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Abstract A mathematical model for infectious disease epidemics with behaviour
change and treatment is formulated and analysed. It is indicated that behaviour mod-
ification by the population has a significant impact on the dynamics of the disease.
Moreover, an optimal control theory is applied to propose the best possible combi-
nation of efforts in controlling a disease. It is shown that it may not be necessary
to continuously apply treatment at a full rate to eradicate the disease, if the effort is
supported by effective behaviour modification strategies.
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1 Introduction

In the last two decades epidemiological models have made important advances by
identifying the role of heterogeneous contact processes in the spread of infectious
diseases. Using such quantitative models researchers have come up with recommen-
dations of various intervention mechanisms in controlling different types of diseases
(Gaff and Schaefer 2009; Hethcote 2000; Brauer et al. 2008). Nonetheless, many
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existing models are based on the assumption that the behaviour of individuals to pro-
tect themselves against an infectious disease remains constant or unchanged in the
course of the outbreak.

In practice, however, the change in behaviour of human population has influenced
on the spread of various infectious diseases. The effect of human learning behaviour
and adoption of self-protective measures against an epidemic have been witnessed
during the outbreak of influenza A (H1N1) in 2009 (cf. Funk et al. 2010 and the
references therein). Many people have been seen wearing face-masks and have changed
their travelling behaviour during the 2003 SARS epidemics (Lau et al. 2005). Such
endogenous self-protective measures have had a noticeable impact on the spread of
the disease. Individuals are most likely to change their risky behaviour when the
morbidity of the disease or the perception of risk is very high. For the effects of
behaviour change to increase, populations need to receive more accurate information
about the disease (Chen 2009), and the various self protective mechanisms that has to
be adopted should also be at a reasonable level of efficacy. Modelling and including the
effect of behavioural changes during an epidemic can give the dynamics very different
form, and closer to the reality than the predictions made using models with unchanged
behaviour (Ferguson 2007; Kassa and Ouhinou 2011).

Some individuals in the population start taking self-initiated actions to try to reduce
their risk of contracting a disease once they have a first hand experience of the disease,
i.e., if one of their family members or one of their loved ones is affected because of
the disease. Others may change their risky behaviour only when the risk is very high
and may need the effort of persuasive agents (like government agencies, or public
health organizations). But the ratio of the population to either side or the rate of the
behaviour change may vary from disease to disease depending on its lethality. Using
individual contact tracing network model Funk et al. (Funk et al. 2009) concluded that
awareness of a disease can possibly reduce the susceptibility of the population and
in some special cases can also stop the spread of the disease. Using utility analysis
techniques, Chen (2004, 2006) showed that there is a unique endemic equilibrium
prevalence when the basic reproductive number of a sexually transmitted disease is
strictly greater than unity. Moreover, Chen has also concluded in Chen (2009) that the
likelihood of eradicating an infectious disease through behavioural changes depends
critically on the amount and quality of information individuals have access to. These
considerations suggest that including self protective measures in the model will have a
large impact in the study of the dynamics of infectious diseases. However, awareness
about a disease alone does not directly lead to using self-protective measures. As
researchers in health behaviour and health education indicate, the majority of the
population need persuasive interventions to decide to change their behaviour before
it is too late (Bertrand 2004; Oldenburg and Glanz 2008).

Evidences show that behaviour change is prevalence-elastic. That means, more
individuals adopt self-protective measures as prevalence of the disease increases in
their area (Ahituv et al. 1996; Philipson 1996). However, most mathematical models
do not take the effect of these behavioural changes in to account.

To react against an infectious disease and eventually take protective action, one
needs to clearly experience danger or get concrete information about its happening.
In this regard, the qualitative nature of information about a disease and the possi-
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ble protective mechanisms are very important to investigate. An individual can get
information about the disease either through word of mouth from people that have
infection experience, or through mass campaigns that are targeting the population to
inform about the danger of the disease. The former mechanism is dependent mainly
on social networking and the social culture of the society (Funk et al. 2009), while the
latter depends on the quality of the campaign or public effort to bring more impact, and
expenditure in dissemination of the information. The preventive interventions in curb-
ing disease epidemics requires a huge effort and investment from public health sectors
in preventing the disease. All these require some public fund expenditure. To allocate
the meagre public resource in protective mechanisms one need to know the optimum
way to do it, especially when it is combined with pharmaceutical interventions. On the
other hand informing the population about the outbreak of a certain disease may only
put them in panic as has been seen in Surat, India when people got information about a
presumed outbreak of bubonic plague in the year 1994 (Campbell and Hughes 1995).
But the various ways of protective mechanisms in protecting oneself from the disease
epidemics should also be devised and disseminated into the population. The more
choices of alternative measures for behaviour modification offered to the population
the more people decide to use at least one of them and hence more effective than rigidly
prescribing a single behaviour for change (see Turner et al. 1989, pp. 276–279). There-
fore, working in enhancing the various protective measures and giving alternatives that
best protect the population is very important; as well as alternatives that can be better
adhered to for longer duration by the susceptible individuals in the population. It is
intuitively clear that the more efficacious, on average, the protective measures are, the
more people decide to use one of them and the more people adhere to it for longer.

Joshi et al. (2008) has formulated a mathematical model to trace the effect of
information campaigns on the dynamics of HIV/AIDS in Uganda. In the model the
authors assume that people take self-protective actions only when they interact with
the educational campaign class. Moreover, the model does not incorporate the efficacy
level of the protective mechanisms, which is useful to be considered by policy makers
to take any action. Fenichel et al. (2011) also considered a model with varying contact
rate between individuals depending on their health status to address the effect of change
in human behaviour in disease dynamics. However, the contact rate affects only the
number of contacts between individuals but does not take in to account the effect of
using protective devices by individuals while contacting others.

To evaluate the effects of the overall public health measures and to plan effec-
tive pharmaceutical interventions to control the epidemic of an infectious disease,
it is very important to explore the contribution of behaviour modifications and self-
initiated actions against the disease. In Kassa and Ouhinou (2011) an epidemiological
model with the inclusion of effects of self-protective measures has been formulated.
However, the model does not include the effect of treatment to the infected once. The
motivation for the model in the above mentioned paper was to see the sensitivity of
the dynamics to either of the rate of information diffusion or the average strength of
the protective mechanisms; while here we are interested in optimally combining self-
protective measures with pharmaceutical interventions. Thus, in this paper we extend
our previous result in Kassa and Ouhinou (2011) to incorporate treatment or any other
intervention on the infected population. Using this model we investigate the dynam-
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ics of an epidemic and also apply optimal control analysis to propose an efficient
combined public health intervention strategy to control the spread of the disease.

