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Abstract We give a new approach to coding sequence (CDS) density estimation
in genomic analysis based on the topological pressure, which we develop from a
well known concept in ergodic theory. Topological pressure measures the ‘weighted
information content’ of a finite word, and incorporates 64 parameters which can be
interpreted as a choice of weight for each nucleotide triplet. We train the parameters so
that the topological pressure fits the observed coding sequence density on the human
genome, and use this to give ab initio predictions of CDS density over windows
of size around 66,000 bp on the genomes of Mus Musculus, Rhesus Macaque and
Drososphilia Melanogaster. While the differences between these genomes are too great
to expect that training on the human genome could predict, for example, the exact
locations of genes, we demonstrate that our method gives reasonable estimates for the
‘coarse scale’ problem of predicting CDS density. Inspired again by ergodic theory, the
weightings of the nucleotide triplets obtained from our training procedure are used to
define a probability distribution on finite sequences, which can be used to distinguish
between intron and exon sequences from the human genome of lengths between 750
and 5,000 bp. At the end of the paper, we explain the theoretical underpinning for
our approach, which is the theory of Thermodynamic Formalism from the dynamical
systems literature. Mathematica and MATLAB implementations of our method are
available at http://sourceforge.net/projects/topologicalpres/.
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1 Introduction

We present a novel approach to genomic analysis using tools from the theory of
thermodynamic formalism. A number of recent influential works in mathematical
biology have been based on the philosophy that the methods of statistical mechanics,
and dynamical systems, can give insight into biological problems (Bialek et al. 2012;
Mora et al. 2010; Tkacik et al. 2006; Schneidman et al. 2006). In this spirit, we
adapt tools from thermodynamic formalism (which is a well established branch of
dynamical systems, developed from ideas in statistical mechanics and information
theory), to the study of bioinformatics. The principle concept that we introduce is the
topological pressure of a finite sequence, which is adapted from a well known concept
in ergodic theory. It is a real number which is given by counting, with weights, all
distinct subwords of an exponentially shorter length that appear in the original word,
and is interpreted as a weighted measure of complexity of a finite sequence.1

The structure and organization of genomes is of central concern to the study of
genome biology, and determining the distribution of coding sequences is a key com-
ponent of this pursuit (Berná et al. 2012; Mackiewics et al. 2010; Salzburger et al. 2009;
Kowalski et al. 2009). Furthermore, identification of gene-rich regions in eukaryotes
(especially in plants) is an ongoing field of research (Ksiazkiewics et al. 2013; Varshney
et al. 2006; Erayman et al. 2004). The topological pressure provides a computational
tool for predicting the distribution of coding sequences and identifying such gene-rich
regions. Our approach is particularly suitable for the study of novel genomes where
limited training data is available. This is especially useful when faced with the recent
aggregation of thousands of little-studied genomes (eg. Genome 10K Haussler et al.
2009).

The primary goals of our analysis are:

1. To use the topological pressure, trained on the human genome, to give ab initio
predictions of coding sequence density on other genomes (Mus Musculus, Rhesus
Macaque, Drososphilia Melanogaster). This establishes the key practical advantage
of our approach, which is that we can predict CDS density using only a single
moderately phylogenetically distant informant genome as training data.

2. To use the theory of thermodynamic formalism to turn the data encoded in the
parameters used in (1) into a probability distribution which can measure the coding
potential of sequences of nucleotides of lengths between 750 and 5,000 bp.

1.1 Predictions for CDS density

The coding sequence density (or CDS density) is the probability density function given
by the bin count of coding sequences in non-overlapping windows of a given size. We

1 See Sect. 2.1 for a precise definition, and Sect. 2.2 for biological interpretation.
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focus on windows of size approximately 66,000 bp for reasons we describe later. This
corresponds to dividing, for example, the autosomes of the human genome into roughly
40,000 windows. The topological pressure, which depends on 64 parameters (one for
each nucleotide triplet) assigns a real number to each of these windows, and we train
these parameters by maximizing the correlation with the observed CDS density on a
genome.

After obtaining our parameters by training on the human genome, and cross-
validating our results to check we are not overfitting, we give ab initio predictions of
the CDS density of Mus Musculus, Rhesus Macaque and Drososphilia Melanogaster
simply by computing the topological pressure along these genomes. We find that
the correlation between topological pressure (trained on the human genome) and the
observed CDS density on these genomes is 0.77, 0.73 and 0.60 respectively. The
decrease in the correlation roughly corresponds to increasing phylogenetic distance
between the human genome and the target genome.

Our predictions of CDS density can be improved by using better training data
(for example, topological pressure would estimate the CDS density of Drososphilia
Melanogaster very accurately if it were trained on the genome of Drosophilia Simu-
lans), however our results emphasize that we can still make reasonable predictions of
CDS density even if we are not able to train on a close relative of the target genome.
This relatively low sensitivity to organism-specific genomic traits means that although
our method cannot hope to predict any finer structure of a genome (for example, the
exact location of genes), our technique is advantageous for the identification of regions
of high CDS density for novel genomes where refined training data is unavailable. Our
approach is also suitable for ab initio prediction on non-mammalian genomes if a suit-
able model genome is chosen as training data, although we do not develop this line of
research here.

1.2 Comparison with gene-finding techniques

In the last ten years, a number of powerful and effective gene-finding software pack-
ages have been developed (e.g. Augustus, Contrast, Exoniphy, Genemark HMM, FGe-
nesh, GenSCAN, GeneID, N-SCAN, SNAP). While these packages were not primar-
ily designed for estimating CDS density, this information can be inferred by taking
a bin count of the predicted coding sequences. These methods, which are typically
based on Hidden Markov Models or conditional random fields, are often very effective
at gene prediction on reasonably well understood genomes, although gene sensitiv-
ity/specificity and accuracy of predicted intron-exon structure is typically much lower
(Yandell and Ence 2012, p. 333; Flicek 2007, Fig. 1).

