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Abstract We analyze the distribution of RNA secondary structures given by the
Knudsen–Hein stochastic context-free grammar used in the prediction program Pfold.
Our main theorem gives relations between the expected number of these motifs—
independent of the grammar probabilities. These relations are a consequence of prov-
ing that the distribution of base pairs, of helices, and of different types of loops is
asymptotically Gaussian in this model of RNA folding. Proof techniques use singu-
larity analysis of probability generating functions. We also demonstrate that these
asymptotic results capture well the expected number of RNA base pairs in native ribo-
somal structures, and certain other aspects of their predicted secondary structures. In
particular, we find that the predicted structures largely satisfy the expected relations,
although the native structures do not.
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1744 S. Poznanović, C. E. Heitsch

1 Introduction

Knowing the base pairings of an RNA sequence can reveal important information
about the molecule’s function but, unfortunately, experimental determination of the
secondary structure is too often nontrivial. For this reason, computational methods have
become a standard approach to RNA secondary structure prediction. Most of these
prediction methods are based on energy minimization (Mathews and Turner 2006)
and depend on the model for the folding free energy change. In order to increase the
prediction accuracy, the thermodynamic model has been refined over the years with the
inclusion of hundreds of different parameters, most of them experimentally determined
(Turner and Mathews 2010). Alas, the prediction accuracy still varies widely (Doshi
et al. 2004). As an alternative, methods that use stochastic context-free grammars
(SCFGs) have been developed (Eddy and Durbin 1994; Sakakibara et al. 1994). One
advantage of these methods over thermodynamic optimization is that phylogenetic
information can be incorporated into the prediction, yielding a consensus structure
for an aligned family of homologous sequences. One example of such a prediction
program is Pfold (Knudsen and Hein 2003).

When developing a prediction method based on a SCFG, several choices need to
be made including the SCFG to be used and the set of probabilities for the grammar
rules. In designing an SCFG for RNA structure prediction, there is a trade-off between
grammar simplicity and prediction accuracy. Simpler grammars are more suitable for
computational purposes but are less likely to achieve very high prediction accuracy.
Dowell and Eddy (2004) performed an evaluation of the performance of several light-
weight SCFGs in the prediction of secondary structures. The Knudsen–Hein grammar
(Knudsen and Hein 1999) used in Pfold (Knudsen and Hein 2003) was found to be
the most accurate one with prediction accuracy comparable to energy minimization
programs, while being significantly simpler than the other SCFGs tested. The authors
of (Dowell and Eddy 2004) conclude that “after exploring various alternative SCFG
designs, we confirm that the Knudsen/Hein grammar is an excellent, simple framework
in which to develop some probabilistic RNA analysis methods”. Despite this, to date
no rigorous mathematical analysis of this model has been done. This is desirable in
order to understand the potential of increasing the prediction accuracy of this grammar
by changing the probabilities, since the Sensitivity and the Positive Predicted Value
of such predictions are still below 50 % for a lot of sequences (Dowell and Eddy 2004
Table 3).

The goal of this paper is to help clarify the effects of changing the probability
parameters for the Knudsen–Hein SCFG. Using tools from analytic combinatorics,
we first describe the probability distribution of various RNA features induced by
this SCFG over the sets {(seq, str) : seq ∈ {A, C, G, U }∗, |seq| = n}, n ≥ 1,
i.e., over all secondary structures of length n. Since these sets contain all possible
sequences, the distributions are only affected by the transmission probabilities. As
usual for irreducible aperiodic context-free structures, we prove that the distributions
of many biologically relevant motifs (helices, hairpins, multibranch loops, etc.) are
asymptotically Gaussian for almost all choices of the transmission probabilities for the
grammar rules. Moreover, we find explicit formulas for the first two moments of the
distributions of these motifs. As an unexpected consequence, we find a set of relations
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Distribution of motifs in a SCFG model 1745

(Theorem 1) between the expected number of helices and various types of loops in a
structure with n nucleotides that are independent of the grammar probabilities.

For example, the number of helices is expected to be four times larger than the
number of multiloops. Hence, our analysis offers a possible mathematical explanation
why the Knuden–Hein grammar predicts the clover-leaf tRNA structure (Knudsen
2005) well.

Of course, these results hold for the homopolymer model of RNA base pairing,
without taking into account the base composition of a biological sequence. To assess
the confounding effect of the emission probabilities on the predicted structures, we
compared the model expectations to observed motifs in the most probable structures
for our test set of ribosomal sequences. This comparison is done under the common
assumption (for instance, when approximating the inside-outside parameters) that the
parse found by the Cocke–Younger–Kasami (CYK) algorithm is the only path with
significant probability. According to Durbin et al. (1998), this is “a somewhat startling
assumption which however in many cases is surprisingly good.”

We find that agreement between the model expectations and the CYK predictions
varies for the different types of motifs. For example, the number of base pairs in 91 %
of the predictions falls within one standard deviation of the model mean. In contrast,
the percentage for helices is only 22 %. Despite this variation in the occurrence of
individual motifs, however, the relations in Theorem 1 for the model expectations
largely hold for the CYK predictions (see Table 4 in Sect. 6). For instance, the ratio of
the number of helices to multiloops in the predicted structures is quite close to 4 for
the longer sequences.

Importantly, these ratios do not hold for the native ribosomal structures. Thus,
Theorem 1, as corroborated by Table 4, indicates that the CYK prediction accuracy for
the long 16S and 23S sequences cannot be significantly improved with a simple change
of parameters. In particular, this confirms that the strength of Pfold is in coupling the
Knudsen–Hein grammar with phylogenetic information from sequence alignments.

The outline of the paper is as follows. In Sect. 2 we state our main results and
discuss how they relate to other work on secondary structure analysis. In Sect. 3, we
give the formal definitions of secondary structure and the Knudsen–Hein SCFG. In
Sect. 4, we illustrate the method of singularity analysis of generating functions on
which our proofs are based. In Sect. 5, we derive the central limit theorems for various
types of motifs and the asymptotic means as functions of the grammar probabilities.
We additionally compute the expected number of multibranch loops of a fixed degree
and analyze the structure of the exterior loop. Finally, in Sect. 6, we compare the
theoretical results with the secondary structures from the Comparative RNA website
(CRW) (Cannone et al. 2002) and the structures predicted for the same sequences
using the CYK algorithm with the default Pfold parameters.

2 Main results and discussion of related work

An SCFG induces a probability distribution over all words of fixed length by appropri-
ate normalization of probabilities. Then for a given sequence the predicted structure
can be compared to the expected secondary structure with the same number of bases
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1746 S. Poznanović, C. E. Heitsch

(e.g. (Nebel 2002b). Here we focus on the distribution of biologically meaningful
structural motifs. In particular, we compute the expected number of different loop
structures, including base pairs and helices, and compare these with the distribution
in native and predicted ribosomal structures. Let Xn be the number of base pairs, or
helices, or loops of a fixed type in a random secondary structure with n nucleotides,
as defined by the Knudsen–Hein SCFG. We analyzed the distribution of Xn and our
main result is the following set of relations between the expected number of motifs.
Surprisingly, these relations do not depend on the grammar probabilities.

Theorem 1 For pi , qi > 0,

(i) E(Xlb
n ) = E(Xrb

n ),
(ii) E(Xm

n ) = 1
4E(Xhel

n )(1 + o(n)),

(iii) E(X
hp
n ) = (E(Xi

n) + E(Xm
n ))(1 + o(n)),

(iv) E(Xm
n ) = (E(Xlb

n ) + E(Xi
n))(1 + o(n)),

(v) E(X
m,r+1
n ) < 1

2 E(X
m,r
n )(1 + o(n)), r ≥ 2.

where the superscripts lb, rb, m, hel, hp, and i denote left bulges, right bulges, multi-
branch loops, helices, hairpins, and internal loops respectively, while X

m,r
n is the

number of multibranch loops of degree r in a random secondary structure with n
nucleotides.