The paper is organized as follows, in Sect. 2, we describe and formulate the math-
ematical model consisting of a system of ordinary differential equations that describe
the impact of behaviour change modification when treatment is also considered as a
possible intervention mechanism. The mathematical analysis of the model is discussed
in Sect. 3. Section 4 is devoted to the optimal control of the model and to the simulation
results of the optimality system. We conclude the paper with a discussion in Sect. 5.

2 The mathematical model with change behaviour and treatment

In this section we formulate and analyse the mathematical model that deals a stan-
dard SIR (Susceptible, Infected, Removed) epidemiological model with prevalence
dependent behaviour change as was described in Kassa and Ouhinou (2011).

We begin our exploration by extending the traditional SIR epidemiological model
to include a cohort of individuals in a population who take part in consistent self-
protective measures because of their awareness about the disease and their perceived
risk of getting infected. We shall call such a compartment an ‘Educated’ cohort and
denote by E(t), the number of individuals in this class at any time t . The individuals in
this class have a reduced susceptibility due to their usage of any of the available self-
protective measures against the disease. For susceptible individuals to change their
risky behaviour and move into the E class, first, they need to get information about the
disease and its protective mechanisms; and they should perceive the risk of contracting
the disease. They may acquire this information through their social network (i.e. from
people who have infection experience or from among their circle who is informed
about it) or through some public health agents or through mass media. Second, they
need to be informed about the possible ways of preventing oneself from the disease.
Therefore, the reduction in their susceptibility to the infection depends on the efficacy
levels of the preventive mechanisms that each individual is using. If we denote the
average efficacy of all existing self-protective measures for the disease by a constant
γ , the susceptibility level of each individual in E is reduced by 100×γ % on average.

To model the flow of individuals from the Susceptible (S) class to the Educated (E)
class, we propose to view self-protective measures as “innovation” and its adoption
by the population to follow the so called the “diffusion” process, borrowing the term
“Diffusion of Innovations” from Rogers (1983). It has been accepted by public health
researchers since long time (see, for eg., Green and McAlister 1984; Green et al.
2009; Oldenburg and Glanz 2008) that the adoption of the programmes of public health
interventions at the population level follows a logistic curve through time, similar to the
diffusion of innovations or ideas in populations. The curve is initiated by the adoption
of the so called “Innovators”, followed by “Early adopters”. The concavity of the
curve changes in the middle of its hight when the “Early majority” population start to
adopt the innovation and it saturates asymptotically to its full hight (100 %) by the time
when the “Late adopters” participate into the programme (Green and McAlister 1984).

Moreover, behaviour change is observed to be increasing with increasing preva-
lence. For instance, in the study by Philipson (1996), demand for measles vaccination
increased as prevalence increases in the USA and similarly in Ahituv et al. (1996)
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it has been indicated that the use of condoms was quite responsive to the prevalence
of AIDS in one’s state of residence, and this responsiveness has been increasing over
time in the USA. That means, a self preventive behaviour change is prevalence-elastic.

Following the above discussion, it is justifiable to use the same mathematical for-
mulation as in Kassa and Ouhinou (2011) to simulate the flow of individuals from
class S to E .

We assume that the disease is not curable but has a treatment which reduces the
infectiousness level by (1 − ε)% and gives a better quality of life to the infected indi-
viduals. Thus, in place of the Removed (R) class in the traditional SIR model, we use
the Treated (T) class to represent the set of infected individuals who are receiving treat-
ments (like the ART in the case of HIV). With these modifications, the dynamics of the
epidemic can be formulated by the following system of ordinary differential equations.

S′ = π − αe(P)S − λS − μS

E ′ = αe(P)S − (1 − γ )λE − μE (1)

I ′ = λS + (1 − γ )λE − ρ I − (μ + d1)I

T ′ = ρ I − (μ + d2)T,

where N (t) = S(t) + E(t) + I (t) + T (t), and λ = cβ
I + εT

N
represents the force of

infection (with c and β representing the contact and transmission rates, respectively),
μ represents the natural death rate, d1 and d2 represent the rate of disease induced
deaths from classes I and T , respectively, and ρ represents the rate at which infected
individuals are recruited to receive treatment. Because of the existence of the diseases
induced deaths the total population also varies as:

N ′ = π − μN − d1 I − d2T .

Following the previous discussion since P = I + T

N
, we set (as in Kassa and

Ouhinou (2011))the value of the parameter e(P) (and hence of e(t)) to take the form:

e(P) = Pn

Pn∗ + Pn
or equivalently e(t) = (I + T )n

N n Pn∗ + (I + T )n
.

With regard to the well-posedness and boundedness of solutions of the above system,
we refer to Kassa and Ouhinou (2011) which shows that for every initial condition in
the positive cone O the system (1) has a unique maximal solution on [0, tmax ).

3 Steady states and their stability

The stability of the equilibrium points of system (1) is governed by the basic repro-
duction number Ro, the expected number of secondary cases produced by a single
infected individual in a wholly susceptible population. Ro can be determined by using
the decomposition technique presented in van den Driessche and Watmough (2002).
Thus we find it to be
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218 S. M. Kassa, A. Ouhinou

Ro = cβ

μ + ρ + d1
+ ερcβ

(μ + ρ + d1)(μ + d2)
. (2)

To calculate the steady state solutions of the system, let the size of the population
in each compartment at the steady state be given by the vector E = (S∗, E∗, I ∗, T ∗).
The steady states are obtained by equating each of the time derivatives in (1) to zero.
By doing so, we get that

T ∗ = ρ

μ + d2
I ∗.

Substituting in the expressions of λ∗ and P∗ at the steady state E , one has

λ∗ = cβ

(
1 + ερ

μ + d2

)
I ∗

N∗ and P∗ = μ + ρ + d2

cβ(μ + ερ + d2)
λ∗.

Let K = μ + ρ + d2

cβ(μ + ερ + d2)
. Then, the function of the behavior change e∗ at the

steady state E is given by

e∗ = (λ∗)n

λ0
n + (λ∗)n

,

where λ0 = P∗
K . After some calculation, we will come up with the following equilib-

rium points described in terms of the corresponding force of infection λ∗.