The drawback of these gene-finding methods is that they achieve only limited suc-
cess on novel genomes (Korf 2004; Yandell and Ence 2012), as they rely on parameter
files which are either partially trained on the genome under study, or use detailed data
from a large number of closely related informant genomes. In particular, the training
procedure requires a large number of high-quality genes and error-free assemblies, and
can require data that is not yet available for new genomes (Yandell and Ence 2012,
p. 333; Guig et al. 2006, pp. S2.2–S2.3; Giogo and Reese 2005, p. 577; Carter and
Durbin 2006, p. S6.2).
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We investigate the predicted CDS density given by some of these methods for com-
parison. We use GeneID on each of the genomes we consider, and find the predictions
to be comparably accurate to the predictions yielded by our method. While the first
version of GeneID was developed over ten years ago, it remains widely used, and
we found that it often outperformed more recent gene-finding software for estimating
CDS density. We ran GENSCAN and GenemarkHMM on all three genomes, and they
were outperformed by GeneID in all three cases.

We considered a selection of the most recent gene-finding software packages (N-
SCAN, Exoniphy, CONTRAST) on the genomes where suitable data was available for
their implementation. CONTRAST gave the best prediction over any method consid-
ered on Drosophilia Melongaster, yielding a correlation of 0.92. This is not surprising
since CONTRAST utilizes 14 informant genomes closely related to Drosophilia Mel-
ongaster (for example, Drosophilia Simulans and Drosophilia Yakuba) to make these
predictions. This amount of training data would usually be unavailable for the analy-
sis of a novel genome. We showed that Exoniphy performed very effectively on Mus
Musculus, performing as effectively as topological pressure.

Apart from these examples, we do not give a comprehensive study of the perfor-
mance of these advanced gene-finding programs for estimating CDS density, but it is
our expectation that they perform as well, or better, than topological pressure when
good training data is available. We emphasize that the advantage of our approach is the
possibility of predicting CDS density in situations where insufficient data is available
to effectively train the leading gene-finding software packages.

Another advantage of our approach is its simplicity and speed: the topological
pressure can predict a CDS density for a genome in a matter of seconds, while ab
initio prediction programs typically take a few hours, and evidence-based methods
can take weeks (Yandell and Ence 2012, p. 335).

1.3 A probability distribution on short segments of DNA sequences

Inspired once more by the techniques of ergodic theory, we demonstrate how our para-
meters determine a probability distribution on finite sequences, called an equilibrium
measure. We show that this probability distribution assigns relatively large weight to
sequences which are known to be exons. This property can be used to predict the
coding potential of DNA sequences which are orders of magnitude shorter than those
on which the topological pressure is trained.

The equilibrium measure is a Markov measure, so this construction can be inter-
preted as using the topological pressure (which makes no Markovian assumption at the
training stage) to produce a Markov model suitable for identifying coding sequences.
The theoretical basis for this construction is the Variational Principle from Sect. 5,
which shows that the equilibrium measure maximizes a certain kind of entropy. While
Markov models and entropy maximization are both familiar ideas in sequence mod-
eling (Durbin et al. 1998), the new ingredients here are the method for obtaining the
Markov model, and the interpretation of the Markov model via topological pressure
as an equilibrium measure.

The development of robust techniques that detect the coding potential of short
sequences is an important area of research (Creanza et al. 2009; Fickett and Tung
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1992; Gao and Zhang 2004; Guigó and Fickett 1995; Lin et al. 2008, 2011; Saeys
et al. 2007; Washietl et al. 2011) with applications to sequence annotation as well
as gene prediction. We show that our equilibrium measure is reasonably effective in
distinguishing between randomly selected introns and exons of length 750 bp in the
human genome. While this approach is not as effective as the powerful comparative
techniques developed in, for example, Washietl et al. (2011), our method could be
useful on novel genomes. Furthermore, this result can be interpreted as evidence that
our parameters are capturing the differences in distribution of 3-mers between coding
sequences and non-coding sequences.

1.4 Layout

The layout of the paper is as follows: In Sect. 2, we develop our methodology. In
Sect. 3, we present the results of our analysis of topological pressure and CDS density.
In Sect. 4, we demonstrate how the topological pressure defines a measure on finite
sequences, and show that this measure can distinguish between coding sequences and
non-coding sequences. In Sect. 5, we explain the theoretical basis for our approach,
and give more general definitions suitable for use in future analyses.

2 Methodology

2.1 Topological pressure

We introduce the mathematical content of our study, and then show how it can be
applied to genomic analysis. The topological pressure is a well known and well stud-
ied concept in the ergodic theory of dynamical systems. The standard version is a
quantity associated to a topological dynamical system which measures the ‘weighted’
exponential orbit complexity of the system (Parry and Pollicott 1990; Parry and Tun-
cel 1982; Walters 1982). We introduce a finite implementation of topological pressure
which can be interpreted as a measurement of weighted information content of a finite
sequence. Topological pressure is a weighted version of topological entropy, which
is a parameter free quantity introduced by Koslicki (2011). Topological entropy was
shown to be effective in distinguishing between intron and exon sequences (Koslicki
2011). For ease of exposition, we state here only a special case of the definition of
topological pressure, which is the one we use for our investigation of DNA sequences,
and then give a series of remarks which explain why it is defined this way. We postpone
the general definition of topological pressure until Sect. 5.

We consider finite sequences on the symbols A,C,G, T . We use the expressions
‘finite sequence’ and ‘word’ synonymously. However, ‘subword’ has a different mean-
ing from ‘subsequence’: a subword is a subsequence whose entries are consecutive
entries of the original sequence. We write a word either by using sequence notation,
or juxtaposition, so the sequence (A,G, A, T,C) may be written simply as AGATC.

We weight each word of length 3, which we think of as a nucleotide triplet, with a
positive real parameter. After choosing some order for the triplets (e.g. lexicographic
order), it is convenient to record these parameters in a vector
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v = (vAAA, vAAC , vAAG , . . . . . . , vT T G , vT T T ) (2.1)

with 64 coordinates. We are free to assume that v is a probability vector (we explain
why in Sect. 5). We define Φv to be the real-valued function on the collection of
words of length 3 that sends a word to its corresponding entry in v. In other words,
for a1, a2, a3 ∈ {A,C,G, T },

Φv(a1a2a3) := va1a2a3 . (2.2)

We can use the parameters encoded in v to induce a weight on a word u =
(u1, u2, . . . , un) of length n ≥ 3 by the expression

“Weight assigned to u” =
n−2∏

i=1

Φv(ui ui+1ui+2). (2.3)

The topological pressure of a word with respect to v, whose formal definition follows,
is given by counting the number of distinct subwords of an exponentially shorter
length, with weights given by the expression (2.3).

