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Abstract In this paper we analyze the isolation-with-migration model in a continuous-
time Markov chain framework, and derive analytical expressions for the probability
densities of gene tree topologies with an arbitrary number of lineages. We combine
these densities with both nucleotide-substitution and infinite sites mutation models
and derive probabilities for use in maximum likelihood estimation. We demonstrate
how to apply lumpability of continuous-time Markov chains to achieve a significant
reduction in the size of the state-space under consideration. We use matrix exponen-
tiation and spectral decomposition to derive explicit expressions for the case of two
diploid individuals in two populations, when the data is given as alignment columns.
We implement these expressions in order to carry out a maximum likelihood analysis
and provide a simulation study to examine the performance of our method in terms of
our ability to recover true parameters. Finally, we show how the performance depends
on the parameters in the model.
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1424 L. N. Andersen et al.

1 Introduction

The study of how speciation occurs is a central theme in population genetics. One
aspect of the speciation process, which has been particularly scrutinized is the presence
of gene flow. Recent advances in DNA sequencing technology have made available a
large number of new alignments of whole-genome sequence data, which may poten-
tially aid in this study, provided that we are able to describe models of such data
and implement associated estimation methods. Traditional methods based on Markov
Chain Monte Carlo (MCMC) algorithms (e.g. Hey and Nielsen 2004) are often very
computationally demanding. An alternative to MCMC methods is to use maximum
likelihood (ML) estimation, and this approach has been considered in recent papers
(Wang and Hey 2010; Lohse et al. 2011; Zhu and Yang 2012). However, a drawback
of such methods is that they are limited to few (two or three) lineages. In this paper
we derive analytical expressions in a model with an arbitrary number of lineages in
an arbitrary number of populations. This extension causes an explosion in the size of
the state-space under consideration. We quantify this state-space explosion, and show
how it can be reduced by using lumpability.

Lumpability of Markov chains was introduced in Kemeny and Snell (1960) and
has found applications within queueing networks, stochastic Petri nets and stochastic
process algebras but appears to be largely unnoticed within coalescent theory (but see
Tian and Lin 2009). A further drawback of typical ML methods is that by way of con-
sidering loci of substantial length (typically ∼ 100 bp) these methods are potentially
vulnerable to bias due to intra-locus recombination. In this paper we consider two
possible mutation models, a time-reversible model and an infinite sites model. In the
time-reversible case, our data is alignment columns and we are therefore able to avoid
intra-locus recombination. In both cases we assume free recombination between loci.
There is a potential loss of power when considering only alignment columns, and we
provide a simulation study which shows how well we are able to recover parameters in
the case of two diploid individuals in two populations. The true parameters of our sim-
ulation study are taken from Scally et al. (2012) where our method was used to provide
a likelihood surface for migration and split time parameters between the Eastern and
the Western Gorilla, and the simulation study also serves the purpose of examining
the accuracy and sensitivity of the method in the part of the parameter-space, which
is relevant when considering this data. The isolation-with-migration (IM) model we
consider describes a single ancestral panmictic population with effective population
size NA which splits into P populations/demes at time TA in the past. Migration is
possible between populations, and in each generation we expect a proportion of Mi→ j

of the lineages in population i to migrate to population j (looking back in time, since
the present is time t = 0). This model has been considered in Nielsen and Wakeley
(2001) and Wang and Hey (2010) and is based on the classical theory of Kingman
(1982).

2 The Wang-Hey model

Before introducing the general model, we consider the description of the IM model in
Wang and Hey (2010) and Hobolth et al. (2011). The purpose of this is to introduce
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Efficient computation in the IM model 1425

Fig. 1 The five states of the IM model with two lineages and two populations, prior to TA . Each lineage is
represented by a dot and a barrier separates the two populations. The states are S11, S12, S22 (upper row)
and S1, S2 (lower row)

our framework by means of a concrete example, and demonstrate how this can be
used to give explicit expressions for the densities and probabilities of interest. We use
the matrix notation presented in Sect. 8.1 in the Appendix. The given expressions are
simplified versions of those derived for the general model in later sections.

In Wang and Hey (2010) the IM-model is given as a continuous-time Markov chain
(CTMC) where, prior to the split time TA, five states S11, S12, S22, S1, S2 describe how
many lineages is in each population, with S11 and S22 being two lineages in population
1 and 2 respectively, S12 being one lineage in each population and S1 and S2 being
states, where the lineages have coalesced and are in population 1 and 2 respectively
(see Fig. 1). Migration rates are denoted m1→2 for migration from population 1 to
population 2 and m2→1 in the reverse direction, and coalescence rates are denoted
ci , i = 1, 2. The rate matrix is then given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

S11 S12 S22 S1 S2

S11 −c1 − 2m1→2 2m1→2 0 c1 0

S12 m2→1 −m1→2 − m2→1 m1→2 0 0

S22 0 2m2→1 −c2 − 2m2→1 0 c2

S1 0 0 0 −m1→2 m1→2

S2 0 0 0 m2→1 −m2→1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

After the split TA, there are two states, SAA corresponding to two ancestral lineages
and SA, which corresponds to a single ancestral lineage. The transition rate from SAA

to SA is cA, and 0 in the reverse direction. The coalescence time T is an absolutely
continuous random variable, and in Hobolth et al. (2011) the formula for the coalescent
density (the probability density of T ), when the starting state is s, is given by

f (t) =
⎧⎨
⎩

(
eQt

)
s,S11

c1 + (
eQt

)
s,S22

c2 for t < TA((
eQTA

)
s,S11

+ (
eQTA

)
s,S12

+ (
eQTA

)
s,S22

)
cAe−cA(t−TA) for t ≥ TA,

(1)
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1426 L. N. Andersen et al.

where eB = ∑∞
n=0 Bn/n! is the matrix exponential of B. To provide a simplification

of (1) we proceed by defining the set Υ = {S11, S12, S22} of states as well as merging
states S1 and S2 together in a dummy absorbing state A and considering the rate matrix

Qϒ∪A :=

⎛
⎜⎜⎜⎜⎝

S11 S12 S22 A

S11 −c1 − 2m1→2 2m1→2 0 c1

S12 m2→1 −m1→2 − m2→1 m1→2 0

S22 0 2m2→1 −c2 − 2m2→1 c2

A 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

where we use the notation (31) in the Appendix.
The matrix QΥ ∪A may be written succinctly in terms of the submatrix QΥ and the

vector c = (c1, 0, c2):

QΥ ∪A :=
(

QΥ c∗
0 0

)
.

We observe that the coalescence time T for t < TA is simply the absorption time in
A of the CTMC with rate matrix QΥ ∪A and hence has a Phase-type distribution with
density

f (t) = αeQΥ t c∗ , (2)

for initial vector α (see Asmussen 2003 Prop. 4.1 Chap. III). For t ≥ TA we have

f (t) = P(TA < T )cAe−cA(t−TA) =
(
αeQΥ TA 1∗) cAe−cA(t−TA) , (3)

where 1 = (1, 1, 1).
Note, that if we assume the starting state is s (i.e the sth entry of α is 1), (2) may

be written

f (t) =
∑
β∈Υ

(
eQΥ t

)
s,β

(QΥ ∪A)β,A , (4)

that is, we sum over all possible states from which coalescence is possible and multiply
with the appropriate rate.

We can use the formulas above to calculate the likelihood for a single locus given
a mutation model, if they are combined with the fact that QΥ is diagonalizable (see
Sect. 8.2 in the Appendix) so we may write QΥ = V DV −1 where V is a matrix
of eigenvectors of QΥ , and D = diag(λ) is a diagonal matrix with the associated
eigenvalues λ of QΥ , and we have eQΥ t = V eDt V −1. If, for example, we assume a
Jukes-Cantor model of substitution, the probability of observing the starting nucleotide
after time t is 1/4 + (3/4)e−4t/3 and hence the probability of homozygosity is
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∞∫

0

(
1

4
+ 3

4
e

−4·2t
3

)
f (t)dt

= αV

TA∫

0

(
1

4
+3

4
e

−8t
3

)
eDt dtV −1c∗+

(
αV eTA D V −11∗)∞∫

TA

(
1

4
+3

4
e

−8t
3

)
cAe−cA(t−TA)dt

= αV

(
eTA D − 1

4
D−1 + 3

4

(
eTA(D−diag( 8

3 1)) − 1
) (

D − diag(
8

3
1)

)−1
)

V −1c∗

+
(
αV eTA D V −11∗) ⎛

⎝1

4
+ 3

4

e
−8TA

3 cA
8
3 + cA

⎞
⎠ .

