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Abstract The probability that an observed infection has been transmitted from a
particular member of a set of potential infectors is calculated. The calculations only
use knowledge of the times of infection. It is shown that the probabilities depend on
individual variability in latent and infectious times. The analysis are based on different
background information and different assumptions on the progress of infectivity. The
results are illustrated by numerical calculations and simulations.
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1 Introduction

When analyzing the spread of an infectious disease it is often of interest to identify
the infector of an infected person. This can seldom be done with complete certainty.
However, it may be possible to calculate the probability that a certain member of a
set of potential infectors is the true transmitter. How this can be done, using only
observations of the times of infection, is the topic of the present paper.

As in all statistical and probabilistic analysis we have to carefully consider how the
observed data are generated. In Sect. 3 we assume that the histories of the potential
infectors are unrelated, and in Sect. 4 that the candidates form a transmission tree,
i.e., the set of possible infectors consists of one original infected and a sequence of
persons that have infected each other.

One reason to calculate probabilities is to better understand the transmission dynam-
ics. In a study of SARS outbreaks Wallinga and Teunis (2004) analysed the possible
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impact of control measures. Given times of infection, they could by adding the prob-
abilities that a certain infector was responsible for future infections, estimate the
expected number of secondary infections. Cauchemez and Ferguson (2012) also study
the related, and more complex, problem of how to find the most probable transmission
chain. In their analysis variations in infectivity of potential infectors were related to
observable quantities.

Understanding transmission routes has become an important tool in the analysis of
epidemic outbreaks. E.g. Cauchemez et al. (2011) study how transmission of influenza
is affected by social networks based on data from a community outbreak, and Hens
et al. (2012) analyse a school-based outbreak using auxiliary information on possible
transmission routes. These analysis are also based on models with non-individual
infectivity.

The probabilities, that we are interested in will depend on generation times, i.e.
the times between a primary infection and its corresponding secondary infections.
Generation times and the related concept of contact intervals are discussed by e.g
Svensson (2007), Tomba et al. (2010) and Kenah (2011). Individual random variations
in infectivity will have substantial impact. In the examples used in this paper the
variations are assumed to be generated by a SEIR model with random latent and
infectious periods. Basic assumptions also concern homogeneous mixing, and constant
infectivity during the infectious period. Of course, it is possible to analyze more
complicated models, but our main purpose here is to illustrate potential consequences
of individual variations and to suggest possibilities to perform calculations. For this
reason we use a simple setting. The models and the notation are presented in Sect. 2.

Section 5 gives numerical examples that illustrate that the assumptions underlying
the analysis are crucial. In the simulated examples, as will certainly be the case for
observations from real epidemics, the probabilities found, do in general not give a very
precise indication of who was the infector for a specific case. Thus other information
than the times of infection is required to precisely indicate the infector.

In Sect. 6 how the findings in the numerical examples may be generalized is dis-
cussed.

2 Basic model and notation

We will study a situation where v infections are observed to occur at times τ1 < τ2 <

· · · < τν . Without loss of generality we may assume that τ1 = 0.

2.1 Infectivity and generation times

It is assumed that an infected person spreads the infection according to an intensity
process that depends on the time after the infection, i.e. the age of the infection. The
intensity processes may be individual and random, but the random intensity functions
for different individuals are assumed to be independent. We consider spread in a
closed population that is assumed to be homogeneously mixing. The victim for a new
infection is a randomly chosen member of the population.
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Probabilities in the presence of variability in latent and infectious times 953

The intensity process for the i’th infected is denoted by κi . The interpretation is that
the infected person has potentially infectious contacts according to a Poisson process
with time-varying intensity κi (a), where a is the age of the infection. The contact will
lead to a transmission if the contacted is susceptible. If there exists immunity in the
population the occurrence of new infections will be influenced by this. Let s(t) be the
proportion of susceptible persons in the population at time t . If the i’th infected is
infected at time τi this person will cause secondary infections according to a Poisson
process with intensity s(t)κi (t − τi ), t > τi .