We find the invariance of these relations under parameter change especially inter-
esting because it illustrates that variation of probability parameters doesn’t influence
the relative distribution of structural elements in the expected secondary structure. The
relations are a consequence of explicit formulas for the corresponding expectations.
These, in turn, together with the variances, are a corollary of a central limit law for
each of these random variables. More precisely, we have the following result.

Theorem 2 Let Xn be the number of base pairs, or helices, or loops of a fixed type
in a random secondary structure with n nucleotides. If the probabilities are such that
f (p1, p2, p3) �= 0 for a certain function f , then there exist nonzero constants μ and
σ such that the normalized random variables

X
∗
n = Xn − μn√

nσ 2

converge in distribution to a Gaussian variable with a speed of convergence O
(

1√
n

)
.

That is, we have

lim
n→∞ P

(
X

∗
n < x

) = 1√
2π

x∫

−∞
e− c2

2 dc

and

sup
x∈R

∣∣∣∣∣∣
P

(
X

∗
n < x

) − 1√
2π

x∫

−∞
e− c2

2 dc

∣∣∣∣∣∣
≤ O

(
1√
n

)
.
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The constants μ from Theorem 2 are given as functions of the probabilities in Sect. 5
for all motifs. The function f which appears in the conditions of Theorem 2 is discussed
in Sect. 5.6, where we explain why f (p1, p2, p3) �= 0 for all probabilities except for
a set of measure zero, so that the result holds for almost all choices of probabilities.
Theorem 2 is proved in Sect. 5, where the different types of motifs are considered
separately. The proof is based on singularity analysis of bivariate generating functions.
In the following section, we illustrate this method by obtaining the asymptotic estimate
for the coefficients of S(z).

We analyze here the typical loop composition of a secondary structure generated by
the Knudsen–Hein SCFG. This work joins the rich literature dedicated to the analysis
of features of RNA secondary structures. In the early work (Waterman 1978; De Chau-
mont and Viennot 1984) the analysis was done assuming uniform distribution. The
growth rate of substructures was first addressed numerically by Hofacker et al. (1998)
where various statistical properties were computed for random sequences with lengths
up to n = 100. These included the mean number of base pairs and of helices/loops as
well as the average loop degree, helix length, and loop size. Subsequent work (Fontana
et al. 2004) gave exact asymptotics for these and other characteristics of RNA sec-
ondary structures. Asymptotics of loops in more general, k-noncrossing, structures
which allow pseudoknots were given in (Nebel et al. 2011). Refined asymptotics for
the number of substructures in secondary structures of fixed order was computed by
Nebel (2002a).

The paper (Nebel 2004) provides related results by considering a Bernoulli model
of RNA folding where two bases pair with probability p and computes the asymptotic
equivalents for the averaged number of motifs and further parameters, all depending
on p. Clote et al. (2012) showed that the expected 5′–3′ distance for structures with
n nucleotides both for the uniform and Bernoulli model is bounded by a constant, a
result analogous to the property of the Knudsen–Hein SCFG proven in Theorem 9.

Nebel (2003) designed a heavyweight SCFG to create a method for evaluating
the reliability of a structure predicted by the NNTM. For that purpose he computed
the asymptotic frequency of different structural elements in the SCFG model with
numerical, not symbolic probability parameters, obtained by training the grammar
on large subunit ribosomal RNA. The energy distribution in a different heavyweight
SCFG model designed to mirror the NNTM was studied by Nebel and Scheid (2011).
Evaluation of the effects of disturbing the sampling probabilities in this model on the
sample was done in (Scheid and Nebel 2012). It was determined that absolute errors
drastically affect the sample, while relative errors do not.

3 Preliminaries

A secondary structure of length n is a graph with vertex set {1, 2, 3, . . . , n}, whose edge
set consists of the edges {(k, k+1) : 1 ≤ k ≤ n−1}, together with a collection of edges
B called base pairs which satisfies the following conditions. For (i, j), (k, l) ∈ B,

1. j − i > θ for some threshold θ > 0,
2. i �= l and (i = k ⇔ j = l),
3. i < k < j ⇒ i < k < l < j .
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1748 S. Poznanović, C. E. Heitsch

Fig. 1 Helices and different types of loops in RNA secondary structures

The first condition reflects the fact that due to steric constraints, each hairpin in the
secondary structure has to contain at least θ unpaired nucleotides. The second condition
implies that each vertex (i.e. nucleotide) can belong to at most one base pair. Finally,
the third condition excludes pseudoknots which are often considered to be a part of the
tertiary structure of the RNA molecule and requires that two edges (i, j) and (k, l) in
B with i < k, either define separate domains (when j < k) or are nested (when j < l).
All secondary structures consist of the following basic motifs illustrated in Fig. 1. A
helix is a set of contiguous nested base pairs. A hairpin is a sequence of consecutive
single-stranded nucleotides closed by a single base pair. A bulge loop interrupts helices
by having unpaired nucleotides in a single strand. It can be left or right, depending on
the side on which the single stranded nucleotides appear. An internal loop separates two
helices by having unpaired nucleotides on both strands, while a multibranch loop, or a
multiloop, has three or more helices radiating from it. The single stranded nucleotides
that are not enclosed by a base pair form an exterior loop.

RNA secondary structures can be modeled using context-free grammars (see Durbin
et al. 1998). There are two types of probability parameters: transmission probabilities,
which are used for generation of the base pairs in the secondary structure, and emission
probabilities, which are used to generate the underlying sequence of nucleotides. The
grammar defines a probability measure on the set of all pairs (str, seq) of secondary
structures str and RNA sequences seq of same length. Then the basic way to predict
a structure for a given RNA sequence seq is to use the CYK algorithm (see Durbin et
al. 1998) to compute the most probable pair (str, seq).

The Knudsen–Hein grammar which is used in the RNA secondary structure pre-
diction program Pfold consists of nonterminal symbols {S, L , F}, terminal symbols
{d, d ′, s} and the rules

S → L S (p1) or L (q1)

L → d Fd ′ (p2) or s (q2)

F → d Fd ′ (p3) or L S (q3).
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Fig. 2 A simple hairpin loop
whose probability is
p3

1 p2 p3q2
1 q5

2 q3

The numbers pi , qi , i = 1, 2, 3 listed in parentheses are the transmission probabilities
for the production rules. They satisfy pi + qi = 1 and pi , qi > 0 and depend on the
structures on which the grammar is trained.

This grammar in non-ambiguous and each derivation corresponds to a unique sec-
ondary structure in which j − i > 2 for every base pair (i, j). That is why in this
paper by a secondary structure we will mean all graphs that satisfy the conditions in
the definition of secondary structure for θ = 2. The terminal symbols d and d ′ corre-
spond to left and right end nucleotides in a base pair, while s corresponds to a single
stranded nucleotide. Since secondary structures do not have pseudoknots, specifying
the left and right ends of base pairs completely determines the whole structure.

Example 1 The simple hairpin given in Fig. 2 is derived in the following way:

S
p1⇒ L S

q2⇒ sS
p1⇒ sLS

p2⇒ sd Fd ′S p3⇒ sdd Fd ′d ′S q3⇒ sdd L Sd ′d ′S q2⇒

sddsSd ′d ′S p1⇒ sddsL Sd ′d ′S q2⇒ sddssSd ′d ′S q1⇒ sddssLd ′d ′S q2⇒

sddsssd ′d ′S q1⇒ sddsssd ′d ′L q2⇒ sddsssd ′d ′s.

