

Combining (113) and (114) and taking leading-order terms, we obtain the following
expression

ĉR
C

dČ

d τ̌
∼ λR Ř + ĉRUR

Ř
−

(
λ̂C + μ̂

1 + ηλE

)
ĉR

C Č, (117)

but from (114) and the condition that FĉR
C = ĉR ,

Ř ∼ ĉR

βČ
. (118)

Hence,

dČ

d τ̂
∼ FλR

βČ
−

(
λ̂C + μ̂

1 + ηλE
− FURβ

ĉR

)
Č, (119)

with Č → 0 as τ̌ → 0. This can be solved to give

Č ∼
√

ρθ(1 − e−2ρτ̌ )

ρ
, (120)

Ř ∼ ĉRρ
√

ρθ(1 − e−2ρτ̌ )

βρθ(1 − e−2ρτ̌ )
, (121)

where

ρ = λ̂C + μ̂

1 + ηλE
− FURβ

ĉR
and θ = FλR

β
. (122)

The resulting approximations are depicted in Fig. 8.

A.3.3 Case III: FĉR
C > ĉR, τ̃ = ε−1τ̌ , C = ε−1Č, R̃ = ε Ř

On the previous timescale

C ∼ τ̃ and R̃ ∼ τ̃−1

123



802 S. Jabbari et al.

for this Case (see (108) and (109)). Therefore, (following the reasoning outlined for
Case II) the above scalings facilitate the transition between the two timescales. In this
case, where TcdC production occurs at a faster rate than that of TcdR, we have on this
final timescale:

ε
d N

d τ̌
= N (1 − N ) − εμ̂

(
E

E + η

)
N , (123)

ε
d E

d τ̌
= 1 − λE E − E(1 − N ), (124)

ε
d Ã

d τ̌
= ε + ĉ Ř

Ř + UA
− λA Ã − Ã(1 − N ), (125)

ε2 d Ř

d τ̌
= ε + ĉR Ř

Ř + UR
− βČ Ř − ελR Ř − ε Ř(1 − N ), (126)

ε
dČ

d τ̌
= εF − ελ̂C Č − ε

β

ĉR
C

Č Ř − Č(1 − N ), (127)

so that (115) holds also in this case. The remaining approximations are given by

E ∼ 1

λE
, Ř ∼ ĉR

βČ
− UR, Ã ∼ ĉ

λA

(
ĉR − URβČ

ĉR + (UA − UR)βČ

)
, (128)

dČ

d τ̌
= F − ĉR

ĉR
C

+
(

βUR

ĉR
C

− λ̂C − μ̂

1 + ηλE

)
Č . (129)

(129) can be solved to give

Č ∼ (FĉR
C − ĉR)(1 + ηλE )

(1 + ηλE )(βUR − λ̂C ĉR
C ) − μ̂ĉR

C

(
exp

((
βUR

ĉR
C

− λ̂C − μ̂

1 + ηλE

)
τ̌

)
− 1

)
,

(130)

(matching to Č ∼ ((FĉR
C − ĉR)/ĉR

C )τ̌ as τ̌ → 0). The solutions for Ř and A follow.
At steady-state therefore we have

¯̌C = (FĉR
C − ĉR)(1 + ηλE )

(1 + ηλE )(λ̂C ĉR
C − βUR) + μ̂ĉR

C

, (131)

¯̌R = (1 + ηλE )(βUR FĉR
C − λ̂C ĉR

C ĉR) − ĉR
C ĉRμ̂

β(ĉR − FĉR
C )(1 + ηλE )

, (132)

¯̃A = ĉĉR
C

λA

(
(1 + ηλE )(ĉRλR − βUR F) + μ̂ĉR

C

(1 + ηλE )(ĉR ĉR
C λ̂C + UAβ(FĉR

C − ĉR) − URβFĉR
C ) + μ̂ĉR ĉR

C

)
.

(133)
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