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Abstract The relationship between components of biochemical network and the
resulting dynamics of the overall system is a key focus of computational biology.
However, as these networks and resulting mathematical models are inherently complex
and non-linear, the understanding of this relationship becomes challenging. Among
many approaches, model reduction methods provide an avenue to extract compo-
nents responsible for the key dynamical features of the system. Unfortunately, these
approaches often require intuition to apply. In this manuscript we propose a practical
algorithm for the reduction of biochemical reaction systems using fast-slow asymp-
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totics. This method allows the ranking of system variables according to how quickly
they approach their momentary steady state, thus selecting the fastest for a steady state
approximation. We applied this method to derive models of the Nuclear Factor kappa
B network, a key regulator of the immune response that exhibits oscillatory dynamics.
Analyses with respect to two specific solutions, which corresponded to different experi-
mental conditions identified different components of the system that were responsible
for the respective dynamics. This is an important demonstration of how reduction
methods that provide approximations around a specific steady state, could be utilised
in order to gain a better understanding of network topology in a broader context.

Keywords Model reduction · Characteristic timescales · Signalling networks ·
Nuclear Factor kappa B

Mathematics Subject Classification (2010) 92-08 · 92C42

1 Introduction

Biological systems are inherently complex. They are governed by a large number of
functionally diverse components, which interact selectively and nonlinearly to achieve
coherent outcomes (Kitano 2002). Systems biology addresses this complexity by inte-
grating biological experiments with computational methods, to understand how the
components of a system interact and contribute to the biological function. However, the
dynamical models that represent biological systems can often have high-dimensional
state space and depend on a large number of parameters. Understanding the rela-
tionships between structure, parameters and function of such large systems is often a
challenging and computationally intensive task.

One example of such a complex and high-dimensional system is the signalling
network of the nuclear factor kappa B (NF-κB) transcription factor. NF-κB dynamics
affects cell fate through the action of dimeric transcription factors that regulate immune
responses, cell proliferation and apoptosis (Hayden and Ghosh 2008). In unstimulated
cells NF-κB is sequestered in the cytoplasm by association with the inhibitor kappa
B (IκB) family of proteins. Upon stimulation with cytokines, such as tumour necrosis
factor α (TNFα), the IκBs are degraded releasing NF-κB to the nucleus where it acti-
vates the transcription of over 300 target genes (Hoffmann and Baltimore 2006). Single
cell fluorescence imaging has shown that upon continuous TNFα stimulation NF-κB
exhibits nuclear-to-cytoplasmic oscillations with a period of approximately 100 min
(Nelson et al. 2004). This period is critical for maintaining downstream gene expres-
sion (Ashall et al. 2009). The oscillatory dynamics emerge through the interplay of a
number of negative and positive feedback genes that are under the transcription control
of NF-κB. These, among others, include the IκB and A20 inhibitors, and cytokines
such as TNFα (Fig. 1) (Hoffmann and Baltimore 2006). In order to understand
this intricate feedback regulation various mathematical models of the NF-κB signalling
network have been proposed (Hoffmann et al. 2002; Lipniacki et al. 2004; Mengel
et al. 2012; Turner et al. 2010). However, the overall system is not fully resolved.

The large number of variables and biochemical reactions in dynamic models, such as
those of the NF-κB system, makes them analytically intractable. Sensitivity analyses
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A method of ‘speed coefficients’ for biochemical model 593

Fig. 1 Network diagram of the Simplified Model (derived from Ashall et al. (2009)) and the minimal
model of the NF-κBsystem. Time-dependent variables present in each model are depicted with black colour.
Pointed and round arrowheads represent activating and inhibitory reactions, respectively. In unstimulated
conditions NF-κB is sequestered in the cytoplasm by association with IκBα inhibitors. Stimulation with
TNFα (by changing k24 = 1 from 0) causes activation of the IKK kinase, and subsequently degradation
of IκBα and translocation of free NF-κB to the nucleus. Nuclear NF-κB induces transcription of IκBα and
A20. Once synthesised IκBα is able to bind to NF-κB and return it to the cytoplasm, while A20 inhibits the
IKK activity

are often employed to understand these models, assessing how individual parame-
ters influence model dynamics in a local and global context (Ihekwaba et al. 2004,
2005; Rand 2008). Model reduction approaches provide a complementary avenue to
extract the core reactions and variables responsible for the key dynamical features
of the system. These include modularisation to break large systems down into more
tractable functional units (Saez-Rodriguez et al. 2004). However, definition of a mod-
ule becomes arbitrary, so this remains a heuristic technique. Other techniques include
using a posterori analysis and characteristic timescales. Based on error analysis, the
former method identifies, for different time intervals, the components of the model
required for accurate representation of the solution and uses this information to guide
model simplification (Whiteley 2010). The latter utilises the fact that many biological
systems incorporate markedly different time-scales ranging from seconds to hours.
Relevant approaches employ the use of partial-equilibriums (PE), quasi-steady-state
approximations (QSSA), or grouping variables with equivalent time-scales (Krishna
et al. 2006; Maeda et al. 1998; Schneider and Wilhelm 2000), see also Kutumova et al.
(2013) and Radulescu et al. (2008) for analysis of the NF-κB signalling. These meth-
ods often rely on intuition to identify the small parameters that allow the successive
reduction steps, and a standard problem for perturbation methods is that in reality the
small parameters are never infinitely small and one needs somehow to assess whether
they are small enough for any particular purpose, that is, additional accuracy control
is required. Algorithmic approaches to identification of small parameters have been
proposed. For instance, Computational Singular Perturbation (CSP) method is an iter-
ative procedure, based on identification of the fast modes through the analysis of the
eigenvalues of the Jacobian matrix (Lam and Goussis 1994), see also Kourdis et al.
(2013) for the asymptotic analysis of the NF-κB dynamics. Other methods exploiting
the eigenvalues of the Jacobian are the Intrinsic Low-Dimensional Manifolds (ILDM)
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method by Maas and Pope (1992) and a more refined Method of Invariant Manifold by
Gorban and Karlin (2003). Comparison and analysis of these methods can be found in
(Zagaris et al. 2004). Although these methods are more advanced that the classical PE
and QSSA techniques, they are also more technically challenging than their predeces-
sors. QSSA methods retain original variables and parameters. Alternative methods,
such as the Elimination of Nonessential Variables (ENVA) method described in Danø
et al. (2006) exploit searches through lower-dimensional models of reduced networks
for a minimal mathematical model which will reproduce a desired dynamic behaviour
of the full model. Such a systematic reduction method has the advantage of requiring
neither knowledge of the minimal structures, nor re-parameterisation of the retained
lumped model components. Indeed, application of model reduction methods which
are algorithmic rather than necessarily biologically intuitive can clearly reveal model
sub-structures which control basic system dynamics.

