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Abstract In vitro tissue engineering is emerging as a potential tool to meet the high
demand for replacement tissue, caused by the increased incidence of tissue degener-
ation and damage. A key challenge in this field is ensuring that the mechanical prop-
erties of the engineered tissue are appropriate for the in vivo environment. Achieving
this goal will require detailed understanding of the interplay between cell prolifera-
tion, extracellular matrix (ECM) deposition and scaffold degradation. In this paper,
we use a mathematical model (based upon a multiphase continuum framework) to
investigate the interplay between tissue growth and scaffold degradation during tissue
construct evolution in vitro. Our model accommodates a cell population and cul-
ture medium, modelled as viscous fluids, together with a porous scaffold and ECM
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deposited by the cells, represented as rigid porous materials. We focus on tissue growth
within a perfusion bioreactor system, and investigate how the predicted tissue com-
position is altered under the influence of (1) differential interactions between cells
and the supporting scaffold and their associated ECM, (2) scaffold degradation, and
(3) mechanotransduction-regulated cell proliferation and ECM deposition. Numeri-
cal simulation of the model equations reveals that scaffold heterogeneity typical of
that obtained from μCT scans of tissue engineering scaffolds can lead to significant
variation in the flow-induced mechanical stimuli experienced by cells seeded in the
scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore,
preferential adherence of cells to the ECM in favour of the artificial scaffold appears
to have no significant influence on the eventual construct composition; adherence of
cells to these supporting structures does, however, lead to cell and ECM distributions
which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phe-
nomena have important ramifications for the mechanical integrity of engineered tissue
constructs and their suitability for implantation in vivo.

Keywords Multiphase · Scaffold heterogeneity · Perfusion bioreactor

Mathematics Subject Classification (2000) 92B05

1 Introduction

Mathematical modelling of tissue growth is a wide field of research, aiming to provide
a more complete understanding of the myriad biological and biophysical processes
that contribute to tissue growth. Such theoretical models underpin the emerging field
of in vitro tissue engineering, which, by the creation of replacement tissue in the lab-
oratory, has the potential to alleviate the shortage of replacement tissue available for
implantation into patients. A typical method for generating such implants entails seed-
ing a biodegradable porous scaffold with cells; subsequent incubation in a bioreactor
allows the cells to colonise the porous scaffold (termed a tissue construct). On implan-
tation, the degrading scaffold is replaced by extracellular materials such as collagen
and proteoglycans, which are laid down by the cells (Freed et al. 1994). Ensuring that
the rates of nascent tissue growth and scaffold degradation (e.g., due to hydrolysis)
are appropriately matched is therefore crucial in maintaining the mechanical integrity
of the construct, a factor of especial importance for load-bearing constructs, such as
bone implants (Wu and Ding 2004). The biological processes which contribute to
tissue construct growth operate on disparate spatio-temporal scales and range from
intracellular gene networks to tissue-level mechanics; reviews are given by Curtis and
Riehle (2001), Cowin (2000), Cowin (2004), Sipe (2002) and Burdick and Mauck
(2010). In this paper, we concentrate on a tissue-scale description of tissue growth,
and employ a continuum model to focus on the way in which the properties of the
supporting scaffold influence the structure of the resulting tissue construct.

In addition to the scaffold’s mechanical properties, its chemical features are of great
importance. For example, most cell types are anchorage-dependent, their growth being
affected by interactions between a substrate or deposited extracellular matrix (ECM);
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the surface chemistry of the scaffold crucially affects such interactions. Adherence to
polymer scaffolds commonly employed in tissue engineering applications is mediated
by adsorption of deposited ECM molecules onto the scaffold surface or by, for instance,
artificially embedded cell recognition molecules (Freed and Vunjak-Novakovic 1998;
Nikolovski and Mooney 2000). The type and density of such molecules may vary
dramatically throughout the scaffold due to, e.g., inhomogeneous ECM deposition,
leading to spatial variations in cell adhesion characteristics, or preferential adherence
to ECM or other deposited materials over artificial scaffolds.

Controlling the biochemical environment of cells (both with respect to nutri-
ent/oxygen delivery and the provision of growth factors and other cell-signalling
molecules) is key to producing constructs of a size appropriate for implant, while
minimising the necrotic core which often forms at the centre of tissue constructs
in static culture. To this end perfusion bioreactors are frequently employed, which
exploit advection of culture medium to enhance mass transport. This approach also
provides mechanical stimulation to cells contained within a porous scaffold via culture
medium flow-induced shear stress, and can allow for the addition of cyclical compres-
sive loads. For example, El Haj et al. (1990) have developed a perfusion/compression
bioreactor system which comprises a poly(l-lactic acid) (PLLA) scaffold, through
which culture medium is perfused via a peristaltic pump; macroscale compression
of the scaffold may also be effected by the addition of a piston. (The layout of the
bioreactor system in the absence of macroscale compression is depicted in Fig. 1.)
Cells contained within a porous scaffold are therefore subjected to culture medium
flow-induced shear stress and macroscale strain, in addition to mechanical interactions
which exist between adjacent cells and between cells and scaffold/ECM. Other strate-
gies for applying mechanical stimulation to tissue engineered constructs are reviewed
by Martin et al. (2004) and Cartmell and El Haj (2005). The process by which such
stimuli are integrated into the cellular response, for example, in terms of its prolifera-
tive behaviour, is known as mechanotransduction. The biochemical and biomechanical
environment required for optimum growth is specific to the tissue under consideration;
bespoke bioreactors are therefore required to provide appropriate cues for different
tissue engineering applications. Well-studied examples include osteocytes (terminally-
differentiated bone cells), which are known to be sensitive to fluid shear stress (Bakker
et al. 2004a); and chondrocytes, whose metabolism and maintenance of ECM integrity
are regulated by mechanical stress (Urban 1994; Wang et al. 2010). Indeed, in El Haj
et al. (1990) attention focussed on the influence of such mechanical stimulation on
bone tissue growth.

In what follows, we employ a mathematical model relevant to perfusion bioreac-
tor systems in which cells are cultivated within a porous scaffold. Our formulation
accommodates the cells’ progression from a proliferative to an apoptotic phenotype,
via an ECM depositing phase, in response to changes in the local cell volume fraction
(a methodology for accomodating mechanotransduction-mediated cell proliferation
in response to a range of mechanical stimuli is given in O’Dea et al. (2008, 2010) and
Osborne et al. (2010)), as well as considering in detail the interactions between the
cells and their supporting structures.

A variety of approaches has been employed to model tissue growth, their respective
benefits depending on the specific application under consideration. Here, we study an
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Fig. 1 Layout of the bioreactor system of El Haj et al. (1990)

extension to a recently-developed continuum model (O’Dea et al. 2010) in which
we consider the evolution of the spatial distribution of PLLA scaffold and ECM
density. We employ a multiphase formulation which enables us to incorporate inter-
actions between the many constituent materials which comprise biological tissue;
we model explicitly cell–cell and cell–scaffold/ECM interactions as well as mass
transfer between phases (representing cell proliferation, ECM deposition and scaf-
fold degradation). Such multiphase approaches have been widely employed in indus-
trial applied mathematics (Drew and Segel 1971) and, more recently, modelling of
tumour growth and in vitro tissue engineering processes; examples include Breward
et al. (2002), Byrne and Preziosi (2003), Franks and King (2003), Araujo and McEl-
wain (2005), Lemon et al. (2006), Lemon and King (2007), Wilson et al. (2007),
O’Dea et al. (2008), O’Dea et al. (2010), Osborne et al. (2010), and references therein.
Reviews are given by, e.g., Preziosi and Tosin (2009) and O’Dea et al. (2012).