Definition 2.1 Let m ≥ n and let w = (w1, w2, . . . , wm) be a finite sequence where
each wi ∈ {A,C,G, T }. We let SWn(w) denote the set of all subwords of length n
that appear in w, that is

SWn(w) = {wiwi+1 · · ·wi+n−1 : i ∈ {1, 2, . . . ,m − n + 1}}.

Suppose that w has length m = 4n + n − 1. Let v be a probability vector of the
form (2.1). We define the topological pressure of w with respect to the parameters v,
denoted P(w, v), to be

P(w, v) = 1

n
log4

⎛

⎝
∑

u∈SWn(w)

n−2∏

i=1

�v(ui ui+1ui+2)

⎞

⎠ . (2.4)

Remark 2.1 Since SWn(w) is defined as a set (rather than a sequence), subwords
are not counted with multiplicity, so the expression inside the parentheses in (2.4)
is counting the distinct length n subwords of w, with weights determined by the
parameters v via the expression (2.3).

Remark 2.2 The definition above only applies to words whose length are of the form
4n +n −1 for some n ∈ N, and this is the n which appears in equation (2.4). There are
obvious ways to extend the definition of topological pressure to a word of arbitrary
length (e.g. by truncating or averaging), but in this paper we need only consider words
whose length are of this form. In this study, we set n = 8, so we are looking for all
distinct subwords of length 8 in a window of length 48 + 7 = 65, 543.
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Remark 2.3 When all entries in v are chosen to be equal (i.e. each entry is 1
64 ), P(w, v)

reduces to the definition of topological entropy for finite sequences in Koslicki (2011).
The reason we take the logarithm in base 4 in (2.4), and the length of form 4n + n − 1,
rather than just 4n , is so that the maximum value of the topological entropy is exactly
1, and that there exist sequences on which this maximum is attained (see discussion
after Definition 5.1 for details).

Remark 2.4 It is possible to set up topological pressure so that instead of assigning a
parameter value to each 3-mer, we assign a parameter value to each k-mer for some
fixed k ≥ 1 (we give the details in Sect. 5). We focus on k = 3 because of the
biological importance of 3-mers in the genetic code. Furthermore, we will see that
using 43 parameters neither overfits nor underfits our training data. We do not expect
significant improvement to the results of this paper if we considered weightings on
k-mers with k > 3, and we would risk overfitting the data. Conversely, we checked
that the case k = 3 is a better fit for the data than k = 2.

Remark 2.5 In practical situations, we must also deal with the occurrence of non-
ACTG symbols (e.g. N ). We do this by only including the subwords composed entirely
of the symbols ACTG in our computation of topological pressure. This is crucial for
a genome like Rhesus Macaque where entries of N appear throughout the genome.
For a word w with only a few occurrences of N , this has negligible effect on our
computations. On the other hand, a word w with many occurrences of N has low
topological pressure. This effect is consistent with our application to genomic analysis,
because we want the topological pressure to predict low CDS density in regions with
many occurrences of N . Alternatively, for very accurate genome assemblies such as
the human genome, we can eliminate the vast majority of non-ACTG symbols by
removing the telomeres and centromeres of each chromosome. We can then restrict
our attention to sequences composed entirely of ACTG without difficulty.

2.2 High topological pressure sequences: biological interpretation

The sequences for which the topological pressure is large are those that balance high
complexity against high frequency of 3-mers with relatively large parameter values.
This intuition is made precise by the variational principle for topological pressure
from ergodic theory which we discuss in Sect. 5.2. Regions containing a large number
of coding sequences will tend to have a different distribution of 3-mers from those
regions that do not, and we search for parameter values so that the topological pressure
can detect this difference.

It is crucial that topological pressure maximizes complexity and frequency of
strongly weighted 3-mers simultaneously: maximizing only complexity would favor
random sequences, while maximizing only the frequency of strongly weighted 3-mers
would favor sequences with very low complexity, neither of which we would expect to
see in regions of high CDS density. On the other hand, we demonstrate that topological
pressure, which balances both these effects, can be trained so that high topological
pressure correlates with high CDS density.
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Heuristically, we think of the 3-mers which receive a relatively large parameter
value in v to be those which are sending a strong signal that we are in a coding region,
while those with relatively small parameter value are those that are associated with
non-coding regions, or do not send us a strong signal in either direction.

While this heuristic may seem simplistic given the complexity of the relationship
between nucleotide composition and the structure of genes, it is supported by a number
of results in this paper. In Sect. 3.7, we show that if we choose parameters based
on this hueristic (by basing the parameters on the frequency of 3-mers in exons),
then topological pressure correlates positively with CDS density. This correlation is
significantly weaker than that obtained by our training procedure, which is consistent
with our expectations. Also in keeping with this heuristic, the results of Sect. 4.2 show
that the parameters obtained by our training procedure can be used to define a measure
which classifies introns and exons.

2.3 Topological pressure and CDS density estimation

The coding sequence density (or CDS density) is the probability density function
representing the percentage of coding sequences in non-overlapping windows of a
given size. We describe our methodology for training the topological pressure to match
the observed distribution of coding sequences on the human genome, and on other data
sets.

We utilize the NCBI hg18 build 36.3 with coding sequences defined by NCBI
RefSeq genes and accessed via the UCSC table browser (Karolchik et al. 2004). We
choose a chromosome and fix an integer window size m to divide the chromosome into
non-overlapping windows of length m. The selection of the window size exhibits the
typical trade-off between sensitivity and specificity: a smaller window size gives finer
information on the CDS distribution, but exhibits a higher sensitivity to fluctuations
in nucleotide composition. The most suitable window sizes for comparison with the
topological pressure are those of the form m = 4n + n − 1. We focus on a window
size of 65,543 (n = 8), as this seems to achieve a good balance. This corresponds to
dividing the autosomes of the human genome into roughly 40,000 non-overlapping
windows. We remove any windows with non-ACT G symbols, as the vast majority of
these correspond to telomeres and centromeres. We could also carry out our analysis
with different window sizes. The case n = 7, which gives window size m = 16,390,
would also be a reasonable choice and could give finer results, although it would be
more computationally intensive and susceptible to noise.