S∗ = π [λn
o + (λ∗)n]

α(λ∗)n + [λ∗ + μ][λn
o + (λ∗)n]

E∗ = απ(λ∗)n

{α(λ∗)n + [μ + λ∗][λn
o + (λ∗)n]}[μ + (1 − γ )λ∗]

I ∗ = π − μ(S∗ + E∗ + T ∗)
ρ + μ + d1

T ∗ = ρ

μ + d2
I ∗

N∗ = S∗ + E∗ + I ∗ + T ∗

and λ∗ is a non negative real root of the polynomial:

Q(λ) = λ
[

A0 + A1λ + A2λ
2 + (A3 + A4λ + A5λ

2)λn
]
, (3)

where,

A0 = (1 − Ro)μ
2λn

o

A1 =
[

μ

μ + ρ + d1
+ (1 − γ )(1 − Ro)

]
μλn

o
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= (Ro − 1)μλn
o

[
γ −

(
1 − μ

(Ro − 1)(μ + ρ + d1)

)]

A2 =
[
(1 − γ )

μ

μ + ρ + d1

]
λn

o (4)

A3 = μαRo

[
γ −

(
1 + μ

α

)(
1 − 1

Ro

)]

A4 =
[

μ

μ + ρ + d1
+ (1 − γ )(1 − Ro) + α(1 − γ )

μ + ρ + d1

]
μ

A5 =
[
(1 − γ )

μ

μ + ρ + d1

]

When λ∗ = 0, we get the disease free equilibrium (S∗, E∗, I ∗, T ∗) =
(
π

μ
, 0, 0, 0) =: Eo. Where positive roots of Q(λ) will correspond to the endemic

equilibrium points.

3.1 The disease free equilibrium and its global stability

The disease free equilibrium is given by:

Eo = (So, Eo, I o, T o) =
(

π

μ
, 0, 0, 0

)
.

The linear stability of the disease free equilibrium Eo is governed by the basic repro-
duction number Ro, which is obtained in Eq. (2). Using this value we get the following
results.

Theorem 1 The model system (1) always has the disease-free equilibrium Eo. If Ro <

1, then Eo is locally asymptotically stable, and unstable otherwise.

Proof This is an immediate consequence of Theorem 2 in van den Driessche and
Watmough (2002). ��

Moreover the global stability is discussed in the following result.

Theorem 2 If Ro < 1, the disease free equilibrium Eo is globally asymptotically
stable.

Proof Consider the third equation in the system (1),

I ′(t) = cβ
S + (1 − γ )E

N
(I + εT ) − (μ + ρ + d1)I (t),

for which the solutions are given by the following variation of constants formula

I (t) = I (0)e−(μ+ρ+d1)t +
t∫

0

e(μ+ρ+d1)(t−s)cβ
S + (1 − γ )E

N
(I + εT )ds.
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Which implies that

I (t) ≤ I (0)e−(μ+ρ+d1)t +
t∫

0

e(μ+ρ+d1)(t−s)cβ(I + εT )ds

≤ I (0)e−(μ+ρ+d1)t +
t
2∫

0

e(μ+ρ+d1)(t−s)cβ(I + εT )ds

+
t∫

t
2

e(μ+ρ+d1)(t−s)cβ(I + εT )ds.

Since the functions I and T are bounded for t ≥ 0 by π
μ

, we get

lim
t→∞

⎡
⎢⎣I (0)e−(μ+ρ+d1)t +

t
2∫

0

e(μ+ρ+d1)(t−s)cβ(I + εT )ds

⎤
⎥⎦ = 0.

Thus,

lim sup
t→∞

I (t) ≤ lim sup
t→∞

⎡
⎢⎣cβ

t∫
t
2

e(μ+ρ+d1)(t−s)ds sup
t
2 ≤s≤t

(I (s) + εT (s))

⎤
⎥⎦

≤ cβ lim sup
t→∞

t∫
t
2

e(μ+ρ+d1)(t−s)ds lim sup
t→∞

(I + εT )

≤ cβ

μ + ρ + d1
lim sup

t→∞
(I + εT ). (5)

On the other hand, from the fourth equation of system (1), we have

T (t) = T (0)e(μ+d2)t +
t∫

0

e(μ+d2)(t−s)ρ I ds

= T (0)e(μ+d2)t +
t
2∫

0

e(μ+d2)(t−s)ρ I ds +
t∫

t
2

e(μ+d2)(t−s)ρ I ds.

123



Impact of self-protective measures in diseases controls 221

For which, we have

lim
t→∞

⎡
⎢⎣T (0)e(μ+d2)t +

t
2∫

0

e(μ+d2)(t−s)ρ I ds

⎤
⎥⎦ = 0.

Similarly, this implies that

lim sup
t→∞

T (t) ≤ lim sup
t→∞

t∫
t
2

e(μ+d2)(t−s)ρ I ds

≤ lim sup
t→∞

ρ

t∫
t
2

e(μ+d2)(t−s)ds lim sup
t→∞

I (t)

≤ ρ

μ + d2
lim sup

t→∞
I (t). (6)

Substituting (5) in (6), we come up with an inequality:

lim sup
t→∞

T (t) ≤ cβρ

(μ + ρ + d1)(μ + d2)
lim sup

t→∞
(I + εT ).

Consequently, we get

0 ≤ lim sup
t→∞

(I + εT ) ≤ R0 lim sup
t→∞

(I + εT ). (7)

As a conclusion, if R0 < 1, from (7) it follows that

lim
t→∞(I + εT ) = lim sup

t→∞
(I + εT ) = 0.

This completes the proof. ��
Since the effect of behaviour change could be observed when the number of infected

individuals get to the level that the population can observe it, the disease free equilib-
rium will not be affected by the effects of behaviour change. This will in turn forces
the value of Ro to remain the same as in the case when the effect of learning is not
taken into consideration in the model. If Ro is small (i.e, if it is < 1) the disease will
die out and the prevalence does not come closer to P∗. In such cases, the reaction of
the population against the disease will be minimum. However, if Ro > 1 the preva-
lence increases as time goes and due to this fact we may see a significant effect in
the change of behaviour in protecting oneself from the disease. This suggests that the
effect of learning or behaviour modification as self protective measures will have more
significance on the dynamics of the disease in the endemic case.
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3.2 Endemic equilibrium and persistence of the disease

Each of the non zero positive real roots of the polynomial (3) will determine the
endemic equilibrium points of the system (1). Since Q(λ) is an (n + 2)th degree
polynomial it is difficult to explicitly calculate its roots. However, since we are inter-
ested only on the positive real roots of the polynomial we will qualitatively study the
behaviour of the roots from the sign of the coefficients A0, . . . , A5 as it was done in
Kassa and Ouhinou (2011). The signs of these coefficients will be controlled by the
choice of the parameters α, the rate of dissemination of convincing information into
the population, and γ , the average efficacy level of the various self protective actions
to be taken by the population.