In this model the total infectivity that individual i spreads is

λi =
∞∫

0

κi (a)da (1)

The parameter λi can be interpreted as the mean number of possible infectious contacts
this infected individual makes.

The basic reproduction number, i.e. the expected number of secondary infections
in a totally susceptible population, is then

R0 = E(λi ) =
∞∫

0

g(a)da, (2)

where

g(a) = E(κi (a)). (3)

The cohort (or basic) generation time density, k (cf Svensson 2007; Tomba et al.
2010), corresponds to g normalized to have total mass 1, i.e.,

k(a) = E(κi (a))

R0
= g(a)

R0
. (4)

The mean generation time is defined as

∞∫

0

ak(a)da. (5)

2.2 Models for individual variations

In order to illustrate the effects of individual variability we will use a model of the
type generally referred to as a SEIR model. An infection is assumed to be followed by
a latent period, during which the infection is not transmitted. After the latent period
follows an infectious period. We will here, for simplicity, assume that a person makes

123



954 Å. Svensson

infectious contacts with a constant non-random rate β, that is the same for all infected.
If an infectious person makes such a contact with a susceptible person the infection is
transmitted.

The duration of the latent and infectious periods may vary between individuals. Let
Li be the duration of the latent period and Xi the duration of the infectius period of
the i’th infected. Furthermore let Ii (a) be the indicator function that the i’th infected
is infectious at time a after the infection, i.e.,

Ii (a) =
{

1 if Li ≤ a ≤ Li + Xi ,

0 otherwise.

Then

κi (a) = β Ii (a). (6)

Obviously λi = β Xi and R0 = βE(X).
Assume that the pairs Li and Xi are independent and that their respective distribu-

tion functions are HL and HI , with densities hL and hI , then

k(a) = HL(a) − ∫ a
0 HL(a − s)hI (s)ds

E(X)
. (7)

If there is no latent period, i.e. when the infectious period starts immediately after
infection, and

k(a) = 1 − HI (a)

E(X)
. (8)

Furthermore

p(a) = Pr(Ii (a) = 1) = E(X)k(a), (9)

and the probability that the i’th infected is infectious at time t is

p(t − τi ) = E(X)k(t − τi ).

As examples we will use three different cases where the latent and infectious periods
are independent and gamma-distributed. To make the cases comparable we will choose
parameter values so that the mean length of the latent and the mean generation times
in each case are approximately what is assumed for seasonal influenza, with day as
the time unit (cf Carrat et al. 2008).

In the first case both the latent and the infectious periods are assumed to be expo-
nentially distributed. This implies a large individual variation. In the second case the
variation is smaller, and in the third case the times are assumed to be constant. Thus
in the third case there is no individual variation.

123



Probabilities in the presence of variability in latent and infectious times 955

Case 1: Li is exponential distributed with intensity μL , and Xi is exponential
distributed with intensity μI . If μL �= μI

k(a) = μLμI

μI − μL
(exp(−μLa) − exp(−μI a)),

and

p(a) = μL

μI − μL
(exp(−μLa) − exp(−μI a)).

If μ = μL = μI then

k(a) = μ2a exp(−μa),

and

p(a) = μa exp(−μa).

The mean generation time is 1/μL + 1/μI . In the calculations we have choosen
μL = 1, and μI = 1/2. This gives the mean generation time 3.

Case 2: Li is gamma distributed with shape parameter α and rate parameter μLα,
and Xi is also gamma distributed with shape parameter δ and rate parameter μI δ.
The means of the latent and infectious periods are 1/μL and 1/μI . The mean
generation time is 1/μL + 1/μI

1+δ
2δ

(cf Svensson 2007). In the calculations we
have choosen α = δ = 8, μL = 1, and μI = 9/32. This gives the mean generation
time 3.

Case 3: Li and Xi are constant. This corresponds to α = δ = ∞. To obtain
the same mean latent and generation times as in the two previous cases we chose
Li ≡ 1 and Xi ≡ 4.

Figure 1 illustrates the cohort generation time density for the three cases. It can be
observed that large variability results in long tails of the generation time density.

