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Abstract It has often been observed that population heterogeneities can lead to out-
breaks of infection being less frequent and less severe than homogeneous population
models would suggest. We address this issue by comparing a model incorporating
various forms of heterogeneity with a homogenised model matched according to the
value of the basic reproduction number R0. We mainly focus upon heterogeneity in
individuals’ infectivity and susceptibility, though with some allowance also for het-
erogeneous patterns of mixing. The measures of infectious spread we consider are (i)
the probability of a major outbreak; (ii) the mean outbreak size; (iii) the mean endemic
prevalence level; and (iv) the persistence time. For each measure, we establish con-
ditions under which heterogeneity leads to a reduction in infectious spread. We also
demonstrate that if such conditions are not satisfied, the reverse may occur. As well
as comparison with a homogeneous population, we investigate comparisons between
two heterogeneous populations of differing degrees of heterogeneity. All of our results
are derived under the assumption that the susceptible population is sufficiently large.

Keywords Basic reproduction number · SIR epidemic · SIS epidemic ·
Outbreak size · Endemic prevalence · Fade-out of infection
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1 Introduction

In the simplest models for infectious spread, the population is assumed to consist
of identical individuals who mix homogeneously with one another. Clearly these
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964 D. Clancy, C. J. Pearce

assumptions are over-simplistic, and more realistic models incorporate a variety of
heterogeneities—see, for example, Hethcote (1996), Keeling and Rohani (2007) chap-
ter 3, and references therein. Most simply, individuals in different geographical regions
will interact more weakly than individuals living in close proximity; a population
consisting of spatially separated groups is sometimes referred to as a ‘metapopula-
tion’ or ‘patchy environment’ model (Hagenaars et al. 2004). For many diseases (e.g.
childhood infections) the population should be stratified according to age group; for
sexually transmitted diseases, stratification according to gender and sexual behaviour
is also important, and certain ‘core groups’ may be chiefly responsible for maintaining
infection in the population (Hethcote and Yorke 1984); and for certain infections (e.g.
SARS), it has been hypothesised that there exists a sub-group of ‘super-spreaders’
within the population. Such heterogeneities have important implications for control
strategies (see, for instance, Lloyd-Smith et al. 2005). The question then arises as to
how, and to what extent, such heterogeneities affect the spread of infection. Compar-
isons between heterogenous population models and appropriately matched homoge-
neous populations are thus a topic of long-standing interest in the literature, e.g. Ball
(1985), Lefèvre and Malice (1988), Becker and Marschner (1990), Marschner (1992),
Adler (1992), Andersson and Britton (1998).

Given a specified heterogeneous population model, it is not always obvious how to
construct the corresponding homogeneous population model for comparison, and in
general there may be several candidates. For a population in which individuals have
different degrees of susceptibility, Ball (1985) took the arithmetic mean of the relevant
contact rate parameters, whereas Andersson and Britton (1998) worked instead with
the harmonic mean. In analysing a model for assortative/dissortative mixing (individ-
uals have a preference for either within-group or between-group infectious contacts),
Marschner (1992) investigated three different averaging methods. Often, the interest is
particularly in the effect of averaging upon the basic reproduction number R0, defined
to be the average number of new infections caused by a typical infected individual in
an otherwise susceptible population. In contrast, recent authors have chosen to com-
pare the heterogeneous population of interest with a homogeneous population having
the same R0 value, in terms of measures such as the probability of a major outbreak
or the total outbreak size. Thus in modelling Salmonella transmission within a dairy
herd, Xiao et al. (2006) presented numerical results indicating that herd heterogeneity
reduced the probability of a major outbreak, compared to a homogeneous population
with the same R0 value. Yates et al. (2006), working with a more generic heteroge-
neous population model, found similar results for the major outbreak probability, again
based on numerical work. Andreasen (2011) gave sufficient conditions under which
the size of a deterministic susceptible-infective-removed (SIR) epidemic model in a
heterogeneous population is bounded above by that of the homogeneous population
with matched R0 value.