In this manuscript we use a simple algorithmic QSSA approach for the reduction
of biochemical reaction systems using a heuristic that is likely to be widely applicable
to this sort of systems. We define “speed coefficients” that enable ranking variables
according to how quickly their approach their momentary steady-state. This allows
a straightforward choice of variables for elimination by QSSA application at each
step of the algorithm, while preserving dynamic characteristics of the system. We use
this method to derive reduced models of the NF-κB signalling network. Our analysis
identifies the key feedback components of the system responsible for NF-κB dynamics.
Further, reduction of the NF-κB model around different solutions (corresponding to
different experimental protocols) revealed specific components of the IKK signalling
module responsible for generation of the respective dynamics. This demonstrates the
application of an essentially local technique which can be used to infer information
about the system in a larger context, ultimately providing a better understanding of
the NF-κB signalling network.

2 Methods

2.1 Perturbation theory for fast-slow systems

The application of steady-state approximation to biochemical reaction systems typi-
cally argues that some of the reagents are highly reactive, so are used as quickly as
they are made. Therefore, after the initial transient phase, the concentration of such a
reagent is always close to what would be its steady-state as long as concentrations of
other reagents were maintained constant. In the simplest form, this means that in the
kinetic equations, the corresponding rate of change can be set to zero. This provides
a general procedure for simplifying biochemical systems, based on the difference of
characteristic time-scales. Practical application of this idea dates back at least to Briggs
and Haldane (1925). More recent reviews and textbook expositions can be found (e.g.
in Klonowski 1983; Segel and Slemrod 1989; Volpert and Hudjaev 1985; Yablonskii
et al. 1991). The basic mathematical justification of the formal procedures stems from
the seminal work by Tikhonov (1952). It is formulated for systems which involve
small parameter ε in the form
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dx

dt
= f (x, z, t) ,

ε
dz

dt
= g (x, z, t) , (1)

where x is a vector of slow variables and z is the vector of fast variables. In the limit
ε → 0, the system (1) becomes

dx

dt
= f (x, z, t) ,

z = φ (x, t) , (2)

where φ (x, t) is the solution of g (x, z, t) = 0. If ε is small, the solutions to the
original system (1) may be expected to differ from solutions of (2) only slightly. For
an initial-value problem for a finite time interval this is guaranteed by the following:

Theorem 1 Let the right-hand sides of systems (1) and (2) be sufficiently smooth so
solutions to initial value problems exist and are unique. Let x = X (t; ε), z = Z(t; ε),
t ∈ [0, T ], T > 0 be a solution of the system (1) with initial condition X (0; ε) = x0,
Z(0; ε) = z0, and x = X̄(t) be a solution to the system (2) with initial condition
X̄(0) = x0. Consider also the “attached” system,

dz

ds
= g (x, z, t) , (3)

depending on x and t as parameters. Let z = φ(x, t) be a function defined on an
open set containing the trajectory {(X̄(t), t), t ∈ [0, T ]}, such that z = φ(X̄(t), t)
is an isolated, Lyapunov stable and asymptotically stable equilibrium of (3) for the
corresponding x = X̄(t) and any t ∈ [0, T ]. Finally, assume that z0 is within the
basin of attraction of the equilibrium φ(x0, 0) of system (3) at x = x0, t = 0. Then
for any t ∈ (0, T ],

lim
ε→0

X (t; ε) = X̄(t), lim
ε→0

Z(t; ε) = φ(X̄(t)).

This theorem is a special case of Theorem 1 of Tikhonov (1952). In fact, the solution
of the full system (1) can be considered as consisting of two parts: the initial transient,
approximately described by (3), with s = εt , and x ≈ x0, which is followed by
the long-term part, approximately described by the solution x = X̄(t), z = φ(x).
However the duration of the transient is O (ε) so for any fixed t > 0 and sufficiently
small ε, the initial transient will have expired by the time t , hence the limit.

A limitation of the above result is that it gives only pointwise convergence in ε so
it does not answer the questions about the behaviour of trajectories as t → 0 at a fixed
ε. There were later extensions of this work, relieving this limitation. In this paper we
will be looking at periodic solutions, so the following result is relevant to us:

Theorem 2 In addition to the assumptions of Theorem 1, suppose that the slow sys-
tem (2) has a periodic solution with period P0, that is x = X̃(t): X̃(t+P0) ≡ X̃(t), and
this solution is stable in the linear approximation. Then the full systems (1) have an (ε-
dependent) family of periodic solutions with periods P(ε) such that limε→0 P(ε) = P0
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and the corresponding orbits lie in a small vicinity of (X̃(t), φ(X̃(t))) for small ε.
Moreover, the periodic orbits and the period depend of ε smoothly.

This theorem is a special case of Theorem 5 of Anosov (1960).
When the approximation of the solution of the full system by that of the slow system

is insufficient in itself, it can be improved by considering higher-order corrections
in ε. The mathematical justification of that procedure is based on the results about
smoothness of the dependence of solutions of the full system on ε, see e.g. Vasil’eva
(1952). A very influential continuation of these works with important generalizations,
under a currently popular name of “geometric perturbation theory”, has been done
by Fenichel (1979). Below we present a simple illustration of the method, directly
applicable to our situation.

2.2 Identification of small parameters: parametric embedding

In the real-life kinetic equations it is not always obvious which reagents can be suitable
for the QSSA. To identify such reagents, we follow the formal method of “parametric
embedding” (Suckley and Biktashev 2003; Biktasheva et al. 2006).

Definition 1 We will call a system

u̇ = F(u; ε), u ∈ R
d ,

depending on parameter ε, a 1-parametric embedding of a system

u̇ = f (u), u ∈ R
d ,

if f (u) ≡ F(u, 1) for all u ∈ dom ( f ). If the limit ε → 0 is concerned then we call
it a asymptotic embedding. If a 1-parametric embedding has a form (1), we call it a
Tikhonov embedding.

The typical use of this procedure has the form of a replacement of a small constant
with a small parameter. If a system contains a dimensionless constant a which is “much
smaller than 1”, then replacement of a with εa constitutes a 1-parametric embedding;
and then the limit ε → 0 can be considered. In practice, constant a would more
often be replaced with parameter ε, but mathematically, in the context of ε → 0 and
a = const �= 0 this, of course, does not make any difference from εa. This explains
the paradoxical use of a zero limit for a parameter whose true value is one.