3 Unrelated potential infectors

In this section we will assume that the first ν − 1 infections are unrelated and derive
the probability that the i’th infected infects the v’th. Let t = τν .

3.1 Non-random infectivity

Suppose that ν −1 Poisson process are running in parallel and that they have intensity
functions v1(t), . . . vν−1(t). Given that an event happens in one of these processes at
time t the probability that it occurs in the i’th process is
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Fig. 1 k(a), for case 1 (solid), case 2 (dashed), and case 3 (dotted)

vi (t)∑
j v j (t)

.

(The summation is for j = 1, . . . , ν − 1).
In case when all individuals have the same infectivity intensity the probability that

the i’t infector is responsible for the ν’th infection, at time t = τν , can be calculated
as

Pa
i = s(t)k(t − τi )∑

j s(t)k(t − τ j )
. (10)

or equivalently (according to (9))

Pa
i = p(t − τi )∑

j p(t − τ j )
= wp(t − τi ), (11)

where w is a constant such that
∑

Pa
i = 1.

As will be clear from the following discussion the expression is not valid if the
intensity processes are random. In such cases the probabilities (10) and (11) can, at
best, be regarded as approximations.

3.2 Random infectivity

We will now consider the possibility that the infectious processes are random. Due
to the assumption of homogeneous mixing and the assumption that all infectious
individuals are equally infectious during their infectious periods
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Probabilities in the presence of variability in latent and infectious times 957

Zi = Ii (t − τi )∑
j I j (t − τ j )

(12)

is, conditional on the latent and infectious times, the probability that the infection
is transmitted from infector i . Without the conditioning Zi should be regarded as a
random variable.

Since there has to be at least one infector it is a necessary restriction that

∑
j

I j (t − τ j ) > 0.

If there is no other relation between the potential infectors this is the only restriction
that has to be considered.

The probability that the i’th infected is the infector can be expressed as:

Pu
i = E

⎛
⎝Zi |

∑
j

I j (t − τ j ) > 0

⎞
⎠

=
∑ν−1

r=1
1
r Pr

(
Ii (t − τi ) = 1,

∑
j �=i, I j (t − τ j ) = r − 1

)

Pr
(∑

j I j (t − τ j ) > 0
)

= p(t − τi )

E
(

1
1+∑

j �=i I j (t−τ j )

)

Pr
(∑

j I j (t − τ j ) > 0
)

= p(t − τi )wi . (13)

Due to construction (cf Eq. 12)
∑

Pu
i = ∑

p(t − τi )wi = 1. Comparing the
probabilities Pu

i and Pa
i we find that

Pu
i

Pa
i

∼ wi . (14)

Since the factors wi depend on i the probabilities will differ from those given by (11).
Note that

∑
j �=i I j (t − τ j ) is the sum of ν − 2 independent random variables. These

random variables are stochastically ordered according to the probabilities p(t − τ j ),
which are proportional to k(t − τ j ). Thus, the sum tends to be large when k(t − τi ) is
small.

If there is no latent time the ordering of the τi ’s imply that k(t − τi ) and thus wi

increases with i (cf 8). As a consequence the probabilities Pa
i are, in this case, too

large for long generation times.
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4 Spread in a transmission tree

A possible scenario is that we know that the infected and the transmission links form
a tree with its root at the first infected. This can be the case if the observations come
from a study of infectious spread within a family, a school class, or some other small
closed population. If we observe a transmission tree we know that at least one of the
candidates is infectious at any time of infection τ2, . . . , τν . This means that

∑
j<m

I j (τm − τ j ) > 0.

for all 2 ≤ m ≤ ν.
A transmission tree may be a part of a larger transmission chain. In order to have a

well defined situation we will assume that the observed infections are the first emerg-
ing from an initial infector. We will then have another restriction, namely that the
potential infectors represent all infections before time t . If this is the case we can
also calculate the susceptible proportion of the population. If the population has n
susceptible members at the time of the initial infection the assumption that contacts
are made uniformly at random in the population leads to that s(t) = 1 − (i − 1)/n
when τi ≤ t < τi+1.