If we prefer, we can make the matrix-products above explicit by using the notation
V = (v)α,β, V −1 = (v−1)α,β , for α, β ∈ Υ to denote the entries of V and its inverse
respectively, and letting λ = (λγ )γ∈Υ denote the eigenvalues of QΥ . Then, assuming
the starting state is s, we have:

∞∫

0

(
1

4
+ 3

4
e

−4·2t
3

)
f (t)dt =

∑
β∈Υ

∑
γ∈Υ

vs,γ v−1
γ,β (QΥ ∪A)β,A

(
eTAλγ − 1

4λγ

+3

4

eTA(λγ − 8
3 ) − 1

λγ − 8
3

)

+
∑
β∈Υ

∑
γ∈Υ

vs,γ e−λγ TA v−1
γ,β

(
1

4
+ 3

4

e
−8TA

3 cA
8
3 + cA

)
.

In Fig. 2 we show how the probability of homozygosity depends on the split time
and migration rate in models where we assume symmetric migration rates and identical
coalescence rates in the extant populations. The ancestral coalescence rate takes the
values 0.75, 1 and 1.25.

Alternatively, we could use an infinite sites substitution model. In this case the
number of mutations conditional on the coalescence time T = t is P O(2t, k) =
(2t)ke−2t/k!, so that the probability of observing k mutations is

∞∫

0

P O(2t, k) f (t)dt =
∑
β∈Υ

∑
γ∈Υ

vs,γ v−1
γ,β (QΥ ∪A)β,A

TA∫

0

(2t)k

k! e−2t e−λγ t dt

+
∑
β∈Υ

∑
γ∈Υ

vs,γ e−λγ TAv−1
γ,β

∞∫

TA

(2t)k

k! e−2t cAe−cA(t−TA)dt
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1428 L. N. Andersen et al.

Fig. 2 Contour plots of the probability of homozygosity in models with identical coalescence rates
(black, solid) and with ancestral coalescence rate 0.75 (blue, dotted) and 1.25 (red, dashed) times the
coalescence rates of the extant populations, which are assumed identical and equal to 1

=
∑
β∈Υ

∑
γ∈Υ

vs,γ v−1
γ,β (QΥ ∪A)β,A

2k

(2 + λγ )k+1

1

k!Γ (k + 1, TA(2 + λγ ))

∑
β∈Υ

∑
γ∈Υ

vs,γ e−λγ TAv−1
γ,β

2k

(2 + λγ )k+1

1

k!Γ (k + 1, TA (2 + cA))

where we use the lower and upper incomplete gamma functions Γ (n, x) :=∫ x
0 tn−1e−t dt and Γ (n, x) := ∫ ∞

x tn−1e−t dt .

3 The general model

When defining the general model, we first need to define the state-space of the CTMC.
We want the state-space to reflect which lineages are present, and to which popu-
lation each lineage belongs. We do this by labeling each lineage with a subset of
[L] := {1, 2, . . . , L}, and combining the lineage with an integer indicating the pop-
ulation. The two form a tuple, and a state of the CTMC is a set of such tuples. The
extant lineages are labeled with the singleton sets, and a coalescent event between
two lineages is modeled by taking the union of the involved sets. An example of a
state is the starting state in a situation where we consider two diploid individuals in
two populations, that is with two lineages in each of the two populations—this state is
{(1, {1}), (1, {2}), (2, {3}), (2, {4})}. From this state, both migration and coalescence
is possible. For example, the lineage {2} may migrate from population 1 to population
2, so that the state becomes {(1, {1}), (2, {2}), (2, {3}), (2, {4})}. Another possibility
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Fig. 3 Two different genealogies, which result in the same coalescent tree. Even though the two genealogies
do not share migration events, and coalescence events in the extant populations take place in different
populations, both genealogies belong to the coalescent tree to the right

is coalescence between the lineages {1} and {2}, which means that the state changes
to {(1, {1, 2}), (2, {3}), (2, {4})}.

The example in Sect. 2 captures many of the elements of the general case: The
density of the coalescence time is derived as an absorption time in a CTMC, and the
likelihood for a single locus is in turn derived by combining the coalescence time
with a mutation model and integrating explicitly using matrix exponentiation and
diagonalization. One aspect of the general case is missing in the previous example,
however, namely the role of the genealogy of the sample. We take “genealogy” to mean
the whole history of the sample, including any migration events, and an important
observation is that mutation probabilities are unaffected by migration. This motivates
the mapping F(·) defined in (7) below, which simply removes any information about
the populations from the states, so that if we continue our example with two diploid
individuals in two populations we have:

F
({(1, {1}), (1, {2}), (2, {3}), (2, {4})}) = {{1}, {2}, {3}, {4}}

F
({(1, {1}), (2, {2}), (2, {3}), (2, {4})}) = {{1}, {2}, {3}, {4}}

F
({(1, {1, 2}), (2, {3}), (2, {4})}) = {{1, 2}, {3}, {4}}.

Note that F in this case takes its values in the partitions of {1, 2, 3, 4}. The mapping F
allows us to define the so-called coalescent trees. Intuitively, the coalescent trees are
unions of those genealogies that are identical when information about the population
is removed. In Fig. 3 we have two different genealogies, which belong to the same
coalescent tree.

We represent coalescent trees using a vector t of coalescent times and a vector Y,
which represents the lineages present at the time of the coalescent event. Figure 4
shows two such coalescent trees with different topologies. A main result of this paper
is the derivation of the probability density for the coalescent trees in (8), which plays
the same role in the general case, as the coalescent density did in the example in Sect. 2.

3.1 Formal definition of the IM-model

The IM-model is a CTMC {X (t)}t≥0 pieced together from two time-homogeneous
CTMCs, one for 0 ≤ t < TA and one for TA ≤ t . Each state is a set {( ji , li ) | i =
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1430 L. N. Andersen et al.

Fig. 4 Two topologically different coalescent trees C (t, Y1) and C (t, Y2) where Y1 = ({{1}, {2},
{3}, {4}}, {{1, 2}, {3}, {4}}, {{1, 2, 3}, {4}}) (le f t) and Y2 = ({1}, {2}, {3}, {4}}, {{1, 2}, {3}, {4}}, {{1, 2},
{3, 4}}) (right)—(see text)

1, . . . , m} where ji ∈ [P] denotes the population, and the lineages li ⊆ [L] form a
partition of [L]. We denote the set of states S. The parameters of the IM-model are
the migration rates, mi→ j , the coalescent rates ci , cA and the split time TA. For states
α �= β ∈ S and 0 ≤ t < TA, the entries of the rate matrix of the CTMC are given by

Qα,β =

⎧⎪⎨
⎪⎩

mi→ j if α = S ∪ {(i, l)} , β = S ∪ {( j, l)}
ci if α = S ∪ {(i, l1)} ∪ {(i, l2)} , β = S ∪ {(i, l1 ∪ l2)}
0 otherwise ,

(5)

where S is of the form ∪i {( ji , li )}, and for TA ≤ t

Q̃α,β =
{

cA if α = S ∪ {(i, l1)} ∪ {( j, l2)} , β = S ∪ {(1, l1 ∪ l2)}
0 otherwise

where i, j ∈ [P]. In both cases the entries on the diagonal (α = β) are determined
by the requirement that the row sums are 0. Before TA, lineages can only coalesce if
they are in the same population, but migration is possible between populations. After
TA, we allow any pair of lineages to coalesce regardless of population, and no longer
have migration events, so that {Xt }t≥TA behaves as a standard coalescent process. The
probability of being in state β at time t given that the CTMC is in state α at time s is
straightforward to compute, but depends on whether t and s are before or after TA:

P (Xt = β | Xs = α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
eQ(t−s)

)
α,β

s < t < TA∑
γ

(
eQ(TA−s)

)
α,γ

(
eQ̃(t−TA)

)
γ,β

s < TA ≤ t(
eQ̃(t−s)

)
α,β

TA ≤ s < t.