A stochastic grammar induces a probability distribution on the entire language if
the sum of the probabilities of all the derivations is equal to 1. For each nonterminal
symbol N , let N (z) be the probability generating function of all secondary structures
that can be generated starting from N , where z records the number of nucleotides. In
particular, if n(M) is the number of nucleotides in a secondary structure M , we define

S(z) =
∑

S
∗⇒M

p(M)zn(M)

where p(M) denotes the probability of the derivation of M and the sum is over all
secondary structures. We can determine S(z) by using a technique known as the
Delest-Schützenberger-Viennot (DSV) method (Schützenberger 1963). This method
has already been applied for studying properties of secondary structures (e.g. Lorenz
et al. 2008; Clote et al. 2009). We define L(z) and F(z) to be

L(z) =
∑

L
∗⇒M

p(M)zn(M), F(z) =
∑

F
∗⇒M

p(M)zn(M),
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1750 S. Poznanović, C. E. Heitsch

where the sum is taken over all derivations M that can be obtained starting from the
nonterminals L and F , respectively, and p(M) denotes the probability of the derivation
M . Through this technique the grammar can be converted into equations involving the
generating functions S(z), L(z), F(z). We get

S(z) = p1L(z)S(z) + q1L(z)

L(z) = p2z2 F(z) + q2z

F(z) = p3z2 F(z) + q3L(z)S(z). (1)

Eliminating L(z) and F(z), we get

p2q3z2S(z)2 − (1 − p1q2z)(1 − p3z2)S(z) + q1q2z(1 − p3z2) = 0.

Since S(z) is a probabilistic generating function, it has a radius of convergence at least
1. Together with S(0) = 0, this implies that

S(z) = (1 − p1q2z)(1 − p3z2) − √
(1 − p1q2z)2(1 − p3z2)2 − 4p2q1q2q3z3(1 − p3z2)

2p2q3z2

(2)

To determine when this grammar generates a probabilistic language, we find when
S(1) = 1. The condition

(1 − p1q2)(1 − p3) − √
(1 − p1q2)2(1 − p3)2 − 4p2q1q2q3(1 − p3)

2p2q3
= 1 (3)

is equivalent to
|p2 − q1q2| = q1q2 − p2. (4)

Recalling that p2 = 1 − q2, this reduces to

(1 + q1)q2 ≥ 1. (5)

4 Singularity analysis

The total probability of all structures with n nucleotides is given by [zn]S(z), the
coefficient of zn in S(z). This result will be needed later, so we derive it here as our
basic example of asymptotic analysis related to this grammar. We use the following
theorem of Flajolet and Odlyzko (1990) to determine the asymptotic growth of the
coefficients of S(z).

Theorem 3 (Flajolet and Odlyzko 1990) Assume that S(z) has a singularity at z =
ρ > 0, is analytic in the region � \ {ρ}, depicted in Fig. 3, and that as z → ρ in �,
S(z) ∼ K (1 − z/ρ)c, for some constants K �= 0 and c �= 0, 1, 2, . . . .
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Fig. 3 The function S(z) needs
to be analytic at all points in a
region � of the depicted shape
except at ρ

Then, as n → ∞,

[zn]S(z) ∼ K

�(−c)
n−c−1ρ−n,

where �(z) denotes the classical gamma function.

Set
R(z) = (1 − p1q2z)2(1 − p3z2) − 4p2q1q2q3z3. (6)

From the explicit formula for S(z) given in (2), we see that the singularities of S(z)
are the zeros of the polynomial P(z) = (1 − p3z2)R(z), and in fact the dominant
singularity is a root of R(z), which follows from the following two lemmas.

Lemma 1 If pi , qi > 0, one of the roots of R(z) of smallest modulus is a positive real
number.

Proof Since S(z) is a probability generating function, it has a radius of convergence at
least 1. By the Pringsheim’s theorem, the fact that the coefficients of S(z) are positive
implies that it has a positive real singularity equal to its radius of convergence. From
(2), we see that this singularity must be a root of the polynomial

(1 − p1q2z)2(1 − p3z2)2 − 4p2q1q2q3z3(1 − p3z2) = R(z)(1 − p3z2).

Since R(0) = 1 > 0 and R(1/
√

p3) < 0, R(z) has a real zero in the interval
(0, 1/

√
p3). Therefore the smallest positive real singularity of S(z) must come from

the zeros of R(z), which implies that among the zeros of smallest modulus of R(z),
one is positive and real. ��

From now on, let ρ0 be the root with smallest modulus of R(z) which is a positive
real number. The following properties of ρ0 will be used in the proofs that follow.

Lemma 2 ρ0 is the unique root of R(z) on the circle {z : |z| = ρ0}. Moreover,

1 < ρ0 < min {1/p1q2, 1/
√

p3} and R′(ρ0) < 0.
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1752 S. Poznanović, C. E. Heitsch

Proof This is a corollary of the very general Drmota–Lalley–Woods theorem. For
completeness, we present an elementary proof that works for our case. In the proof
of Lemma 1, we have already shown that ρ0 < 1/

√
p3. The fact that ρ0 < 1/p1q2

also follows from R(0) > 0 and R(1/p1q2) < 0. Suppose that R(z) has two complex
roots w, w̄, with |w| = ρ0. Then, by the triangle inequality,

|1 − p1q2w| > 1 − p1q2ρ0 > 0 and
∣∣∣1 − p3w

2
∣∣∣ > 1 − p3ρ

2
0 > 0,

where the inequalities are strict because w is not real. This contradicts

|1 − p1q2w|2
∣∣∣1 − p3w

2
∣∣∣ = 4p2q1q2q3|w|3

= 4p2q1q2q3ρ
3
0 = (1 − p1q2ρ0)

2(1 − p3ρ
2
0 ).

Similarly, we get a contradiction if we assume that R(−ρ0) = 0. Lastly, we compute

R′(z) = −2p1q2(1 − p1q2z)(1 − p3z2) − 2p3z(1 − p1q2z)2 − 12p2q1q2q3z2,

from where it is clear that R′(ρ0) < 0. ��

As a consequence, if we set

Q(z) = (1 − p1q2z)(1 − p3z2)

2p2q3z2

and

P(z) = P1(z)

(
1 − z

ρ0

)
,

then

S(z) − Q(ρ0) = −√
P1(ρ0)

2p2q3ρ
2
0

(
1 − z

ρ0

)1/2

+ O

(
1 − z

ρ0

)

when z → ρ0.
The coefficients in the expansion of S(z) are the same as in the expansion of

S(z) − Q(ρ), except for the first one. From Theorem 3, we get

[zn]S(z) ∼ −
√

(1 − p1q2ρ0)(1−p3ρ
2
0 )(3−p1q2ρ0−p3ρ

2
0−p1 p3q2ρ

3
0)

2p2q3ρ
2
0�(−1/2)

n−3/2ρ−n
0 .

(7)
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5 Asymptotic distributions of substructures

In this section we prove central limit theorems for various RNA secondary structure
motifs for generic choices of the grammar probabilities. We will use the following
theorem (Flajolet and Sedgewick 2009 Theorem IX.12 ) which we state specialized
for our purposes.

Theorem 4 (Flajolet and Sedgewick 2009) Let G(z, u) be a function that is bivariate
analytic at (z, u) = (0, 0) and has non-negative coefficients and let Xn be a random
variable such that

P(Xn = k) = [znuk]G(z, u)

[zn]G(z, 1)
.

If the technical conditions (i)−(i i i) listed below are satisfied, then there exist constants
μ and σ such that the normalized random variable

X
∗
n = Xn − μn√

nσ 2

converges in distribution to a Gaussian variable with a speed of convergence O
(

1√
n

)
.

The technical conditions are

(i) There exist functions A, B, C analytic in a domain D = {|z| < r}×{|u −1| < ε}
such that

G(z, u) = A(z, u) + B(z, u)C(z, u)1/2

for all (z, u) ∈ {|z| < r0}× {|u − 1| < ε} for some r0 < r . Furthermore, assume
that in |z| < r , there exists a unique root z0 of the equation C(z, 1) = 0 and that
B(z0, 1) �= 0,

(ii) C1,0C0,1

∣∣∣∣
z=z0,u=1

�= 0, where Ci, j = ∂ i+ j

∂zi ∂u j C,

(iii)

z0C2
1,0C0,2−2z0C1,0C1,1C0,1+z0C2,0C2

0,1+C2
0,1C1,0+z0C0,1C2

1,0

∣∣∣∣
z=z0,u=1

�= 0.