In this paper, we compare populations incorporating various heterogeneities with a
homogeneous population matched according to R0 value, in terms of (i) the probabil-
ity of a major outbreak; (ii) the expected size of such an outbreak, should one occur;
(iii) the endemic mean prevalence level, should the infection become endemic in the
population; and (iv) the persistence time of infection in the population, should the
infection become endemic. Our general model (specified more precisely in Sect. 2)
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The effect of population heterogeneities 965

describes a population stratified into groups, and allows for heterogeneity in individ-
uals’ susceptibilities and infectivities, and in group-to-group mixing preferences. For
simplicity, we assume no birth or immigration into the population, and no death or
emigration. We assume that there is no latent period, and that the infection either con-
fers lifelong immunity or no immunity (that is, no temporary or partial immunity). We
use approximation methods valid in the large population limit throughout. In Sect. 7
we discuss just how restrictive our assumptions are in practice, and the extent to which
our results remain robust to their relaxation.

Our main results are as follows. Heterogeneities in individuals’ susceptibilities and
infectivities do not increase the probability of a major outbreak (under appropriate
initial conditions). Provided susceptibility and infectivity are not negatively correlated,
then heterogeneities in susceptibility and infectivity do not increase the mean size of
a major outbreak or the endemic mean prevalence level. Heterogeneities in either
susceptibility alone or infectivity alone do not increase the mean time for infection
to die out, starting from the endemic level, provided all groups are of equal size.
For each of the measures (i)–(iv) we also establish sufficient conditions under which
outbreak probability or severity is greater in the ‘more heterogeneous’ (in a sense made
precise in Sect. 2) of two heterogeneous populations having a common R0 value, and
exhibit symmetry conditions under which population heterogeneities have no effect
upon the measure in question. Comparisons between populations of different degrees
of heterogeneity do not generally seem to have been considered by previous authors.

All vectors are row vectors, and we refer to a matrix as non-negative when all its
elements are non-negative. Numerical work was carried out using Matlab on a desktop
PC.

2 Model specification and majorization theory

Consider a closed population of N individuals divided into k groups, with group
i(i = 1, 2, . . . , k) consisting of Ni individuals of whom ai are initially infected.
Denote by fi = Ni/N the proportion of the population belonging to group i , so that∑

i fi = 1. When a group i individual becomes infected, it remains so for a time
distributed as a non-negative random variable T , assumed (for simplicity) to have the
same distribution for each group. During this infectious period, the group i infective
makes contacts with each individual in each group j = 1, 2, . . . , k at the points
of a Poisson process of rate βi j/N . These Poisson processes and infectious periods
are all mutually independent. If a contacted individual is susceptible, then it becomes
infected (and infectious); if the contacted individual is already infected then the contact
has no effect. We follow Yates et al. (2006) in writing the infection rate parameters
in the form βi j = βλiπi jμ j , where β is some overall measure of infectiousness,
λi represents the infectivity of group i individuals, μ j represents the susceptibility of
group j individuals, and πi j is a mixing parameter representing the relative preference
of group i infectives for group j susceptibles. Following Becker and Marschner (1990)
we scale the λi , μ j values so that

∑
i λi fi = ∑

j μ j f j = 1, and we scale time so
that E[T ] = 1. We will assume throughout that β > 0, that fi , λi , μi > 0 for
all i and that the matrix with entries πi j is irreducible (see Seneta 1986, p. 18–22).
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966 D. Clancy, C. J. Pearce

We also impose constraints
∑

i πi j = 1 for each j and
∑

j πi j = 1 for each i (this is
equivalent to requiring the matrix with entries βi j to be such that there exists a doubly
stochastic matrix with the same pattern of non-zero entries, see Borwein et al. (1994)).
If, for example, we take πi i = ρ for all i and πi j = (1 − ρ)/(k − 1) for i �= j , then
the parameter ρ (0 ≤ ρ < 1) represents the preference for within-group mixing as
opposed to between-group mixing. The cases ρ > 1/k and ρ < 1/k are known as
assortative and dissortative mixing, respectively (Yates et al. 2006; Hagenaars et al.
2004).

Particular special cases of our general model are as follows.

1. The separable case: πi j = 1/k for all i, j , so that βi j = (β/k)λiμ j .
2. Heterogeneous susceptibility: πi j = 1/k for all i, j and λi = 1 for all i , so that
βi j = (β/k)μ j .