(6)

The IM model allows us to assign a probability density to a genealogy, by which
we mean the sample path traversed in the CTMC from the starting state s, until a
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Efficient computation in the IM model 1431

common ancestor is reached, meaning that we consider any migration events part of
the genealogy. In order to define the coalescent trees, we introduce the mapping F
defined on the states of the CTMC, S, and taking values in the partitions of [L]:

F (∪i {( ji , li )}) = ∪i {li } , (7)

that is, F strips away population information from the states. Using F we define an
equivalence relation on the sample paths of X by defining two sample paths {X (t)}t≥0
and {X ′(t)}t≥0 to be equivalent if {F(X (t))}t≥0 = {F(X ′(t))}t≥0 and we call each
equivalence class a coalescent tree. Coalescent trees are uniquely determined by the
time of coalescence events and the set of lineages before and after these coalescences,
and we represent a coalescent tree as C (t, Y) where t = (ti )

L−1
i=1 is the vector of

coalescence times with ti denoting the i’th coalescent event and Y = (Yi )
L−1
i=1 is a

vector such that Yi are the lineages present immediately prior to ti . Setting t0 = 0, we
have:

{X (t)}t≥0 ∈ C (t, Y) ⇔ F(X (t)) = Yi for ti−1 ≤ t < ti .

We wish to calculate the probability density of a coalescent tree C (t, Y), for Y =
(Y1, Y2 . . . , YL−1). To do this, we sum over pairs of tuples of states (α1,α2) where
α1 = (α1

1, α1
2, . . . , α1

L−1) is a tuple such that α1
1 = s is the starting state, and α1

i , i > 1,
are the possible states immediately after the (i − 1)th coalescent event, and since
these are the same as those immediately prior to the i th coalescent event we have
α1

i ∈ F−1(Yi ). The tuple α2 = (α2
1, α2

2, . . . , α2
L−1) are the possible states immediately

prior to the i’th coalescent event, that is α2
i ∈ F−1(Yi ).

Thus we can compute the probability density of a coalescent tree, implicitly inte-
grating over all elements in the equivalence class

f (C (t, Y)) =
∑

(α1,α2):
α1

1=s F(α2
1)=Y1

F(α1
i )=F(α2

i )=Yi

P(t, (α1,α2))g(t, (α1,α2)) (8)

where

P

(
t, (α1,α2)

)
=

L−1∏
i=1

P(Xti = α2
i | Xti−1 = α1

i )

using the transition probability calculated in (6), and

g(t, (α1,α2)) =
L−2∏
i=1

(
Qti

)
α2

i ,α1
i+1

∏
β:F(β)=[L]

(
QtL−1

)
α2

L−1,β
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1432 L. N. Andersen et al.

where

(Qs)x,y =
{

Qx,y if s < TA

Q̃x,y if TA ≤ s.
(9)

Note that (8) is a generalization of (3) and (4), and by way of being a sum over
transition probabilities multiplied with coalescent rates, it has the same form. Not
all vectors t and Y correspond to well-defined coalescent trees C (t, Y). For t the
requirement is that t ∈ R

L−1 with t1 < t2 < . . . tL−1, and for Y, the requirement
is that Y1 = {{i} | 1 ≤ i ≤ L} and for i > 1, Yi is obtained by taking union of
exactly two sets in Yi−1. We use the notation Y for the set of Y, which correspond to
well-defined coalescent trees.

3.2 Adding mutations

Next, we consider mutation models. We consider both an infinite sites model and a
CTMC for nucleotide substitutions. First, we note that a given coalescent tree C (t, Y)

induces a binary weighted graph in an obvious way by taking as nodes the singleton
sets {i}, i = 1, . . . , L , and the lineages (as sets) formed at each coalescent event. The
singleton sets are the leaf nodes, and whenever a coalescent event forms a lineage 	

from 	1 and 	2, we put an edge between 	 and 	i , i = 1, 2. Hence, there are 2L − 1
nodes, which we denote V = (vi )

2L−1
i=1 . We label vi = {i} for 1 ≤ i ≤ L and for

L < i ≤ 2L − 1, we label vi with the lineage formed at the (i − L)’th coalescent
event. In particular v2L−1 = [L]. We define the age of each node to be the time of the
corresponding coalescent event, so that the age of vi , 1 ≤ i ≤ L , is 0 and the age of
vi L < i ≤ 2L −1 is ti−L . The weight of each edge is then the age of the parent, minus
that of the child. Thus, we may write C (t, Y) = (V, E, W ) where V, E and W are
the nodes, edges and edge-weights respectively, of the induced graph, and we let we

denote the weight of the edge e. Below, we discuss two mutation models: A Markov
model for nucleotide substitutions and an infinite sites model. Since the former is
not generally time-reversible, we will in this case consider the induced graph to be
directed, with each edge going from parent to child. In the latter case, we consider the
induced graph to be undirected.

3.2.1 Nucleotide substitutions

Suppose we wish to assign nucleotides to the nodes of a given coalescent tree. We
assume that nucleotide substitutions follow a time-homogeneous Markov process with
rate matrix given by (Δ)x,y , x, y ∈ {A, C, G, T }, and stationary distribution π =
(πA, πC , πG , πT ). For a node vi ∈ V and nucleotide yi ∈ {A, C, G, T } we use the
notation vi = yi to mean the event that we observe yi at vi . Using this notation, the
probability of observing a particular assignment of nucleotides yi to nodes vi of a
given coalescent tree is:
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Efficient computation in the IM model 1433

P(vi = yi , 1 ≤ i ≤ 2L − 1 | C (t, Y)) = πy2L−1

∏
e∈E

e=(v j ,vk )

(
eΔwe

)
y j ,yk

. (10)

When we wish to do parameter estimation, we face the problem that we cannot actually
observe any of the nucleotide assignments in the past, so we sum these out:

P(vi = yi , 1 ≤ i ≤ L | C (t, Y)) =
∑
yi ∈{A,C,G,T }

L<i≤2L−1

P(vi = yi , 1 ≤ i ≤ 2L − 1 | C (t, Y)).

(11)

We combine (11) with (8) to obtain an unconditional formula:

P(vi = yi , 1 ≤ i ≤ L) =
∑
Y∈Y

∫

t∈T

∑
yi ∈{A,C,G,T }

L<i≤2L−1

P(vi = yi 1 ≤ i ≤ 2L − 1 | C (t, Y)) f (C (t, Y)) dt , (12)

where the domain of integration is T = {t ∈ R
L−1 | t1 < t2 < · · · < tL−1}.

3.2.2 Infinite sites model

Next, we consider an infinite sites model, and here we wish to assign a number of
mutations to each edge of C (t, Y) = (V, E, W ), which we take to be undirected
since in this section, we wish to consider paths between leaves. In this case there is
only one parameter in the mutation model, namely the mutation rate γ , and if we
define P Oγ (x, k) = (γ x)ke−γ x/k!, the probability of having ke mutations on edge
e is P Oγ (we, ke). We let k = (ke, e ∈ E) denote a vector of non-negative integers
indexed by the edges in the given coalescent tree. These integers correspond to a
particular assignment of mutations on the branches of the tree. Then the probability
of observing a particular assignment k is:

P(k | C (t, Y)) =
∏
e∈E

P Oγ (we, ke). (13)

Similarly to the previous section, we need to consider what is actually observable from
the present. Here it is the total number of mutations on the path from node {i} to node
{ j}, and we denote this number d(i, j). Let E(i, j) denote the set of edges on the path
from {i} to { j} so that

d(i, j) =
∑

e∈E(i, j)

ke , (14)

and let d denote the vector (d(i, j) | i < j). We will call d differences, since for actual
data it will be the count of nucleotide differences between genetic segments. At this
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1434 L. N. Andersen et al.

point, we have to deal with the identifiability issue, arising from the fact that mapping
ϕ which maps k to d through Eq. (14) is not injective. When we wish to calculate the
probability of observing a particular vector d, we need to sum over the assignments
of mutations which give rise to the observed differences:

P(d | C (t, Y)) =
∑

k:ϕ(k)=d

P(k | C (t, Y)). (15)

We may combine (15) with (8) to obtain an unconditional formula for observed dif-
ferences:

P(d) =
∑
Y∈Y

∫

t∈T

∑
k:ϕ(k)=d

P(k | C (t, Y)) f (C (t, Y)) dt , (16)

where, as in (12), T = {t ∈ R
L−1 | t1 < t2 < · · · < tL−1}.