In this setting it is of interest to calculate the probability that the i’th infected
infected the j’th. Let

Zi j = Ii (τ j − τi )∑
m Im(τ j − τm)

. (15)

The probabilities are

Pc
i j = E(Zi j |

∑
j<m

I j (τm − τ j ) > 0 if m ≤ ν and only ν infected up to τν). (16)

We have not been able to find any simple closed version. In the following section we
suggest a simulation procedure to do the calculations. It turns out that the probabilities
(16) will depend on R0 (via β, i.e. the rate of potential infectious contacts). Since the
actual infectivity in a population also depends on the proportion, s(t), of susceptible
individuals the probabilities will also depend on the population size.

4.1 A simulation procedure

We first assume that the infectivity functions, (κ1, . . . , κν−1) for the first ν−1 infected
in the chain are known. The total infectious force at time τ ≤ τν is

U (τ ) = βs(τ )

ν−1∑
i=1

κi (τ − τi ).
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Probabilities in the presence of variability in latent and infectious times 959

We start by deriving a density for ξ = (τ2, . . . , τν). Infections occur according
to a Poisson process with the random intensity process U . It is random because it
depends dynamically on when previous infections occured. In fact, if we subtract the
integrated infectious force from the process that counts the number of infections from
the initiation and forwards we obtain a martingale. From general theory, (cf Bremaud
1981, pg 226) it follows that the density (related to a standard Poisson process) of the
random vector ξ is

ν∏
i=2

U (τi ) exp

⎛
⎝

τν∫

0

(1 − U (τ )) dτ

⎞
⎠ .

The probability that it is the i’th infector that causes the j’th infection is

βs(τ j )κi (τ j − τi )

U (τ j )
= κi (τ j − τi )∑

m κm(τ j − τm)
.

If we take into consideration that the infectivity functions are random we find that the
conditional expectations can be expressed as

Pc
i j =

E
(

βs(τ j )κi (τ j −τi )

U (τ j )

∏ν
k=2 U (τk)exp(− ∫ τν

0 U (τ )dτ)
)

E
(∏ν

i=2 U (τi )exp(− ∫ τν

0 U (τ )dτ)
) .

Let (κr
1 , . . . , κr

ν−1), r = 1, . . . , m be m sets of simulated infectivity functions, and
let Ur be the corresponding total infectivity functions. We can estimate Pc

i j with

P̂c
i j =

∑m
r=1

βs(τ j )κ
r
i (τ j −τi )

Ur (τ j )

∏ν
k=2 Ur (τk)exp(− ∫ τν

0 Ur (τ )dτ)∑m
r=1

∏ν
i=2 Ur (τi )exp(− ∫ τν

0 Ur (τ )dτ)
.

Observe that if some Ur (τ j ) = 0, j = 2, . . . , ν, then there cannot (with probability 1)
exists a chain with the given times of infection. Simulated values of the infectivity
force function that leads to this will not give any contribution to the estimate.

For the models described in Sect. 2 it is enough to know the latent and infectious
times to find the infectivity functions. Let W = (L1, X1, . . . , Lν−1, Xν−1). Further-
more let Ji (τ, W ) equal 1 if the i’th infected is infectious at time τ , which it is when
τi + Li ≤ τ < τi + Li + Xi , and 0 otherwise. The number of the potential infectors
that are infectious at time τ is J (τ, W ) = ∑

Ji (τ, W ), and U (τ ) = βs(τ )J (τ, W ).
Let ai, j be the total time the i’th infector is infectious before the j’th infection,

then

ai, j = max(min(τ j − Li − τi , Xi ), 0).
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Of course ai, j can only be positive if i < j . Since s(τ j ) = 1 − ( j − 2)/n it follows
that the sum of all infectious times up till time τν can be calculated as

T (W ) =
ν−1∑
i=1

ν−1∑
j=1

(
1 − j − 1

n

)
(ai, j+1 − ai, j ).