From the expressions in (4) it is clear that for all values of α and γ in [0, 1], if
Ro < 1 then all the coefficients of Q(λ) are positive. But if Ro > 1, A0 < 0 and
A2, A5 > 0. Therefore, the number of sign changes in the coefficients A0, A1, A2, A3,
A4 and A5 are exactly one or three. Using Descartes’ rule of signs on the polynomial
Q(λ), we conclude that Q(λ) has either one or three positive roots. For specific details
we need to determine the signs of the coefficients A1, A3 and A4. One can see that
A1 > 0 implies A4 > 0.

We will now see different cases where the signs of the three coefficients vary. If we
set

γ0 := 1 − μ

(Ro − 1)(μ + ρ + d1)

One can easily see that A1 is positive for all γ ∈ [γ0, 1].
On the other hand the graph of the function:

γ4(α) = 1 + μ

(1 − Ro)(μ + ρ + d1) + α

separates between the positive and negative values of A4.
Moreover, the sign of coefficient A3 is determined by the graph of

γ3(α) =
(

1 − 1

Ro

)(
1 + μ

α

)
.

Thus we have the following theorem:

Theorem 3 For Ro > 1, the system (1) has exactly one or three endemic state equi-
librium points. Moreover, the system has a unique endemic state equilibrium if either
one of the following conditions hold.

(i) 1 < Ro ≤ 1+ μ
μ+ρ+d1

and μ(Ro −1) ≤ α ≤ 1 with (1− 1
Ro

)(1+ μ
α
) ≤ γ ≤ 1.

(ii) 1 + μ
μ+ρ+d1

< Ro ≤ 1 + 1
μ

and μ(Ro − 1) ≤ α ≤ 1 with

max
{

1 + μ
(μ+ρ+d1)(1−Ro)

, (1 − 1
Ro

)(1 + μ
α
)
}

≤ γ ≤ 1.

(iii) 1 + μ
μ+ρ+d1

< Ro ≤ 1 + 1
μ

and μ(μ+ρ+d1)(Ro−1)2

d1(Ro−1)−μ
≤ α ≤ 1 with (1 − 1

Ro
)(1 +

μ
α
) ≤ γ ≤ 1 + μ

(μ+ρ+d1)(1−Ro)
.
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In the above theorem, we could only prove the uniqueness of the endemic state
equilibrium (for Ro > 1) when the values of α and γ satisfy the given conditions.
However, we couldn’t prove or disprove the uniqueness of the equilibrium in the
remaining cases. As was expressed in Kassa and Ouhinou (2011), however, numerical
results suggest the existence of only one endemic state equilibrium point paralleling
what is reported in Chen (2004).

To establish the local stability of system (1) around Ro = 1, we use the center man-
ifold theorem from Castillo-Chavez and Song (2004). For this purpose we introduce
x1 = π

μ
− S, x2 = E , x3 = I and x4 = T . As in other studies, we can see that R0 is

linearly related to the rate of infection cβ. So, we choose φ = cβ to be the bifurcation

parameter around Ro = 1, which corresponds to φ = φ∗ = (μ + ρ + d1)(μ + d2)

ερ + μ + d2
.

Using these notations, system (1) will take the form:

f1 := x ′
1(t) = αe(P)(

π

μ
− x1) + φ

(π
μ

− x1) (x3 + εx4)

N
− μx1

f2 := x ′
2(t) = αe(P)(

π

μ
− x1) − (1 − γ )φ

x2(x3 + εx4)

N
− μx2

f3 := x ′
3(t) = φ

(π
μ

− x1 + (1 − γ )x2) (x3 + εx4)

N
− (μ + ρ + d1)x3,

f4 := x ′
4(t) = ρx3 − (μ + d2)x4 (8)

where N = π
μ

− x1 + x2 + x3 + x4. It is clear that the disease free equilibrium
corresponds to x∗ = (x∗

1 , x∗
2 , x∗

3 , x∗
4 ) = (0, 0, 0, 0). Now that the linearisation matrix

of (8) at x∗ is given by

Dxf =

⎛
⎜⎜⎝

−μ 0 φ∗ εφ∗
0 −μ 0 0
0 0 φ∗ − (μ + ρ + d1) εφ∗
0 0 ρ −(μ + d2)

⎞
⎟⎟⎠

So, when φ < φ∗ all the eigenvalues of this matrix have negative real parts. For
φ = φ∗ the matrix has a zero as its simple eigenvalue, and the remaining eigenvalues
are negative real numbers. And when φ > φ∗, the matrix has one positive eigenvalue
which is simple and all the remaining ones are negative. Thus for R0 > 1, the disease
free equilibrium Eo is a saddle point of the system (1) with dim W s(Eo) = 2 and
dim W u(Eo) = 1, where W s(Eo) and W u(Eo) are, respectively, the stable and unstable
manifolds of the system (1).

To determine the kind of bifurcation we have at Ro = 1, when φ crosses φ∗ from
left to right, we apply Theorem 4.1 in Castillo-Chavez and Song (2004). To this end, for
φ = φ∗, the corresponding right- and left-eigenvectors of Dxf associated with eigen-

value 0 are respectively w =
(

φ∗
μ

(1 + ερ
μ+d2

), 0, 1,
ρ

μ+d2

)T
and v =

(
0, 0, 1,

εφ∗
μ+d2

)
.