Notation 2.1 We divide each chromosome of the human genome into non-overlapping
windows of length m = 65,543, assuming the chromosome is read in the p to q
direction.

Let Chr(i) denote the word which represents the i th chromosome of the human
genome, and Chr(i, [n,m]) denote the subword which starts at position n and ends at
position m. Let w(i; n) denote the sequence which represents the nth such window
along the ith chromosome of the human genome.2 In other words,

2 We are left with a shorter window at the end of each chromosome, and we omit these from our study.

123



Topological pressure for DNA sequences 53

w(i; n) = Chr(i, [(n − 1)m + 1, (n − 1)m + m]). (2.5)

Definition 2.2 We define the bin count for coding sequences in each window as fol-
lows:

#C S(i; n) := #{RefSeq coding sequences with initial nucleotide

contained inw(i; n)}.

The coding sequence density on chromosome i is defined to be

CDS(i, n) := #C S(i, n)/#C S(i),

where #C S(i) := #{Known coding sequences in Chr(i)}.

For fixed i,CDS(i, n) is a probability density function of n. Note that our notation
suppresses our choice of window size, as this stays fixed at m = 65,543 = 48 + 7
throughout this work.

Notation 2.2 Given a probability vector v with 64 entries, as described at (2.1), we
consider the topological pressure with respect to v of each of the sequences w(i; n)
using the following notation:

P(i, n, v) := P(w(i; n), v),

where P(·, ·) is the topological pressure given by (2.4). Thus, P(i, n, v) is the topolog-
ical pressure with respect to v of the sequence which arises as the nth non-overlapping
window of length 65,543 along the i th chromosome of the human genome.

On each chromosome, i.e. for each fixed i , we can consider CDS(i, n) and P(i, n, v)
as functions in n. In fact, we want to consider these functions as i ranges over a
specified collection of chromosomes, most often the collection of all autosomes of the
human genome. That is, the indices i and n are replaced with a new index t = t (i, n)
which tells us which window of this data set is under consideration. We modify the
normalization of the coding sequence density so that CDS(t) is a probability density
function of t , and we consider CDS(t) and P(t, v) as functions in t . This is essentially
equivalent to considering the concatenation of all the autosomes as a single sequence.
Similarly, we can consider CDS(t) and P(t, v) ranging over even larger data sets, for
example by concatenating all the autosomes from a number of different model species
into a single sequence.

After fixing our data set, we train the parameters v for maximum positive correlation
between CDS(t) and P(t, v). Our focus is mainly on the case when the data set is all
autosomes of the human genome, although other data sets, both larger and smaller,
are investigated where appropriate in this study. We demonstrate that our training
procedure neither underfits nor overfits this training data.
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2.4 Details of training procedure

For a fixed collection of chromosomes as described above, we use the method of
Nelder and Mead (1965) to maximize the correlation between P(t, v) and CDS(t)
with respect to probability vectors v with 64 entries.

Considered as functions in t , both CDS(t) and P(t, v) are inherently noisy due
to random fluctuations in nucleotide composition in a given chromosome as well as
due to incomplete knowledge regarding coding sequences (eg. incorrectly annotated
sequences). The noise in both functions is suppressed by utilizing a Gaussian filter. The
radius of the Gaussian filter is chosen so that it coincides at each t with the Gaussian
kernel density estimation of CDS(t).

We checked that other standard smoothing techniques (moving medians, exponen-
tial moving averages, convolution with a smoothing kernel) lead to similar results, and
chose the Gaussian filter for our analysis due to its simplicity and speed of implemen-
tation.

We utilize the method of Nelder and Mead (1965) in MATLAB (2012) to maximize
the correlation between P(t, v) and CDS(t)with respect to v. The precision threshold
for the convergence of this heuristic maximization technique was set to 10−6 and
convergence was typically achieved in 10,000 steps of the algorithm.

We focus on the case where the training data is the collection of all human auto-
somes. We did not include the sex chromosomes due to the well-known differences in
mutation rate, selection, gene death and gene survival between the autosomes and the
sex chromosomes (Wilson and Makova 2009a, b; Kvikstad et al. 2007; Graves 2006;
Makova et al. 2004). We denote the parameters trained on all human autosomes as
vmax.

3 Results

Using the methodology above, we present our results on CDS prediction using the
topological pressure.

3.1 Training on the human genome

Our training procedure yields parameters v = vmax so that P(t, v) and CDS(t) have
correlation above 0.9 across all autosomes of the human genome. It is not at all
obvious that our training procedure should work this effectively, as we are training
64 parameters to maximize correlation over approximately 40,000 data points. That
our training procedure even works gives evidence that topological pressure can detect
structure in the training data.

3.2 Cross-validation

Since our method yields a very high correlation between P(t, v) and CDS(t), we must
check if we are overfitting the 64 parameters in v. We performed a traditional 7-fold
cross-validation on chromosomes 1 through 21 (Picard and Cook 1984). We randomly
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partitioned the chromosomes into 7 equal-size samples. Of these 7, a single sample
of three chromosomes was retained as a test sample. We performed the maximization
procedure outlined in Sect. 2.4 on the remaining 6 samples and used the resulting
parameters to obtain a correlation value between the topological pressure and the test
sample CDS density. An average is then taken over the 7 possible choices of test sample.
We repeated this procedure 50 times. The resulting mean correlation was 0.8049 with
a variance of 0.0003232. This demonstrates that the maximization procedure outlined
in Sect. 2.4 is not overfitting.

3.3 Training on multiple genomes

We can also train topological pressure on multiple informant genomes. Using the
methodology of Sect. 2.4, we obtained parameters by training on the data set given
by concatenating all autosomes of the human, mouse (mm9 ) and rat (rn4) genomes.
These are the parameters we use when we refer to ‘topological pressure (trained
on 3 genomes)’ in the following sections. This is intended simply to demonstrate
that topological pressure can incorporate information from multiple genomes, and a
thorough investigation of the effectiveness of this idea is beyond the scope of this paper.