(8)

The constants μ and σ are given by:

μ = C0,1

z0C1,0

∣∣∣∣
z=z0,u=1

(9)

σ 2 = z0C2
1,0C0,2 − 2z0C1,0C1,1C0,1+z0C2,0C2

0,1+C2
0,1C1,0 + z0C0,1C2

1,0

z2
0C3

1,0

∣∣∣∣
z=z0,u=1

(10)
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1754 S. Poznanović, C. E. Heitsch

Remark 1 By analyzing the distribution of each motif separately, we are able to provide
proofs which are self-contained. Alternatively, one could consider the joint distribution
of all the motifs, and likewise prove that it is asymptotically Gaussian based on a
multivariate analog of Theorem 4. Towards this end, the main result of Drmota (1997)
gives sufficient conditions for the coefficients of a multivariate function to follow
a normal distribution. Unfortunately, those conditions do not apply directly to our
analysis since this system is not strongly-connected. Nonetheless, as recognized by
Denise et al. (2010), the conditions can often be relaxed when context-free languages
are considered and the conclusion still holds, which is the case here. However, because
the details of adapting these arguments to our purposes are technical, we present the
results individually, rather than as a joint distribution.

5.1 Base pairs

To find the distribution of base pairs, we first find the bivariate generating function
S(z, u) where u marks the base pairs. A base pair is added precisely when the rules
L → d Fd ′ and F → d Fd ′ are used. So, S(z, u) is the solution of the system

S(z, u) = p1L(z, u)S(z, u) + q1L(z, u)

L(z, u) = p2z2uF(z, u) + q2z

F(z, u) = p3z2uF(z, u) + q3L(z, u)S(z, u). (11)

Similarly as before, we can find an explicit formula for S(z, u):

S(z, u) = Q(z, u) −
√

Cbp(z, u)

2p2q3z2u

where

Q(z, u) = (1 − p1q2z)(1 − p3z2u)

2p2q3z2u
,

Cbp(z, u) = (1 − p1q2z)2(1 − p3z2u)2 − 4p2q1q2q3z3u(1 − p3z2u). (12)

Theorem 5 Let X
bp
n be a random variable counting the number of basepairs in a

secondary structure with n nucleotides. If the probabilities pi , qi > 0, 1 ≤ i ≤ 3
are such that the polynomial Cbp(z, u) given in (12) satisfies the condition (8), then
X

bp
n after standardization converges to a Gaussian variable. The mean and standard

deviation of X
bp
n are asymptotically linear in n. In particular,

E(X
bp
n ) ∼ α

γ
n,

where
α = 1 − p1q2ρ0, γ = 3 − p1q2ρ0 − p3ρ

2
0 − p1 p3q2ρ

3
0 . (13)

The first order approximation of the standard deviation is given by (10) for C = Cbp

and z0 = ρ0.
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Proof The random variables associated to G(z, u) = z2S(z, u) are the same as the
ones associated to S(z, u), only shifted in index. So, we will work with the function
G(z, u) and we will prove that it satisfies the conditions in Theorem 4. The func-
tions A(z, u) = z2 Q(z, u), B(z, u) = − 1

2p2q3u , and C(z, u) = Cbp(z, u) are clearly
analytic in the domain C × {|u − 1| < ε} for small ε > 0. Using Lemma 2, we get

C1,0(ρ0, 1) = R′(ρ0)(1 − p3ρ
2
0 ) < 0

C0,1(ρ0, 1) = − p3ρ
2
0 (1 − p3ρ

2
0 )(1 − p1q2ρ0)

2 − 4p2q1q2q3ρ
3
0(1 − p3ρ

2
0 )

= − 4p2q1q2q3ρ
3
0 < 0.

So, condition (i i) is satisfied. By the analytic implicit function theorem, there exists an
analytic function ρ(u) defined on some neighborhood of ρ0 such that Cbp(z, u) = 0
for (z, u) in a small polydisc �(ρ0, 1, ε) if and only if z = ρ(u). Since, by Lemma 2,
ρ(1) = ρ0 > 1, ε can be chosen so that ρ(u) > 1.

We claim that if |u − 1| < ε, z = ρ(u) is the root of smallest modulus of Cbp(z, u)

as a polynomial in z. There is a neighborhood of u = 1 such that z = ρ(u) is the
unique zero of smallest modulus of Cbp(z, u). Otherwise, there exists a sequence
un → 1 and ξn �= ρ(un) with |ξn| ≤ |ρ(un)| and Cbp(ξn, un) = 0. By passing to
a subsequence, which we still denote by (ξn), we obtain that there exists some ξ0
such that limn→∞ ξn = ξ0. By continuity, Cbp(ξ0, 1) = 0 and |ξ0| ≤ ρ(1). Hence,
by uniqueness, ξ0 = ρ(1). This contradicts the uniqueness of the solution z = ρ(u)

of Cbp(z, u) = 0 in a neighborhood of u = 1 guaranteed by the implicit function
theorem.

Finally, choose ε to be small enough so that R(z) has a unique zero in |z| < ρ0 + ε.
Setting r = ρ0 + ε and r0 = 1, such that R(z) has a unique zero make condition (i)
satisfied. Indeed, for D = {|z| < r} × {|u − 1| < ε}, C(z, 1) = R(z)(1 − p3z2) has a
unique zero in D and clearly B(ρ0, 1) �= 0. ��

5.2 Helices

A helix is started when the rule L → d Fd ′ is used. If u marks the number of helices
in the secondary structure, the relation between the probability generating functions
is

S(z, u) = p1L(z, u)S(z, u) + q1L(z, u),

L(z, u) = p2z2uF(z, u) + q2z,

F(z, u) = p3z2 F(z, u) + q3L(z, u)S(z, u),

and therefore,

S(z, u) = Q(z, u) −
√

Ch(z, u)

2p2q3z2u
,
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where

Q(z, u) = (1 − p1q2z)(1 − p3z2)

2p2q3z2u
,

Ch(z, u) = (1 − p1q2z)2(1 − p3z2)2 − 4p2q1q2q3z3u(1 − p3z2). (14)

Theorem 6 Let X
hel
n be the number of helices in a random secondary structure with

n nucleotides. If the probabilities pi , qi > 0, 1 ≤ i ≤ 3 are such that the polyno-
mial Ch(z, u) given in (14) satisfies the condition (8), then X

h
n after standardization

converges to a Gaussian variable. In particular,

E(Xhel
n ) ∼ αβ

γ
n,

where α and γ are given by (13) and

β = 1 − p3ρ
2
0 . (15)

The first order approximation of the standard deviation is given by (10) for C = Chel

and z0 = ρ0.

Proof Similarly as in the proof of Theorem 5, the conditions (i) and (i i) from The-
orem 4 are satisfied for the function G(z, u) = z2S(z, u). Condition (i i i) is satisfied
by assumption. ��

5.3 Loops

In this subsection, let S(z, x, y, u, v, w) be the multivariable probability generating
function for RNA structures where x marks hairpin loops, y marks multibranch loops,
u marks left bulges, v marks right bulges, and w marks internal loops.