3. Heterogeneous infectivity: πi j = 1/k for all i, j and μ j = 1 for all j , so that
βi j = (β/k)λi .

4. Heterogeneous mixing: λi = μi = 1 for all i , so that βi j = βπi j .

For comparing two heterogeneous populations, we shall use superscripts to spec-
ify the population, so that population 1 has infection rate parameters β(1)i j =
β(1)λ

(1)
i π

(1)
i j μ

(1)
j and so on. To make precise what we mean by “more heterogeneous”

we require the following definitions. For a vector x = (x1, x2, . . . , xk), denote by
x[1] ≥ x[2] ≥ · · · ≥ x[k] the elements of x in decreasing order. Then we say x is

majorized by y, denoted x ≺ y, if
∑ j

i=1 x[i] ≤ ∑ j
i=1 y[i] for j = 1, 2, . . . , k − 1

and
∑k

i=1 x[i] = ∑k
i=1 y[i] (Marshall et al. 2010, definition 1.A.1). For a vector

p = (p1, p2, . . . , pk) with non-negative components such that
∑k

i=1 pi = 1, then x
is said to be p-majorized by y, denoted x ≺ p y, if there exists a permutationσ such that

xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(k) and yσ(1) ≥ yσ(2) ≥ · · · ≥ yσ(k) with
∑ j

i=1 pσ(i)xσ(i) ≤
∑ j

i=1 pσ(i)yσ(i) for j = 1, 2, . . . , k − 1 and
∑k

i=1 pi xi = ∑k
i=1 pi yi (Marshall et al.

2010, definition 14.A.2). The intuitive interpretation is that if x ≺ y or if x ≺ p y for
some p then y is more heterogeneous than x, see Marshall et al. (2010). In particular,
note that (

∑
i yi )1 ≺ y for any y and (

∑
i pi yi )1 ≺ p y for any y, p.

We now collect together some results required in the sequel.

Lemma 1 (i) x ≺ y if and only if there exists a doubly stochastic matrix A such
that x = yA (Marshall et al. 2010, Theorem 2.B.2).

(ii) If x ≺ p y then there exists a non-negative k × k matrix A with
∑k

i=1 ai j = 1
for all j such that pAT = p and x = yA (Marshall et al. 2010, Proposition
14.A.3).

(iii) Suppose p(1), p(2) are vectors with non-negative components such that
∑k

i=1 p(1)i = ∑k
i=1 p(2)i = 1. Then

∑k
i=1 p(1)i ξ(xi ) ≤ ∑k

i=1 p(2)i ξ(yi ) for all
convex functions ξ if and only if there exists a non-negative k × k matrix A
with

∑k
i=1 ai j = 1 for j = 1, 2, . . . , k such that p(1)AT = p(2) and x = yA

(Marshall et al. 2010, Proposition 14.A.1, originally due to Blackwell (1951,
1953)).

Our results are all derived under the assumption that a small number of infectives are
introduced into a large susceptible population. That is, we rely upon approximations
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valid in the limit as N → ∞ (which implies that Ni → ∞ for every i , since fi > 0),
while each ai remains finite.

3 Probability of a major outbreak

In the early stages of an outbreak, provided that every group size Ni is sufficiently large,
the probability that a contact is with an already-infected individual is low, so we may
effectively assume that every contact results in a new infection. That is, the infection
process may be approximated by a multi-type branching process in which each group i
individual lives for a time distributed as T and during this lifetime gives birth to group
j offspring ( j = 1, 2, . . . , k) according to a Poisson process of rate βλiπi jμ j f j . For
full justification of this approximation see Metz (1978), Ball (1983). Denoting by Gi j

the number of type j offspring of a typical type i individual, then the total number
of progeny of the process follows the same distribution as for a multi-type Galton-
Watson process with offspring distributions Gi j . Denoting by ψ(θ) = E[exp(θT )]
the moment generating function of T , then the offspring distributions are determined
by the generating functions