4 State-space explosion and lumpability

We wish to count the number of states |S|. We do this by considering the elements
in the image of F , which is the set of all partitions of [L], and then counting |S|
by counting the number of elements in the pre-image of each element in F(S). The
number of partitions ρ ∈ F(S) with |ρ| = k for 1 ≤ k ≤ L is the Stirling Number of
the second kind S2(L , k) (Stanley 2012). Since there are P populations, the number
of elements in the pre-image of a partition with |ρ| = k is |F−1(ρ)| = Pk . Hence, we
have

|S| =
L∑

k=1

∑
ρ∈F(S)
|ρ|=k

Pk =
L∑

k=1

S2(L , k)Pk = BP (L) ,

where Bn(·) is the n’th Bell polynomial. In Table 1 we give B2(·) and B3(·) evaluated
at L = 2, 3, 4, 5, 6.

It is evident from Table 1 that simplifications are needed, in order for formulas
such as (6) and (8), and in turn those in Sect. 3.2 to be useful for maximum likelihood
estimation.

We present a simplification based on the concept of exact lumpability, and for ease
of presentation, we restrict ourselves to the case P = 2, and sketch a generalization at

Table 1 The top two rows give
the number of states in the full
state-space for P = 2, 3
populations and
L = 2, 3, 4, 5, 6. The bottom
rows give the number of states in
the reduced state-space for two
and three populations

P/L 2 3 4 5 6

2 6 22 94 454 2, 430

3 12 57 309 1,866 12,351

2 7 17 39 67 117

3 15 70 205 529 1,341
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the end of the section. Intuitively, the simplification is based on the observation that
for given states α, β with the same lineages (possibly distributed differently among
populations), the probability of going from α to β in some time t only depends on the
number of lineages switching populations, and not specifically which lineages switch
populations. This means that we may calculate the desired probabilities by labeling
the lineages with 1’s or 2’s and considering the new state-space Ŝ, which consists of
the relabeled states. Formally, we relabel the lineages by defining a map f̃ mapping
the lineages to the set {1, 2}. This map then induces a map f from S to Ŝ by

f : S � α = ∪i {( ji , li )} �→ ∪i

{(
ji , f̃ (li )

)}
.

Suppose that we wish to calculate a probability involving the density of a coalescent
tree. It is evident from (8) that we need only consider probabilities of the form P(Xt =
β | X0 = α) = (

eQt
)
α,β

for states α, β ∈ S, where β ∈ S̄ := {γ ∈ S | F(α) =
F(γ )} Note that the states in S̄ contain the same lineages. A first observation is
that because α and β are transient states P(Xt = β | X0 = α) can be calculated
by exponentiating the matrix Q|S̄∪A, and a second observation, which is proved in
Theorem 1 in the Appendix, is that this matrix is exactly lumpable. This implies—as
it is proved in Corollary 1—that under the additional assumption | f −1( f (α))| = 1
we have

(
eQt

)
α,β

= P(Xt = β | X0 = α) = 1

| f −1( f (β))|
(

eQ̂| f (S̄)t
)

f (α), f (β)
(17)

where Q̂ is defined in (32) in the Appendix.
As an example of relabelling, let α = {(1, {1}), (1, {2}), (2, {3}), (2, {4})} be the

starting state in the case of two diploid individuals in two populations, which was also
considered in Sect. 3, and let β = {(1, {1}), (2, {2}), (1, {3}), (2, {4})} be the state
where lineages {2} and {3} have migrated to population 2 and 1 respectively. In order
to apply formula (17) we need to find f̃ such that | f −1( f (α))| = 1. This is achieved
by setting

f̃ ({1}) = 1 f̃ ({2}) = 1 f̃ ({3}) = 2 f̃ ({4}) = 2.

As noted, we need only consider exponentiation of the matrix Q|S̄, so we do not

need to define f̃ on any of the other possible linages, e.g., {1, 2}. With this choice
of f̃ we have f (β) = {(1, {1}), (2, {1}), (1, {2}), (2, {2})}, which is one of 9 states
in f (S̄) ⊂ Ŝ. The remaining states are found by distributing the 2 1’s and the 2 2’s
among the 2 populations. For arbitrary α and β, the condition | f −1( f (α))| = 1 is
fulfilled by letting f̃ assign 1’s to the lineages in the population with the most lineages
in α and 2’s to the lineages in the other population. If the two populations contain
the same number of lineages, we assign 1’s to the lineages in population 1 and 2’s to
those in population 2. We can now count the number of elements in the state-space
Ŝ, which consists of the union of states found, when applying the labelling scheme
described above. To do this, we start by noticing that the number of ways m 2’s and n
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1’s can be divided among the 2 populations is (m + 1)(n + 1), so if we wish to count
|{α̂ ∈ Ŝ | |α̂| = k}|, we have to count the number of assignments of m 2’s and n
1’s where 0 ≤ m ≤ n and m + n = k. This implies that we get two expressions for
|{α̂ ∈ Ŝ | |α| = k}| depending on the parity of k:

|{α̂ ∈ Ŝ | |α| = k}| =
∑

0≤m≤n:
m+n=k

(m + 1)(n + 1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k/2∑
m=0

(m + 1)(k − m + 1) = 1
24 (2 + k)(4 + k)(3 + 2k) for k even

(k−1)/2∑
m=0

(m + 1)(k − m + 1) = 1
12 (1 + k)(2 + k)(3 + k) for k odd.

Hence, |Ŝ| depends on the parity of L and assuming L is even we find:

|Ŝ| =
L∑

k=2

|{α̂ ∈ Ŝ | |α| = k}| =
L/2−1∑

k=1

|{α̂ ∈ Ŝ | |α| = 2k + 1}|

+
L/2∑
k=1

|α̂ ∈ Ŝ | |α| = 2k}| = 1

48

(
−96 + 76L + 44L2 + 11L3 + L4

)

and similarly, we find the expression 1
48 (−114 + 61L + 4L2 + 11L3 + L4) when L is

odd. In Table 1 we list the number of elements of Ŝ for P = 2, 3 and L = 2, 3, 4, 5, 6.
We see that the our lumping procedure does not reduce the size of the state-space under
consideration in the case of two lineages, but that |Ŝ| is of the order L4/48 and by
comparing to the first rows of the same table (which increases super-exponentially),
we note a very significant reduction in the number of states as L increases.

Generalizing the lumpability framework beyond the case of two populations is
achievable, and can be treated by generalizing Theorem 1 to allow for P populations
as well as the relabelling mapping f̃ to take values in an arbitrary set. That such a
generalization is possible is reasonable in light of the fact that the proof of Theorem
1 relies on the rates of coalescence and migration being dependent only on the distri-
bution of lineages among populations and not on which specific lineages are present
in which populations. Let us consider the case of three populations: In this case the
requirement that | f −1( f (α))| = 1 may be fulfilled similarly to the two population
case by labelling the linages in α in descending order with respect to the number of
lineages in each population, so that lineages in the population with most lineages get
the label 1, lineages in the population with second-most lineages (if any) get the label
2, and the lineages in the remaining population (if any) get the label 3. The size of
the induced state-space, can be calculated in a manner similar to the two population
case: We first calculate the number of states α̂ with |α̂| = k by noting that the number
of ways, say, the n 1’s can be distributed among the three populations is

(n+2
n

)
, so

if we assume we have n 1’s, m 2’s and l 3’s with l ≤ m ≤ n and l + n + m = k,
then the number of such states is found by summing

(l+2
l

)(m+2
m

)(n+2
n

)
over the set
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(a) (b)

Fig. 5 The two topologies with branch lengths and nucleotide assignments corresponding to Y1 =
({{1, 2}, {3}, {4}}, {{1, 2, 3}, {4}}) (le f t) and Y2 = ({{1, 2}, {3}, {4}}, {{1, 2}, {3, 4}}) (right) – (see text)

0 ≤ l ≤ m ≤ n , 0 ≤ l +n +m = k. The size of the state-space is then found by sum-
ming the number of α̂ with |α̂| = k from 2 to L . We refrain from performing the explicit
calculation, but provide the sizes of the reduced state-space for L = 2, 3, 4, 5, 6 in
Table 1, and we note, as in the two population case, a polynomial order of increase.