3.4 CDS density estimation on Rhesus Macaque

We used the parameters vmax obtained from training on the human genome and showed
that the correlation of the topological pressure with the coding sequence density given
by RefSeq genes over all the autosomes of the Rhesus Macaque build rheMac3 was
0.726. We repeated the experiment using the parameters trained on 3 genomes, and
obtained a very slightly improved correlation of 0.738. We compare this with the pre-
dictions given by GeneMarkHMM (Lukashin and Borodovsky 1998), GeneID (Blanco
et al. 2002), GENSCAN (Burge and Karlin 1997), and N-SCAN (van Baren et al.
2007).

We used the GeneID and GeneMarkHMM software to obtain predicted coding
sequences for the Rhesus Macaque autosomes. For GENSCAN and NSCAN, we
obtained this information from the corresponding track on the UCSC table browser.
For each program, we then took the bin counts of predicted coding sequences over all
autosomes in the non-overlapping windows described at (2.5). Table 1 summarizes the
correlation with the known coding sequence bin counts (obtained from RefSeq genes)
and the bin counts predicted by each method. Figure 1 demonstrates how well GeneID
and topological pressure reconstruct the coding sequence density on chromosome 2.

We see that topological pressure yields the highest correlation of all the methods
we looked at on this genome, and N-SCAN gave the best prediction yielded by the
gene-finding programs we considered.

3.5 CDS density estimation on Mus Musculus

The correlation of the topological pressure, trained on the human genome, with the
coding sequence density of the autosomes from Mus Musculus build mm9 was 0.765.
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Table 1 Comparison of
predictions of CDS density
on rheMac3

Method Correlation over
all autosomes

Topological pressure (trained on human) 0.726

Topological pressure (trained on 3 genomes) 0.738

GeneMarkHMM 0.624

GENSCAN 0.402

GeneID 0.660

N-SCAN 0.684

500 1000 1500 2000 2500
Window Location

1

2

3

4

Pressure GeneID Actual CDS Density

Fig. 1 Topological pressure (trained on the human genome), CDS density predicted by GeneID, and known
CDS density on chromosome 2 of rheMac3

We compare the topological pressure with predictions yielded by gene-finding tech-
niques using the same methodology described in the previous section.

We ran GeneMarkHMM on Mus Musculus genome build mm9 and obtained the
GENSCAN, GeneID, and Exoniphy tracks from the UCSC table browser for this
genome. Table 2 summarizes the correlation of each method with the known coding
sequences density (obtained from RefSeq Genes).

Topological pressure was outperformed on this genome by GeneID and Exoniphy,
but performed better than GeneMarkHMM and GENSCAN.

3.6 CDS density estimation on Drosophila Melanogaster

The correlation of the topological pressure, trained on the human genome, with
the coding sequence density of the autosomes from Drosophila Melanogaster build
dm3 was 0.601. This improved to 0.674 when we used the parameters trained on 3
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Table 2 Comparison of
predictions of CDS density
on mm9

Method Correlation over
all autosomes

Topological pressure (trained on human) 0.765

GeneMarkHMM −0.440

GENSCAN 0.695

GeneID 0.817

Exoniphy 0.861

Table 3 Comparison of
predictions of CDS density
on dm3

Method Correlation over
all autosomes

Topological pressure (trained on human) 0.601

Topological pressure (trained on 3 genomes) 0.674

GeneMarkHMM 0.368

GENSCAN 0.608

GeneID 0.871

CONTRAST 0.918

genomes, and we expect that the correlation would improve significantly if we trained
on a genome which was more closely related to Drosophila Melanogaster. We do not
do this precisely because we want to demonstrate that we can still make reasonable
predictions even when a close relative of the target genome is not available for training.

In Table 3, we compare the CDS prediction via topological pressure to those given
by the following gene-finding techniques: GeneMarkHMM, GENSCAN, GeneID, and
CONTRAST. The best performing method is CONTRAST. This may not be surprising
since it uses 14 informant genomes closely related to Drosophila Melanogaster (for
example, Drosophila Simulans and Drosophila Yakuba).

3.7 Other approaches to parameter selection

The topological pressure can be considered using parameters selected by means other
than training against known data. To detect CDS density, we can select the parameters
v according to the heuristic rule that ‘3-mers which we believe to be associated to
coding sequences are assigned greater weight’. We give an example.

Many single sequence techniques for measuring the coding potential of DNA
sequences are based upon frequencies of n-mers in known intronic and exonic regions
(Akashi 2001; Comeron and Aguadé 1998; Creanza et al. 2009; Karlin et al. 1998).
We can use this principle to write down parameters vexon which are based simply on
the frequency of codons in the exon sequences. More precisely, for a codon w, the
corresponding parameter value in vexon is assigned by the following procedure: for
a segment of an autosome that corresponds to a known exon region, we count the
number of times (counting overlaps) that w appears, and then we sum this over all
such segments. We normalize by the total number of codons (counting overlaps) that
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Fig. 2 Values of 50 × vexon and 35 × vmax overlaid on the genetic code

appear in the collection of segments considered, and this yields the entry in vexon for
the codon w. See Fig. 2.

The correlation between P(t, vexon) and CDS(t) is 0.4886. The positive correlation
matches our expectations, but it is much weaker than the correlation obtained using
vmax.

3.8 Analysis of parameter values

The biology enters our machinery via our choice of parameters. Since we train against
known CDS density, the parameters reflect the relationship between the distribution
of 3-mers and the distribution of coding sequences along the genome. Although our
method is entirely combinatorial, it would be desirable to give biological interpretation
to the values assigned to 3-mers by vmax. Obvious questions include:

1. What relationship between 3-mers and coding sequences does topological pressure
really detect? We are not simply detecting the average frequency of appearance of
3-mers in coding sequences, since the values associated to the 3-mers by vmax have
a different, and much less uniform, distribution than average frequencies would
suggest (see Fig. 3). The parameters are detecting a more sophisticated relationship
between the appearance of 3-mers, and their role in coding sequence formation
than simply calculating frequencies, and it would be desirable to identify what
biological mechanisms explain our parameter values.