φi (s1, s2, . . . , sk) = E

⎡

⎣
k∏

j=1

s
Gi j
j

⎤

⎦ = ψ

⎛

⎝−β
k∑

j=1

λiπi jμ j f j
(
1 − s j

)
⎞

⎠ (1)

for 0 ≤ si ≤ 1, i = 1, 2, . . . , k.
The mean offspring matrix M with entries mi j = βλiπi jμ j f j , often called the

next generation matrix, is irreducible (by assumption), and the basic reproduction
number R0 is equal to the Perron–Frobenius eigenvalue of M . If R0 ≤ 1 then (with
probability 1) the branching process produces only a finite total number of progeny,
corresponding to a minor outbreak of infection (see e.g. Mode 1971). If R0 > 1 then
the branching process may produce an infinite number of progeny, corresponding to a
major outbreak of infection, with probability 1 − ∏k

i=1 qai
i where qi is the extinction

probability of the branching process started with a single individual of type i , and
q = (q1, q2 . . . , qk) is the unique solution with 0 ≤ qi < 1 of

qi = φi (q1, q2, . . . , qk) for i = 1, 2, . . . , k. (2)

We assume from now on that R0 > 1.
We shall consider only outbreaks initiated by a single infective, the initial infec-

tive belonging to group i with probability νi for some probability distribution
ν = (ν1, ν2, . . . , νk), so that the probability of a major outbreak is given by 1 − q
where q = ∑k

i=1 νi qi . The corresponding homogeneous population model, matched
to have the same R0 value, has offspring generating function φ0(s) = ψ(−R0(1−s)),
and for R0 > 1 the probability of a major outbreak in the homogeneous model is
1 − q0 where q0 is the unique solution in 0 ≤ q0 < 1 of q0 = φ0(q0).

First, we exhibit a symmetry condition under which the major outbreak probability
is unaffected by heterogeneities.
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968 D. Clancy, C. J. Pearce

Theorem 1 If the rows of the mean offspring matrix M all sum to the same value,
then the major outbreak probability is the same as for a homogeneous population with
the same R0 value. In particular,

(i) heterogeneous susceptibility alone does not affect the major outbreak probability;
(ii) when all group sizes are equal, heterogeneous mixing alone does not affect the

major outbreak probability.

Proof A non-negative irreducible matrix with all row sums equal has Perron–
Frobenius eigenvalue equal to the common row sum, so R0 = β

∑
j λiπi jμ j f j (for

any i). Now for each i , Eq. (1) gives φi (q0, q0, . . . , q0) = ψ(−R0(1 − q0)) = q0,
so that q = (q0, q0, . . . , q0) provides the solution to Eq. (2), and hence q = q0 for
any initial distribution ν. Parts (i) and (ii), corresponding to mi j = (β/k)μ j f j and
mi j = (β/k)πi j respectively, follow immediately. �	

Theorem 1(i) was previously proved by Becker and Marschner (1990).
Theorem 1 applies irrespective of the initial distribution ν. The natural initial con-

dition is to take the probability that the initial infective belongs to group i to be
proportional to the number of individuals in group i and to the susceptibility of group
i individuals, so that νi = μi fi (Becker and Marschner 1990; Yates et al. 2006). In
the separable case, this form for ν provides the eigenvector of M corresponding to the
Perron–Frobenius eigenvalue R0 = (β/k)

∑k
i=1 λiμi fi . For our general model, we

have the following result, the proof of which is adapted from Section 4.3 of Becker
and Marschner (1990).

Theorem 2 For an outbreak initiated by a single infective introduced into group i
with probability νi , where the probability distribution ν = (ν1, ν2, . . . , νk) is the left
eigenvector of the mean offspring matrix M corresponding to the Perron–Frobenius
eigenvalue R0 > 1, then q ≥ q0. That is, the probability of a major outbreak in
a heterogeneous population is no greater than the corresponding probability in a
homogeneous population with the same R0 value.

Proof Since the generating functionψ is convex, an application of Jensen’s inequality
yields

q =
k∑

i=1

νi ψ

⎛

⎝−
k∑

j=1

mi j
(
1 − q j

)
⎞

⎠

≥ ψ

⎛

⎝−
∑

i, j

νi mi j
(
1 − q j

)
⎞

⎠

= ψ

⎛

⎝−R0

k∑

j=1

ν j
(
1 − q j

)
⎞

⎠ = ψ (−R0 (1 − q)) = φ0 (q) .