In some applications, the “small parameters” appear naturally and are readily iden-
tified. However, this is not always the case, and in complex nonlinear systems asymp-
totic analysis may require this procedure of parametric embedding, i.e. introduction
of small parameters artificially. It is important to understand, that there are infinitely
many ways a given system can be parametrically embedded, as there are infinitely
many ways to draw a curve F(u; ε) in the functional space given the only constraint
that it passes through a given point, F(u; 1) = f (u). In terms of asymptotics, which of
the embeddings is “better” depends on the qualitative features of the original systems
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that need to be represented, or classes of solutions that need to be approximated. Some
examples of different Tikhonov embeddings of a simple cardiac excitation model can
be found in Suckley and Biktashev (2003), and non-Tikhonov embedding of the same
in Biktashev and Suckley (2004), and some of those examples are better than others
in describing particularly interesting features of cardiac action potentials.

If a numerical solution of the system can be found easily, then there is a simple
practical recipe: to look at the solutions of the embedding at different, progressively
decreasing values of the artificial small parameter ε, and see when the features of
interest will start to converge. If the convergent behaviour is satisfactorily similar to
the original system with ε = 1, the embedding is adequate for these features.

To summarize, we claim that identification of small parameters in a given mathe-
matical model with experimentally measured functions and constants will, from the
formal mathematical viewpoint, always be arbitrary (even though in the simplest cases
there may be such a natural choice that this ambiguity is not even realized by the mod-
eller), and “validity” of such identification can be defined only empirically: if the
asymptotics describe the required class of solutions sufficiently well. The rare excep-
tions are when the asymptotic series are in fact convergent and the residual terms can
be estimated a priori. A cruder (and less reliable) estimate of the error of an asymptotic
can be obtained through the analysis of the higher-order asymptotics, see e.g. Turányi
et al. (1993); more about it later.

In this paper, we restrict consideration to Tikhonov embeddings (1). The simplest
version of the above recipe results in the straightforward procedure: compare the
solution of the full system with the solution where the putative fast variable has been
replaced by its quasistationary value. In terms of the “numerical embedding”, this
means a short-cut: considering values ε = 1 and ε = 0 instead of a (or as a very short)
sequence of values of ε converging to 0. Although sometimes we have indeed studied
several values of ε, we shall always present only ε = 1 and ε = 0 results, to avoid
cluttering the graphs.

2.3 Speed coefficients

It follows from the above discussion that the “numerical embedding” procedure could
be applied to any of the dynamic variables, and those whose adiabatic elimination
would cause the smallest changes in the solution, could be taken as the fastest. In
practice, for a large system, this exhaustive trial and error procedure may be too
laborious. We employ a simple heuristic method to identify the candidates for the
fastest variables.

We describe it in terms of a generic system of N ordinary differential equations
(ODEs),

dxi

dt
= fi (x1, . . . , xN ) , i = 1, . . . N . (4)

We define the “speed coefficients” for each dynamic variable xi as

λi (x1, . . . , xN ) =
∣
∣
∣
∣

∂ fi

∂xi

∣
∣
∣
∣
. (5)
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Fig. 2 Semi-logarithmic plot of speed coefficients for the Simplified Model (SM). A larger speed coefficient
means the variable is approaching its steady state faster. These coefficients identify variable z as the fastest,
and therefore the most appropriate candidate for elimination

By definition, these coefficients depend on the dynamic variables, or, for a selected
solution, they depend on time t . They can be used to rank the variables according to
how quickly they approach their momentary steady-states (Fig. 2).

It is very essential to understand that with the exception of relatively trivial cases,
the most adequate choice of embedding will depend on the type of solutions that are
of interest for the particular application at hand, because in a nonlinear system, what
is “small” and what is “large” may be significantly different in different parts of the
phase space. A simple but very instructive example illustrating this point is considered
by Lam and Goussis (1994, Section A), where the meaning of fast/slow changes
depending on initial conditions and on what part of the solution is considered. Our
practical approach is that we start from one particular solution, which is selected in such
a way that to be sufficiently representative for the class of solutions that are of interest
to a particular application. An obvious extension would be selection of a representative
set of solutions; however for the illustration of the method, one is enough. As follows
from the above, the task of selecting such solutions is inevitably the responsibility of
the investigator who is going to apply the method and use the resulting reduced system.
In the particular models we consider here this task is relatively straightforward, as the
long-term behaviour is more or less the same for any physiologically sensible initial
conditions. For elimination of any further ambiguity we have adopted a rule that we
would select for elimination the variable that is fastest at its slowest. That is, for each
variable we find the minimal value of its speed coefficient over the simulated time
interval, and then select the variable which has the highest value of the minimal speed
among other variables.

Note that our heuristic procedure only uses partial information about the system
(only the diagonal elements of the Jacobian, and only its minimal value along only
one/a few solution(s)), but it is only used for preliminary selection of variables for
reduction. Therefore, the actual success of reduction is established by comparison of
the reduced and the original system, within the “numerical embedding” procedure
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A method of ‘speed coefficients’ for biochemical model 599

described above. In the test cases presented in this paper, this proof has always been
successful, if sometimes with first-order corrections. However one cannot exclude
the possibility that high relative values of the non-diagonal elements of the Jacobian
and/or its strong variations over the representative solutions may force the change of
the candidate for reduction, or QSSA may be inapplicable in principle. As an extreme
example, consider a subsystem: ẋ = Ay, ẏ = −Ax , which has zero diagonal Jacobian
elements, so would be classed as (infinitely) slow, yet for large A its treatment as such
within a larger system would produce wrong results, as in fact x and y will fastly
oscillate. For the (bio-)chemical kinetics this sort of behaviour is, however, not very
likely, at least at the level of elementary reactions; see e.g. the discussion in Turányi et
al. (1993, p. 165). On the other hand, this fastly oscillating subsystem is not appropriate
for Tikhonov style treatment anyway, and requires averaging in Krylov–Bogolyubov
style instead; whereas if a system does have the form (1) and satisfies the assumptions
of Theorem 1, then the eigenvalues of the Jacobian block ε−1∂g/∂z have negative real
parts and are of the order of ε−1, so its diagonal elements are likely to be large (and
negative)—although, of course, counter-examples can be invented.

Finally, we note again that the choice of variables for reduction may depend on the
class of solutions of interest, which in our approach will be done via the choice of
representative solution. In Sects. 3 and 4 we consider two different classes of solution
in the same full model, which give two different reduced models.