In O’Dea et al. (2010), tissue growth within a perfusion bioreactor was modelled,
using a three-phase continuum model in a 2D channel geometry. In common with
multiphase models of similar biological systems (Landman and Please 2001; Byrne
and Preziosi 2003; Franks and King 2003; Lemon et al. 2006), the cells and associ-
ated ECM were represented as a viscous fluid phase that is distinct from the culture
medium; and the porous scaffold was modelled as a rigid porous medium. Two factors
of key importance to modelling the growth and adaptation of engineered tissue con-
structs were investigated: (1) cell–cell and cell–scaffold interactions and, (2) mechan-
otransduction mechanisms. The formulation was simplified via the long-wavelength
limit (in which the bioreactor’s aspect ratio is assumed to be small) and by considering
constant, spatially-homogeneous scaffold porosity. Numerical simulation of the model
equations (validated by analytic solutions obtained in the limit of asymptotically-small
cell volume fraction), revealed that inclusion of cell–cell and cell–scaffold interactions
leads to significant differences in the extent to which the cell population colonises the
scaffold, depending upon the relative importance of cell aggregation and repulsion.
It was further shown that the composition of the resulting construct was strongly influ-
enced by whether cell proliferation and ECM deposition were regulated by mechanical
stimulation related to the cell population density, pressure or shear stress. Employ-
ing two-dimensional finite element simulations, Osborne et al. (2010) demonstrated
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that, when considering total tissue yield, the long-wavelength limit of O’Dea et al.
(2010) provides an excellent approximation to the full two-dimensional model, even
for relatively large values of bioreactor aspect ratio. However, this work further demon-
strated that mechanotransduction-mediated tissue growth can lead to significant two-
dimensional spatial variation of tissue density, a feature which is not captured by the
long-wavelength limit. The authors concluded that, while spatial effects in two- or
three-dimensions cannot be ignored in comprehensive models of tissue growth, its
relative simplicity makes the long-wavelength model a natural framework with which
to estimate parameters relevant to specific bioreactor systems, for subsequent use in
more complex two- or three-dimensional models.

Whilst the inclusion of the scaffold phase is a significant departure from two-fluid
models [see, for example, Franks and King (2003)] since interactions between the
rigid scaffold and cell phases are explicitly modelled, a key assumption of O’Dea et
al. (2010) and Osborne et al. (2010) is that the scaffold phase is spatially-homogeneous
and constant in time, leading to significant simplification of the model formulation.
Lemon and King (2007) considered non-uniform porosity only near the edge of the
scaffold; however, μCT scans of porous scaffolds typically employed in tissue engi-
neering applications indicate significant heterogeneity throughout the scaffold, as well
as inhomogeneous deposition of extracellular materials (see, e.g., Yang and El Haj
(2006) for a discussion of tissue engineering scaffolds). Figure 2a shows experimental
data indicating the cross section-averaged scaffold volume fraction along the axial
length of a typical scaffold of the type employed in El Haj et al. (1990), together with
that following culture, indicating the level of mineralisation by osteocytes in such
a scaffold. Such heterogeneity in scaffold density is likely to have implications for
the mechanical properties of the resulting tissue construct, these considerations being
especially important where the tissue is to be load-bearing, as is the case for cartilage or
bone tissue: areas of weakness in implanted tissues may fail under physiological load-
ing. For this reason, we aim to use our model to study how experimentally-relevant
spatial variations in scaffold porosity may influence construct composition, and to
indicate its importance in the generation of viable replacement tissue.

A simple study considering scaffold degradation and ECM deposition is given by
Haider et al. (2010), in which the (spatially-independent) evolution of the total scaf-
fold and ECM density is calculated using a phenomenological mixture model; specific
consideration is given to scaffold-ECM linkage. The study concludes that the initial
scaffold density will affect significantly the resulting construct’s material properties.
More complex models, considering spatial dependence, include Kelly and Prendergast
(2003), in which a core of underdeveloped tissue in a poroelastic model of cartilage
tissue was considered, showing that construct inhomogeneity dramatically reduces its
mechanical integrity. Optimal design of porous scaffolds was discussed in Adachi et
al. (2006) where the interplay between tissue growth and scaffold degradation, as well
as the scaffold microstructure, was considered. Sanz-Herrera et al. (2008) developed a
multiscale model to investigate the interplay between scaffold design parameters and
bone tissue regeneration. By constructing solutions using finite element methods, the
authors indicated that bone regeneration increases with scaffold stiffness and mean
pore size. Byrne et al. (2007) considered the influence of scaffold porosity and degra-
dation rate on in vitro bone tissue growth; mechanotransduction-regulated differentia-
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(a) (b)

Fig. 2 a A typical cylindrical PLLA scaffold employed in the bioreactor system of El Haj et al. (1990).
The scale bar indicates 1 mm; dimensions are: 9 mm (diameter), 4 mm (height). b Typical variation in the
cross section-averaged scaffold density (represented by the scaffold volume fraction, θs ) before and after
culture, observed experimentally in such a scaffold. The initial scaffold density is represented by solid line
(with average dotted dashed line) and the final scaffold by dashed line (with average dotted line)

tion of stem cells to fibroblasts, chondrocytes and osteoblasts was also accommodated,
each phenotype displaying different migration and material properties. A random walk
model for cell movement within a poroelastic scaffold (whose deformation was sim-
ulated via a finite element method) was used to compute the tissue composition. The
study concluded that under low load, high porosity and stiffness, together with an
intermediate scaffold degradation rate, stimulate increased bone tissue generation; to
prevent collapse of the scaffold under high load, a reduced degradation rate is required.

Due to the nature of the problems investigated (three-dimensional scaffolds with
specific pore geometry, deformation, flow, scaffold material properties), many of the
studies mentioned above give rise to complex systems of coupled PDEs, which are
heavily reliant on numerical investigation. In this study, we demonstrate that consider-
ations relevant to biological tissue growth may be accommodated within a continuum
model, amenable to asymptotic simplification; we extend our earlier work (O’Dea
et al. 2010) by relaxing the assumption of constant, homogeneous scaffold porosity,
and employ the resulting model to investigate the interplay between scaffold degra-
dation and nascent tissue growth in a perfusion bioreactor. Our model incorporates
a cell population and culture medium, each represented as a viscous fluid, as well
as both a PLLA scaffold and ECM deposited by the cells, modelled as rigid porous
phases. This approach allows spatio-temporal variations in cell–scaffold and cell–
ECM interactions, realistic scaffold porosity distributions (informed by experimental
data), scaffold degradation, and mechanotransduction-regulated cell proliferation and
ECM deposition to be accommodated.