The second derivatives of f = ( f1, f2, f3, f4) corresponding to the non-zero compo-
nents of w and v evaluated at x∗ are
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∂2 f3

∂x2
1

= 0,
∂2 f3

∂x3∂x1
= 0,

∂2 f3
∂x4∂x1

= 0,

∂2 f3
∂x1∂x3

= 0,
∂2 f3

∂x2
3

= −2φ∗ μ
π
,

∂2 f3
∂x4∂x3

= −(1 − ε)φ∗ μ
π
,

∂2 f3
∂x1∂x4

= 0,
∂2 f3

∂x3∂x4
= −(1 + ε)φ∗ μ

π
,

∂2 f3

∂x2
4

= −2εφ∗ μ
π
,

∂2 f3
∂x1∂φ

= 0,
∂2 f3
∂x3∂φ

= 1,
∂2 f3
∂x4∂φ

= ε

and

∂2 f4

∂xi∂x j
= 0 ,

∂2 f4

∂xi∂φ
= 0 for i, j ∈ {1, 3, 4}

We now need to compute the following values:

a =
3∑

k, j,i=1

vkwiw j
∂2 fk

∂xi∂x j
(x∗, φ∗) b =

3∑
k,i=1

vkwi
∂2 fk

∂xi∂φ
(x∗, φ∗)

= −φ∗π
μ

(1 + εφ∗
μ+d2

)(1 + ρ
μ+d2

+ ε
ρ2

(μ+d2)2 ) = (1 + εφ∗

μ + d2
)(1 + ερ

μ + d2
)

< 0 > 0.

Since a < 0 and b > 0, thus we have verified the statement that when φ passes
through the point φ∗ from left to right, the stability of Eo = (π

μ
, 0, 0, 0) changes

from stable to unstable, correspondingly, a negative unstable equilibrium becomes
positive and locally asymptotically stable. The following theorem summarizes the
above results.

Theorem 4 If Ro < 1, the system (1) has a unique biologically feasible equilibrium
point Eo which is a disease-free equilibrium and is globally asymptotically stable.

If Ro > 1, the disease-free equilibrium Eo becomes a saddle point with
dim W s(Eo) = 2 and dim W u(Eo) = 1, where W s(Eo) and W u(Eo) are, respectively,
the stable and unstable manifolds of the system (1).

When φ crosses φ∗ from left to right (near φ∗), the disease-free equilibrium changes
its stability from globally asymptotically stable to unstable. Correspondingly, a unique
positive endemic equilibrium E∗ appears which is locally asymptotically stable.

Moreover, for φ large enough, the system has either one or three positive endemic
equilibria.

4 The optimal control model

4.1 Formulation of the control

The possible interventions for any kind of disease, that has a treatment which may
not completely cure the disease, can be categorized in to three classes: preventive
education, refining and validating the effectiveness of protective mechanisms, and
treating the infected individuals. In the sequel these interventions will serve as control
parameters in the dynamics of the epidemic model.
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(a) Educating the population As it is mentioned in the introduction part, the pop-
ulation can naturally react against the spread of a disease and moreover, if the
disease has been known to the population for some time, we assume that the cur-
rent level of preventive education campaigns by various agents have convinced
upto 100 × (αo × e)% (for some αo > 0) of the susceptible population per year
to effectively participate in the self protective schemes available to them. But
since the first few proportion of the population can be convinced easily to use
the self-protective measures while any additional proportion requires more effort
and higher cost, we may need a cost adjustment value in the objective function
to take this into account. Thus, the control in this category results in increasing
(or decreasing) from its current value in the rate of information dissemination
that can possibly convince susceptible individuals to participate in modifying
their risky behaviour. Assume that the control function u1(t) measures the rate at
which additional susceptible individuals are convinced to take part in behaviour
modification. Its application in the dynamics is modelled by simply replacing the
term α in (1) by (αo + u1(t)). However, the cost of the effort in convincing the
population for behaviour modification becomes expensive as the proportion of the
non-convinced susceptible individuals gets smaller (Green and McAlister 1984).

This situation can be captured by including the term

(
E

N

)m

, where m is a con-

stant positive integer, as part of the coefficient for u2
1(t) in the objective function

(see, for example, Behncke 2000; Gaff and Schaefer 2009 for inclusion of such
factors). Here we assume that the larger the proportion of the ‘Educated’ class,
the lower will be the proportion of individuals in the susceptible population. In
Gaff and Schaefer (2009) it is indicated that taking m = 10 has resulted in more
realistic numerical simulation values for a model with vaccination intervention.
Because of practicality and economical limitations on the maximum rate of con-
vincing individuals for behaviour modification, we also assume that αmax > 0 to
be the maximum rate.

(b) Improve the average efficacy of the protective measures This intervention could be
realized in terms of investing on activities that could find alternative measures in
self protective mechanisms available to be used by the ‘Educated’ class with better
efficacy levels, improve the existing measures so that the efficacious once could
be chosen and constantly used by more individuals, and/or by making the means
(or devices) of self protective mechanisms available to every one in affordable
price. Intuitively it is clear to conclude that the more efficacious the protective
mechanisms are the less number of new infections will result from among the
‘Educated’ class, and hence the more individuals could be persuaded to decide
in using the protective mechanisms and adhere to them. Therefore, if we assume
that u2(t) represents the total amount of additional efforts (in percentage) made
to increase the efficacy of the protective mechanisms from its current level γo,
then the total number of new infections from the ‘Educated’ class per unit time,
after this effort can be formulated in the dynamics as

(1 − γo − u2)λE .
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That means, when there is no additional intervention we still have the current rate
of new infection. But when the intervention reaches its maximum, 1 (i.e., when
γo + u2(t) = 1), we will achieve a 100 % protection, i.e., there will be no new
infection arising from the educated class, which is the ideal case.

(c) Validate the rate of recruitment for treatment Treatment has epidemiological
advantage to the general population that the rate of disease transmission will
be suppressed by a certain level (for instance, a 92 % reduction in transmission
rate of HIV is reported in Donnell et al. (2010)), and to the infected individual by
increasing the level of his/her quality of life. We assume that the cost of treatment
is shared by the entire population, and the analysis will be made at population level
rather than individual level. If we assume that the control function u3(t) measures
the rate at which additional infectious individuals transform to the ‘Treated’ class
at any time t , where the current rate is at ρ0, this control will be seen in the
dynamics as (ρ0+u3(t))I (t) by replacing ρ I (t) in (1). Again as in case (a) above,
due to economical and logistic reasons, there are limitations on the maximum rate
at which individuals are recruited to get treatment at each time period. Thus, let
the constant ρmax > 0 represent this maximum rate.