2.4 The model reduction algorithm

Based on Tikhonov’s and Anosov’s theorems and the definition of the speed coeffi-
cients we can define a general method for reducing the dimension of a biochemical
reaction system. We illustrate the method using an example where the right-hand side
of an ordinary differential equation for a fast variable is linear with respect to the same
variable. Suppose the variable x j has been identified as the fast variable in the system
(4). With account of the artificial small parameter, this gives

ε
dx j

dt
= α j (t) − β j (t)x j , (6)

where coefficients α j (t) and β j (t) are presumed to depend on time via other dynamic
variables. We look for a solution in the form of an asymptotic series x j = x0

j + εx1
j +

ε2x2
j + O

(

ε3
)

. Substituting this into (6) gives

εẋ0
j + ε2 ẋ1

j + ε3 ẋ2
j = α j − β j x0

j − εβ j x1
j − ε2β j x2

j + O
(

ε3
)

. (7)

The simplest approximation for x j is obtained by considering the terms in (7) propor-
tional to ε0,

0 = α j (t) − β j (t)x0
j , (8)
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which results in the zeroth-order QSSA for variable x j :

x0
j = x0

j = α j (t)

β j (t)
. (9)

This approximation x0
j is then substituted into the original system of equations for the

variable x j . If the variable is sufficiently fast then this steady-state expression should
be a good approximation of the fast variable and the substitution will cause minimal
change to the solution.

In general, the zeroth-order QSSA provides a reasonable approximation of the orig-
inal variable. However, if such approximation is not good enough, it can be improved
by calculating an additional correction term. To do this we consider terms in (7) pro-
portional to ε1:

εẋ0
j = −εβ j x1

j . (10)

Substituting our earlier result (9) into Eq. (10) and solving for x1
j gives the first-order

correction in the form

x1
j = − 1

β j
ẋ0

j = α j β̇ j − β j α̇ j

β3
j

. (11)

This results in the first-order QSSA x1
j = x0

j + εx1
j in the form

x1
j = α j (t)

β j (t)
+ α j (t)β̇ j (t) − β j (t)α̇ j (t)

β3
j (t)

, (12)

since the original problem corresponds to ε = 1. Note that the value of the first-order
correction, or its estimate, can be used as an estimate of the accuracy of the leading-
term approximation; roughly speaking, this is the idea behind the accuracy estimate
used in Turányi et al. (1993).

So our method can then be formulated into a general algorithm to reduce the dimen-
sion of a biochemical system defined by ordinary differential equations. The algorithm
reads:

1. Using numerical methods, find a representative solution of the system of ODEs
for the chosen time interval.

2. Calculate the expressions for the speed coefficients (λ’s), using Eq. (5) from the
system of ODEs (this can be assisted by a symbolic calculations software, e.g.
Maple).

3. Substitute the numerical solution of the system into the expressions for the λ’s to
find the speed for each variable at each time point.

4. Plot the speed coefficients vs. time and identify the fastest variable (at its slowest).
5. Calculate the expression for the zeroth-order QSSA using (9).
6. Substitute this QSSA into the system of ODEs to eliminate the fastest variable,

thus obtaining a reduced system.
7. Compare the solution of the reduced system with the solution of the original

system.
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8. If the zeroth-order QSSA is insufficient to maintain a suitable accuracy, calculate
the first-order QSSA using equation (12).

9. Repeat the above process for the new reduced system.

3 Minimal model of the NF-κB system in response to continuous TNFα input

The “two-feedback” model of the NF-κB system presented in Ashall et al. (2009) is
our starting point. It is a system of 14 ordinary differential equations representing NF-
κB and the IκBα and A20 negative feedbacks (Fig. 1). We use brief notations for its
variables and parameters as given in Table 1. We pursued derivation of a minimal model
with respect to a representative solution obtained for initial conditions as described
in Table 1 and k24 = 1. In a biological context this corresponds to a continuous
stimulation of the system with a high dose of TNFα (Ashall et al. 2009).

Before employing the reduction algorithm we endeavoured to simplify the system
by elementary means (similarly to Wang et al. 2012). Conservation of cellular IKK
reads v + w + a = k2 = const, which allows us to eliminate a via the substitution
a = k2 − v − w. Similarly, conservation of NF-κB in all its five forms reads p + d +
z + 1

k1
(r + c) = k3 = const, which we use to eliminate d. Further, we observed that

variable b is “decoupled”: it is only present in its own equation, and the dynamics of
other variables do not depend on it. So it can be removed from the analysis, as the
solution for it, if necessary, can be obtained post factum by integration of the solution
of the remaining system. Finally, for this representative solution we have observed that
some of the terms in the equation consistently remain so small that their elimination
does not visibly change the solution. This involved elimination of variable c, leaving
a system of ten equations, which we shall refer to as the Simplified Model (SM):

d p

dt
= k19z − k4qp − k15 p + k16r (13a)

dq

dt
= −k4qp + k6u − k8q − k13q + k14s − k17wq (13b)

dr

dt
= k15k1 p − k4sr − k16k1r (13c)

ds

dt
= k13k1q − k4sr − k8s − k14k1s (13d)

du

dt
= k5

rh

rh + kh
− k7u (13e)

dv

dt
= k20

k21

k21 + k24 y
(k2 − v) − k24k22v (13f)

dw

dt
= k24k22v − k23w (13g)

dx

dt
= k9

rh

rh + kh
− k11x (13h)

dy

dt
= k10x − k12 y (13i)
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Table 2 Key features of NF-κB oscillations for each of the model variants

Model Variable
removed
at this stage

Period
(mins)

Fold change
in period

Fold change
in amplitude

Shape
MSE ×105

Original model N/A 99.5 1 1 N/A

Simplified model a, b, c, d 100.5 1.01 1.06 1.24

z0 z 100.0 1.01 1.06 1.05

z0 p0 p 92.5 0.93 0.92 2.47

z0 p0 y0 y 85.5 0.86 0.83 9.42

z0 p0 y0v0 v 77.7 0.78 0.65 32.4

z0 p0 y0v0s0 s 75.0 0.75 0.62 38.6

z0 p0 y0v0s0w1 w 73.8 0.74 0.71 22.3

z0 p1 y0v0s0w1 As above 80.3 0.80 0.90 5.28

z0 p1 y1v1s1w1 As above 86.6 0.87 1.01 6.31

Fold change in period and amplitude was calculated relative to the period and amplitude of the original
model in (Ashall et al. 2009). MSE was calculated after the models had been scaled to have the same period

dz

dt
= k18w

(

k3 − p − r

k1

)

− k19z (13j)

The solution of (13) is very close to that of the original model (see Table 2 and
Appendix A), and marks the starting point of the reduction procedure. We apply the
reduction algorithm iteratively, eliminating a sequence of fast variables and employing
different orders of approximation for them. To keep track of these, we introduce a
nomenclature for the reduced models. The model variants are named according to
the variables that have been removed, each with a subscript showing if a zeroth- or
first-order QSSA has been used, 0 or 1 respectively. For example, the first variable
eliminated is z, therefore the model with this variable replaced with a zeroth-order
QSSA is titled z0 and the same with a first-order QSSA is titled z1. A model where the
variables z and p have been replaced in turn with their zeroth- and first-order QSSAs
respectively, will be denoted as z0 p1, etc. Below, we concentrate on the key points of
the reduction sequence.