In the limit of asymptotically-small bioreactor aspect ratio, the resulting model sim-
plifies to three nonlinear differential equations. Via this formulation, we seek to provide
a more comprehensive description of in vitro tissue growth, while remaining within a
simplified modelling framework. Our investigations reveal that spatial inhomogeneity
in scaffold volume fraction strongly influences the cells’ mechanical environment,
leading to inhomogeneous cell proliferation and ECM deposition. Further, our model
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suggests that preferential adherence to ECM in favour of the PLLA scaffold has no
significant influence on the eventual construct composition; we therefore conclude that
such additional mathematical complexity is unnecessary, so that simplified models,
in which cells interact uniformly with their supporting structures, may be employed
to describe biological tissue growth. Lastly, we indicate that careful manipulation of
the rate of PLLA scaffold degradation is required in order to maintain the mechanical
integrity of constructs.

The remainder of the paper is organised as follows. In §2, the multiphase model
of O’Dea et al. (2010) is summarised, and extended by the addition of spatial and
temporal variation in scaffold and ECM volume fractions, and the resulting governing
equations and boundary conditions are stated (a detailed derivation is provided in the
Appendix). In §3, numerical simulations of the model equations are presented and
the importance of scaffold degradation, ECM deposition and heterogeneity in scaffold
porosity on construct composition is investigated. §4 provides a summary of the results
contained in the preceding sections and a discussion of their implications for in vitro
tissue engineering, together with suggestions for future avenues of investigation.

2 Model formulation

In this section, we present a multiphase model which describes the growth of a tissue
construct within a nutrient-rich perfusion bioreactor. The bioreactor under considera-
tion is illustrated in Fig. 1 and comprises a cell-seeded porous scaffold within a culture
medium-filled cylinder, through which a flow is driven (see El Haj et al. (1990) and
O’Dea et al. (2010) for details). The key modelling assumptions are summarised below
and the resulting equations, together with appropriate boundary and initial conditions,
are stated. The derivation of these equations is summarised in the Appendix for com-
pleteness; the interested reader is directed to O’Dea et al. (2010) and references therein
for a detailed discussion of the modelling considerations embodied by these equations
when variations in scaffold and ECM volume fractions are neglected.

For simplicity, we view the perfusion bioreactor as a two-dimensional channel (we
expect results for an axisymmetric cylinder to be qualitatively similar) containing a
mixture of four interacting phases. The cell population and culture medium are mod-
elled as distinct viscous fluids, and rigid porous phases represent the PLLA scaffold
and the ECM. The interplay between cell proliferation, ECM deposition and scaf-
fold degradation is captured by mass exchange between the relevant phases, effected
by the specification of mass transfer functions which account for the influence of
mechanotransduction on cell proliferation and ECM deposition.

The mechanical interactions between phases comprise interphase viscous drag (pro-
portional to differences in phase velocity) and active forces. The latter enter the gov-
erning equations via prescribed contributions to the cell phase pressure, arising due
to cell–cell interactions and traction between the cell and scaffold or ECM phases,
respectively. Interactions between the culture medium and scaffold/ECM phases are
assumed to involve only viscous drag.

The mechanical interactions in this four phase formulation are simplified by lump-
ing the rigid PLLA scaffold and ECM together into a single phase, referred to as the
‘substrate’ [a similar approach is used by Lubkin and Jackson (2002)]. We neverthe-
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less track individually the evolution of the PLLA scaffold and ECM volume fractions,
which allows us to distinguish between cell–scaffold and cell–ECM interactions. From
a mechanical point of view, this model may therefore be thought of as a three phase
system, differing from O’Dea et al. (2010) in the sense that the scaffold and ECM
phases are mechanically identical, but chemically distinct. We further assume that the
bioreactor has a small aspect ratio, so that significant simplification of the governing
equations can be achieved. We remark that the dimensions of the bioreactor system of
El Haj et al. (1990) are inconsistent with this simplifying limit; however, our previous
work (Osborne et al. 2010) indicates that such a limit provides an excellent approx-
imation to the full two-dimensional model. We employ this limit in preference to an
a priori assumption of one-dimensional flow for consistency with our previous work,
and for wider applicability to other bioreactor systems.

2.1 Dimensionless model equations and boundary conditions

We consider a 2D Cartesian coordinate system x = (x, y), in which the bioreactor
is assumed to occupy the dimensionless region 0 � x � 1, 0 � y � h � 1, and
within which the PLLA scaffold phase is localised in the region a � x � b (where
0 < a < b < 1, and a, b − a, 1 − b � h). We assume that all dependent variables
are functions of x and dimensionless time, t .

The volume fractions of the cell, culture medium, PLLA scaffold and ECM phases
are denoted by θn, θw, θs and θe, respectively; and the substrate phase � is defined
by

� = θs + θe. (1)

The dimensionless velocities and pressures of the cell and culture medium phases
are denoted ui = (ui , vi ) and pi (i = n, w). The rigidity of the PLLA scaffold and
ECM implies us = ue = 0; the solid phase pressures ps, pe are not required in
this analysis and remain undetermined. Tissue growth, scaffold degradation and ECM
deposition are captured via material transfer functions Si which we specify below. The
governing equations are stated below in dimensionless form.

The model is constructed by considering mass and momentum balances for each
phase, assuming that the fluid phases are incompressible with equal density, and by
neglecting inertial effects (details of the model derivation and nondimensionalisation
are provided in the Appendix). Assuming that the bioreactor aspect ratio is asymp-
totically small, and employing the momentum balance equations, together with the
no-voids condition,

∑
i θi = 1, it is straightforward to show that the flow is unidirec-

tional and that the pressure and volume fraction of each phase are functions of x and
t . By eliminating dependent variables, the system may be reduced to the following
differential equations for θs, θe, θn and pw:

∂θs

∂t
= Ss , (2)

∂θe

∂t
= Se , (3)
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∂θn

∂t
+ 1

12

∂

∂x

(

(1 − θs − θe − θn)
∂pw
∂x

)

= Sn , (4)

∂

∂x

{

(θn + μn(1 − θs − θe − θn))
∂pw
∂x

}

+ ∂

∂x

{
∂(θ2

n�)

∂x
+ 2θnψ

∂(θe + θs)

∂x
+ θn(θe + θs)

∂ψ

∂x

}

= 0 , (5)

in which μn is the relative viscosity of the cell and culture medium phases, and �
and ψ capture active forces that exist between adjacent cells, and between cells and
the substrate. We note that appropriate choice of the interaction functions� and ψ
and mass transfer terms Si ensures that the volume fractions obeyθi ∈ [0, 1] (see
e.g. Preziosi and Tosin (2009) for more details).

Equations (2)–(4) are the mass conservation equations for the PLLA scaffold, ECM
and cell phases. The latter states that the rate of change of the cell volume fraction θn

is due to advection and the proliferation of cells; PLLA scaffold and ECM evolution
is due to deposition of ECM and scaffold degradation only, and therefore θe, θs have
an implicit spatial dependence. Equation (5) embodies conservation of mass for the
multiphase mixture. In view of Eq. (1), Eqs. (2)–(5) may be recast as a set of three
nonlinear differential equations for �, θn and pw, with (2) and (3) replaced with

∂�

∂t
= S�; S� = Ss + Se, (6)

reflecting the pseudo-three phase nature of the model.
Equations (4) and (5) are closed by imposing the following boundary conditions:

∂θn

∂x
= 0 at x = 0, 1, (7)

pw = PU at x = 0, (8)

pw = PD at x = 1, (9)

where PU and PD are the imposed up- and downstream pressures; initial conditions
for θn, θs and θe are specified subsequently.