Using the above described control parameters, the system of the disease dynamics
can be rewritten as:

dS

dt
= π − (αo + u1)eS − λS − μS

dE

dt
= (αo + u1)eS − (1 − γo − u2)λE − μE (9)

dI

dt
= λS + (1 − γo − u2)λE − (ρ0 + u3)I − (μ + d1)I,

dT

dt
= (ρ0 + u3)I − (d2 + μ)T,

where λ = cβ
I + εT

N
, u1(t) ∈ [−αo, αmax − αo] , u2(t) ∈ [−γo, 1 − γo

]
, u3(t) ∈

[−ρo, ρmax − ρo] for all t ∈ [0, t f ].
Thus, given initial population size of each cohort S0, E0, I0 and T0, our main goal

here is to minimise the total number of new infections in the planning period, while
also minimizing the total cost of controlling the disease dynamics. That means, by
constructing optimal values of Lebesgue integrable, bounded control functions ui (t),
i = 1, 2, 3, we seek the best strategy that can control the dynamics of the epidemics
modelled in Eq. (9). To this end, we minimize the objective functional

J (u1, u2, u3) =
t f∫

0

(
A1 I (t) + A2T (t) + B1

2

(
E

N

)m
u2

1(t) + B2

2
u2

2(t) + B3

2
u2

3(t)

)
dt,

(10)

where u1, u2 and u3 are Lebesgue measurable bounded functions on [0, t f ].
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Since implementation of any public health intervention has increasing costs with
reaching higher fraction of the population, we usually take a non-linear cost function,
like the quadratic. The constants A1, A2, B1, B2 and B3 could be considered as values
that will balance the units of measurement and also may indicate the importance of
one type of intervention over the other, at implementation level to the general public.

4.2 Existence and characterization of optimal control solution

The first task will be to examine conditions that can assure the existence of a solution
to our optimal control problem.

Theorem 5 (Existence of optimal control solution) There exists an optimal control
triple u∗ = (u∗

1, u∗
2, u∗

3), and corresponding solution vector x∗ = (S∗, E∗, I ∗, T ∗)
to the state initial value problem (9) that maximizes the objective functional J (u) of
(10) over the set of admissible controls U .

Proof Let f (x, u, t) = A1 I (t) + A2T (t) + B1
2

( E
N

)m
u2

1(t) + B2
2 u2

2(t) + B3
2 u2

3(t),

g(x, u, t) = dx
dt

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dS
dt = π − (αo + u1)eS − cβ

I + εT

N
S − μS

dE
dt = (αo + u1)eS − (1 − γo − u2)cβ

I + εT

N
E − μE

dI
dt = cβ

I + εT

N
S + (1 − γo − u2)λE − (ρ0 + u3)I − (μ + d1)I

dT
dt = (ρ0 + u3)I − (d2 + μ)T,

and U = {(u1(t), u2(t), u3(t)) ∈ L1(0, t f )| − αo ≤ u1(t) ≤ αmax − αo,

−γo ≤ u2(t) ≤ 1 − γo,−ρo ≤ u3(t) ≤ ρmax − ρo,∀t ∈ [0, t f ]
}
. ��

Since all the involved functions in our model are continuously differentiable, we
need to verify the following four conditions given in Filippov-Cesari Theorem (cf.
Theorem 3.1 in Hartl et al. 1995).

1. There exists an admissible solution pair (x, u).
2. Roxin’s condition holds, i.e,

�(x, t) = {( f (x, u, t) + ξ, g(x, u, t))|ξ ≤ 0, u ∈ U} ⊆ IR5

is convex for all (x, t) ∈ IR4 × [0, T ].
3. There exist δ > 0 such that ‖x‖ < δ for all admissible {x(t), u(t)} and t .
4. There exist δ1 > 0 such that ‖u‖ < δ1 for all u ∈ U(x, t) with ‖x‖ < δ.

With regard to the first condition, the bound established for the non-controlled
dynamics (1) has the same form if we also incorporate the control function parameters,
as they eventually add up to zero. Hence, for any u ∈ U and the state variables, we
have

0 ≤ N (t) ≤ π

μ
. (11)

Moreover, the state system is continuous and bounded for any admissible control
u ∈ U . Therefore, the state system (9) has a unique solution corresponding to every
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admissible control u ∈ U . [see Theorem I.3.1 in Coddington and Levinson (1972),
Theorem 9.2.1 in Lukes (1982).]

The state system (9) is linear with respect to the control variables and U is compact,
which clearly implies Roxin’s condition. Conditions 3) and 4) follow from (11) and
the definition of the control set U .

Therefore, by Filippov-Cesari Theorem, there exists an optimal control pair {x∗, u∗}
with u∗(·) measurable, that solves the optimal control problem (10).

To formulate necessary conditions for optimality, we need to define the Hamiltonian
function of the optimal control problem, which is given by

H(x, u,λ, t) =
(

A1 I + A2T + B1

2

(
E

N

)m

u2
1 + B2

2
u2

2 + B3

2
u2

3

)

+λ1

(
π − (αo + u1)eS − cβ

I + εT

N
S − μS

)

+λ2

(
(αo + u1)eS − (1 − γo − u2)cβ

I + εT

N
E − μE

)

+λ3

(
cβ

I + εT

N
S + (1 − γo − u2)cβ

I + εT

N
E

−(ρ0 + u3)I − (μ + d1)I

)

+λ4 ((ρ0 + u3)I − (μ + d2)T ) , (12)

where, x = (S, E, I, T ), u = (u1, u2, u3), λ = (λ1, λ2, λ3, λ4)

If (u∗
1, u∗

2, u∗
3) is the optimal control triple yet to be determined, from Pontryagin’s

minimum principle (Pontryagin et al. 1962) we have:

1. the minimum conditions, when it occurs in the interior of the control regions:

∂ H

∂ui
= 0, i = 1, 2, 3. ⇒

⎧⎪⎪⎨
⎪⎪⎩

B1
( E

N

)m
u1 − λ1eS + λ2eS = 0

B2u2 + λ2cβE I+εT
N − λ3cβE I+εT

N = 0

B3u3 − λ3 I + λ4 I = 0

⇒

⎧⎪⎪⎨
⎪⎪⎩

u1(t) = 1
B1

(λ1 − λ2)
( E

N

)−m
eS

u2(t) = 1
B2

(λ3 − λ2)cβE I+εT
N

u3(t) = 1
B3

(λ3 − λ4)I

(13)

2. The adjoint equations:

λ̇1(t) = − ∂ H

∂S

= B1

2

m

N

(
E

N

)m
u2

1
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+(αo + u1)

⎡
⎣ (I + T )n

(
N n−1 Pn∗ (N − nS) + (I + T )n

)
(N n Pn∗ + (I + T )n)2

⎤
⎦ (λ1 − λ2)