5 Two diploid individuals in two populations

The aim of the this section is to derive an explicit expression for the log-likelihood
function for data X given as alignment columns from two diploid individuals in
two populations, where we assume a time-reversible nucleotide substitution model.
We further assume free recombination between loci, and hence computing the log-
likelihood of a given data set amounts to computing the probabilities of the 256 possible
genotype combinations. This means expanding on the formulas (10), (11) and (12).
The expressions derived here were implemented and applied in Scally et al. (2012).
The extant lineages are labeled {1}, {2} for the lineages in population 1 and {3}, {4} for
the lineages in population 2. It follows from the definition of coalescent trees that there
are

∏L
i=2

(i
2

)
well-defined coalescent trees for fixed branch lengths, and for L = 4 this

means that |Y| = 18. Each coalescent tree induces a weighted graph which belongs to
one of two topologies, shown in Fig. 4. In Fig. 5 we name the two topologies A and B
and label the nodes vi as described in Sect. 3.2. We wish to calculate the probability of
observing yi ∈ {A, C, G, T } at node vi , 1 ≤ i ≤ 4. This probability was calculated
in (12), and we have

P(v1 = y1, v2 = y2, v3 = y3, v4 = y4) =
∑
Y∈Y

∞∫

0

t3∫

0

t2∫

0

P (v1 = y1, v2 = y2, v3 = y3, v4 = y4 |C (t, Y)) f (C (t, Y)) dt1dt2dt3.

(18)
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We calculate the inner probability for the two coalescent trees C (t, Yi) , i = 1, 2
shown in Fig. 5, where

Y1 = ({{1, 2}, {3}, {4}}, {{1, 2, 3}, {4}})
Y2 = ({{1, 2}, {3}, {4}}, {{1, 2}, {3, 4}}) ,

and t = (t1, t2, t3). The expressions for the remaining 16 are found by permuting the
nucleotide assignments on the leaves in each topology. Using formula (10) we find:

P(vi = yi , i = 1 . . . 7 | C (t, Y j ))

=
{

πy7

(
eΔt3

)
y7,y4

(
eΔt4

)
y7,y6

(
eΔt2

)
y6,y3

(
eΔt5

)
y6,y5

(
eΔt1

)
y5,y1

(
eΔt1

)
y5,y2

if j = 1

πy7

(
eΔt4

)
y7,y6

(
eΔt5

)
y7,y5

(
eΔt2

)
y6,y4

(
eΔt2

)
y6,y3

(
eΔt1

)
y5,y2

(
eΔt1

)
y5,y2

if j = 2.

We continue our calculations for Y1. We can only observe extant lineages so we sum
over y5, y6, y7 in the expression above:

∑
y5,y6,y7∈{A,C,G,T }

P(vi = yi , i = 1 . . . 7 | C (t, Y1))

=
∑

y5,y6,y7∈{A,C,G,T }

πy7

(
eΔt3

)
y7,y4

(
eΔt4

)
y7,y6

(
eΔt2

)
y6,y3

(
eΔt5

)
y6,y5

(
eΔt1

)
y5,y1

(
eΔt1

)
y5,y2

(19)

=
∑

y5,y6,y7∈{A,C,G,T }

πy4

(
eΔt3

)
y4,y7

(
eΔt4

)
y7,y6

(
eΔt2

)
y6,y3

(
eΔt5

)
y6,y5

(
eΔt1

)
y5,y1

(
eΔt1

)
y5,y2

(20)

=
∑

y5,y6∈{A,C,G,T }

πy4

(
eΔ(t3+t4)

)
y4,y6

(
eΔt2

)
y6,y3

(
eΔt5

)
y6,y5

(
eΔt1

)
y5,y1

(
eΔt1

)
y5,y2

(21)

where we use the assumption of time-reversibility in the step from Eqs. (19) to
(20). The assumption of time-reversibility also ensures that Δ is diagonalizable (see
Keilson 1979). This implies that we can write eΔt = V̄ eD̄t V̄ −1 where V̄ = (v̄)x,y ,
x, y ∈ {A, C, G, T } is a matrix of eigenvectors, V̄ −1 = (v̄−1)x,y its inverse, and D̄
is a diagonalmatrix containing the corresponding eigenvalues of Δ, which we denote
λ̄i , i ∈ {A, C, G, T }. This gives us:

(
eΔt)

x,y =
∑

i∈{A,C,G,T }
v̄x,i v̄

−1
i,y eλ̄i t ,

and using this, we may continue our calculation of (21):

(21) =
∑

y5,y6∈{A,C,G,T }

∑
i, j,k,l,m∈
{A,C,G,T }

(
πy4 v̄y4,i v̄

−1
i,y6

eλi (t3+t4)v̄y6, j v̄
−1
j,y3

eλ j t2 ·

v̄y6,k v̄
−1
k,y5

eλk t5 v̄y5,l v̄
−1
l,y1

v̄y5,m v̄−1
m,y2

e(λl+λm )t1
)
. (22)
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Defining

C1 :=
∑

y5,y6∈{A,C,G,T }

πy4 v̄y4,i v̄
−1
i,y6

v̄y6, j v̄
−1
j,y3

v̄y6,k v̄
−1
k,y5

v̄y5,l v̄
−1
l,y1

v̄y5,m v̄−1
m,y2

, (23)

and using that t4 = t3 − t2 and t5 = t2 − t1 we find:

(22) =
∑

i, j,k,l,m∈
{A,C,G,T }

C1eλ̄i (2t3−t2)e(λ̄ j +λ̄k )t2 e(λ̄l+λ̄m−λ̄k )t1 =:
∑

i, j,k,l,m∈
{A,C,G,T }

C1 f1(t1, t2, t3)

(24)

where we define function f1 to be

f1(t1, t2, t3) := eλ̄i (2t3−t2)e(λ̄ j +λ̄k )t2 e(λ̄l+λ̄m−λ̄k )t1 . (25)

Similarly, we can find an expression when we condition on topology B:

P(vi = yi , i = 1 . . . 4 | C (t, Y2)) =∑
i, j,k,l,m∈
{A,C,G,T }

C2eλ̄i 2t3 e(λ̄ j +λ̄k−λ̄i )t2 e(λ̄l+λ̄m−λ̄i )t1 =:
∑

i, j,k,l,m∈
{A,C,G,T }

C2 f2(t1, t2, t3) (26)

where

C2 :=
∑

y5,y6∈{A,C,G,T }

πy5 v̄y5,i v̄
−1
i,y6

v̄y5, j v̄
−1
j,y1

v̄y5,k v̄
−1
k,y2

v̄y6,l v̄
−1
l,y3

v̄y6,m v̄−1
m,y4

(27)

and similar to f1 we define:

f2(t1, t2, t3) := eλ̄i 2t3e(λ̄ j +λ̄k−λ̄i )t2 e(λ̄l+λ̄m−λ̄i )t1 . (28)

The calculation of the conditional probabilities for the remaining 16 trees consists of
permuting yi i = 1, 2, 3, 4 in the definitions (23) and (27) of C1 and C2. Next, we turn
our attention to f (C (t, Y)). This is given by formula (8) and we divide the formula
into cases depending on how many coalescent events take place before TA.

f (C (t, Y))

=
∑(

eQt1
)

s,α2
1

(
eQ(t2−t1)

)
α1

2 ,α2
2

(
eQ(t3−t2)

)
α1

3 ,α2
3

Qα2
1 ,α1

2
Qα2

2 ,α1
3
cα2

3

if t3 < TA∑ ∑
β∈S

(
eQt1

)
s,α2

1

(
eQ(t2−t1)

)
α1

2 ,α2
2

(
eQ(TA−t2)

)
α1

3 ,β
e−cA(TA−t3)Qα2

1 ,α1
2

Qα2
2 ,α1

3
cA

if t2 < TA ≤ t3
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∑ ∑
β∈S

(
eQt1

)
s,α2

1

(
eQ(TA−t1)

)
α1

2 ,β
e−3cA(t2−TA)e−cA(t3−t2)Qα2

1 ,α1
2
3c2

A

if t1 < TA ≤ t2∑ ∑
β∈S

(
eQt1

)
s,β

e−6cA(t1−TA)e−cA(t3−t2)18c3
A

if TA ≤ t1.

where the outer sum in all cases is over the set

{(α1,α2) | α1
1 = s F(α2

1) = Y1 F(α1
i ) = F(α2

i ) = Yi }

(as in (8)) and cα2
3

= ci if has α2
3 has both its lineages in population i and 0 otherwise.