In this paper, we consider the influence of scaffold properties on tissue construct
growth and composition by examining the interplay between scaffold degradation and
nascent tissue growth under the influence of biologically-relevant cell-substrate inter-
actions, and mechanotransduction-regulated cell proliferation and ECM deposition.
These phenomena are captured by the interaction functions �, ψ and the material
transfer functions Sn, Se and Ss which are specified in terms of the dependent vari-
ables below.

2.2 Cell–cell and cell–scaffold interactions

The functions � and ψ describe respectively mechanical interactions between cells
and between cells and their substrate; examples of relevant interactions include
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1208 R. D. O’Dea et al.

cell-cell and cell-substrate adhesion, and, in the case of motile cells such as fibroblasts,
tractions between cells and their substrate.

Following Lemon et al. (2006) and O’Dea et al. (2010), we prescribe � and ψ as
follows:

� = −ν + δaθn

(1 −�− θn)
, ψ = −χ + δbθn

(1 −�− θn)
, (10)

wherein ν, χ, δa and δb account for the cells’ tendency to aggregate, their affinity
for the substrate and the strength of the repulsive forces between cells and between
cells and substrate. We remark that in this simplified formulation, cell–scaffold and
cell–ECM interactions are lumped together in (10); however, as detailed below, we
exploit our knowledge of the separate evolution of θs and θe to distinguish between
cell–scaffold and cell–ECM interactions.

As discussed in §1, cell adhesion to polymer scaffolds is mediated by adsorption
of ECM molecules, or the embedding of specific cell recognition molecules, into the
scaffold surface (Freed et al. 1994; Nikolovski and Mooney 2000). Since the type and
density of such molecules can vary markedly, depending on the surface chemistry of the
polymer, it is reasonable to expect that cells preferentially adhere to their extracellular
matrices rather than synthetic substitutes. In this study, we aim to understand how such
a disparity in cell–scaffold and cell–ECM interactions may influence the composition
of the developing construct. We achieve this by comparing simulation results for the
case χ = constant with those obtained for χ = χ(θe), so that the affinity of the cells
for the scaffold phase depends on how much ECM has been deposited on the PLLA
substrate; for simplicity, the remaining interaction terms ν, δa and δb are treated as
fixed parameters.

We specify χ(θe) as follows:

χ(θe) = χ0 + χ1 − χ0

2
(tanh(g1(θe − θe0))+ 1). (11)

For suitable g1 = constant, this represents a smoothed switch between the values χ0
(the affinity between cells and scaffold in the absence of deposited ECM) and χ1 > χ0
(the elevated affinity due to ECM accumulation); θe0 is the threshold level of ECM
deposition at which this change occurs. In the limit g1 → ∞, the progression between
χ0 and χ1 approximates a step function.

2.3 Mechanotransduction-mediated growth

The cells’ response to biomechanical stimuli is accounted for by appropriate specifi-
cation of the mass transfer rates Si (i = n, e, s); Sw is chosen to ensure conservation
of mass. Stimuli relevant to tissue engineering applications include contact inhibition,
residual stress caused by tissue growth (Fung 1991; Skalak et al. 1996; Roose et al.
2003; Chaplain et al. 2006; Holzapfel and Ogden 2006) and the local fluid dynam-
ics, such as the local hydrostatic pressure (Roelofsen et al. 1995; Klein-Nulend et al.
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(a) (b)

Fig. 3 a The net cell proliferation rate, κn , and b the ECM deposition rate, κe , representing phenotypic
progression in response to the local cell volume fraction θn . The dimensionless parameters kn

m and ke
m

represent the rate of cell proliferation and ECM deposition whilst kn
d represents the rate of cell death. The

thresholds are θn1 and θn2

1995) or fluid shear stress (You et al. 2000, 2001; Bakker et al. 2004b; Han et al. 2004;
Yourek et al. 2004).

The focus of the current study is the interplay between scaffold degradation, tissue
growth and cell–cell/cell–substrate interactions; for brevity, we restrict attention to
cases in which cell proliferation and ECM deposition are regulated by contact inhibi-
tion. (Consideration of the influence of a wider range of mechanical stimuli is given
in O’Dea et al. (2010) and Osborne et al. (2010).) We represent such regulation in our
model by introducing net cell proliferation and ECM deposition rates κn, κe which
depend upon the local cell volume fraction; the PLLA scaffold is assumed to degrade
at a constant rate. We identify three distinct cellular responses to the local cell volume
fraction: a proliferative phenotype, an ECM-depositing phenotype and an apoptotic
phenotype, for each of which κn, κe take different values. The progression from one
phenotype to the next occurs at threshold densities θn1 and θn2 (0 < θn1 < θn2).
Functional forms for κn and κe are specified below and depicted in Fig. 3.

Sn(θn) = θnκ
n(θn), Se(θn) = θnκ

e(θn), Ss(θs) = −ks
dθs, (12)

κn(θn) = kn
m − kn

m+ kn
d

2

(
tanh

(
g2

(
θn − θn2

))+1
)
, (13)

κe(θn) = ke
m

2

(
tanh

(
g2

(
θn − θn1

))−tanh
(
g2

(
θn − θn2

)))
. (14)

Equations (12)–(14) embody the following assumptions: (1) cells proliferate at a con-
stant rate kn

m until the cell volume fraction exceeds θn2 , when they become apoptotic
(with death rate kn

d ); (2) at intermediate values, the cells also deposit ECM at a rate
ke

m . As in Eq. (11), in the limit g2 → ∞, κn and κe are piecewise-constant and the
progression between phenotypes obeys a step function; in what follows, we choose
g2 = g1 = 100.
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2.4 Initial conditions

Tissue engineers employ a number of different techniques to seed porous scaffolds
with cells. Here we consider static seeding, in which a suspension of cells is injected
onto the surface of, or into, the scaffold, leading to an initial cell population which is
localised near the point of injection. Following O’Dea et al. (2010) and Osborne et al.
(2010), we prescribe:

θn(x, 0) = n̂s

2
(tanh (g3(x − α))− tanh (g3(x − β))) , (15)

where n̂s is the maximum initial cell volume fraction, and x = α and x = β represent
the left and right hand edges of the localised cell distribution within the scaffold region
(i.e. 0 < a < α < β < b < 1), near which g3 governs the spatial gradient of θn . In
what follows, we fix a = 0.25, b = 0.75, n̂ = 0.2, α = 0.4375, β = 0.5625, and
g3 = 50 without loss of generality.

Assumptions of uniform porosity have been employed in previous studies of in vitro
tissue growth (Lemon et al. 2006; O’Dea et al. 2010; Osborne et al. 2010); however,
the structure of scaffolds typically employed in such tissue engineering systems is
highly heterogeneous (see Fig. 2). To determine the influence of such heterogeneity
on construct evolution, we compare the predicted construct composition resulting from
two separate initial conditions for the PLLA scaffold:

θs(x, 0) =
{
θ ideal

s for a � x � b
0 otherwise

, (16a)

θs(x, 0) =
{
θ
μCT
s (x) for a � x � b

0 otherwise
. (16b)

We set θ ideal
s = 0.0928, so that the former initial condition represents a scaffold of

width (b − a) and uniform porosity ≈ 91%, this being the average initial porosity
of the data shown in Fig. 2. The choice θμCT

s (x) denotes the spatially-varying initial
experimental data shown in Fig. 2. In all cases, the initial ECM distribution is specified
as

θe(x, 0) = 0. (17)

3 Numerical results

In this section, we present numerical simulations of Eqs. (2)–(5), subject to the bound-
ary conditions (7)–(9). Employing Eqs. (10)–(14), and the initial conditions (15)–(17),
we investigate how the cells’ response to their environment (especially their interac-
tions with the underlying substrate) influences the composition of the resulting tissue
construct.