2. Do the values of vmax tell us anything about codon usage in the human genome?
If we train on different genomes, what are the differences between the parameters
obtained? Can this help us understand differences in codon usage between species?

A parameter sensitivity analysis will be a crucial first step in the investigation and
interpretation of vmax, and we hope to address these questions in future work.

We mention a feature of vmax which does match with biological intuition: 3-mers
made up of a single repeating nucleotide are assigned a low value by vmax. Thus, the
topological pressure will assign a low value to a long sequence of single repeated
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Fig. 3 Values of 35 × vmax overlaid on the genetic code

nucleotides. This is consistent with the presence of repetitive elements in intergenic
regions of the genome.

4 A probability measure for detection of coding potential

An important area of research is to develop single sequence measures that effectively
distinguish between short coding sequences and short non-coding sequences (Creanza
et al. 2009; Fickett and Tung 1992; Gao and Zhang 2004; Guigó and Fickett 1995; Lin et
al. 2008, 2011; Saeys et al. 2007; Washietl et al. 2011). The theory of thermodynamic
formalism gives us a means of selecting a Markov measure μv, which reflects the
properties of the topological pressure with respect to the parameters v. We carry out
this procedure for our parameters v = vmax and obtain a measure that is effective for
the analysis of relatively short segments of DNA sequences. We explain the theoretical
underpinning for our methodology, and generalize this construction, in Sect. 5. We
demonstrate that μv can distinguish between coding and non-coding sequences with
a reasonably high probability of success. The advantage of using the measure μv
rather than the topological pressure associated to v is that the measure is effective in
analyzing relatively short DNA sequences (750–5,000 bp).

This represents a strategy in which large scale information (parameters obtained by
considering windows of 66,000 bp along the whole human genome) can be utilized
to extract information at a much smaller scale (measure of a sequence of length 750–
5,000 bp).
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4.1 Construction of μv from v

We use the parameters

v = (vAAA, vAAC , vAAG , . . . . . . , vT T G , vT T T )

to define μv as a stationary Markov measure of memory 2. In other words, our con-
struction gives a Markov chain whose state space is the collection of all sequences of
length 2 in the DNA alphabet, and whose transition probabilities are obtained from
the parameters v by the rule (4.1) below. The measureμv is then given by the standard
rule for probability of a finite path of a Markov chain. See, for example, Durbin et al.
(1998) for a standard reference for these ideas in the context of biological sequence
analysis.

More precisely, let B = {A,C,G, T }2, and enumerate B by

w1 = AA, w2 = AC, w3 = AG, w4 = AT, w5 = CA, . . . , w16 = TT .

We now use v to define a non-negative matrix M of dimension 16 as follows. Let
Mi j = vw, where if wi = IJ , and w j = JK, then w = IJK. Let Mi j = 0 if the second
letter in wi is not the same as the first letter in w j . The Perron-Frobenius theorem
guarantees that there is a maximal eigenvalue λ > 0 and a strictly positive vector r
such that

Mr = λr.

Now define the matrix P by the equation

Pi j = Mi jr j

λri
. (4.1)

It is a standard exercise to check that Pi j is a stochastic matrix and that there is a unique
probability vector p so that pP = p. More explicitly, pi is given by normalizing
the vector li ri , where l is a strictly positive left eigenvector for M . For a, b, c ∈
{A,C, T,G}, let p(ab) = pi when ab = wi , and let P(ab, bc) = Pi j when ab = wi

and bc = w j .

Definition 4.1 We define a stationary probability measure μv on An for any fixed
n ≥ 3, by the formula

μv(x1 · · · xn) = p(x1x2)P(x1x2, x2x3)P(x2x3, x3x4) . . . P(xn−2xn−1, xn−1xn)

for each x1 · · · xn ∈ An .

As an illustrative example, to computeμv for the word GCTAC, we use the formula

μv(GTCAC) = p(GT)P(GT,TC)P(TC,CA)P(CA,AC),

and read off the appropriate values for the right hand side of the equation.
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Fig. 4 Histogram of log(μv) on 5,000 introns and exons of length 750 bp

4.2 Detection of coding potential using μv

We take the measure μv corresponding to the parameters v = vmax from Sect. 3.
The construction of the measure is designed so that μv reflects the properties of the
topological pressure with respect to v (see Sect. 5.3 for details). Thus, we expect that
the sequences with relatively large measure are those with higher coding potential.

We demonstrate this phenomena by showing that μv can partially distinguish
between a randomly selected assortment of intron and exon sequences of length 750 bp.
Sequences of this length are produced by some next-generation sequencing platforms
(e.g. PacBio RS II, Roche GS FLX+). We randomly select 5,000 intron sequences and
5,000 exon sequences from human chromosome 1, and truncate to a length of 750
bp. These sequences are completely un-preprocessed: no information such as ORF’s,
stop/start codons or repeat masking is utilized.

As expected, μv typically weights exon sequences more heavily than intron
sequences. This is demonstrated by Fig. 4, which shows the histogram of log(μv)

evaluated on the test sequences. The area under the ROC (true positive rate vs. false
positive rate) curve is 0.701.

We repeated the experiment for a randomly selected assortment of introns and exons
of length 5,000 bp, and include in Fig. 5 the ROC curve associated to the resulting
μmax. The area under the ROC curve increased to 0.826.

We expect that this classification could be improved, particularly for shorter
sequences, by the following strategies:

1. considering more parameters in the topological pressure, which would yield a
Markov measure of higher order (as described in Sect. 5.1);

2. training on windows of much smaller length than the ∼66,000 bp used previously.

123



62 D. Koslicki, D. J. Thompson

Fig. 5 ROC curve for log(μv)
on 5,000 introns and exons of
length 5,000 bp

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

False Positive Rate

True Positive Rate

We do not pursue this here, and as it stands, the comparative techniques already
available on the human genome (Washietl et al. 2011; Creanza et al. 2009) are more
accurate classifiers of introns and exons than μv. Nevertheless, the equilibrium mea-
sure could potentially be a useful classifier of introns and exons on less well understood
genomes. Furthermore, these results demonstrate how the parameter values for topo-
logical pressure can be used to construct a Markovian model, which captures the
biological information incorporated into our machinery via the training data.