Each of the matrix exponentials above is further simplified using (17), and since all
the involved matrices are diagonalizable (see Sect. 8.2 in the Appendix) we apply the
spectral decomposition to rewrite the expression above to

f (C (t, Y)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
C3h1(t1, t2, t3) t3 < TA∑
C4h2(t1, t2, t3) t2 < TA ≤ t3∑
C5h3(t1, t2, t3) t1 < TA ≤ t2∑
C6h4(t1, t2, t3) TA ≤ t1 ,

(29)

where the constants C3, C4, C5, C6 depend only on the eigenvectors of the lumped
matrices Q̂ and the coalescent rates c1, c2. The hi functions are given by:

h1(t1, t2, t3) := eλr t1 eλs (t2−t1)eλt (t3−t2)

h2(t1, t2, t3) := eλr t1 eλs (t2−t1)eλt (TA−t2)cAe−cA(t3−TA)

h3(t1, t2, t3) := eλr t1 eλs (TA−t1)c2
Ae−3cA(t2−TA)e−cA(t3−t2)

h4(t1, t2, t3) := eλr TA c3
Ae−6cA(t1−TA)e−3cA(t2−t1)e−cA(t3−t2) ,

where λ· are the eigenvalues of the lumped matrix. We may now finish the calculation of
(18) by combining (29) with (24) and (26). We see that the resulting integral involves
only regular exponential functions, which, although notationally cumbersome, are
easily integrated explicitly by dividing the integral into the cases t3 < TA, t2 < TA ≤
t3, t1 < TA ≤ t2 and TA ≤ t1. The involved integrals are calculated in Sect. 8.4 in the
Appendix.

6 Simulation study

In this section we provide a simulation study, in order to examine how well our method
is able to recover parameters in the case considered in Sect. 5. Time is scaled by the
neutral mutation rate μ, so that we expect one mutation during one unit of time, and
we let g denote the generation length. This scaling implies that coalescence occurs
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in population i with rates ci = 1/(2Niμg) for i = 1, 2 and cA = 1/(2NAμg) for
the ancestral population. The migration rates are scaled so that m1→2 = M1→2/(μg)

and m2→1 = M2→1/(μg) where Mi→ j is the proportion of population i expected to
migrate to population j per generation. We performed simulation experiments with
nine different sets of parameter values in a model where c1 = cA and m1→2 = m2→1.
Our parameters are chosen to resemble those of the Eastern and Western Gorilla found
in Scally et al. (2012), which means that N1 = NA = 35, 000, N2 = 16, 000, g = 20
years and μ = 0.6 · 10−9 expected mutations pr. year. The migration rate m1→2 =
m2→1 = m belongs to the set {125, 250, 500} and TA belongs the set the set {10−4, 3 ·
10−4, 6·10−4}. The parameters m = 250 and TA = 3·10−4 correspond to those found
by maximum likelihood estimation in Scally et al. (2012), and hence we examine the
performance of our method in a neighborhood of these parameters. The substitution
matrix was estimated from the data of Scally et al. (2012). For each of the 9 sets of
parameter values we performed 5 simulations, each containing 107 loci, where each
locus is an alignment column i.e. one basepair long. When maximizing the likelihood
function we used the Nelder-Mead simplex method with five different starting values
chosen uniformly in the interval [0.5τ, 1.5τ ] where τ is the true parameter. The results
of the simulation study is displayed in Figs. 6 and 7 and Table 2.

Figure 6 shows likelihood surfaces for migration and split time parameters from
one of the five experiments (the remaining parameters are fixed at their true values).
We see that for a small split time (TA = 10−4), we are unable to recover the migration
rate, while the split time itself is easily recovered. For the split time (TA = 3 · 10−4)

we are able to recover both migration rates and split times reasonably well, and for
the large split time (TA = 6 · 10−4), we are able to recover both migration rate and
split time very well.

The likelihood surfaces in Fig. 6 are made under the assumption that the true
population sizes are known. If we wish to estimate all four parameters of the model
we see the flat likelihood makes parameter estimation of migration rates difficult for
small values of TA. In Table 2 we give the standardized biases (E[τ̂ − τ ]/τ) and
standardized root-mean-square errors (

√
E[(τ̂ − τ)2]/τ). We see that the coalescence

rates are very well estimated for all parameters, and that the split times are reasonably
well estimated. We also note that for the smaller values of migration, the estimate of
TA when TA = 10−4 is actually better than the estimate when TA = 3 · 10−4, while
this is not the case for the large value of the migration rate. Finally we note that we
are unable to recover the migration rate when TA = 10−4, and the estimates are still
quite poor when TA = 3 · 10−4. Only for the large value of the split time are we able
to properly recover the migration rate.

7 Discussion

In this paper we have considered an IM model in which a panmictic ancestral popula-
tion split into P subpopulations at some time TA in the past, and we have shown how to
deal with the issues which arise, when one wants to incorporate an arbitrary number of
lineages and an arbitrary number of populations. We have shown how to define unions
of genealogies – so-called coalescent trees – which are relevant for combination with
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Fig. 6 log-likelihood surfaces—the true split times are: 10−4, 3 · 10−4, 6 · 10−4 (columns from
left to right). The true migration rates are (rows from bottom to top) 125, 250, 500

different mutation models, and we have derived analytical explicit expressions for the
probability densities of such unions. Furthermore, we have combined these expres-
sions with mutation models and derived analytical expressions, which are relevant
for maximum likelihood estimation. The derived expressions are generalizations to
an arbitrary number of lineages of expressions found in the literature (e.g. Takahata
et al. 1995 and Wilkinson-Herbots 2008). We have implemented these expressions
in the case of four lineages in two populations. Extension beyond 4 lineages is pos-
sible, but is made difficult by the inherent complexity of the involved expressions
(see Sect. 8.4) as well as fact the number of unlabeled topologies increases. In our
case there were 2 unlabeled topologies (see Fig. 5). For five lineages there are three
unlabeled topologies, for six lineages there are six topologies and for seven there
are eleven (see Rosenberg 2007), so the number of different expressions one needs
to consider increases considerably. In Sect. 2 we derived an explicit expression for
the probability of observing k mutations in the case of 2 lineages with an infinite
sites model, and we saw that these expressions involve the lower and upper incom-
plete Gamma functions. Extension beyond two lineages is in this case made difficult
by the need to consider more complicated special functions, namely the confluent
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Fig. 7 Boxplots for maximum likelihood estimates of the migration rate (green, axis on le f t of each
subplot) and the split time (blue, axis on right of each subplot, which is labeled in units of 10−4). The true
split times are: 10−4 , 3 · 10−4 , 6 · 10−4 (columns from left to right). The true migration rates are (rows
from bottom to top) 125 , 250 , 500

hypergeometric function 1 F1 (Abramowitz and Stegun 1984). Extensions to our model
is also possible. In particular, it is relatively easy to extend our model to a situation
where P extant populations have split from ancestral populations at different split
times in the past. This can be achieved by defining the appropriate number of rate
matrices like (5) and then changing formula (6) accordingly. By setting the appropri-
ate migration rates to 0 this will also allow us to extend our model to the “isolation
with an initial period of migration” model considered in Wilkinson-Herbots (2012).
Furthermore, it is easy to define other models of divergence, e.g. the time-dependent
migration rates of Innan and Watanabe (2006), as a CTMC on the state-space con-
sidered in this paper, although explicit expressions are only available in the case of
piecewise constant rates considered in this paper.
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ments and suggestions. The research of LNA was supported by the Lundbeck Foundation, and the Villum
Foundation.
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Table 2 standardized biases and root-mean-square errors. The 9 values of each subtable correspond to the
true split times: 10−4 , 3 · 10−4 , 6 · 10−4 (columns from left to right), and true migration rates (rows from
bottom to top) 125 , 250 , 500

Empirical standardized biases

c1 m

−0.0005 0.01132 0.01133 0.18149 0.14711 0.07229

0.00182 0.00010 0.00578 −0.02725 −0.06350 0.04417

0.01073 0.01621 −0.00194 1.68154 0.78169 −0.05321

c2 TA

0.01642 0.00191 0.00461 0.09536 0.10925 0.06488

−0.00566 0.00532 0.00916 0.00627 0.00336 0.020046

−0.04709 −0.00233 0.00266 0.09230 0.11894 −0.00917

Empirical standardized root-mean-square errors

c1 m

0.01723 0.02642 0.02558 1.18510 0.36274 0.09507

0.00738 0.01895 0.01861 0.87655 0.55347 0.16563

0.01612 0.03071 0.01600 2.82947 1.47540 0.29252

c2 TA

0.10623 0.015978 0.01847 0.28313 0.22908 0.10532

0.05253 0.020269 0.01280 0.07927 0.12194 0.06407

0.06348 0.02109 0.01011 0.13028 0.23995 0.06464

8 Appendix

8.1 Notation

For a vector or matrix x we let x∗ denote the transpose of x. For a set A we let |A|
denote the number of elements in A, and we use the notation [n] := {1, 2, . . . , n} to
mean the natural numbers less than or equal to n, excluding 0. A partition of a set Ω

is a set of non-empty, disjoint subsets of Ω , whose union is Ω . We let I (·) denote the
indicator function. For a vector v we let diag(v) denote the diagonal matrix with the
entries of v on the diagonal.