The numerical scheme that we use and its validation are described in Osborne
and Whiteley (2010) and Osborne et al. (2010) and so we do not include details
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Table 1 Summary of
dimensionless parameters
employed in numerical
simulations

General parameters

PD Downstream applied pressure 0.1

PU Upstream applied pressure 0.3

μn Ratio of dimensional viscosities μ∗
n/μ

∗
w 1.3

a Upstream boundary of scaffold 0.25

b Downstream boundary of scaffold 0.75

D Cell volume fraction diffusivity 0.001

Cell–substrate interaction parameters

ν Cell aggregation parameter 0.05

δa Intraphase repulsion parameter 0.05

χ0 Minimum substrate affinity parameter 0.0

χ1 Maximum substrate affinity parameter 5.0

δb Interphase repulsion parameter 0.05

θe0 Critical ECM threshold [0, 1]
Mass transfer parameters

θn1 Lower cell volume fraction threshold 0.4

θn2 Upper cell volume fraction threshold 0.6

kn
m Rate of mitosis 0.8

kn
d Rate of apoptosis 0.1

ks
m Rate of ECM deposition 0.05

here. To summarise, Eq. (5) is solved for pw using θn, θs and θe from the previous
timestep (with a linear finite element approximation for pw); employing this solution
for pw, the remaining dependent variables, θn, θe and θs are updated by applying to
(2)–(4) an implicit Euler method, together with linear finite element approximations.
For numerical convenience, we include a diffusive term, with constant diffusivity D
(here we use D = 0.001), in Eq. (4) which converts it to a second order parabolic
equation. With D > 0 we need not track explicitly the sharp interface which is evident
when D = 0. Such artificial diffusion has a negligible effect on the solution behaviour
(VonNeumann and Richtmyer 1950). Model parameter values are selected to illustrate
the behaviour of the model and are similar to those employed in O’Dea et al. (2010)
and Osborne et al. (2010); the specific values chosen are summarised in Table 1 and
repeated in the relevant figure captions.

3.1 PLLA scaffold heterogeneity

To illustrate the model behaviour, in Fig. 4 we present simulations corresponding to
the case for which cells are seeded within a PLLA scaffold of uniform porosity and
their interactions with the PLLA scaffold and deposited ECM are identical; that is,
we employ Eq. 16a to initialise θs and choose χ = constant in place of (11). Figure 5
shows corresponding simulation results in the case for which θs(x, 0) is specified via
Eq. 16b.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Illustrative plots of the evolution of a the cell volume fraction (θn), b the scaffold phase volume
fraction (θs ), c the ECM volume fraction (θe), d the culture medium pressure (pw), e the axial culture
medium velocity (uw), and f the axial cell phase velocity (un) in the regime of cell volume fraction
dependent growth and degradation and uniform cell–scaffold interaction properties at times t = 0 − 3
(in steps of t=0.5). The model parameters are as described in Table 1 except χ = χ1 in place of (11). Initial
conditions are given by (15), (16a) and (17). Vertical dotted lines indicate the end points of the scaffold at
x = a, b

Figures 4a and b reveal that the cells proliferate and deposit ECM asymmetrically
under the influence of perfusion. The PLLA scaffold degrades uniformly so that θs =
θs(t) in a � x � b. Near x = a, b where the cell volume fraction is small, PLLA
degradation dominates ECM deposition and a decrease in total substrate fraction is
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observed; in regions of high cell volume fraction, ECM deposition ensures that the
substrate density is maintained or increased. Figure 4a indicates that the cell volume
fraction tends to a spatially-uniform value θn = θn2 . As θn reaches θn2 , the transition
to the apoptotic phenotype precludes any further increase in cell density. Re-entry to
the proliferative phenotype on subsequent reduction of cell density ensures a uniform
distribution is maintained; the ECM deposition is greatest upstream due to perfusion
causing advection of cells downstream, so that θn attains the upper threshold at later
times.

Figure 4 indicates that, in the regime shown, the addition of spatial variation to the
substrate phase via ECM deposition does not affect significantly the dynamics of the
other model variables shown in Figs. 4d–f. This behaviour has been discussed in our
previous work (see Figs. 4–7 of O’Dea et al. (2010)). Here, it suffices to note that the
interplay between aggregative and repulsive cell behaviour [see Eq. (10)] is reflected
in the evolution of the pressures and velocities of each phase (see Figs. 4d–f; the
cell phase pressure is omitted for brevity). At low cell volume fraction (early times),
aggregation dominates and the cell phase velocity indicates cell movement towards
the centre of the population to form a dense aggregate; at high cell volume fraction
(later times) repulsive effects dominate, leading to migration away from the central
region; aggregative effects dominate at the edges of the population where the cell
population remains low. Combined, these effects generate a dense cell aggregate, with
steep spatial gradients of cell volume fraction near its up- and down-stream periphery
(shown by the final line in Fig. 4a). To conserve mass, the culture medium phase moves
in the opposite direction.

Comparison of Figs. 4 and 5 shows that, while the global features of the predicted
cell and ECM volume fractions remain similar, the introduction of PLLA scaffold het-
erogeneity induces large, short-range variations in cell and ECM volume fractions and,
additionally, has a significant influence on the cells’ fluid-mechanical environment,
with large variations in culture medium velocity evident over the short lengthscale
associated with the heterogeneity of the substrate (Fig. 5e).

The importance of the scaffold (and ECM) distribution on the culture medium and
cell phase velocities is evident from Equation (5), which shows that spatial gradients
in� influence the culture medium pressure gradient, leading to significant changes in
culture medium flow. In addition, the axial cell phase velocity, obtained by integrating
the axial component of the cell phase momentum equation (Equation (22), Appendix
4, in the long-wavelength limit), is defined as follows:

un = 1

12μn

(

−∂pw
∂x

+ 1

θn

∂

∂x

(
θ2

n�
)

+ 2
∂�

∂x
ψ +�

∂ψ

∂x

)

, (18)

which indicates that, under the influence of the final two terms, the large variations
in substrate porosity present in Figs. 2 and 5b will lead to significant changes in cell
velocity. (We also note that the singularity in θs at x = a, b therefore leads to the spike
in cell and culture medium velocities, illustrated in Figs. 4e, f and 5e, f. Additionally,
inspection of Eqs. (10) and (18) reveals that active movement of cells within the tissue
construct [embodied in the final two terms of (18)] results from a balance between
aggregation, attachment to the substrate and repulsion, regulated by χ, ν, δa and δb.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Results from a typical simulation showing the evolution of a the cell volume fraction (θn), b the
scaffold phase volume fraction (θs ), c the ECM volume fraction (thetae), d the culture medium pressure
(pw), e the axial culture medium velocity (uw), and f the axial cell phase velocity (un) in the regime of
cell volume fraction dependent growth and degradation and uniform cell–scaffold interaction properties at
times t = 0 − 3 (in steps of t=0.5). Parameters values: as in Table 1, except χ = χ1 in place of (11). Initial
conditions are given by (15), (16b) and (17). Vertical dotted lines indicate the end points of the scaffold at
x = a, b

Spatial gradients of the cell and substrate phases also influence this behaviour: when
ν and χ are constant, aggregation and attachment modify the cells’ velocity via:
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1

6μn

(

ν
∂θn

∂x
+ χ

∂�

∂x

)

, (19)

so that when aggregation or attachment dominates repulsion, cells move up spatial gra-
dients of θn and�; in view of Eqs. (5), (10) and (18), spatial gradients of� additionally
modulate cell advection via the culture medium pressure. Given the importance of cul-
ture medium flow-induced mechanical stimulation to the growth and differentiation
of various cell types (see §1 and §2.3), such variations in cell and culture medium
velocity are likely to have a significant effect on local cell behaviour.