5 Theoretical underpinnings

Topological pressure and equilibrium measures are the principle object of study of
thermodynamic formalism, which is a well established branch of ergodic theory and
dynamical systems. Standard references are Baladi (2000); Bowen (1975); Parry and
Pollicott (1990); Parry and Tuncel (1982); Walters (1982). In this section, we explain
the connections between the present work and the classical theory.

First, we extend the definition of topological pressure for finite sequences to full
generality. Let A be an alphabet, that is, a finite collection of symbols, and |A| denote
the number of elements in A. We denote the space of sequences of length n by An , the
space of finite sequences (of any length) A<N, the space of finite sequences of length
at least n by A≥n and the space of infinite sequences by� = AN. For a suitable choice
of k, we select a weight for each word in Ak . The weights can be encoded by a vector
v, as in Sect. 2, or by a function ψ : Ak �→ R so that ψ(w) is the weight assigned to
w. We use the latter notation here, because it is consistent with the conventions of the
dynamical systems literature. In ergodic theory, ψ is customarily called the ‘potential
function’. We avoid this terminology as the word ‘potential’ has other meanings in
biology. Often, for a function � > 0, we are interested in the weights corresponding
to ψ = log�.
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For n ≥ k, we assign a weight to each word u ∈ An by the rule

“Weight assigned to u′′ = exp

{
n−k+1∑

i=1

ψ(ui ui+1 · · · ui+k−1)

}

=
n−k+1∏

i=1

�(ui ui+1 · · · ui+k−1), if � > 0, ψ = log�.

Definition 5.1 Let ψ : Ak �→ R,m ≥ n ≥ k and let w = (w1, w2, . . . , wm) be a
finite sequence where each wi ∈ A. We let SWn(w) denote the set of all subwords of
length n that appear in w, that is

SWn(w) = {wiwi+1 · · ·wi+n−1 : i ∈ {1, 2, . . .m − n + 1}}.

Now suppose that w has length 4n + n − 1, i.e. suppose m = 4n + n − 1. Then we
can define the topological pressure of w with respect to ψ , denoted P(w,ψ), to be

P(w,ψ) = 1

n
log|A|

⎛

⎝
∑

u∈SWn(w)

exp

{
n−k+1∑

i=1

ψ(ui ui+1 · · · ui+k−1)

}⎞

⎠ . (5.1)

If Φ > 0, and ψ = logΦ, where log denotes natural logarithm, then

P(w, logΦ) = 1

n
log|A|

⎛

⎝
∑

u∈SWn(w)

n−k+1∏

i=1

Φ(ui ui+1 · · · ui+k−1)

⎞

⎠ . (5.2)

For a word w with |A|n + n − 1 ≤ |w| < |A|n+1 + n, we define the topological
pressure of ψ on w to be the topological pressure of ψ on the first |A|n + n − 1
symbols of w.

Definition 5.1 generalizes Definition 2.1 because P(w, v) = P(w, logΦv), where
Φv is the function defined at (2.2). When ψ = 0, (5.1) reduces to the definition of
topological entropy for finite sequences in Koslicki (2011). We denote the greatest
topological pressure for words of length 4n + n − 1 by

Pmax(n, ψ) = max{P(w,ψ):|w| = 4n + n − 1}. (5.3)

For each n, there exists a word wn
max of length 4n + n − 1 which has every word of

length n as a subword. This follows easily from the fact that the De Brujn graph
is a Hamiltonian graph (Gheorghiciuc and Ward 2008, obs. 1.6). It follows that
Pmax(ψ, n) = P(wn

max, ψ), and thus Pmax(n, 0) = 1.
Taking a multiple of Φ (equivalently adding a constant to ψ) does not affect the

quantities associated to the topological pressure that we study in this paper, particularly
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correlation with the CDS density developed in Sect. 2.3. For any t > 0, and word w
of length 4n + n − 1 we have the formula

P(w, log tΦ) = n − k

n
log|A| t + P(w, logΦ). (5.4)

Since the difference between P(w, log tΦ) and P(w, logΦ) is a constant independent
of w, the correlations studied in Sect. 2 will remain unchanged when normalizing Φ.
Hence we are free to assume that v is a probability vector in Sect. 2.

5.1 Equilibrium measures

Given a function ψ : Ak �→ R, there is a unique probability measure μψ , called the
equilibrium measure for ψ , whose properties reflect those of the topological pressure
with respect toψ . The measure μv constructed in Sect. 4.1 is an equilibrium measure.
In this section, we describe how to construct equilibrium measures and explain the
theoretical basis for their useful properties.

The construction is a generalization of the construction of μv, and a special case of
more general expositions given by Baladi (2000); Bowen (1975); Parry and Pollicott
(1990); Parry and Tuncel (1982); Walters (1982). We take our finite alphabet A, and
a function ψ : Ak �→ R.

Let B = Ak−1 and enumerate B by some natural ordering. Define a 1 − 0 square
matrix S of dimension |A|k−1 as follows. Let Si j = 1 if and only if the word obtained
by omitting the first symbol of wi is the same as the word obtained by omitting the
last symbol in w j . In this case, define π(wi , w j ) ∈ Ak as the word wi b, where b ∈ A
is the last symbol in w j . Equivalently, π(wi , w j ) = aw j , where a ∈ A is the first
symbol of wi .

We now use ψ to define a non-negative matrix M of dimension |B| as follows. If
Si j = 1, then let

Mi j = eψ(π(wi ,w j )), (5.5)

and if Si j = 0, then let Mi j = 0. The Perron-Frobenius theorem gives a maximal
eigenvalue λ > 0 and a strictly positive vector r such that

Mr = λr.

Now define a matrix P of dimension |B| by

Pi j = Mi jr j

λri
. (5.6)

It is easy to check that Pi j is a stochastic matrix and that there is a unique probability
vector p so that pP = p. More explicitly, pi is given by normalizing the vector li ri ,
where l is a strictly positive left eigenvector for M .
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To define a measure on AN, it suffices to define the measure on the cylinder sets

[x1 · · · xn] := {y ∈ AN | y1 = x1, y2 = x2, . . . , yn = xn}, (5.7)

since these are open sets which generate the natural topology on AN (Walters 1982).