+cβ(I + εT )
E + I + T

N 2 (λ1 − λ3) + (1 − γo − u2)cβ
I + εT

N 2 (λ3 − λ2) + μλ1;
(14)

λ̇2(t) = − ∂ H

∂ E

= − B1

2

m(N − E)

N 2

(
E

N

)m−1
u2

1

+(αo + u1)S

[
nN n−1 Pn∗ (I + T )n

(N n Pn∗ + (I + T )n)2

]
(λ2 − λ1)

+cβS
I + εT

N 2 (λ3 − λ1) + (1 − γo − u2)cβ
(I + εT )(S + I + T )

N 2 (λ2 − λ3) + μλ2;
(15)

λ̇3(t) = − ∂ H

∂ I

=
(

B1

2

m

N

(
E

N

)m
u2

1 − A1

)

+(αo + u1)S

[
nN n−1 Pn∗ (I + T )n(S + E)(

N n Pn∗ + (I + T )n
)2

]
(λ1 − λ2)

+cβS
S + E + (1 − ε)T

N 2 (λ1 − λ2) + (1 − γo − u2)cβE
S + E + (1 − ε)T

N 2 (λ2 + λ3)

+(ρ0 + u3)(λ3 − λ4) + (μ + d1)λ3; (16)

λ̇4(t) = − ∂ H

∂T

=
(

B1

2

m

N

(
E

N

)m
u2

1 − A2

)
+ (αo + u1)S

[
nN n−1 Pn∗ (I + T )n)(S + E)(

N n Pn∗ + (I + T )n
)2

]
(λ1 − λ2)

+cβS
ε(S + E) + (ε − 1)I

N 2 (λ1 − λ3)

+(1 − γo − u2)cβE
ε(S + E) + (ε − 1)I

N 2 (λ2 + λ3) + (μ + d2)λ4. (17)

3. The transversality conditions:

λ1(t f ) = λ2(t f ) = λ3(t f ) = λ4(t f ) = 0 (18)

Moreover, from the conditions that u1(t) ∈ [−αo, αmax − αo] , u2(t) ∈ [−γo, 1−
γo
]
, u3(t) ∈ [−ρo, ρmax − ρo], for all t ∈ [0, t f ] we arrive at:

u∗
1 = min

{
αmax, max

{
0,

1

B1
(λ1 − λ2)

(
E

N

)−m

eS

}}

u∗
2 = min

{
1, max

{
0,

1

B2
(λ3 − λ2)cβE

I + εT

N

}}
(19)

u∗
3 = min

{
ρmax, max

{
0,

1

B3
(λ3 − λ4)I

}}
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Since the model functions are convex with respect to the control variables, and
due to a priori boundedness of the state and adjoint (or co-state) functions the optimal
solution so obtained is unique for small time t f (cf. Fister et al. 1998; Gaff and Schaefer
2009).

4.3 Numerical results and Simulations

We carry out simulations to determine the optimal proportions of combinations of the
three different interventions that are used to control the epidemic and the sensitivity
of the optimality system with initial values of the parameters. The optimality system
described in equations (9) and (14) - (18) is solved using the iterative scheme with
Runge-Kutta method of order 4. The solution method mainly follows the algorithm
derived by Hackbush (1978) and is described as follows:

1. Guess the control variables, in our case we took ui = 0, i = 1, 2, 3.

2. Solve for the state variables from system (9) by applying the new control variables
starting from the initial conditions; forward in time.

3. Find the values of λ(t f ) from the transversality conditions (18).
4. Using the state variables calculated in step 2, solve the adjoint system (14)–(17)

backward in time from λ(t f ).
5. Calculate the new control values from the minimum condition (13).
6. Check the stopping criteria for convergence and stop if satisfied. If not satisfied,

go to step 2.

In order to validate the parameters and formulate our discussion in a more realistic
way, we considered the epidemiological information of HIV, as our model also best
suits such kind of disease dynamics. The parameters used for the numerical run are
for HIV disease dynamics in Botswana.

For the simulations presented in this section we used the parameter values listed in
Table 1. The values for the weight parameters for the objective functional are estimated
as follows; we took A1 = 1 per human and the weight of treated people is taken to be
A2 = 1.64.1 The weights of the control functions are taken to be B1 = 6 ∗ (2 ∗ 100),
for the weight of the effort in disseminating convincing information for the population
to change their behaviour, while B2 = 2 ∗ (2 ∗ 100) for the effort of improving the
average efficacy of the self protective measures to be used, and B3 = 4∗ (2∗100), for
the weight of the effort to increase the rate of recruitment of infected population for
treatment, respectively. Here we assumed that treatment is more costly as compared to
the implementation of self protective measures put all together. The multipliers (100)
for each of the Bi ’s are values to balance the units used. But no significant difference
is observed in the optimality system if cost values are slightly modified.

The initial conditions for the state variables are estimated as follows. We assumed
that the total adult population in Botswana is 253, 724 with a total of 192, 679 suscep-
tible. Out of the susceptible population we assumed that 20 % are convinced to use any
one of the existing self protective measures in that year. Thus, we have S0 = 154,143

1 The ministry of Health of Botswana has calculated the cost of medications, testing and counselling at
about USD 600 per person per year. Thus we took 600/365 ≈ 1.64 per person per day.
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Table 1 Descriptions and values of parameters used in the model

Parameter Description Value Source

π Rate of recruitment for susceptible
class per year

10,325.25 Kassa and Ouhinou (2011)

c Rate of contact per person 4.87 Kassa and Ouhinou (2011)

β Probability of disease transmission 0.12 Vardavas and Blower (2007)

ε Rate of infectiousness of an
individual who is receiving a
treatment

0.08 Donnell et al. (2010)

γo Current average efficacy level of the
existing protective measures

0.3 (estimate)

ρo Current rate of recruitment for
treatment per year

0.16 year−1 World Health Organization (2005)

μ Natural death rate for all classes 1/34 year−1 Vardavas and Blower (2007)

d1 Disease induced death rate for
individuals without treatment

0.1 year−1 Vardavas and Blower (2007)

d2 Disease induced death rate for
individuals on treatment

0.18 year−1 Vardavas and Blower (2007)

αo Current rate of convincing
information dissemination to take
part in self-protective actions

0.18 year−1 Kassa and Ouhinou (2011)

n Level of reaction of the population
for the disease

2 Kassa and Ouhinou (2011)

and E0 = 38,536. Out of the total infected population, 61,045, we assumed that only
16 % is put under treatment in the initial year as per the World Health Organization
(2005) estimate. This yields, the estimate of I0 = 51,278 and T0 = 9,767.