Now let W 1, . . . , W m be a sequence of independent simulated random elements
reflecting ν − 1 latent and infectious times. The probability that the i’th infector
is the one who infects the j’th at time τ j can be estimated by

∑m
r=1

Ji (τ j ,Wr )

J (τ j ,Wr )

∏v
k=2 J (τk, W r )) exp(−βT (W r ))∑m

r=1
∏v

k=2 J (τk, W r )) exp(−βT (W r ))
.

In the following calculations we have chosen to make sufficiently many simulation
so that

m∑
i=1

I(
ν∏

j=2

J (τ j ) > 0) = km,

where km is a predesigned number. Thus the simulations have to produce km possible
chains.

5 Numerical examples

The expressions Pa
i , Pu

i and Pc
i j depend on ν and (τ1, . . . , τν) as well as on the

assumed cohort generation time. Pc
i j also depends on β or equivalently on R0.

To illustrate this we first consider a situation where there are only three infected.
The second example illustrates a more complicated situation with a longer observed
transmission tree.

5.1 Two possible infectors

The probability that the first infected is the true infector will depend both on τ3 = t ,
i.e., the time when the third infected was infected and τ2 = s, the time for the second
infection.

The calculations are relatively simple if there is no latency time and the infectious
periods are exponentially distributed with rate μI . In this case explicit expression of
the probabilities that the initial infected infects the third are
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Probabilities in the presence of variability in latent and infectious times 961

Fig. 2 Probability that the first infected has infected the third infected as a function of the time of infection
for the second infected when the third infection occurs at time t = 3. Pa

1 case 1 (solid) and case 2 (dashed).
Pu

1 case 1 (dotted) and case 2 (dotdashed). For case 3, Pa
1 = Pu

1 longdash)

Pa
1 = 1

1 + exp(μI s)
,

Pu
1 = 1 − exp(−μI (t − s))/2

1 + exp(μI s) − exp(−μI (t − s))
,

and

Pc
13 = 1/2.

These three probabilities are concerned with the same event but calculated under
different assumptions. Observe that they are all different and ordered as Pu

1 ≤ Pa
1 ≤

Pc
13.

If there is a latent period the calculations are more complicated. We will consider
the three cases defined in Sect. 2. We assume that the population is large, so that the
fact that one person is infected does not influence the probability of further infections.
The probabilities, Pa

1 and Pu
1 are illustrated in Fig. 2. The difference between Pa

1 and
Pu

1 is relatively small but depends heavily on the generation time model used. If there
is no individual variability Pa

1 = Pu
1 .

Figures 3 and 4 illustrate the probabilities in case the infections form a tree. It is seen
that the influence of R0 is considerable in cases where there is a substantial individual
variability. As can be expected it is less in case 2 than in case 1. In case 2 the relation
is illustrated only for τ2 > 0.4. The probability for smaller time distance between the
first and second infection will be small. If there is no individual variability, as in case
3, Pa

1 = Pu
1 = Pc

13.
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Fig. 3 Probability that the first infected has infected the third infected as a function of the time of infection
for the second infected (s > 0.4) when the third infection occurs at time t = 3. Pc

13 for R0 = 1.2 (solid),
2 (dashed) and 4 (dotted). Model as in case 1

Fig. 4 Probability that the first infected has infected the third infected as a function of the time of infection
for the second infected (s > 0.4) when the third infection occurs at time t = 3. Pc

13 for R0 = 1.2 (solid),
2 (dashed) and 4 (dotted). Model as in case 2

5.2 Observation of a transmission tree

To illustrate the use of the calculations in a more complicated situation we will
use a simulated example. The simulated epidemic takes place in a large population.
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Probabilities in the presence of variability in latent and infectious times 963

This means that we do not have to consider effects of changed number of suceptible
members in the population. The spread is simulated with a model as in case 2 described
above and with R0 = 2. The times of infection are

(τ1, . . . , τ10, τ11)

= (0, 0.751, 1.622, 3.009, 3.248, 3.290, 3, 527, 3.963, 4.158, 4.371, 4.425).

In sequence the infectors were (the first infection comes from outside the population)

(−, 1, 2, 3, 3, 3, 4, 7, 4, 8, 4).