A loop starts exactly when a helix ends, so each application of the rule F → L S
starts one loop. The loop started will be a hairpin loop if this rule is followed by
L S

∗⇒ sn , n ≥ 2. To find the probabilities of a hairpin loop of length n ≥ 2 we note
that

P(L S
∗⇒ sn) = P(L ⇒ s)P(S

∗⇒ sn−1)

= q2 P(S ⇒ L S)P(L ⇒ s)P(S
∗⇒ sn−2)

= p1q2
2 P(S

∗⇒ sn−2)

= q1q2
2 (p1q2)

n−2

Therefore the probability generating function for the hairpin loops that could be formed
is

∞∑
n=2

q1q2
2 (p1q2)

n−2zn = q1q2
2 z2

1 − p1q2z
=: Hh .
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Right bulges are formed when the derivation that follows is of the form L S
∗⇒ d Fd ′sl ,

l ≥ 1. Their probability is

P(LS
∗⇒ d Fd ′sl) = P(L → d Fd ′)P(S

∗⇒ sl) = p2q1q2(p1q2)
l−1

and their contribution to the generating function is

∞∑
l=1

zl+2 p2q1q2(p1q2)
l−1 F = p2q1q2z3

1 − p1q2z
F =: Hb F.

Similarly, left bulges are formed by applications of rules that yield L S
∗⇒ skd Fd ′,

k ≥ 1. The probability of the left bulges together with all successive derivations is

P(L S
∗⇒ skd Fd ′) = P(L S

∗⇒ sk S)P(S → L)P(L → d Fd ′)
= p2q1 P(L S

∗⇒ sk S)

= p2q1 P(L S
∗⇒ sS)P(S → L S)P(L S

∗⇒ sk−1S)

= p2q1q2(p1q2)
k−1.

The part of the generating function that corresponds to the left bulges is

∞∑
k=2

zk+2 p2q1q2(p1q2)
k−1 F = p2q1q2z3

1 − p1q2z
F = Hb F.

Internal loops are created when the rule F → L S is followed by L S
∗⇒ skd Fd ′sl ,

for some k, l ≥ 1.

P(L S
∗⇒ skd Fd ′sl) = P(L S

∗⇒ sk S)P(S → L S)P(L S
∗⇒ d Fd ′sl)

= q2(p1q2)
k−1 p1 p2q1q2(p1q2)

l−1

= p1 p2q1q2
2 (p1q2)

k−1(p1q2)
l−1

and their contribution to the generating function is

∞∑
k=1

∞∑
l=1

zk+l+2 p1 p2q1q2
2 (p1q2)

k−1(p1q2)
l−1 F = p1 p2q1q2

2 z4

(1 − p1q2z)2 F =: Hi F.

The remaining part of L S corresponds to the substructures that begin with a multi-
branch loop. Their contribution is

Hm := L S − Hh − 2Hb F − Hi F.

Using this, the translation of the grammar rules yields the system

S = p1L S + q1L ,

L = p2z2 F + q2z,

F = p3z2 F + q3(x Hh + u Hb F + vHb F + wHi F + y Hm),
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and, by eliminating F and L , we get that S(z, x, y, u, v, w) is a solution to the quadratic
equation

p2q3z2 yS2 + (p1 p2q3z2x Hh − p1 p2q3z2 y Hh + p1q2zHe − He)S

+ (p2q1q3z2x Hh − p2q1q3z2 y Hh + q1q2zHe) = 0

where

He := 1 − p3z2 + q3(y − u)Hb + q3(y − v)Hb + q3(y − w)Hi .

Theorem 7 Let X
hp
n , X

lb
n , X

rb
n , X

i
n , and X

m
n be the number of hairpin loops, left

bulges, right bulges, internal loops, and multibranch loops in a random secondary
structure with n nucleotides, respectively. For � ∈ {hp, lb, rb, i, m}, if the probabilities
pi , qi > 0, 1 ≤ i ≤ 3 are such that a certain polynomial C�(z, u) satisfies the
condition (8), then X

�
n after standardization converges to a Gaussian variable. The

approximate expectations are explicitly given by

E(X
hp
n ) ∼ (1 + p1q2ρ0)αβ

4γ
n,

E(Xlb
n ) = E(Xrb

n ) ∼ α2β

4γ
n,

E(Xi
n) ∼ p1q2ρ0αβ

4γ
n,

E(Xm
n ) ∼ αβ

4γ
n,

where α, β, and γ are given by (13) and (15). The first order approximations of the
standard deviations are given by (10) for C = C�(z, u) and z0 = ρ0.

Proof By setting y = u = v = w = 1, for hairpins we get that

S(z, x) = Q(z, x) −
√

Chp(z, x)

2p2q3z2(1 − p1q2z)
,

where

Q(z, x) = (1 − p1q2z)2(1 − p3z2) − p1 p2q1q2
2 q3z4(x − 1)

2p2q3z2(1 − p1q2z)
,

Chp(z, x) = (
p1 p2q1q2

2 q3z4(x − 1) − (1 − p1q2z)2(1 − p3z2)
)2

− 4p2q1q2q3z3(1−p1q2z)
(

p2q1q2q3z3(x−1)+(1− p1q2z)(1−p3z2)
)
.

To prove the claim for X
hp
n , we work with the function G(z, x) = z2S(z, x). The

functions in condition (i) of Theorem 4, are A(z, x) = Q(z, x)z2, B(z, x) =
− 1

2p2q3(1−p1q2z) , and Chp(z, x). They are all analytic in some polydisc around
(0, 1).Since
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Chp(z, 1) = (1 − p1q2z)4(1 − p3z2)2 − 4p2q1q2q3z3(1 − p1q2z)2(1 − p3z2)

= R(z)(1 − p1q2z)2(1 − p3z2),

it follows from Lemma 2 that the smallest zero of Chp(z, 1) is ρ0 and that

Chp
1,0(ρ0, 1) = R′(ρ0)(1 − p1q2ρ0)

2(1 − p3ρ
2
0 ),

Chp
0,1(ρ0, 1) = − 2p1 p2q1q2

2 q3ρ
4
0 (1 − p1q2ρ0)

2(1 − p3ρ
2
0 )

− 4p2
2q2

1 q2
2 q2

3ρ6
0(1 − p1q2ρ0)

are both negative.
By setting x = y = v = w = 1, for left bulges we get that

S(z, u) = Q(z, u) −
√

Clb(z, u)

2p2q3z2(1 − p1q2z)
,

where

Q(z, u) = (1 − p1q2z)(1 − p3z2) + p2q1q2q3z3(1 − u)

2p2q3z2 ,

Clb(z, u) =
(
(1 − p1q2z)2(1 − p3z2) + p2q1q2q3z3(1 − u)(1 − p1q2z)

)2

− 4p2q1q2q3z3(1−p1q2z)
(
(1−p1q2z)(1−p3z2)+p2q1q2q3z3(1−u)

)
.

To prove the claim for X
lb
n , we apply Theorem 4 to G(z, u) = z2S(z, u). The functions

in condition (i) are A(z, u) = Q(z, u)z2, B(z, u) = − 1
2p2q3(1−p1q2z) , and Clb(z, u).

The conditions of Theorem 4 can be checked as before by using the fact that

Clb(z, 1) = R(z)(1 − p1q2z)2(1 − p3z2).

The proof for right bulges is exactly the same as the one for left bulges and
Crb(z, u) = Clb(z, u).

For interior loops, we set x = y = u = v = 1 and we get

S(z, w) = Q(z, w) −
√

Ci (z, w)

2p2q3z2(1 − p1q2z)
,

where

Q(z, w) = (1 − p1q2z)2(1 − p3z2) + p1 p2q1q2
2 q3z4(1 − w)

2p2q3z2(1 − p1q2z)
,

Ci (z, w) =
(
(1 − p1q2z)3(1 − p3z2) + p1 p2q1q2

2 q3z4(1 − w)(1 − p1q2z)
)2

− 4p2q1q2q3z3(1 − p1q2z)4(1 − p3z2)

− 4p1 p2
2q2

1 q3
2 q2

3 z7(1 − w)(1 − p1q2z)2.
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As in the previous cases one can show that G(z, w) = z2S(z, w) satisfies the conditions
of Theorem 4 by setting the functions in condition (i) to be A(z, w) = Q(z, w)z2,
B(z, w) = − 1

2p2q3(1−p1q2z) , and Ci (z, w). Additionally, the factorization

Ci (z, 1) = R(z)(1 − p1q2z)4(1 − p3z2)

is used.
The case for multibranch loops is similar. For completeness, we give the formula

for S(z, y).