The function φ0(s) is convex with φ0(s) > s for 0 ≤ s < q0 and φ0(s) < s for
q0 < s < 1, so that q ≥ q0 as required. �	
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Other than in the separable case, the initial condition required by Theorem 2 is not
particularly natural. The eigenvector of M with eigenvalue R0 does have a biological
interpretation, but in terms of the long-term behaviour of the process. Specifically, if
we denote by Z (n)i the number of group i individuals in generation n, then conditional
upon the branching process producing an infinite number of offspring,

lim
n→∞

Z (n)i
∑k

j=1 Z (n)j

= αi for i = 1, 2, . . . , k,

where α is the normalised left eigenvector of M with eigenvalue R0 (Jagers 1975,
p. 95). In practice, convergence is often quite rapid; that is, conditional upon non-
extinction, the proportion of generation n individuals belonging to group i is close
to αi within a few generations. Consequently, Theorem 2 seems reasonably robust
to different initial conditions. For instance, Figure 1 of Yates et al. (2006) shows a
variety of examples, each with initial condition νi = μi fi , where in each case the major
outbreak probability is found to be bounded above by the homogeneous population
value, although in most cases ν is not an eigenvector of M . Nishiura et al. (2011)
studied a model for Influenza transmission with k = 2 groups representing children
and adults. Using parameter values based upon data from Influenza A (H1N1-2009)
in Mexico, figure 4 of Nishiura et al. (2011) shows that for an outbreak initiated
by an adult case (ν = (0, 1)) the major outbreak probability is bounded above by
the homogeneous population value, whereas for an outbreak initiated by a child case
(ν = (1, 0)) the major outbreak probability can exceed the homogeneous population
value, although only slightly; neither (0, 1) nor (1, 0) is an eigenvector of the next
generation matrix.

It has been previously shown (Becker and Marschner 1990) that heterogeneity in
infectivity alone reduces the probability of a major outbreak, and observed in numerical
examples (Yates et al. 2006) that heterogeneity in susceptibility in combination with
other forms of heterogeneity can reduce the major outbreak probability. Theorem
2 shows that when heterogeneity in infectivity and susceptibility are combined, the
combined heterogeneities do not increase the major outbreak probability.

Having compared heterogeneous with homogeneous populations, we now consider
comparisons between two heterogeneous populations. For the remainder of this section
we restrict ourselves to the separable case with initial condition νi = μi fi . This
allows us to investigate the major outbreak probability using a single-type, rather
than multi-type, branching process as follows. Denote by Gi the total number of
offspring of a typical type i individual in our multi-type branching process, Gi =
Gi1 + Gi2 + · · · + Gik . Define a random variable G to be distributed as Gi with
probability μi fi for i = 1, 2, . . . , k, so that G has probability generating function

φ(s) = E
[
sG

]
=

k∑

i=1

μi fiψ (−(β/k)λi (1 − s)) .

With initial condition νi = μi fi it is clear that the total progeny of the multi-type
branching process has the same distribution as that of a single-type branching process,
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970 D. Clancy, C. J. Pearce

initiated by a single individual, in which each individual has number of offspring
distributed as G. Hence for R0 > 1 the minor outbreak probability q is the unique
solution in 0 ≤ q < 1 of q = φ(q).

Our general result regarding comparison of two heterogeneous populations is as
follows. Note that in Theorem 3, population 2 is in some sense ‘more heterogeneous’
than population 1, as is made clearer by the succeeding corollaries.

Theorem 3 Consider two heterogeneous populations in the separable case, so m(1)
i j =

(β(1)/k)λ(1)i μ
(1)
j f (1)j and m(2)

i j = (β(2)/k)λ(2)i μ
(2)
j f (2)j . For an outbreak initiated

by a single infective belonging to group i with probability νi = μi fi , then q(1) ≤
q(2) provided there exists a non-negative k × k matrix A with

∑k
i=1 ai j = 1 for

j = 1, 2, . . . , k such that μ(1)F (1)AT = μ(2)F (2) and β(1)λ(1) = β(2)λ(2)A, where
F = diag( f1, f2, . . . , fk).