This means that the eleventh infection occured at t = 4.425 and that the real infector
in this simulated example was the fourth infected.

We can now calculate the probabilities that the i’th infected infected the j’th infected
(i < j) given that the eleven observed infections form a tree. The probabilities for case
1 are presented in Table 1, for case 2 in Table 2, and for case 3 in Table 3. The values
of Pc

i j are derived from simulations as described above with km = 5, 000 and with
R0 = 2. In case 3, with no individual variation, there is no need for simulations, since
all possible infectors are equally likely. This also implies that R0 does not influence
the probabilities.

In order to illustrate the importance of R0 for the probabilities Table 4 gives the
estimates of the expected number of infections due to the different infected under
the different models and for different values of R0. These numbers are the sums of the
probabilities related to the i’th infected. The results differ for the three cases. If there
is much variability, as in case 1, there is a considerable effect of R0.

Table 1 Estimated probabilites that the i’th infected infected the j’th infected, using the model as in case
1 with R0 = 2

i j

2 3 4 5 6 7 8 9 10 11

1 1 0.66 0.27 0.22 0.21 0.17 0.11 0.09 0.08 0.07

2 – 0.34 0.36 0.30 0.29 0.23 0.16 0.13 0.11 0.11

3 – – 0.37 0.34 0.33 0.28 0.20 0.17 0.14 0.13

4 – – – 0.14 0.15 0.17 0.17 0.16 0.15 0.14

5 – – – – 0.02 0.08 0.13 0.14 0.14 0.13

6 – – – – – 0.07 0.13 0.14 0.14 0.13

7 – – – – – – 0.10 0.12 0.12 0.12

8 – – – – – – – 0.05 0.08 0.09

9 – – – – – – – – 0.05 0.06

10 – – – – – – – – – 0.01
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Table 2 Estimated probabilites that the i’th infected infected the j’th infected, using the model as in case
2 with R0 = 2

i j

2 3 4 5 6 7 8 9 10 11

1 1 0.77 0.33 0.31 0.31 0.28 0.19 0.14 0.11 0.10

2 – 0.23 0.36 0.35 0.35 0.34 0.26 0.21 0.16 0.15

3 – – 0.31 0.34 0.35 0.35 0.28 0.23 0.19 0.18

4 – – – 0.00 0.00 0.02 0.14 0.17 0.18 0.18

5 – – – – 0.00 0.00 0.07 0.11 0.15 0.15

6 – – – – – 0.00 0.05 0.10 0.14 0.14

7 – – – – – – 0.01 0.04 0.08 0.09

8 – – – – – – – 0.00 0.00 0.01

9 – – – – – – – – 0.00 0.00

10 – – – – – – – – – 0.00

Table 3 Estimated probabilites that the i’th infected infected the j’th infected, using the model as in
case 3

i j

2 3 4 5 6 7 8 9 10 11

1 1 1 1/3 1/3 1/3 1/3 1/3 1/4 1/6 1/6

2 – 0 1/3 1/3 1/3 1/3 1/3 1/4 1/6 1/6

3 – – 1/3 1/3 1/3 1/3 1/3 1/4 1/6 1/6

4 – – – 0 0 0 0 1/4 1/6 1/6

5 – – – – 0 0 0 0 1/6 1/6

6 – – – – – 0 0 0 1/6 1/6

7 – – – – – – 0 0 0 0

8 – – – – – – – 0 0 0

9 – – – – – – – – 0 0

10 – – – – – – – – – 0

The probabilities do not depend on R0

5.2.1 The importance of the length of the observed chain

It should be observed that when calculating the probabilities Pv
i j we have conditioned

on the event that there is a transmission chain of at least length ν. If we only wish
to calculate the probabilities for the ν1 < ν first infections and only condition on the
event that at least ν1 infections have been observed we will get other probabilities.
The same is of course true if we know more infections occur after time τν . To illustrate
this we will reanalyze the same situation as in Sect. 5.2 using only the four first
infections. The estimated probabilities are given in Table 5
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Table 4 Estimated expected number of secondary infections due to i’th infected