We pause to remark that Figs. 4a and 5a show that as the cell population expands to
colonise the scaffold, our fluid-based model allows egress of cells (and, eventually, the
subsequently deposited ECM) from the scaffold into the up- and downstream regions
(x < a and x > b). Lemon and King (2007) demonstrate that, due to cell–scaffold
adhesion, such behaviour is minimised in scaffolds whose density distributions decay
to zero at the boundaries; we have, however, employed experimentally-relevant data
to initialise θs here. Cell egress is not desirable in the current context of a perfusion
bioreactor (and is in any case minimal in the seeding protocol employed here: the cell
flux θnun is small); however, it is of biological relevance to modelling tissue invasion
after implantation.

3.2 Cell–substrate interactions

In this subsection we investigate the influence of the properties of PLLA scaffold on
the eventual construct composition, both in terms of its spatial distribution and its
interactions with the cells.

First, we compare simulation results for which χ = constant with those for which
cell–scaffold adherence is governed by (11) and, in so doing, investigate how a disparity
between cell–scaffold and cell–ECM attachment strength (due to the surface chemistry
of the polymer scaffold) may influence the composition of the developing construct.
For clarity, we employ Eq. (16a) to initialise θs , corresponding to a PLLA scaffold of
initially uniform porosity; the combined influence of cell–substrate interactions and
scaffold heterogeneity on construct composition is investigated subsequently.

In Figs. 6a and b, we assume that the cells’ affinities for the PLLA scaffold and the
deposited ECM are identical; the figures show cell and scaffold phase distributions at
illustrative time points for different values of χ . Comparison of the construct com-
position when χ = 0 and χ = 5, suggests that cell migration up spatial gradients of
θs leads to a more sharply-defined cell volume fraction profile; however, the maximal
volume fraction is reduced. This is because cell movement is confined to the edge of
the cell aggregate (at the centre ∂�/∂x ≈ ∂θn/∂x ≈ 0).

Inspection of the cell volume fraction distribution at later times reveals more inter-
esting behaviour. As θn increases, advection of cells becomes more significant, leading
to profiles which are skewed in the downstream direction. For large cell volume frac-
tion, the combination of advection and cell–cell and cell–substrate repulsion leads to
cell migration away from the aggregate’s centre. This outward drift is balanced by
inward movement of cells at the periphery of the densely populated region. In the
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(a) (b)

(c) (d)

Fig. 6 The evolution of the construct composition (at times t = 0, 1, 2, 3) in the regime of cell density
dependent growth and degradation; arrows indicate the direction of increasing time. In a and b the predicted
cell and substrate volume fractions are shown for various values of cell–substrate interaction parameter
values: χ = 0 − 5 (in steps of χ = 1), δb = 0.05; the arrows indicate the direction of increasing χ .
In (c) and (d), the cell and substrate volume fractions are depicted in the case for which cell–substrate
interactions are governed by (11) for θe0 = −1 (χ = 5; solid line), θe0 = 0−0.025 in steps of θe0 = 0.005
(dotted lines) and θe0 = 1 (χ = 0; dashed line). The arrows indicate the direction of increasing θe0 . Initial
conditions are given by (15), (16a) and (17). Except as stated, all parameters are as given in Table 1. Vertical
dotted lines indicate the scaffold periphery at x = a and x = b

case of strongly adherent cells, increased (inward) movement up spatial gradients of
� causes the cell volume fraction to peak at the periphery of the aggregate, with a
flatter profile near the centre (see the final profile in Fig. 6a in the case χ = 5). For
small values of χ , a profile similar to that shown in Fig. 4a is obtained.

Figures 6c and d show how the construct composition is influenced by differential
adhesion between the porous scaffold and the deposited ECM. The cells’ adherent
behaviour is modelled by Eq. (11) so that χ varies between χ0 = 0 and χ1 = 5 in
response to the ECM volume fraction. These simulations indicate that in the case of a
uniform initial scaffold, preferential adherence to ECM leads to the creation of a tissue
construct whose composition is indistinguishable from that obtained when the adher-
ence properties of the substrate are uniform. Corresponding results were obtained when
the initial scaffold porosity was spatially-nonuniform, but are not included. In view
of this somewhat surprising outcome, we conclude that the mathematical complexity
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(a) (b)

(c) (d)

Fig. 7 The evolution of the cell volume fraction (t = 0, 1, 2, 3) and the ECM volume fraction (t = 2, 3) in
the case of cell volume fraction dependent cell proliferation and ECM deposition defined by Eqs. (12) and
(14); arrows indicate the direction of increasing time. Plots are for χ = 1 (solid line) and χ = 0 (dashed
line). In a, b initial conditions are given by (15), (16a) and (17) and in c, d Eq. (16b) is employed to specify
θs (x, 0). Except as stated, all parameters are as given in Table 1. Vertical dotted lines indicate the end points
of the scaffold at x = a, b

associated with the biologically-inspired cell–substrate interactions [and embodied by
Eq. (11)] adds no additional predictive capability to the model. Henceforth, we return
to the simplified model in which χ = constant. We note that in this case, inspection
of Eqs. (5) and (10) reveals that the influence of the cell–scaffold affinity strength on
the model behaviour may only be studied in the presence of a spatially-heterogeneous
substrate volume fraction; our previous work (O’Dea et al. 2010) therefore neglected
its influence.

In Fig. 7 we demonstrate how the combined effects of cell–substrate interactions
(χ = constant) and the heterogeneity of PLLA scaffold volume fraction influences
the construct composition. As indicated by Eq. (18), strong cell–scaffold adherence
enhances cell movement up scaffold and ECM gradients. Large, short-range spatial
gradients of scaffold porosity exist in the experimental data we have employed to
initialise θs . We therefore observe large deviations in cell and ECM distributions,
which mirror, and exaggerate, the underlying PLLA scaffold porosity distribution.
Since the deposition of ECM (and other associated extracellular materials) enables
the maintenance of the mechanical properties of the degrading PLLA scaffold, such
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Fig. 8 The evolution of the volume fraction of: the substrate, � (dotted line); the ECM, θe (dashed line);
and the PLLA scaffold, θ s (solid line), over time for two different values of the PLLA scaffold degradation
rate, ks

d . In a ks
d = 0.0, b ks

d = 0.1. An increased ECM deposition rate of ke
m = 0.1 is used to amplify the

deposition of ECM. Initial conditions are given by (15), (16b) and (17). Except as stated, all parameters are
as given in Table 1

heterogeneous ECM distributions have important implications regarding the structural
suitability and suitability for implant of the resulting construct. With this in mind, in
the following subsection we focus on the interplay between PLLA degradation and
ECM deposition and the maintenance of substrate porosity during this process.