Figure 2 shows the speed coefficients calculated for the Simplified Model. It iden-
tifies z to be the fastest and thus eliminated first. Application of the method, using
zeroth-order approximation, results in a 9-variable model z0 with comparable solu-
tion to this of the Simplified Model (Fig. 3).

Addition of a first-order correction to some of the QSSAs improved the model fit
in comparison to respective predecessors. Figure 4 shows that a first-order correction
in the variable p markedly improved the accuracy of the 8-variable reduced model.
However, addition of these corrections can also increase the algebraic complexity of
the system and it must be considered whether the improvement of the model outweighs
the added complexity.

As the reduction progressed, there was an increasing overlap in the ranges of the
speed coefficients, and we had to apply the “the fastest at its slowest” heuristic rule. For
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example in Fig. 5, this rule identifies the variable w for elimination during reduction
to the 4-variable model, even though two other variables, r and q, are at times faster.

Successive cycles of the algorithm were applied to ultimately reduce this system to
four differential equations. The method maintained the important qualitative features
of the system, such as the limit cycle. However, through each stage of the reduction, the
resulting limit cycle had a slightly reduced period and amplitude (Table 2). Using only
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model, but also maintained a stable limit cycle

the zeroth-order QSSAs was sufficient to reduce the model to five ODEs (z0 p0 y0v0s0),
while maintaining the limit cycle. In order to reduce the system further, the use of a first-
order QSSA was necessary (Fig. 6). A suitable zeroth- or first-order QSSA could not be
calculated to reduce the model beyond this, and therefore the model z0 p0 y0v0s0w1 of
four differential equations was chosen as the end point of this analysis. This minimal
model is given by (14), where A = k24k22k20k21k12k3 and B(x) = k20k21k12 +
k24k22k21k12 + k2

24k22k10k23x .

dq

dt
= −k4q p̄(q, r, x) + k6u − k8q − k13q

+ k14s̄(q, r) − k17w̄(r, x)q (14a)
dr

dt
= k15k1 p̄(q, r, x) − k4s̄(q, r)r − k16k1r (14b)
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du

dt
= k5

rh

rh + kh
− k7u (14c)

dx

dt
= k9

rh

rh + kh
− k11x (14d)

w̄(r, x) = A

B(x)
+

k2
24k22k10 A

(
k9rh

rh+kh − k11x
)

B(x)2 (14e)

s̄(q, r) = k1k13q

k4r + k1k14 + k8
(14f)

p̄(q, r, x) =
k16r + k18w̄(r, x)

(

k3 − r
k1

)

k4q + k15 + k18w̄(r, x)
(14g)

It was possible to add first-order corrections to all of the dynamic variables during
the model reduction, producing a minimal model z1 p1 y1v1s1w1 with a far improved
fit in comparison to the original. However, the z0 approximation was so accurate
that z1 did not make a noticeable improvement. Figure 7 shows comparison of the
“simplest” and “the most accurate” 4-variable models to the original 10-variable one
(the z0 p1 y1v1s1w1 model is presented in Appendix A).

Figure 8 shows how some of the dynamic properties of the model change through
the reduction process. It represents the steady state solution and continuation for
the variable r as the parameter k24 is varied (Doedel et al. 2000; Ermentrout 2002),
showing the effect of altering the TNFα dose (Turner et al. 2010). In the original
model, there is a supercritical Hopf bifurcation (HB) at k24 = 0.36 above which the
limit cycle is observed. Successive elimination of the fastest variables causes the HB
point to move up, closer to the value k24 = 1, which corresponds to a saturating dose
of TNFα. Reduction from five to four differential equations using zeroth-order QSSA
for w would move the HB point further to the right (Hopf bifurcation at k24 = 3.105).
Figure 8 also demonstrates that use of the first-order correction terms dramatically
reduces the loss in limit cycle amplitude and change in the location of the HB point.
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4 Model reduction with respect to pulsed TNFα input

Previously, we derived models with respect a solution that corresponded to a constant
value of the TNFα input, k24 ≡ 1. The universality of such models depends on how
representative that solution actually is. In this subsection we give an example where a
different selection of the representative solution leads to a different reduced model.

We now consider another experimentally relevant case, where the TNFα input is
varied: k24 = 0 except for 5-min pulses of k24 = 1 delivered every 100 min. Under
such stimulation, the system exhibits pulses of the nuclear NF-κB entrained to the
input frequency (Ashall et al. 2009). Despite the same 100 min period, these pulses
are markedly different than oscillations induced with the continuous TNFα input.
The Simplified Model reproduces this property, see Fig. 2 vs. Fig. 9. However, the
6-variable variant, z0 p0 y0v0 (see Appendix B for equations), does not respond with
a full-size nuclear NF-κB translocation to each pulse, and the solution is of a double
period, Fig. 9.
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We therefore developed an alternative minimal model, choosing the periodically
entrained solution as the representative one. For the periodically entrained solution,
the hierarchy of speeds of the variables associated with the IKK module is different
from the k24 ≡ 1 case. Specifically, the first three fastest variables are z, p and y as
before. However, when choosing the 4th variable for elimination, the neutral form of
IKK, v, becomes one of the slowest, and the algorithm identified the active IKK, w,
for approximation (Fig. 10). In the continuous case, v and w were the first and second
fastest variables, respectively (Fig. 10). Ultimately, application of the algorithm with
respect to the pulsed input resulted in a different model, which showed a much better
agreement with the SM and did not display a period doubling (Fig. 9). This alternative
6-variable, (∗z0 p0 y0w0) model is given by:

dq

dt
= −k4q p̄ + k6u − k8q − k13q + k14s − k17w̄q (15a)

dr

dt
= k15k1 p̄ − k4sr − k16k1r (15b)

ds

dt
= k13k1 p̄ − k4sr − k8s − k14k1s (15c)

du

dt
= k5

rh

rh + kh
− k7u (15d)

dv

dt
= k20

k21

k21 + k24 y
(k2 − v) − k24k22v (15e)

dx

dt
= k9

rh

rh + kh
− k11x (15f)

p̄ = k16rk1 + k18w̄k3k1 − k18w̄r

k1 (k4q + k15 + k18w̄)
(15g)

ȳ = k10x

k12
(15h)

w̄ = k24k22v

k23
(15i)
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The difference in the v speed for alternative TNFα stimulation can be easily understood
by analysing the dynamic equation for v. The last term in its right-hand side, −k24k22v,
directly contributes towards decay of v, but only when k24 is switched on. So when
k24 is off, the v variable is much slower and its adiabatic elimination is not justified.