Let M = {ms,s′ }, s, s′ ∈ S be a matrix indexed by a set S and let S0 ⊆ S be a
subset of S. We let M|S0 denote the submatrix of M indexed by the elements of S0 i.e.

(
M|S0

)
s,s′ := ms,s′ s, s′ ∈ S0. (30)

Occasionally, we wish to consider matrices, which are not proper submatrices of M ,
because they include an absorbing dummy state A which is not an element of S, so
that S1 = S0 ∪ A. In this case:

(
M|S1

)
s,s′ =

⎧⎪⎨
⎪⎩

ms,s′ s, s′ ∈ S0

0 s = A, s′ ∈ S0

−∑
s′′∈S0

ms,s′′ s ∈ S0, s′ = A.

(31)

123



Efficient computation in the IM model 1445

8.2 On diagonalization of rate matrices

First, consider a tridiagonal matrix Q:

Q =

⎛
⎜⎜⎜⎜⎜⎝

q1,1 q1,2 0 0 . . . 0 0
q2,1 q2,2 q2,3 0 . . . 0 0

0 q3,2 q3,3 q3,4 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . qm,m−1 qm,m

⎞
⎟⎟⎟⎟⎟⎠

and assume qi+1,i , qi,i+1 > 0. Note that QΥ in Sect. 2 is of this form. Such a matrix
is diagonalizable. This is seen by defining the vector d to have entries d1 = 1 and

di+1 =
√

qi+1,i
qi,i+1

di . Then

(
diag(d)−1 · Q · diag(d)

)
i, j

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qi,i if i = j
di+1

di
qi,i+1 = √

qi+1,i qi,i+1 if j = i + 1
di

di+1
qi+1,i = √

qi+1,i qi,i+1 if j = i − 1

0 otherwise

.

We see that Q is similar to a symmetric matrix and hence it is diagonalizable. More
generally we see that a tri-diagonal block matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q1,1 Q1,2 0 0 . . . 0 0 0
Q2,1 Q2,2 Q2,3 0 . . . 0 0 0

0 Q3,2 Q3,3 Q3,4 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . Qm−1,m−2 Qm−1,m−1 Qm−1,m

0 0 0 0 . . . 0 Qm,m−1 Qm,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where each Qi,i is an ni × ni diagonal matrix, and the off-diagonal blocks Qi, j

have entries which are either 0 or qi, j for some qi, j > 0 and furthermore fulfill
1

qi,i+1
Qi,i+1 =

(
1

qi+1,i
Qi+1,i

)∗
, is similar to a diagonal matrix, .This is seen by defining

the numbers di recursively as before and then let d be the vector where di is repeated
ni times. Finally, we notice that if we are given a lumpable CTMC where the rate
matrix is of the form

Q =
(

Q̃ c∗
0 0

)

where Q̃ a tri-diagonal block matrix then the rate matrix of lumped process Q̂ will be
diagonalizable. To see this, assume Q is an n × n matrix and Q̂ in an m × m matrix.
By assumption, we may write Q̂ = U QV where the j-th column vector of V is 1 in
the entries corresponding to the j th-partition and 0 otherwise (see Kemeny and Snell
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1960 together with the uniformization argument in Buchholz 1994). We note that Q
is diagonalizable and hence the matrix C whose rows are the left eigenvectors of Q
has rank n. Now, if we combine the observation in Barr and Thomas (1977) that if x is
a left eigenvector of Q then xV is a left eigenvector of Q̂ if xV is not the null vector
with Sylvester’s inequality for rank of the product of two matrices (inequality 0.4.5 (c)
p. 13 in Horn and Johnson 1985), we can see that the matrix CV has rank m and hence
there are m linearly independent vectors in the set {xV | x is a left eigenvector of Q}
so Q̂ is diagonalizable.

8.3 The lumped state-space

We define the state-space Ŝ to consist of states of the form [( ji , li ) | i = 1, . . . , m]
where ji ∈ {1, 2} and li ∈ {1, 2}. Note that, as is implied by that notation [·], the states
of Ŝ are multisets i.e. identical elements of each state are allowed to appear more than
once, but, unlike vectors, the order of elements is not important. We use the notation
#(i, j) ∈ α̂ to mean the multiplicity of (i, j) and let the notation #(i, ·) ∈ α̂ mean the
number of elements in population i in the state α̂. We let A be a dummy absorbing
state and define a rate matrix indexed by the states of Ŝ ∪ A:

Q̂
α̂,β̂

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m1→2 · #(1, l) ∈ α̂ if α̂ = S ∪ (1, l) , β̂ = S ∪ (2, l)

m2→1 · #(2, l) ∈ α̂ if α̂ = S ∪ (2, l) , β̂ = S ∪ (1, l)(#(1,·)∈α̂
2

)
c1 + (#(2,·)∈α̂

2

)
c2 if β̂ = A

0 otherwise ,

(32)

where the diagonal entries are defined by the requirement that Q̂ is a rate matrix, i.e.
the rows sum to 0.

Theorem 1 Let α, β ∈ S with F(α) = F(β) and set S̄ = {γ ∈ S | F(α) = F(γ )}∪
A. Let f̃ be any mapping from the set of lineages to 1, 2 and let f : S ∪ A → Ŝ ∪ A
be the mapping induced by f̃ , with f (A) = A. Then Q|S̄ is exactly lumpable with
respect to the partition generated by f and the transition matrix of the lumped process
is given by Q̂| f (S̄)

Corollary 1 Under the conditions from Theorem 1 and the additional assumption
| f −1( f (α))| = 1 we have

P(Xt = β | X0 = α) = 1

| f −1( f (β))|
(

eQ̂| f (S̄)

)
f (α), f (β)

Proof First, we prove exact lumpability. Formally, the partition generated by f is the

quotient set S̄/∼ f where α ∼ f β
de f⇔ f (α) = f (β). S̄/∼ f is naturally identified

with the image of S̄ under f and since f (S̄) ⊆ Ŝ, we will label the elements of
S̄/∼ f with the elements of α̂ ∈ Ŝ ∪ A. In particular, for α̂ ∈ Ŝ we write “α ∈ α̂” if
α ∈ {γ | f (γ ) = α̂}. We need to check that for α̂, β̂ ∈ S̄/∼ f ∪A:
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β, β ′ ∈ β̂ :
∑
α∈α̂

(
Q|S̄

)
α,β

=
∑
α∈α̂

(
Q|S̄

)
α,β ′ (33)

That is, the column sums must be equal for all partitions.
First, we note that (33) is fulfilled if either α̂ = A or β̂ = A since in the former case

all column sums are 0 (since A is absorbing) and in the latter there is only one column.
Let α̂, β̂ ∈ S̄/∼ f be given. Write α̂ = (a1, a2), β̂ = (b1, b2) where a1, a2 ∈ N0 are
respectively the number of 1’s and 2’s in population 1 in α̂, and similarly b1, b2 are
the number of 1’s and 2’s in population 1 in β̂. Note that this notation unambiguously
identifies α̂ since e.g. the number of 1’s in population 2 in α̂ is | f̃ −1(1)| − a1. We
check that (33) holds in the three exhaustive cases |a1 − b1| + |a2 − b2| = 0, |a1 −
b1| + |a2 − b2| = 1 and |a1 − b1| + |a2 − b2| ≥ 2.

|a1 − b1| + |a2 − b2| = 0 :

This condition implies α̂ = β̂. We rewrite (33) by isolating the diagonal elements:

(
Q|S̄

)
β,β

+
∑

β ′′∈β̂

β ′′ �=β

(
Q|S̄

)
β ′′,β

=
(

Q|S̄
)

β ′,β ′ +
∑

β ′′∈β̂

β ′′ �=β ′

(
Q|S̄

)
β ′′,β ′ (34)

Note that f preserves number of elements in each population so for any γ, γ ′ ∈ S :
f (γ ) = f (γ ′) implies that γ and γ ′ have the same number of lineages in population
1 and 2 respectively. This in turn implies