S(z, y) = Q(z, y) −
√

Cm(z, y)

2p2q3z2 y(1 − p1q2z)2 ,

where

Q(z, y) = (1 − p1q2z)2(1 − p3z2) − 2p2q1q2q3z3(1 − y)(1 − p1q2z)

2p2q3z2 y
,

Cm(z, y) =
(
(1 − p1q2z)3(1 − p3z2) − 2p2q1q2q3z3(1 − y)(1 − p1q2z)

)2

− 4p2q1q2q3z3 y(1 − p1q2z)4(1 − p3z2)

+ 4p2
2q2

1 q2
2 q2

3 z6 y(1 − y)(1 − p1q2z)2.

The claim for X
m
n follows from Theorem 4 for the function G(z, y) = z2S(z, y). Then

the functions in condition (i) are A(z, y) = Q(z, y)z2, B(z, y) = − 1
2p2q3 y(1−p1q2z)2 ,

and Cm(z, y). When checking the conditions, one uses that

Cm(z, 1) = R(z)(1 − p1q2z)4(1 − p3z2). ��

5.4 Multibranch loops with fixed degree

In this subsection we compute the expected number of multibranch loops of a fixed
degree r ≥ 2. A multibranch loop has a degree r if it contains r + 1 base pairs.

Let r ≥ 2 be fixed. Starting with L S, to get a multibranch loop of degree r with
single-stranded segments of lengths k0, k1, . . . , kr (ki ≥ 0), one needs to apply the
rule S → L S exactly r − 2 + ∑r

i=0 ki times and the rule S → L exactly once. After
this one has r +∑r

i=0 ki copies of L. Then one applies the rule L → s exactly
∑r

i=0 ki

times to get the single-stranded nucleotides, and the rule L → d Fd ′ precisely r times
to get the r helices. Therefore, if z marks the number of nucleotides and t marks the
number of multibranch loops of degree r , the total weight of all substructures with r
branches and prescribed lengths of single-stranded segments that can be derived with
this process is

p
r−2+∑r

i=0 ki
1 pr

2q1q
∑r

i=0 ki
2 t z2r+∑r

i=0 ki Fr
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and the total weight of all substructures starting with a multibranch loops of degree r
is

∑
k0,k1,...,kr ≥0

p
r−2+∑r

i=0 ki
1 pr

2q1q
∑r

i=0 ki
2 t z2r+∑r

i=0 ki Fr = pr−2
1 pr

2q1t z2r Fr

(1 − p1q2z)r+1 .

Translation of the grammar into generating functions yields the system

S = p1L S + q1L , (16)

L = p2z2 F + q2z, (17)

F = p3z2 F + q3
pr−2

1 pr
2q1z2r t Fr

(1 − p1q2z)r+1 + q3

(
L S − pr−2

1 pr
2q1z2r Fr

(1 − p1q2z)r+1

)
. (18)

For convenience, set

Tr (z) = pr−2
1 pr

2q1q3z2r

(1 − p1q2z)r+1 .

Then Eq. (18) can be rewritten as

F = p3z2 F + (t − 1)Tr Fr + q3L S. (19)

Multiplying Eqs. (16) and (17) we get

L S = p1L S(p2z2 F + q2z) + q1(p2z2 F + q2z)2

and hence

L S = q1(p2z2 F + q2z)2

1 − p1 p2z2 F − p1q2z
.

Substituting back to (19), we get:

F = p3z2 F + (t − 1)Tr Fr + q3
q1(p2z2 F + q2z)2

1 − p1 p2z2 F − p1q2z
.

which is equivalent to

p1 p2z2(t − 1)Tr Fr+1 − (t − 1)(1 − p1q2z)Tr Fr +
(

p1 p2 p3z4 − p2
2q1q3z4 − p1 p2z2

)
F2

+
(

1 − p1q2z − p3z2 + p1 p3q2z3 − 2p2q1q2q3z3
)

F − q1q2
2 q3z2 = 0.
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After differentiating with respect to t , we find that F ′
t (z, 1) is equal to

Tr Fr (z, 1)(1−p1q2z − p1 p2z2 F(z, 1))

2p2z2[(p1 p3−p2q1q3)z2 − p1]F(z, 1)+[q2(p1 p3−2p2q1q3)z3−p3z2−p1q2z+1]
(20)

and from here we can easily find the function F at t = 1, which we will need later.
Namely,

p2z2(p1 − p1 p3z2 + p2q1q3z2)F2(z, 1)

−(1 − p1q2z − p3z2 + p1 p3q2z3 − 2p2q1q2q3z3)F(z, 1) + q1q2
2 q3z2 = 0

and hence after simplifications we find that

F(z) = (1 − p1q2z − p3z2 + p1 p3q2z3 − 2p2q1q2q3z3) − √
(1 − p3z2)R(z)

2p2z2(p1 − p1 p3z2 + p2q1q3z2)
.

(21)
The solution with the negative sign is chosen because F(0) = 0. From the explicit
formula for F(z), we note that the dominant singularity is again ρ0. Indeed, F(z) has
a positive dominant singularity, since it has positive coefficients and if z0 < ρ0 is a
positive solution to the quadratic p1 − p1 p3z2 + p2q1q3z2 = 0, we get

(1 − p1q2z + 0 − p3z2
0 + p1 p3q2z3

0 − 2p2q1q2q3z3
0) −

√
(1 − p3z2

0)R(z)

= (1 − p3z2
0)(1 + p1q2z0) −

√
(1 − p3z2

0)
2(1 + p1q2z0)2 = 0.

Combining (16) and (19) yields

S = p1

q3
(F − p3z2 F − (t − 1)Tr Fr ) + q1(p2z2 F + q2z)

and hence

S′
t (z, 1) = p1

q3
(F ′

t (z, 1) − p3z2 F ′
t (z, 1) − Tr Fr (z, 1)) + p2q1z2 F ′

t (z, 1). (22)

In light of (21), formula (20) simplifies to

F ′
t (z, 1) = Tr Fr (z, 1)(1 − p1q2z − p1 p2z2 F(z, 1))√

(1 − p3z2)R(z)

and plugging this into (22) yields

S′
t (z, 1) = Tr Fr (z, 1)

2q3

(
p2

1 p3q2z3 − p1 p3z2 + 2p2q1q3z2 − p2
1q2z + p1√

(1 − p3z2)R(z)
− p1

)
.
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Using this expression and Theorem 3, we can estimate the coefficients of S′
t (z, 1):

[zn]S′(z, 1) ∼ K

�(1/2)
n1/2ρ−n

0 , (23)

where

K = pr−2
1 q1qr−1

2 ρr−1
0 (1 − p3ρ

2
0 )

4
√

−ρ0(1 − p3ρ
2
0 )R′(ρ0)(1 + p1q2ρ0)r−1

.

Combining this estimate with (7) we get the following theorem.

Theorem 8 Let X
m,r
n be the number of multibranch loops of degree r in a random

secondary structure with n nucleotides. If the probabilities pi , qi are all non-zero,
then

E(Xm,r
n ) ∼ pr−2

1 qr−2
2 ρr−2

0 (1 − p1q2ρ0)(1 − p3ρ
2
0 )

4(1 + p1q2ρ0)r−1(3 − p1q2ρ0 − p3ρ
2
0 − p1 p3q2ρ

3
0)

n.

Proof The estimate follows from (23), (7), and E(X
m,r
n ) = [zn ]S′

t (z,1)

[zn ]S(z,1)
. ��

5.5 Exterior loop

In this subsection we analyze the branchings of the exterior loop and the 5′–3’ distance.
The 5′–3′ distance is defined as the number of nucleotides (paired or single-stranded)
enclosed in the exterior loop minus one. Let u be the variable that marks the number
of helices in the exterior loop, and let v mark the 5′–3′ distance. The total contribution
of all secondary structures with no base pairs in S(z, u, v) is

∑
n≥1

P(S
∗⇒ sn) =

∑
n≥1

pn−1
1 q1qn

2 znvn−1 = q1q2z

1 − p1q2zv
.