5 Application of speed coefficients method to Krishna model

Here, we compare the behaviour and properties of two reduced models of Krishna’s full
6-variable model for NF-κB signalling dynamics (Krishna et al. 2006), one obtained
by combination of coarse graining and numerical observations, and the other obtained
using our new method of speed coefficients. In this analysis, we demonstrate better
agreement with the full model achieved using our algorithmic approach.

Firstly, in Fig. 11, we show time courses for oscillatory solutions for variables rep-
resenting nuclear NF-κB, IκBα protein and IκBα mRNA in three models, namely
Krishna’s full model (K6), Krishna’s 3-variable minimal model (K3), and a new
4-variable reduced model given by our speed coefficient algorithm (K4) (see Appen-
dix D for the systems of equations). We note that, while neither of the reduced models
matches the full model in period, the oscillation amplitudes of the three variables show
reasonable agreement, with our new reduced model (K4) more closely agreeing with
the full model. Also, the K4 IκBα protein profile shape shows better agreement with
K6 than K3 does, with I flattening out in its troughs. Summary phase portraits clearly
show that K4’s limit cycles more closely agree with K6 than K3 does.

Fig. 11 Analysis of alternatively reduced models of the NF-κB system. Left-hand panel Time courses
for the 3-variable reduced model (K3) and its 6-variable predecessor developed in Krishna et al. (2006)
(K6), together with a new 4-variable reduced model obtained using the speed coefficient method (K4).
Variables Nn , Im , I represent nuclear NF-κB, IκBα protein and IκBα mRNA respectively. Right-hand
panel Corresponding phase portraits for the limit cycles that the respective systems approach
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K3

In Fig. 12 we compare bifurcation diagrams (with respect to the rate of IκBα

transcription) for reduced models with their corresponding full models, for both our
Simplified Model and the Krishna model. For the Krishna model, we further compare
the Krishna minimal model (K3)and our new reduced model (K4). The reduced model
resulting from the speed coefficient method applied to the Simplified Model (SM)
gives a bifurcation diagram in qualitative agreement with that for the corresponding
full model over the range of k5 shown (Fig. 12a). Also, the reduced model resulting
from our method applied to the Krishna model (see Appendix D) gives qualitative
agreement with the full Krishna model (Fig. 12b). This is a marked improvement over
the Krishna minimal model, which demonstrates features that are not present in the
corresponding full model. These include variation of the limit cycle amplitude for
values of the IκBα transcription around 1, and a subcritical Hopf bifurcation at around
kt = 50, with unstable limit cycles and hysteresis for the values between 50 and 240.
On the contrary, our minimal model preserves the properties of the full model at least
at the qualitative level, even for the values of the parameter very different from the
one corresponding to the representative solution.

We conclude that application of our method of speed coefficients can produce a
reduced model of comparable dimensionality while better preserving the dynamic
properties of the original system than other existing techniques.

6 Discussion

A key problem in computational and systems biology is to understand how dynamical
properties of a system arise via the underlying biochemical networks. However, as
these networks involve many components this task becomes analytically intractable
and computationally challenging. In this manuscript we present a clearly defined and
accessible QSSA algorithm for reduction of such biochemical reaction systems. The
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method proposed relies on the derivation of speed coefficients to rank system variables
according to how quickly they approach their momentary steady state. This enables
a systematic method for selection of variables for steady-state approximation at each
step of the algorithm.

We used the method to derive a minimal models of the NF-κB signalling network, a
key regulator of the immune response (Hayden and Ghosh 2008). Single cell time-lapse
analyses showed that the NF-κB system exhibits oscillatory dynamics in response to
cytokine stimulation (Nelson et al. 2004; Turner et al. 2010; Tay et al. 2010). It has
been shown that the frequency of those oscillations may govern downstream gene
expression and therefore be the key functional output of the system (Ashall et al.
2009; Sung et al. 2009; Tay et al. 2010). The ability to control the NF-κB dynamics
may therefore provide novel ways to treat inflammatory disease (Paszek et al. 2010).

NF-κB dynamics are generated via a complex network involving several negative
feedback genes, such as A20 and IκBα (Hoffmann and Baltimore 2006). Many math-
ematical models have been developed to recapitulate existing experimental data by
quite complex biochemical networks involving up to 30 dynamic variables and 100
parameters with varying degrees of accuracy (Hoffmann et al. 2002; Lipniacki et al.
2004; Radulescu et al. 2008). Sensitivity analyses have then demonstrated that sev-
eral parameters related to feedback regulation and IKK activation are responsible for
generation of the oscillatory dynamics (Ihekwaba et al. 2004, 2005; Sung et al. 2009).
An interesting extension of the sensitivity analysis method was proposed by Jacobsen
and Cedersund (2008) who considered sensitivity with respect not just parameter per-
turbations but to variations of the network structure, e.g. introduction of delays in the
network connections. Model reduction discussed in our paper provides an alternative
avenue to extract core network components. Indeed, minimal models by Krishna et
al. and Radulescu et al. demonstrated that part of this complex system in response to
continuous cytokine stimulation may be reduced to three dynamical variables describ-
ing the nuclear NF-κB and IκBα mRNA and protein (Krishna et al. 2006). Here, we
apply our method of speed coefficients to systematically reduce a 2-feedback model
of the NF-κB system by Ashall et al. (2009).

Starting from a 14-variable model, we succeeded in closely representing dynamics
of the NF-κB network in response to constant TNFα input by a set of four variables (14).
The minimal model included the nuclear NF-κB and its cytoplasmic inhibitor IκBα,
as well as two negative feedback loops represented by IκBα and A20 transcripts. The
latter variables were consistently ranked the slowest during successive reduction steps
(Figs. 2, 5), and in fact their subsequent QSSA resulted in the loss of oscillations. This
suggested that the timescale of transcription relative to other processes generates the
key delayed negative feedback motif that drives oscillations in the system (Novak and
Tyson 2008). While reducing the model, we observed that the period as well as the
amplitude of oscillations was decreased with each reduction (Table 2). Replacing those
variables with the respective QSSAs decreased the effective delay time in the system,
and thus reduced the system’s propensity for oscillations. This effect was reverted by
using first-order QSSA for some of the eliminated variables, namely cytoplasmic NF-
κB, nuclear IκBα and the active form of IKK kinase. A more accurate representation
of those variables is thus important to faithfully represent NF-κB dynamics (Figs. 6,
7, 8). Our analysis is in agreement with results of Radulescu et al. who, using quasi-
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stationarity arguments, obtained a series of reduced models and eventually arrived
at the 5 variable minimal model. While starting from a different two-feedback IκBa
and A20 model (Lipniacki et al. 2004) than the one considered here, Radulescu et al.
showed similar requirements for both feedbacks to maintain oscillatory dynamics.