γ, γ ′ ∈ β̂
de f⇔ f (γ ) = f (γ ′) ⇒

⎧⎨
⎩

(
Q|S̄

)
γ,γ

=
(

Q|S̄
)

γ ′,γ ′ and(
Q|S̄

)
γ,γ ′ = 0

so that the sums in (34) are equal.

|a1 − b1| + |a2 − b2| = 1

This case covers the four sub-cases a1 − b1 = 1, b1 − a1 = 1, a2 − b2 = 1 and
b2 − a2 = 1. We treat the first, as the rest are similar. The condition a1 − b1 = 1
means β̂ is obtained from α̂ by moving a 1 from population 1 to population 2. Writing
α = (A1, A2) where A1 ⊆ f̃ −1(1) and A2 ⊆ f̃ −1(2) are the lineages in population 1
and similarly for β = (B1, B2), the assumed condition translates into |A1| − |B1| =
1, |A2| = |B2| and we rewrite the sum

∑
α∈α̂

(
Q|S̄

)
α,β

in terms of the Ai ’s Bi ’s:

∑
α∈α̂

(
Q|S̄

)
α,β

= m1→2 ·
∑
α∈α̂|A1|−|B1|=1

|A2|=|B2|

I

((
Q|S̄

)
α,β

> 0

)
(35)
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The condition |A1| − |B1| = 1 implies that at least one lineage switches populations,
and by the definition of Q given in (5) entries in Q|S̄ will be 0 if they correspond
to states where more than one lineage switches population. This will be the case if
A2 �= B2 or B1 � A1 Hence:

(35) = m1→2 ·
∑

α∈α̂ , α=(A1,A2)
B1⊆A1,|A1|−|B1|=1

A2=B2

I

((
Q|S̄

)
β,α

> 0

)
(36)

Finally, observe that each summand in (36) is positive and that there are | f −1(1)|−|B1|
such summands, so that

(36) = (| f̃ −1(1)| − |B1|)m1→2. (37)

By combining the equations above, we see that the right hand side of (35) depends
on β through |B1| and by the remark that f preserves the number of elements in a
given population this implies that the sum is unchanged if we replace β with β ′, which
proves (33) in this case.

Finally, in the case |a1 − b1| + |a2 − b2| ≥ 2 both sides (35) are 0 by the remark
that f preserves the number of element in each population.

This proves exact lumpability. According to Proposition 7 of Baarir et al. (2011) the

entries of the transition matrix of the lumped process are given by |β̂|
|α̂|

∑
α∈α̂

(
Q|S̄

)
α,β

.

The number of elements of a partition α̂ = (a1, a2) is

|α̂| =
( | f̃ −1(1)|a1

| f̃ −1(2)|a2

)

so in the case a1 − b1 = 1, a1 = b2 discussed above we have

|β̂|
|α̂|

∑
α∈α̂

(
Q|S̄

)
α,β

= |β̂|
|α̂| (| f̃ −1(1)| − |B1|)m1→2

=

( | f̃ −1(1)|
b1

) ( | f̃ −1(2)|
b2

)

( | f̃ −1(1)|
a1

) ( | f̃ −1(2)|
a2

) (| f̃ −1(1)| − |B1|)m1→2

=

( | f̃ −1(1)|
a1 − 1

)

( | f̃ −1(1)|
a1

) (| f̃ −1(1)| − |B1|)m1→2

= a1

| f̃ −1(1)| − (a1 − 1)
(| f̃ −1(1)| − |B1|)m1→2 = a1m1→2
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which is the first case in (32). The rest of the sub-cases of |a1 −b1|+ |a2 −b2| = 1 are
identical, and the remaining two cases (|a1−b1|+|a2−b2| = 0, |a1−b1|+|a2−b2| ≥
2) are trivial. ��

Proof of corollary 1 To obtain the corollary we observe that exact lumpability implies
that the CTMC remains equiprobable with respect to the partition generated by f if the
starting distribution is equiprobable, and that the condition | f −1( f (α))| = 1 ensures
that this is case for the starting distribution P(X0 = α) = 1. Hence

P(Xt = β | X0 = α) = 1

| f −1( f (β))|P(Xt ∈ f −1( f (β)) | X0 = α)

= 1

| f −1( f (β))|
(

eQ̂| f (S̄)

)
f (α), f (β)

.

��
8.4 The explicit integrals of Sect. 5

TA∫

0

t3∫

0

t2∫

0

f1(t1, t2, t3)h1(t1, t2, t3)dt1dt2dt3

= eTA(λi +λ j +λl+λm+λr )

(λi + λ j + λl + λm + λr )(−λk + λl + λm + λr − λs)(−λi + λ j + λl + λm + λr − λt )

+ eTA(λi +λ j +λk+λs )

(λi + λ j + λk + λs)(λk − λl − λm − λr + λs)(−λi + λ j + λk + λs − λt )

− 1

(λi + λ j + λl + λm + λr )(λi + λ j + λk + λs)(2λi + λt )

− eTA(2λi +λt )

(−λi + λ j + λl + λm + λr − λt )(2λi + λt )(λi − λ j − λk − λs + λt )

∞∫

TA

TA∫

0

t2∫

0

f1(t1, t2, t3)h2(t1, t2, t3)dt1dt2dt3

= 1

θa − 2λi
θa

(
eTA(λi +λ j +λl+λm+λr )

(−λk + λl + λm + λr − λs)(−λi + λ j + λl + λm + λr − λt )

+ eTA(λi +λ j +λk+λs )

(λk − λl − λm − λr + λs)(−λi + λ j + λk + λs − λt )

− eTA(2λi +λt )

(−λi + λ j + λl + λm + λr − λt )(λi − λ j − λk − λs + λt )

)

∞∫

TA

t3∫

TA

TA∫

0

f1(t1, t2, t3)h3(t1, t2, t3)dt1dt2dt3

= eTA(λi +λ j )(eTA(λl+λm+λr ) − eTA(λk+λs )θ2
a

(−θa + 2λi )(−3θa + λi + λ j + λk)(−λk + λl + λm + λr − λs)
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∞∫

TA

t3∫

TA

t2∫

TA

f1(t1, t2, t3)h4(t1, t2, t3)dt1dt2dt3

= −eTA(λi +λ j +λl+λm+λr )θ3
a

(−θa + 2λi )(−3θa + λi + λ j + λk)(−6θa + λi + λ j + λl + λm)

TA∫

0

t3∫

0

t2∫

0

f2(t1, t2, t3)h1(t1, t2, t3)dt1dt2dt3

= eTA(λ j +λk+λl +λm+λr )

(λ j + λk + λl + λm + λr )(−λi + λl + λm + λr − λs)(−2λi + λ j + λk + λl + λm + λr − λt )

− eTA(λi +λ j +λk+λs )

(λi + λ j + λk + λs)(λi − λl − λm − λr + λs)(λi − λ j − λk − λs + λt )

− 1

(λ j + λk + λl + λm + λr )(λi + λ j + λk + λs)(2λi + λt )

− eTA(2λi +λt )

(−2λi + λ j + λk + λl + λm + λr − λt )(2λi + λt )(λi − λ j − λk − λs + λt )

∞∫

TA

TA∫

0

t2∫

0

f2(t1, t2, t3)h2(t1, t2, t3)dt1dt2dt3

= θa

(θa − 2λi )(λi − λl − λm − λr + λs)

(
− eTA(λ j +λk+λl +λm+λr )

−2λi + λ j + λk + λl + λm + λr − λt

− eTA(λi +λ j +λk+λs )

λi − λ j − λk − λs + λt
+ eTA(2λi +λt )

−2λi + λ j + λk + λl + λm + λr − λt

+ eTA(2λi +λt )

λi − λ j − λk − λs + λt

)

∞∫

TA

t3∫

TA

TA∫

0

f2(t1, t2, t3)h3(t1, t2, t3)dt1dt2dt3

= e(TA(λ j +λk ))(eTA(λl +λm+λr ) − eTA(λi +λs ))θ2
a

(−θa + 2λi )(−3θa + λi + λ j + λk)(−λi + λl + λm + λr − λs)

∞∫

TA

t3∫

TA

t2∫

TA

f2(t1, t2, t3)h4(t1, t2, t3)dt1dt2dt3

= eTA(λ j +λk+λl +λm+λr )θ3
a

(θa − 2λi )(−3θa + λi + λ j + λk)(−6θa + λ j + λk + λl + λm)
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