Moreover, the maximum proportion of population to be convinced to take part in
permanent self protective actions against the disease is taken to be αmax = 80 % (of the
susceptible population) per year and the maximum rate of recruitment for treatment is
assumed to be ρmax = 90 % (of the infected population) per year, while the maximum
average efficacy to be reached is taken to be 95 %.

In our numerical runs, we compared optimal combinations of various interventions
by varying the possible intervention strategies and taking each control at a time by
using the parameter values listed in Table 1 and other values listed above.

In the simulation, we first used the controls u1 and u2 (values controlling preventive
mechanisms) to optimize the objective function J, while the control u3 on treatment
is set to zero. Next we set the controls u1 and u2 to zero and optimize the objective
functional over the control u3. Finally, we optimize the objective functional over all
the three control variables. In Fig. 1a, we can observe that the prevalence of the disease
increases and stays very high if there is no additional control measure employed. On
the other hand, if the strategy focusses only on behavioural change measures, with no
additional effort is made to treat more infected people, the result seems better than
the no-control strategy but has slightly less effect on the prevalence than the strategy
which solely apply full treatment effort with no preventive mechanisms. However, as
can be seen in Fig. 1b the corresponding cost is much higher. If we combine both the
preventive controls and the treatment strategies simultaneously, the prevalence comes
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Fig. 1 a The variation of the prevalence of the disease, when the control parameters vary according to the
legend in the graph. b The graph of the marginal cost of the interventions (per day) in various cases of the
controls; and c The graph of the incidence of the disease in the population in various cases of the controls;
with parameter values are as in Table 1

down at a faster rate and the long-term cost is also much better as compared to the
other strategies.

In the strategy where all the controls are being used it is optimal to apply all existing
resources to each of the control measures at the beginning. But the focus on increasing
the rate of recruiting for treatment can be dropped sharply soon-after as compared
to the other efforts. On the other hand, educating people and convincing them to
participate in self protective schemes must be continued further with slow decrease in
the intensity, as can be seen in Fig. 2a. This will help the incidence of the disease not
to be high (see Fig. 1c).

The optimality system is not highly sensitive to the choice of the initial value
parameters, like αo and ρo. However, as can be seen in Fig. 3, the plan for treatment is
responsive to changes in the values of αo and ρo as well as the change in ε. The other
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Fig. 2 a The graph of optimal control values when all controls are employed simultaneously. b The
variation of sizes of the four classes of the population when all controls are employed simultaneously
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Fig. 3 The graph of the optimal controls when some of the parameters changed from what is given in
Table 1. a Shows the graphs of the optimal controls when αo = 0.30, b shows the graphs of the optimal
controls when ρo = 0.40, c shows the graphs of the optimal controls when αo = 0.01, and d shows the
graphs of the optimal controls when ε = 0.30
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control values show only slight changes in their appearance to adjust the corresponding
situations. All the remaining indicators, such as prevalence, incidence, and marginal
cost values have shown almost no response to these changes.

In all the cases one does not need to continue on the maximum rate of treatment
to obtain the maximum decrease in the prevalence of the disease. After a few years
of applying treatment on full possible scale, the recruitment rate for treatment can be
reduced to a lower rate and one needs to focus on preventive mechanisms. However,
when the value of ε, the factor of infectiousness of treated individuals, is very high
(i.e. when treatment reduces the infectiousness level by only (1 − ε)%) keeping the
treatment at higher rate is optimal.

Generally, to get the best result the control on the enhancement of the efficacy
level of the protective mechanisms should be given more emphasis with continued
education of the population on existing preventive mechanisms coming at the next
level in priority. With all the controls employed simultaneously in an optimal way, the
prevalence can possibly drop to less than 5 % within 10 years time. The graph for the
corresponding dynamics of the disease is given in Fig. 2c.

5 Discussion and conclusion

In this paper we derived and analysed a deterministic SIR type model for infectious
disease dynamics that takes behaviour modification of the population in to account. We
have shown that our mathematical model can portray the way how the population reacts
to an increase in prevalence in the course of an outbreak and how one can plan medical
treatment to control disease epidemics. In the analysis, it is indicated that behaviour
modification by society plays an important role in controlling an epidemic, even when
some pharmaceutical treatments are being given to the infected ones. The optimal
control theory is used to explain dominance of the behavioural change interventions
as compared to treatments. The optimality system also proposes the cost effective
way of controlling a disease when behaviour modification and treatment are being
implemented on the population level at the same time.

In planning to combat disease epidemics that have no curing medicines, it is impor-
tant to get the best combination of behaviour change efforts for those who are sus-
ceptible and treatments for the infected once. In practice the investment on producing
various alternatives of self-protective measures is not that high. However, our sim-
ulation shows that it is more effective and cheaper to make more emphasis on such
control mechanisms. If the model parameters are estimated well to fit field data the
model can predict well the optimal combination of efforts in controlling diseases in
human population.

In particular, the dynamics of diseases like HIV can be well presented using this
model. Behaviour change efforts, with higher emphasis given to producing alternative
self-protective mechanisms, can result in dramatically reducing the prevalence level
of the disease. Recently, it has been shown mathematically by Granich et al. (2009)
that the prevalence of HIV can be reduced to less than 1 % within 50 years if universal
access to ART is implemented. However, our model shows that if it is supplemented
by an effective behaviour modification strategy, a 90 % coverage for the first 3 to

123



Impact of self-protective measures in diseases controls 235

5 years and around 50 % coverage for the remaining times of treatment would attain
the same result nearly within 18 years.

In using this model for particular disease type in practical applications, one need
to take into account the time lag between the determination of the actual value the
prevalence of the disease and the reaction of the population. But if the planning time
is long enough (which could be counted in years) the prevalence level could be known
within a relatively shorter period of time and people could get information about it
soon. Hence, the model can be used without additional modification to plan disease
control mechanisms.

The model in this paper assumes that people once convinced to change their behav-
iour, remain in their status forever. But in practice when the disease is endemic for
longer time in the population, some individuals may become negligent and go back to
practicing risky behaviour. This aspect is not well addressed here. As an extension to
theis work one can investigate the impact on the dynamics of a disease of such kind
of backward flow as well as the effect of the time lag in calculating the prevalence of
the disease.
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