Definition 5.2 We define a probability measure μψ on AN by the formula

μψ([x1 · · · xn]) = pi1 Pi1i2 Pi2i3 · · · Pin−k in−k+1 , (5.8)

for any x1 · · · xn ∈ An with n ≥ k, where wi1 = x1 · · · xk−1, wi2 = x2 · · · xk, . . . ,

win−k+1 = xn−k+1 · · · xn . We call the measure μψ the equilibrium measure for ψ on
AN.

For any fixed n ≥ k, we can take the value assigned to each x1 · · · xn by the formula
(5.8) to define a probability measure on An , which we refer to as the equilibrium
measure for ψ on An . Thus, the probability measure μv from Definition 4.1 is the
equilibrium measure for logΦv on {A,C,G, T }n .

5.2 Relation to theory of dynamical systems: the full shift and the Variational
Principle

In the next few sections, we recall the classical theory from dynamical systems which
explains the importance ofμψ . We demonstrate the relationship between the concepts
introduced in this paper and the dynamics of the full shift (defined below).

Definition 5.3 The full shift over an alphabet A is the dynamical system (�, σ ), where
� = AN is the space of infinite sequences on A, and σ is the shift map σ : � → �,
which is the map defined by ‘shifting’ a sequence one position to the left. That is, for
(x1, x2, x3, . . .) ∈ �,

σ((x1, x2, x3, . . .)) := (x2, x3, x4, . . .).

Definition 5.4 Given a continuous function ψ : � → R, the topological pressure of
ψ on � is defined to be:

P(�,ψ) = lim
n→∞

1

n
log

(
∑

u∈An

exp
n−1∑

i=0

ψ(σ i u)

)
.

The following result (Parry and Tuncel 1982; Walters 1982) gives the fundamental
relationship between the topological pressure and σ -invariant probability measures3

on �.

3 That is, probability measures which satisfy μ(σ−1 A) = μ(A) for all Borel sets A ⊂ �.
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Theorem 5.1 (Variational Principle) The topological pressure of ψ on � satisfies:

P(�,ψ) = sup
m

{
hm +

∫
ψdm

}
, (5.9)

where the supremum is taken over all σ -invariant probability measures on�, and hm

denotes the measure theoretic entropy, given by

hm = lim
n→∞ −1

n

∑

w∈An

m([w]) log m([w]).

A measure achieving the supremum in (5.9) is called an equilibrium measure for ψ .

The following result, proved by Parry and Tuncel (1982), tells us that the measure
constructed in the previous section is indeed an equilibrium measure in this sense.

Theorem 5.2 The measureμ = μψ defined in Definition 5.2 is the unique equilibrium
measure for ψ (in the sense of Theorem 5.1), and

P(�,ψ) = hμ +
∫
ψdμ = log λ,

where λ is the Perron-Frobenius eigenvalue of the matrix (5.5).

The Variational Principle illustrates the trade-off between structure and complexity
which is detected by the topological pressure, simultaneously maximizing entropy
(which is itself maximized by the uniform measure) and the integral of ψ (which is
itself maximized by a Dirac measure).

5.3 The Gibbs property

The relationship between ψ and μψ is captured by the Gibbs property, see Bowen
(1975); Parry and Pollicott (1990). To simplify notation, we return to the case of
ψ : A3 �→ R, which is the important case for this paper.

Theorem 5.3 (Gibbs property) For ψ : A3 �→ R and any w ∈ An,

μψ([w]) � exp

{
−n P(�,ψ)+

n−2∑

i=1

ψ(wiwi+1wi+2)

}
,

where [w] is the cylinder set defined at (5.7), and an � bn means there exists a constant
C > 1 so that C−1 ≤ an/bn ≤ C for all n.

Thus, if ψ = logΦ and we normalize ψ so that P(�,ψ) = 0 (which is done by
taking a suitable multiple of Φ), then

μψ([w]) �
n−2∏

i=1

Φ(wiwi+1wi+2). (5.10)
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In the context of Sect. 4.2, this formula provides the intuition that sequences which
have a relatively high frequency of words w ∈ A3 where vw is large, and a relatively
small frequency of words w ∈ A3 where vw is small, will be assigned relatively large
measure byμv. This gives a theoretical underpinning for usingμv to predict the coding
potential of short sequences.

5.4 Relationship between topological pressure for finite sequences and topological
pressure on the full shift

We continue to focus on the case when ψ : {A,C, T,G}3 → R for simplicity, and
we write � for the full shift on {A,C, T,G}. The following result is essentially that
of Walters (1982, Theorem 7.30). Let M be the matrix constructed in Sect. 4.1, and
recall that λ is its Perron-Frobenius eigenvalue. We consider the matrix norm of M
given by ‖M‖ = ∑

i, j |mi j |.
Theorem 5.4 We have

Pmax (ψ, n) = 1

n
log4

(
∑

u∈An

exp

{
n−2∑

i=1

ψ(ui ui+1ui+2)

})
= log4 ‖Mn−2‖1/n,

The sequence ‖Mn−2‖1/n converges to λ exponentially fast as n → ∞.

This theorem tells us that for large n, Pmax (ψ, n) is very close to log4 λ. Since
P(�,ψ) = log λ, this describes the relationship between topological pressure for
finite sequences and topological pressure on the full shift.

6 Conclusion

We demonstrated that the topological pressure can train on the human genome to fit
the observed bin count of coding sequences on windows of size approximately 66,000
bp. We showed that topological pressure, trained on the human genome, gave effec-
tive estimates of CDS density on Rhesus Macaque, Mus Musculus and Drosophilia
Melanogaster, despite the phylogenetic distance between these target genomes and the
informant genome. We compared these results with predictions of CDS density yielded
by a selection of current gene-finding packages. These often performed extremely well,
but required detailed organism-specific training data that is not required to train the
topological pressure, and is not typically available for novel genomes.

We showed that the topological pressure defines a probability measure which can
distinguish between segments of human intron and exon sequences of length between
750 and 5,000 bp. Finally, we established the theoretical basis for our results, adapting
ideas and results from ergodic theory.
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