3.3 Scaffold degradation

The maintenance of tissue construct material properties is crucially affected by achiev-
ing a match between the rates of scaffold degradation and deposition of ECM and other
extracellular materials. In this section we indicate how our model may be employed
to determine how the evolution of the substrate volume fraction depends on the model
parameters. For clarity, in preference to the spatio-temporal distributions presented in
§§3.1,3.2, we consider the evolution of the total substrate mass �(t), and its PLLA
and ECM components θ s(t), θe(t), which are defined as follows:

�(t) = θ s(t)+ θe(t); θ s(t) =
∫ 1

0
θs(x, t)dx, θe(t) =

∫ 1

0
θe(x, t)dx . (20)

The simulations presented in Fig. 8 demonstrate that close control of scaffold degra-
dation and ECM deposition is required in order to maintain substrate density. We do
not present the corresonding cell volume fraction evolution since our focus here is on
the tissue construct’s rigid, load-bearing components. In Fig. 8a, we consider a non-
degrading scaffold, and the substrate volume fraction is therefore determined by the
evolution of the ECM phase. With the addition of scaffold degradation (Fig. 8b), we
observe an initial decrease in substrate due to scaffold degradation; as the seeded cell
population increases, Eq. (14) leads to progression to an ECM-depositing phenotype
and the substrate volume fraction increases. Our model predicts that, eventually, the
cell volume fraction will increase to a point at which all cells in the scaffold enter
apoptosis, at which point the substrate volume fraction achieves an equilibrium level.
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However, the timescale over which we perform our simulations is restricted by our
wish to restrict tissue egress from the scaffold into the up- and downstream regions
x < a, x > b (see §3) and we therefore do not observe such equilibrium behaviour.
Nevertheless, our simulation results indicate that the rate of scaffold degradation is a
key experimental variable, and suggest that there is a threshold time, before which the
construct’s mechanical properties are likely to be unsuitable for implantation.

4 Discussion

In this paper we have presented a multiphase model describing tissue growth within a
perfusion bioreactor, modelled as a two-dimensional channel containing cells, culture
medium, a porous PLLA scaffold and deposited ECM. The formulation employed is
based on the general multiphase formulation proposed in Lemon et al. (2006) and
extends the three phase model of O’Dea et al. (2010), where the PLLA scaffold was
assumed to be spatially-homogeneous and inert. Many similar studies of tissue growth
have employed this simplifying assumption, tacitly assuming that the importance of
spatial variation of scaffold/ECM volume fraction is negligible. Here, we include
additional mass conservation equations for the scaffold and ECM phases with which to
model scaffold degradation and ECM deposition. This allows us to incorporate PLLA
scaffold phase heterogeneity, inhomogeneous deposition of ECM, and to consider
explicitly the interactions between cells and their different supporting structures, while
remaining within a simplified modelling framework.

Comparison of our simulation results with our previous work (O’Dea et al. 2010)
indicates that the predicted cell volume fraction and variables related to the mechan-
ical environment are strongly affected by heterogeneous scaffold volume fraction
distributions; for instance, the culture medium velocity shows strong short-range vari-
ation, which is likely to have a profound effect on the mechanical environment of the
cells. Additionally, we have demonstrated that ECM deposition by the cells is highly
localised in the regions of elevated cell volume fraction and that spatial variation in the
PLLA scaffold volume fraction leads to large deviations in cell and ECM distributions.

In addition to spatial variation of the scaffold volume fraction, and motivated by
the possible variation in cell binding sites in tissue engineering scaffolds, we consid-
ered the heterogeneous interactions between cells and their supporting scaffold and
the deposited ECM, postulating that cells have a greater affinity for ECM (and other
deposited materials) than the scaffold onto which they are deposited. Employing a
smoothed switch between low and high affinity in response to the local ECM vol-
ume fraction, we showed that such a disparity has no significant influence on eventual
construct composition. This conclusion indicates that simplified models in which cells
interact uniformly with their supporting structures may be employed without affecting
their biological relevance (in the present study, this corresponds to χ = constant). We
showed that in such a simplified model cell–scaffold/ECM interactions can have dra-
matic affects on the construct composition, leading to significantly enhanced migration
of cells up spatial gradients of substrate volume fraction. In the case of experimentally-
relevant initial PLLA scaffold porosity distributions, which display large gradients in
scaffold distribution, this leads to cells and ECM profiles which mirror and exaggerate
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the underlying scaffold porosity. The heterogeneity of the resulting tissue construct
has important ramifications for its structural stability and suitability for implant.

Our model associates scaffold degradation with a reduction in scaffold phase vol-
ume fraction, from which we infer deleterious effects on material properties, which are
ameliorated by deposition of ECM (and other extracellular materials). The interplay
between scaffold degradation and ECM deposition is therefore crucial in determining
tissue construct material properties. The results of our simulations discussed above
indicate that the production of scaffolds with uniform porosity may play an important
role in producing tissue constructs with mechanical properties appropriate for implant.

We have extended our previous studies (O’Dea et al. 2008, 2010; Osborne et al.
2010), by accommodating spatial non-uniformity in scaffold and ECM volume frac-
tion, demonstrating the importance of such a consideration; however, we have made
a number of simplifying assumptions to enable analysis. We have restricted attention
to a rigid scaffold and ECM phase (the remaining phases being modelled as viscous
fluids) and so our formulation applies to those constructs whose solid characteris-
tics are dominated by the rigidity of the scaffold and/or deposited materials. We note
also that our simplified treatment of the PLLA scaffold and ECM means that the
mechanics of our model are in fact accommodated within a three phase framework.
Our model formulation is further simplified by exploiting the long-wavelength limit;
our previous work (Osborne et al. 2010) has indicated that, while two-dimensional
variation of mechanical stimulation has an important effect on construct growth, the
long-wavelength limit provides a good approximation to the averaged behaviour of the
two-dimensional model, even for bioreactors with large aspect ratio, such as that illus-
trated in Fig. 1. Nevertheless, validation of our model results within a two-dimensional
framework remains important future work. We have assumed that the scaffold degrades
uniformly; however, it is known that bi-products of tissue growth can influence the
mechanical and structural nature of tissue engineering scaffolds (see, e.g., Ahearne
et al. (2010) and references therein). Consideration of such effects represents another
interesting extension to our study.