All other structures have r ≥ 1 helices in the exterior loop. Since

P(S
∗⇒ sk0 d Fd ′sk1 · · · d Fd ′skr ) = p

r−1+∑r
i=0 ki

1 pr
2q1q

∑r
i=0 ki

2 ,

the generating function of all structures that have exactly r helices in the exterior loop
is given by

∑
k0,k1,...,kr ≥0

p
r−1+∑r

i=0 ki
1 pr

2q1q
∑r

i=0 ki
2 z2r+∑r

i=0 ki urv2r−1+∑r
i=0 ki Fr (z)
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which is equal to
pr−1

1 pr
2q1z2r ur v2r−1 Fr (z)

(1−p1q2zv)r+1 . Therefore S(z, u, v) is given by

S(z, u, v) = q1q2z

1 − p1q2zv
+

∑
r≥1

pr−1
1 pr

2q1z2r urv2r−1 Fr (z)

(1 − p1q2zv)r+1

= q1q2z

1 − p1q2zv
+ p2q1z2uvF(z)

(1 − p1q2zv)(1 − p1q2zv − p1 p2z2uv2 F(z))
.

To compute the expected number of helices in the exterior loops we will need to look
at the behavior of S′

u(z, 1, 1) around its dominant singularity. We find that

S′
u(z, 1, 1) = p2q1z2 F(z)

(1 − p1q2z − p1 p2z2 F(z))2 .

Using (21), one can show that 1 − p1q2z − p1 p2z2 F(z) �= 0, and so the dominant
singularity of S′

u(z, 1, 1) is the same as the dominant singularity of F(z), which was
found to be ρ0. After simplifications of the expansion of S′

u(z, 1, 1), we get that as
z → ρ0,

S′
u(z, 1, 1) ∼ −

(1 + 2p1q2ρ0)

√
−ρ0 R′(ρ0)(1 − p3ρ

2
0 )

2p1q3ρ
2
0

(
1 − z

ρ0

)1/2

. (24)

Theorem 9 Let X
eh
n be a random variable counting the number of helices in the

exterior loop in a secondary structure with n nucleotides and let X
ecd
n count the 5′–3′

distance. If the probabilities pi , qi are all non-zero, then

E(Xeh
n ) ∼ 1 + 2p1q2ρ0 and

E(Xecd
n ) ∼ 1 + 5p1q2ρ0 − 2p2

1q2
2ρ2

0

1 − p1q2ρ0
.

Proof The estimate for E(Xeh
n ) follows from (24), (7), Theorem 3, and the fact that

E(Xeh
n ) = [zn ]S′

u(z,1,1)

[zn ]S(z,1,1)
. For E(Xecd

n ), one finds that

S′
v(z, 1, 1) = p1q1q2

2 z2

1 − p1q2z
+ p2q1z2(1 − p1q2z)(1 − p1q2z + 2p1q2z)F(z)

(1 − p1q2z)2(1 − p1q2z − p1 p2z2 F(z))2

+ p1 p2
2q1z4(1 − 2p1q2z)F(z)2

(1 − p1q2z)2(1 − p1q2z − p1 p2z2 F(z))2 .

The dominant singularity is again ρ0, so one proceeds as before to obtain the
estimate. ��
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5.6 The function f in Theorem 2

In this subsection we show that the set of probabilities (p1, p2, p3) for which Theo-
rem 2 does not apply is small in the sense that it has Lebesgue measure zero. Define
V bp = V bp(p1, p2, p3, ρ0) to be

ρ0(C
bp
1,0)

2Cbp
0,2−2ρ0Cbp

1,0Cbp
1,1Cbp

0,1+ρ0Cbp
2,0(C

bp
0,1)

2+(Cbp
0,1)

2Cbp
1,0+ρ0Cbp

0,1(C
bp
1,0)

2
∣∣∣∣
z=ρ0
u=1

where Cbp is the polynomial that is defined in (12) and appears in the conditions of
Theorems 5. Similarly define V hel , V hp, V lb, V i , V m which correspond to the poly-
nomials Chel , Chp, Clb, Ci , and Cm , which appear in the conditions of Theorems 6
and 7 (since Clb = Crb, we do not need to define V rb). Finally, define

g(p1, p2, p3, ρ0) = V bpV h V hpV lbV i V m .

Notice that Theorem 2 holds for all (p1, p2, p3) ∈ (0, 1)3 other than those for which
g(p1, p2, p3, ρ0) = 0. Since by Lemma 2 ρ0 is a root of multiplicity one of the
polynomial R(z) for all (p1, p2, p3) ∈ (0, 1)3 it follows that ρ0 is an analytic function
of (p1, p2, p3) and therefore

f (p1, p2, p3) = g(p1, p2, p3, ρ0(p1, p2, p3))

is also analytic on (0, 1)3. This implies that its zero set must be of measure zero and
hence the central limit results hold for almost all choices of the grammar probabilities.

6 Discussion

Our analysis of the Knudsen–Hein SCFG yields two sets of results. First, as proved
above, the distribution for each of the biological motifs considered is asymptotically
Gaussian, with an explicit mean and standard deviation given as a function of the gram-
mar transmission probabilities. Second, and much more significantly, these results
imply a set of relations among motifs in expectation which hold independent of those
probabilities.

Recall that X
lb
n , X

rb
n , X

m
n , X

hel
n , X

hp
n , and X

i
n are the number of left bulges, right

bulges, multibranch loops, helices, hairpins, and internal loops in a random secondary
structure on n nucleotides, respectively, while X

m,r
n is the number of multibranch

loops of degree r . Since p1q2ρ0 < 1, based on the calculated expectations, we have
the following relations, originally stated as Theorem 1.

Theorem For pi , qi > 0,

(i) E(Xlb
n ) = E(Xrb

n ),
(ii) E(Xm

n ) = 1
4E(Xhel

n )(1 + o(n)),

(iii) E(X
hp
n ) = (E(Xi

n) + E(Xm
n ))(1 + o(n)),
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Table 1 Five sets of RNA
sequences chosen from the CRW
database to minimize variance in
sequence length

No. sequences
(type)

Av. length SD length

Set I 122 (5S) 121.17 3.1

Set II 37 (16S) 956.46 6.51

Set III 81 (16S) 1521.33 24.86

Set IV 50 (16S) 1787.1 20.09

Set V 34 (23S) 2912.85 23.08

(iv) E(Xm
n ) = (E(Xlb

n ) + E(Xi
n))(1 + o(n)),

(v) E(X
m,r+1
n ) < 1

2 E(X
m,r
n )(1 + o(n)), r ≥ 2.

Note that these relations hold even for the probabilities for which the function f
discussed in Sect. 5.6 is zero. Namely, the means in those cases can be computed using
Theorem 3 and calculations similar to the ones in Sects. 5.4 and 5.5. The asymptotic
formulas for the expected number of base pairs, helices, and loops remain the same
as for the generic probabilities.

There remains, of course, the question of how well this theoretical analysis yields
insights into the behaviour of the SCFG in practice, particularly with respect to the dis-
tribution of motifs in native RNA secondary structures. We are especially interested in
clarifying the effects of changes in the probability parameters, which has the potential
for improving the accuracy of the predicted secondary structures. Towards this end,
Theorem 1 (restated above) will be critical as we shall see that, although agreement
at the motif level between model and prediction is variable, the theoretical ratios are
quite accurate in estimating the relationship between motifs in predicted structures.
Moreover, these relations do not hold in the native secondary structures. From this we
conclude that the accuracy of the Knudsen–Hein SCFG cannot be improved simply
by adjusting the grammar probabilities.