A model derived with respect to a specific solution is not necessarily able to repro-
duce the same breadth of responses as its forebear. However, by applying the algorithm
with respect to a different solution one might try to potentially extract other key features
of the system. Here, we demonstrated that the reduction of the model with respect to
a pulsed and continuous TNFα input resulted in a different order of elimination of the
variables and ultimately a different minimal models (Fig. 9). The differences unrav-
elled specific components of the IKK module responsible for NF-κB dynamics in
response to different stimulus. With a pulsed input the amplitude of the subsequent
peaks is determined by the “refractory period”, i.e. the time it takes for the active
IKK to return to its neutral state. This requires a very accurate temporal representa-
tion of the neutral form of IKK, v, in the model. However, in response to continuous
TNFα input, both IKK-related variables became less important, and their steady-state
approximation is sufficient to support the limit cycle. This analysis therefore begins
to unravel how components of the KK signalling module could differentially encode
temporal inflammatory signals.

In order to demonstrate a more general applicability of our method, we have
employed the speed coefficient algorithm to derive a new reduced model of the
Krishna model (Krishna et al. 2006). The comparison with minimal Krishna et al
model showed that both models perform similarly in terms of time courses and phase
portraits (Fig. 11). However, analysis of bifurcation diagrams showed that our algo-
rithmic approach better preserved dynamical properties of the system (Fig. 12). In
fact, the Krishna minimal model demonstrates features such as unstable limit cycle
and hysteresis that are not present in the corresponding full model. Recently, Kourdis
et al. used CSP algorithm to asymptotically analyse the dynamics of the Krishna et
al. model. In agreement with our approach, their analysis identified similar fast/slow
time scale variables that are essential to recapitulate limit cycle behaviour of the sys-
tem. This analysis, in addition to our discussion of the Simplified Model, certainly
suggests that our method has further potential as a viable technique for the reduction
of biochemical network dynamic models.

Our objective here was to present and implement a new model reduction technique
that without relying on prior biological insights, would preserve characteristics of the
original model’s numerical solutions. This method thus belongs to a class of reduction
methods that are algorithmic rather than biologically or biochemically intuitive, and as
such should be applicable to complex biochemical models where the most important
network sub-structures underlying the observed dynamical behaviour are not necessar-
ily apparent. Similarly to other approximation methods, there is a trade-off between
simplicity and accuracy of the end-point models. Even if errors introduced by one
reduction step are small, for many steps they can accumulate. The approximations can
be improved by using higher-order asymptotics, which increases algebraic complex-
ity of the resulting reduced model but retains the dimensionality. We believe that in
practically interesting cases, the increased algebraic complexity can be overcome by
appropriate approximation of the functions in the resulting models. Another way to
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improve the accuracy of reduced models is to adjust parameters to match the solu-
tions of the full model; a semi-empirical model resulting from such adjustment would
still have an advantage over a fully empirical model in that at least its structure is
not arbitrarily postulated. In addition to a lower dimensionality, the reduced problems
are less stiff, as by definition, the variables with fastest characteristic timescales are
eliminated first. The reduced dimensionality and stiffness allow, in principle, more
efficient computations which may be important, e.g., for large scale models including
interaction of many cells. Last but not least, systems of lower dimensionality are more
amenable for qualitative study and intuitive understanding.
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Appendix A: Simplified model vs. Ashall model

In Fig. 13, we show time courses of solutions to the full Ashall model and the Simplified
Model, in response to continuous TNFα treatment, demonstrating the close agreement
between the two models.

Appendix B: Equations for the z0 p1 y1v1s1w1 model

The model consists of four ordinary differential equations

dq

dt
= −k4q p̄(q, r, x) + k6u − k8q − k13q + k14s̄(q, r) − k17w̄(r, x)q, (16a)

dr

dt
= k15k1 p̄(q, r, x) − k4s̄(q, r)r − k16k1r, (16b)

du

dt
= k5

rh

rh + kh
− k7u, (16c)

dx

dt
= k9

rh

rh + kh
− k11x, (16d)

where the functions in the right-hand side are defined by

w0(x) = k24k22k20k21k12k3
(

k20k21k12 + k24k22k21k12 + k2
24k22k10x

)

k23
, (17a)

w1(r, x) =
k3

24k2
22k20k21k12k3k10

(
k9rh

rh+kh − k11x
)

k2
23

(

k20k21k12 + k24k22k21k12 + k2
24k22k10x

)2 , (17b)

w̄(r, x) = w0(x) + w1(r, x), (17c)
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ȳ(r, x) = k10x

k12
− k12(k9

rh

rh+kh − k11x)

k2
10

, (17d)

v0(r, x) = k3k20k21

k20k21 + k21k22k24 + k2
24k22 ȳ(r, x)

, (17e)

v1(r, x) = −k2
20k24k10k3k2

21(k9
rh

rh+kh − k11x)

k12(
k20k21

k21+k24 ȳ(r,x)
+ k24k22)(

k20k21
k21+k24 ȳ(r,x)

− k24k22)2(k21 + k24 ȳ(r, x))3
,

(17f)

v̄(r, x) = v0(r, x) + v1(r, x), (17g)

sα(q) = k1k13q, (17h)

sβ(r) = k4r + k1k14 + k12, (17i)

p0(q, r, x) =
k16r + k18w̄(r, x)

(

k3 − r
k1

)

k4q + k15 + k18w̄(r, x),
(17j)

sδ(q, r, x) = k1k15 p0(q, r, x) − k1k16r, (17k)

Fig. 13 Ashall vs. Simplified Model. Time courses of solutions to the full Ashall model and the Simplified
Model, in response to continuous TNFα treatment for time t ≥ 0 (t in minutes). Clearly the Simplified
Model gives close agreement with the full model, in terms of variable amplitudes and the period of the limit
cycle
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sγ (q, r, u, x) = −k4qp0(q, r, x) − k13q − k8q + k6u − k17w̄(r, x)q, (17l)

s̄(q, r, u, x) = sα(q)sβ(r)2 + k4sδ(q, r, x)sα(q) − k1k13sγ (q, r, u, x)sβ(r)

k2
4sα(q)r + s3

β(r) + k1k13k14sβ(r)
, (17m)

αp(r, x) = k1k16r + k18w̄(r, x) (k1k3 − r) , (17n)