We have employed our simplified formulation to make inferences regarding the
likely composition and mechanical integrity of engineered tissue constructs. Important
further work includes explicit modelling of the mechanical properties of the scaffold
and ECM, considering, for example, a poroelastic (Roose et al. 2003) or poroviscoelas-
tic (Byrne and Preziosi 2003) model. Additionally, the robustness of our conclusions
should be investigated by considering the addition of nutrient-limited growth to our
formulation; methodologies for such investigations are given by Lewis et al. (2005) and
Lemon and King (2007). Tissue engineers employ a number of different techniques
to seed porous scaffolds with cells. We have restricted attention to an initial seeding
which is highly localised near the centre of the scaffold (via, e.g. injection of a cell
suspension), to illustrate the model behaviour. With the inclusion of nutrient-limited
growth, it is natural to investigate the influence of different experimentally-relevant
cell seedings on the eventual construct morphology. Such studies allow for further
incorporation of experimental data (via the initial seeding density, in addition to the
scaffold porosity distribution) and lend themselves for validation against histological
samples from relevant cell culture experiments.
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Appendix: Model derivation

We consider a bioreactor of length L∗ and width h∗, modelled as a two-dimensional
channel containing a mixture of four interacting phases, representing cells, cul-
ture medium, PLLA scaffold and ECM and denote these via a subscript i =
n, w, s, e, respectively. The viscosity of any fluid phase is denotedμ∗

i , and the typical
timescale for tissue growth (comprising both cell proliferation and ECM deposition)
is denoted K ∗. Asterisks distinguish dimensional quantities from their dimensionless
equivalents.

We introduce a Cartesian coordinate system L∗x = L∗(x, y) and time K ∗t and
the channel occupies the dimensionless region 0 � x � 1, 0 � y � h = h∗/L∗.
The volume fraction of each phase is denoted θi , while the dimensionless volume-
averaged velocities, pressures and stress tensors of the each phase are denoted
K ∗L∗ui = K ∗L∗(ui , vi ), K ∗μ∗

w pi and K ∗μ∗
wσ i . Tissue growth, scaffold degra-

dation and ECM deposition are captured via material transfer functions K ∗Si . We
assume that all dimensionless dependent variables are functions of x and t .

The model is constructed by considering mass and momentum balances for each
phase, assuming that each phase is incompressible, with equal density, and neglecting
inertial effects; the equations governing the i th phase (with volume fraction θi ) are as
follows [see Lemon et al. (2006), O’Dea et al. (2010), Osborne et al. (2010)]:

∂θi

∂t
+ ∇ · (θi ui ) = Si (θk, pk, uk) , (21)

∇ ·
(
θiσ

i
)

+
∑

j 
=i

Fi j = 0. (22)

Additional conservation conditions may be obtained by summing over all phases and
exploiting the no-voids condition

∑
i θi = 1.

In Eq. (21) K ∗Si is the net material production term associated with phase i (mass
conservation demands that

∑
Si = 0); in (22), K ∗μ∗

w/L∗Fi j is the interphase force
exerted by phase j on phase i , obeying Fi j = −F j i . These interphase forces comprise
interphase viscous drag (with drag coefficient μ∗

w/L∗2k) and active forces, the latter
being embodied within extra pressures which arise due to cell–cell, cell–ECM and cell–
scaffold interactions; interactions between the culture medium and scaffold phases are
assumed to involve only viscous drag. The mechanics of this four phase formulation
is simplified by lumping the scaffold and ECM components into a single ‘substrate’
phase, denoted θS = θs + θe, and modelled as a rigid porous material. For notational
convenience, in this Appendix, we employ the subscript S to denote the substrate, in
preference to�. Separate mass conservation equations are nevertheless employed for
θs and θe to track their individual evolution.
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Fig. 9 The two-dimensional domain, outward-pointing normal n̂ and associated boundary conditions. The
arrows indicate the perfusion direction in the case of dimensionless up- and downstream pressures PU and
PD obeying PU > PD

The cell population and culture medium are represented as distinct viscous fluids,
modelled by standard viscous stress tensors; the rigidity of the substrate implies uS =0.
These constitutive assumptions are embodied in the following equations.

σ i = −pi I + μi

(
∇ui + ∇uT

i

)
− 2

3 (∇ · ui ) I , for i = n, w , (23)

Fi j = (
pw+ψi j

) (
θ j∇θi −θi∇θ j

)+kθiθ j (u j −ui ) , for i, j =n, w, S , (24)

pn = pw + θ2
n�n + θnψnS , (25)

whereinμi are the dimensionless viscosities of each phase, and�n andψnS are defined

�n = −ν + δaθn

θw
and ψnS = −χ + δbθn

θw
. (26)

In Eq. (26) ν, χ, δa, δb > 0 dictate the cells’ tendency to aggregate, their affinity
for the scaffold/ECM and the strength of cell–cell/cell–scaffold repulsion. In a more
general formulation, the coefficient of viscous drag k between two phases i and j
varies depending upon the phases under consideration and may depend upon their
respective volume fractions or other state variables. A suitable representation is to
replace k by, say, ki j (θi , θ j ) (obeying ki j = k ji ). Full details and discussion of the
above choice of interphase interaction terms may be found in Lemon et al. (2006).

Figure 9 depicts the two-dimensional model of the bioreactor, together with appro-
priate boundary conditions. These correspond to no-slip and no-penetration of cells or
culture medium through the channel walls, a pressure-driven flow imposed via up- and
downstream pressures K ∗μ∗

wPU and K ∗μ∗
wPD , partitioned normal stress conditions

and fully-developed flow at x = 0, 1.
We now simplify the two-dimensional equations by considering the limit for which

the aspect ratio of the bioreactor is asymptotically small (h � 1). We remark that,
since the culture medium volume fraction may be eliminated via θw = 1−θn −θs −θe

and the substrate is rigid, we need consider momentum conservation equations for the
fluid (cell and culture medium) phases, only.
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Following O’Dea et al. (2010), the reduced model is obtained by rescaling according
to:

y = hy, vi = hvi , pi = pi/h2, (27)

and averaging across the channel in the transverse direction (imposing the boundary
conditions at y = 0, h depicted in Fig. 9). We find that the pressure and the volume
fraction of each phase are functions of x and t only and the flow of cells and culture
medium is unidirectional at leading order (vi = 0). Expressions for the averaged axial
velocities 〈uw〉 and 〈un〉 are obtained from the remaining momentum equations, on
substitution of which into the (averaged) mass conservation equations (dropping the
overbars), we obtain the following system of coupled partial differential equations
for the volume fractions θe(x, t), θs(x, t), θn(x, t) and the culture medium pressure,
pw(x, t):

∂θs

∂t
= Ss , (28)

∂θe

∂t
= Se , (29)

∂θn

∂t
+ 1

12

∂

∂x

(

(1 − θs − θe − θn)
∂pw
∂x

)

= Sn , (30)

∂

∂x

{

(θn + μn(1 − θs − θe − θn))
∂pw
∂x

}

+ ∂

∂x

{
∂(θ2

n�n)

∂x
+ 2θnψnS

∂(θe + θs)

∂x
+ θn(θe + θs)

∂ψnS

∂x

}

= 0 , (31)

in which μn is the relative viscosity of the cell and culture medium phases. The extra
pressures �n and ψnS are scaled according to Eq. (27) so that these interactions
are retained at leading order, which implies (ν, δa, χ, δb) = (ν̄, δ̄a, χ̄ , δ̄b)/h2; the
remaining parameters are O(1). Equations (28)–(31) embody conservation of mass
for the ECM, PLLA scaffold and cell phases, and the multiphase mixture. Dropping
the subscripts on the interaction functions�n andψnS gives the equations stated in
the main text.

Under the rescaling, (27), the boundary conditions shown in Fig. 9 become:

pw = PU at x = 0 , (32)

pw = PD at x = 1 , (33)
∂θn

∂x
= 0 at x = 0, 1. (34)
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