Case R0 Infector

1 2 3 4 5 6 7 8 9 10

1 1.2 3.13 2.01 1.86 1.02 0.61 0.61 0.44 0.20 0.10 0.01

1 2 2.88 2.03 1.94 1.08 0.64 0.61 0.46 0.22 0.10 0.01

1 4 2.23 2.02 1.40 1.18 0.66 0.66 0.48 0.25 0.11 0.02

2 1.2 3.59 2.39 2.20 0.68 0.48 0.43 0.22 0.01 0.00 0.00

2 2 3.54 2.40 2.23 0.68 0.48 0.43 0.22 0.01 0.00 0.00

2 4 3.38 2.49 2.34 0.68 0.46 0.43 0.20 0.01 0.00 0.00

3 – 4.25 2.25 2.25 0.58 0.33 0.33 0 0 0 0

Table 5 Estimated probabilites
that the i’th infected infected the
j’th infected, using the model as
in case 1 with R0 = 2

i j

2 3 4

1 1 0.61 0.24

2 – 0.39 0.34

3 – – 0.41

Table 6 Estimated probabilities
for possible chains with four
infected using the model as in
case 1 with R0 = 2

(i1, i2, i3, i4) list the infectors in
time order
– Denotes an infector from
outside

Chain Probabilities

(–,1,1,1) 0.20

(–,1,1,2) 0.18

(–,1,1,3) 0.23

(–,1,2,1) 0.05

(–,1,2,2) 0.16

(–,1,2,3) 0.18

If there is no individual variation, as in case 3, the probabilities can be read from
the upper left-hand corner of Table 3.

5.2.2 Simultaneous probabilities

We have calculated marginal probabilities that the i’th infected infected the j’th. The
events that the i’th infected infected both the j’th and the i∗’th infected infected the
j∗’th are not independent. Thus the simultaneous probability is in general not equal
to the product of the corresponding marginal probabilities. However, this will be true
if there is no individual variation, as in case 3. To illustrate this we have calculated the
probabilities for the six possible chains in the example treated in the previous section
with four infected in the tree. These probabilities are given in Table 6.
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For trees with more observations the number of possibilities will soon get over-
whelmingly large. For the chain with ν = 11 there are 10! possible trees to consider,
most of them with very small probabilities.

Observe that the expected number of secondary infections depends on the marginal
probabilities only.

6 Discussion

Any stochastic analysis of data on transmission of infections will have to depend on
some more or less complex model. It is necessary to judge which sources of variation
can influence the conclusions and therefore should be taken into account. The purpose
of this paper is to illustrate how individual variability in latent and infectious times
can influence the probability that an infection is transmitted from a particular infective
person. By analyzing a special and very simple model we have illustrated that such
individual variations are important. This will also be the case in more complicated
and realistic models. The effect will be larger the more individual variation there is.
In a particular study individual variability in infectivity may or may not be important
depending on the purpose of the study. The possibility that important conclusions can
be influenced are worth to be considered.

We have considered two very different situations. In the first we investigate where
an infection was transmitted under the assumption that there is no connection between
the potential infectors. In the second situation we consider that we have a tree of
infections and try to calculate the (marginal) probabilities for different transmission
links. In both situations we have conditioned on the assumed observation scheme.
The conditioning has consequences. It is shown in the numerical examples that the
length of the observed transmission tree influences the probabilities. This is reason-
able, since if we know that many individuals in a population eventually are infected
we can conclude that the early infectors will probably have been powerful transmit-
ters. If they were not, it would be likely that the infection tree would have stopped
early.

We have throughout assumed homogeneous mixing, in the sense that there is no
prior differentiation between transmission links, i.e., all possible pairs of persons can
be involved in a transmission. The only information that used is the times of infections.
In real cases other information may be available, such as family connections, spatial
or social closeness. Another interesting possibility would be to use data on genetic
diversity of the infectious agent (cf Jombart et al. 2011). There may also be other
information such as all infections in an outbreak are observed. If that is the case also
other parameters of interest may be estimated, e.g. R0.