βp(q, r, x) = k1 (k4q + k15 + k18w̄(r, x)) , (17o)

qα(q, r, u, x) = k6u − k13q + k14s − k8q − k17w̄(r, x)q, (17p)

qβ(q) = −k4q, (17q)

rα(q, r, u, x) = −r (k4s̄(q, r, u, x) + k16k1) , (17r)

rβ = k1k15, (17s)

pδ(r, x) = k1 (k4qα(q, r, u, x) + k18 (k24k22v̄(r, x) − k23w̄(r, x))) , (17t)

pγ (q) = k1k4qβ(q, r, u, x), (17u)

pε(q, r, u, x) = k16k1rα(q, r, u, x) − k18w̄(r, x)rα(q, r, u, x), (17v)

+k18 (k24k22v̄(r, x) − k23w̄(r, x)) (k1k3 − r) , (17w)

pζ (r, x) = (k1k16 − k18w̄(r, x)) rβ, (17x)

p̄(q, r, u, x) = β2
pαp + αp pδ − βp pε

β3
p − αp pγ + βp pζ

. (17y)

Appendix C: Equations for the z0 p0 y0v0 model

Dynamic equations for the 6-variable model, z0 p0 y0v0, reduced using a representative
solution for continuous TNFα stimulation (k24 ≡ 1):

dq

dt
= −k4q p̄ + k6u − k8q − k13q + k14s − k17w̄q (18a)

dr

dt
= k15k1 p̄ − k4sr − k16k1r (18b)

ds

dt
= k13k1 p̄ − k4sr − k8s − k14k1s (18c)

du

dt
= k5

rh

rh + kh
− k7u (18d)

dw

dt
= k24k22v − k23w (18e)

dx

dt
= k9

rh

rh + kh
− k11x (18f)

p̄ = k16rk1 + k18w̄k3k1 − k18w̄r

k1 (k4q + k15 + k18w̄)
(18g)
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ȳ = k10x

k12
(18h)

v̄ = k2k20k21

k21k22k24 + k2
24k22 y + k20k21

(18i)

Appendix D: Equations for K6, K3 and K4 models

D.1 Krishna full model (K6)

The full Krishna (Krishna et al. 2006) 7-variable model for Nn and N (free nuclear
and cytoplasmic NF-κB Im (IκBα mRNA), In and I (free nuclear and cytoplasmic
IκB), (N I )n and (N I ) (nuclear and cytoplasmic NF-κB:IκBα) is given as:

dNn

dt
= kNin N − k f n Nn In + kbn(N I )n, (19a)

dIm

dt
= kt N 2

n − γm Im, (19b)

dI

dt
= ktl Im − k f N I + kb(N I ) − kI in I + kI out In, (19c)

dN

dt
= −k f N I + (kb + α)(N I ) − kNin N , (19d)

d(N I )

dt
= k f N I − (kb + α)(N I ) + kN I out (N I )n, (19e)

dIn

dt
= kI in I − kI out In − k f n Nn In + kbn(N I )n, (19f)

d(N I )n

dt
= k f n Nn In − (kbn + kN I out )(N I )n . (19g)

Note that this can be replaced by a 6-variable system by using conservation of NF-
κB to eliminate N . Base parameter values used in Krishna et al. (2006) are given in
Table 3.

Table 3 Parameter values for Krishna model

Parameter Value Units Parameter Value Units

kNin 5.4 min−1 k f n 30 μM−1 min−1

kbn 0.03 min−1 kt 1.03 μM−1 min−1

γm 0.017 min−1 ktl 0.24 min−1

k f 30 μM−1 min−1 kb 0.03

kI in 0.018 min−1 kI out 0.012 min−1

α 1.05 IKK min−1 kN I out 0.83 min−1

IKK 0.5 μM Ntot 1 μM
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D.2 Krishna 3-variable model (K3)

The Krishna (Krishna et al. 2006) reduced model has three variables, and is given (in
their Supplementary Material) as follows:

dNn

dt
= kNin K I

Ntot − Nn

K I + I
− kI in

I Nn

δ + Nn
, (20a)

dIm

dt
= kt N 2

n − γm Im, (20b)

dI

dt
= ktl Im − α

Ntot − Nn

K I + I
I, (20c)

where

K I = kb + α

k f
, KN = kbn + KN I out

k f n
, δ = KN

Ntot
. (21)

D.3 New 4-variable model

The 4-variable model, obtained by applying our speed coefficient algorithm to K6
(with N eliminated), comes from first-order QSSA for Nn followed by zeroth-order
QSSA for (N I )n . The resulting system for variables Im, I, (N I ) and In is given by:

dIm

dt
= kt N 2

n − γm Im, (22a)

dI

dt
= [ktl Im + kb(N I ) + kI out In] − {

k f [Ntot − (N I ) − Nn − (N I )n] + kI in
}

I,

(22b)
d(N I )

dt
= [

k f I {Ntot − Nn − (N I )n} + kN I out (N I )n
] − (k f I + kb + α)(N I ),

(22c)
dIn

dt
= [kI in I + kbn(N I )n] − (kI out + k f n Nn)In, (22d)

with

Nn = −b − √
b2 − 4ac

2a
, (22e)

(N I )n = k f n Nn In

kbn + kN I out
, (22f)

where

Ntot = N + Nn + (N I )n + (N I ), (22g)

a = kN I out k
3
f n(kNin − kbn)I 2

n , (22h)

b = −
(

kbn + kN I out

) {

InkN I out kNink2
f n + k3

NinkN I out + 2kNinkN I out k
2
f n I 2

n

+ kN I out k
2
Nink f I + kN I out kNink f n Ink f I + kN I out k

3
f n I 3

n
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+ 2k2
NinkN I out k f n In − kN I out kNin(N I )Ink2

f n + 2k2
Ninkbnk f n In

+ kNinkbnk2
f n I 2

n

+ k2
Nink f I kbn − kNink2

f n I 2
n kI ou In + kbnk2

f n I 2
n kI ou In + k3

Ninkbn

+ kNink f n Ink f I kbn

+ k3
Nink f n In + kNink3

f n I 3
n + 2k2

Nink2
f n I 2

n + kNink2
f n InkI in I − kbnk2

f n InkI in I

+ k2
Nink f I k f n In + kNink2

f n I 2
n k f I

}

, (22i)

c = −kNin

(

kbn + kN I out

)2 {

− k2
Nin + k2

Nin(N I ) − 2kNink f n In + kNin(N I )kb

+kNin(N I )α + 2kNin(N I )k f n In − kNink f I + kNin(N I )k f I

+ k f n Ink I o − k f n(N I )Ink I o + k f n In(N I )k f I + k f n(N I )kI in I − k f I k f n In

+ k f n In(N I )kb − k2
f n I 2

n + k f n In(N I )α + (N I )k2
f n I 2

n − k f nkI in I
}

. (22j)
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