Our test set for comparing model, prediction, and native distributions of motifs
in RNA secondary structures was generated from the CRW database (Cannone et al.
2002). We downloaded all 854 5S, 16S, and 23S ribosomal structures for which the
native secondary structure (without pseudoknots) has been determined by covarying
sequence analysis and given in a.ct file. Out of those we selected the structures which
do not have ambiguous nucleotides and this left us with a final set of 400 structures.
From these we selected 5 sets of sequences, each having small variance in length. The
five sets consist of sequences of the same type with approximately the same secondary
structure. Their composition is given in Table 1.

We folded each test sequence using our implementation of the CYK algorithm,
which yielded the most probable predicted secondary structure. As remarked in the
introduction, it is common for work in this area (e.g. Dowell and Eddy 2004; Anderson
et al. 2012) to use the CYK parse as a proxy for the distribution of possible secondary
structures under the assumption that it is the only path with significant probability.

These structures were predicted using the default Pfold probabilities, which were
originally obtained by an expectation maximization procedure on a training set of
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Table 2 The default paired and
unpaired probabilities used in
Pfold

A U G C

A 0.001167 0.177977 0.001058 0.001806

U 0.177977 0.002793 0.049043 0.000763

G 0.001058 0.049043 0.000406 0.266974

C 0.001806 0.000763 0.266974 0.000391

A 0.364097

U 0.273013

G 0.211881

C 0.151009

tRNA and large subunit ribosomal RNA secondary structures (Knudsen and Hein
1999). The transmission probabilities are

p1 = 0.868534, p2 = 0.105397, p3 = 0.787640,

q1 = 0.131466, q2 = 0.894603, q3 = 0.212360

and the emission probabilities are given in Table 2.
In considering our results, it is important to recognize the distinction between a

CYK prediction under the Knudsen–Hein SCFG and the output of the Pfold program
for a single sequence. Pfold predicts the structure with the highest expected number
of correctly predicted positions, which may have very few base pairs. For example,
the structures obtained by using PPfold (Sukosd et al. 2011) (a parallelized version of
Pfold) for each sequence in Set I have on average 15.78 base pairs, while the native
structures have 38 and the structures predicted using CYK have 34.05 base pairs on
average. The crucial difference is that Pfold has been designed to find a consensus
structure for a set of aligned sequences, and this is where its strength lies.

Figures 4 and 5 display our analysis of the distribution of individual motifs in
structures predicted by the SCFG in theory and in practice, as well as in the native
structures for the 5S, 16S, and 23S ribosomal sequences. For each test set, we give
the average number of each motif in the native structures and in the CYK predictions,
with variances represented by error bars. We also give the expected number of motifs
for sequences of the same length, where n is taken to be the average length of the cor-
responding set. The default Pfold probabilities were used in calculating the theoretical
means and standard deviations according to our results above and Eq. (10).

Figure 4 shows the motifs where we observed agreement between the model
expectations and the CYK prediction averages. Since the model is Gaussian, 68.2 %
of the distribution should be within one standard deviation of the mean. Table 3
shows the proportion of CYK predictions for which the statistics fall within one
standard deviation of the model average. By this criterion, there is a good agree-
ment for the number of base pairs (except Set II) and the number of internal loops
(except Set V). We also have reasonable agreement for right and left bulges, the
number of which falls within one standard deviation of the model mean for at least
50 % of the predicted structures in most cases and within two standard deviations
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Fig. 4 Motifs where there is agreement between the model expectations and the observed distribution in
the most probable predicted structures. The charts also illustrate that, in theory and in practice, the SCFG
captures well the number of base pairs in the native structures, but clearly not the number of internal loops
and bulges. Note that the scales on the y-axis vary between bar charts

for at least 95 % of the predicted structures for all sets. Hence, although emission
probabilities were not taken into account, our model captures well the expected
number of base pairs and internal loops, and reasonably well the number of left
and right bulges seen in the most probable secondary structures predicted by the
SCFG.

It is also interesting to consider these distributions with reference to the native
structures. We see that not only are the model expectations and CYK predictions in
close agreement for the number of base pairs, but that this agrees well with the native
secondary structures. However, we infer from the distribution of the other motifs that
the arrangement of base pairs in the predicted and in the native structures is quite
different. Based on the higher number of internal loops and left/right bulges, as well
as helices, we conclude that the native structures have on average shorter helices
interrupted with frequent internal loops and bulges.

When the model expectations and CYK predictions do not agree, the comparison
with the native structures is less striking. As seen in Fig. 5 and Table 3, the distribu-
tion of helices, multibranch loops, and hairpins in the CYK predictions differs from
the model expectations (except for Set I). There are correlations among these motifs,
which reflect the branching of the secondary structures, and the differences between
model, prediction, and reality may merit further study. In all cases the model expec-
tations are higher than the average for the CYK predictions, suggesting that the for-
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Fig. 5 Motifs for which there is a larger discrepancy between the predicted structures and the model. Note
that the scales on the y-axis vary between bar charts

Table 3 Proportion of predicted structures for which the statistics fall within one standard deviation of the
model mean

Base pairs Internal loops Right bulges Left bulges Helices Multi-branch
loops

Hairpin loops

Set I 1 0.8 0.98 0.98 0.58 0.93 0.93

Set II 0.32 0.76 0.57 0.22 0 0.05 0.03

Set III 0.95 0.7 0.56 0.52 0 0.16 0.05

Set IV 1 0.72 0.62 0.66 0 0.1 0

Set V 1 0.47 0.56 0.44 0 0.24 0

mation of these motifs is less favorable when the emission probabilities are taken into
account.

Hence, we see that the model captures well some aspects of the distribution of motifs
in the predicted secondary structures, as approximated by the most probable ones, for
our test sequences, but certainly not all. It is interesting, then, that despite the numerical
differences, the CYK predictions largely satisfy the relations from Theorem 1, as listed
in Table 4. Moreover, the difference from the native structures is especially striking
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Table 4 Ratios of the average number of occurrences of various motifs for the native and predicted
structures from the five sets

Ratios of averages

RB
LB

Hel
ML

IL+ML
HP

IL+LB
ML

IL+RB
ML

Set I

Native 0.48 7.96 1.51 4.01 2.97

Predicted 0.77 5.27 1.12 1.80 1.72

Set II

Native 1.25 6.58 1.36 2.58 2.76

Predicted 0.50 3.80 1.13 1.24 1.14

Set III

Native 2.50 6.18 1.40 2.22 2.72

Predicted 0.96 3.90 1.15 1.07 1.07

Set IV

Native 1.93 7.06 1.51 2.85 3.25

Predicted 0.96 3.99 1.09 1.07 1.06

Set V

Native 0.78 5.92 1.23 2.28 2.13

Predicted 1.02 3.67 1.07 0.89 0.89

Model 1 4 1 1 1

The last row contains the asymptotic model averages as given by Theorem 1

when these ratios are considered. For example, the helix-to-multiloop ratio in the
predicted structures, which is related to branching, is close to the expected value of 4
for the longer sequences, but not for the native structures.

Table 4 clearly indicates the differences between the native and the predicted struc-
tures, as well as the agreement of the predicted structures with the model averages.
The agreement between the ratios for the CYK algorithm and the model is particu-
larly apparent for the Sets III–V, which contain longer sequences, and is more expected
because our results are asymptotic. This suggests that even though the grammar prob-
abilities can be adjusted to, say, increase the number of helices in the predicted struc-
tures, the relative frequencies of the loops in the CYK structures will remain close to
the model expectations, which are independent of the parameters.

Since these ratios are constant for the model and do not agree with the corre-
sponding ratios in the native ribosomal structures, we conclude that the CYK predic-
tion for these sequences using the Knudsen–Hein grammar cannot be significantly
improved by varying the grammar parameters. Given that the native structures for
these sequences are complex, it would be interesting to see whether there are gram-
mars which reflect their branching behavior more closely, while still being simple
enough for computational purposes.
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