A more surprising result may be that in a transmission tree not only the timing of
infections but also the strength of infectivity measured by e.g. R0 is important. This is
the case if there is individual variation in infectivity. Heuristically we can understand
this as an effect of the conditioning. If the infections are sparse and R0 is high it can
be explained by short infectious times.

Exact times are often difficult to observe. It may be of interest to consider other
times related to the infections. Removal times are the times when the infected stops
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being infectious. An analysis of transmission routes based on observations of removal
times will be complicated by the possibility that an infected person may be removed
before the removal of its infector. Another possibility is that infections are recorded
when the first symptoms occur. For simplicity we can assume that the occurrence
of symptoms coincides with the start of the infectious period. This implies that an
infected is observed at the end of the latent period. In this case the distance between
the observation times of the infector and the infected are related to the latent time of
the infected person. The distance between infection times are related to the latent time
of the infector. The analysis above is built on the random event that the i’th infector
is infectious at the time the j’th infected is infected. Let σ1, . . . , σν be the observed
times of first symptoms and let the indicator Ĩi (σ j − σi ) equal 1 if the i’th observed
is infectious at the time the j’th observed is infected and 0 if not. If L j is the latent
time of the j’th observed and a = σ j − σi then

Pr( Ĩi (a) = 1 | L j ) = 1 − HI (a − L j ). (17)

Thus Pr( Ĩi (a) = 1) = ∫ a
0 (1− HI (a − s))hL(s)ds. If the duration of the latent and

infectious times are independent (for the same individual), as is assumed in the three
cases considered above, this probability equals the probability p(a) given by Eq. (9).
However, when calculating the expectation of Zi (cf Eq. 12) or Zi j (cf Eq. 15) we can
no longer assume that the indicators involved are independent. This will require other
methods of calculations resulting in other probabilities. However, we expect that the
qualitative results of an analysis based on times of occurrence of symptoms will be
similar to the results obtained above.

References

Bremaud P (1981) Point processes and queues. Martingale dynamics. Springer, New York, Heidelberg,
Berlin

Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron AJ (2008) Time lines
of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol
167(7):775–785

Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, Ferguson NM, Swerdlow W, The Penn-
sylvania H1N1 working group (2011) Role of social networks in shaping disease transmission during a
community outbreak of 2009 H1N1 pandemic influenza. PNAS 108(7):2825–2830

Cauchemez S, Ferguson NM (2012) Methods to infer transmission risk factors in complex outbreak data.
J R Soc Interf 9(68):456–469

Hens N, Calatayud L, Kurkela S, Tamme T, Wallinga J (2012) Robust reconstruction and analysis of outbreak
data: Influenza A(H1N1)v. Transmission in a school-based population. Am J Epidemiol 176(3):196–203

Jombart T, Eggo RM, Dodd PJ, Balloux F (2011) Reconstructing disease outbreaks from genetic data: a
graph approach. Heredity 106:383–390

Kenah E (2011) Contact intervals, survival analysis of epidemic data, and estimation of R0. Biostatistics
12(3):548–566

Svensson Å (2007) A note on generation times in epidemic models. Math Biosci 208(1):300–311
Tomba GS, Svensson Å, Asikainen T, Giesecke J (2010) Some model based considerations on observing

generation times for communicable diseases. Math Biosci 223(1):24–31
Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar

impacts of control measures. Am J Epidemiol 160(6):509–516

123


	Who was the infector---probabilities in the presence of variability in latent and infectious times
	Abstract
	1 Introduction
	2 Basic model and notation
	2.1 Infectivity and generation times
	2.2 Models for individual variations

	3 Unrelated potential infectors
	3.1 Non-random infectivity
	3.2 Random infectivity

	4 Spread in a transmission tree
	4.1 A simulation procedure

	5 Numerical examples
	5.1 Two possible infectors
	5.2 Observation of a transmission tree
	5.2.1 The importance of the length of the observed chain
	5.2.2 Simultaneous probabilities


	6 Discussion
	References