Notice that in the conditions of Theorem 3, the matrix A appears in the left hand
side of the susceptibility condition and the right hand side of the infectivity condition,
giving the requisite compensation to keep R0 constant, i.e. these conditions imply
R(1)0 = R(2)0 .

Proof Set ν(1)i = μ
(1)
i f (1)i and ν(2)i = μ

(2)
i f (2)i . Then since ψ is convex, applying

Lemma 1(iii) yields

q(1) = φ(1)
(

q(1)
)

=
k∑

i=1

ν
(1)
i ψ

(
−

(
β(1)/k

)
λ
(1)
i

(
1 − q(1)

))

≤
k∑

i=1

ν
(2)
i ψ

(
−

(
β(2)/k

)
λ
(2)
i

(
1 − q(1)

))
= φ(2)

(
q(1)

)
.

Arguing as in the proof of Theorem 2, it follows that q(1) is less than or equal to
the fixed point of the function φ(2). That is, q(1) ≤ q(2). �	

The following corollaries are immediate from Theorem 3 and Lemma 1(i), (ii).

Corollary 1 For two populations in the separable case with μ(1)j f (1)j = μ
(2)
j f (2)j =

ν j , then for an outbreak initiated by a single infective belonging to group i with
probability νi we have that β(1)λ(1) ≺ν β

(2)λ(2) ⇒ q(1) ≤ q(2).

Corollary 2 With heterogeneous infectivity alone and equal group sizes, then for an
outbreak initiated by a single infective whose group is chosen uniformly at random
from {1, 2, . . . , k} we have that λ(1) ≺ λ(2) ⇒ q(1) ≤ q(2).

Notice that we assume a common β value in Corollary 2, as otherwise we would
have the condition β(1)λ(1) ≺ β(2)λ(2), implying β(1) = β(2). Corollary 2 extends a
result of Becker and Marschner (1990), that with heterogeneity in infectivity alone the
major outbreak probability is maximised in a homogeneous population.

Some numerical examples are shown in Fig. 1 illustrating that the more hetero-
geneous the population, the smaller the probability of a major outbreak. In previ-
ous numerical work, Yates et al. (2006) assumed a constant (non-random) infectious
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Fig. 1 The effect of heterogeneity in both infectivity and susceptibility on the major outbreak probability
1 − q. Fixed parameter values k = 2, f1 = f2 = 1/2, πi j = 1/2 for all i, j . Solid lines computed with
constant infectious period T = 1; dashed lines with T exponentially distributed with mean 1. For each
infectious period distribution, the curves from top to bottom correspond to μ = λ = (1, 1); μ = (1.5, 0.5),
λ = (1.512, 0.488); μ = (1.4, 0.6), λ = (1.64, 0.36); μ = (1.32, 0.68), λ = (1.8, 0.2). For comparing

successive non-homogeneous cases, the matrix A required by Theorem 3 is A =
(

0.9 0.1
0.1 0.9

)

period, while Xiao et al. (2006) assumed an exponentially distributed infectious period.
Our results apply for any specified distribution of infectious period, and so we illustrate
our results for the constant and exponentially distributed cases. Results are shown for
k = 2 equally sized groups. Note that a constant infectious period consistently leads
to a higher probability of a major outbreak than an exponentially distributed infectious
period, in line with the findings of Vergu (2010) and Britton and Lindenstrand (2009),
although the effect of the infectious period distribution is not the focus of the current
work.

4 Outbreak size

In considering the major outbreak probability, we did not need to specify how an
individual behaves after the end of its infectious period—in particular, whether infec-
tion is followed by a period of immunity, or by an immediate return to susceptibility.
This is because in the large population limit, with high probability no individual is
contacted more than once during the early stage of an outbreak, so that whether or
not a previously-infected individual is susceptible to re-infection is irrelevant when
computing the probability of a major outbreak. Suppose now that infection is followed
by lifelong immunity, the model thus obtained being conventionally referred to as a
multi-group susceptible-infective-removed (SIR) model. It is then natural to consider
the distribution of the final size vector N∗ = (N∗

1 , N∗
2 , . . . , N∗

k ), where N∗
i is the total

number of group i individuals to become infected during the course of the outbreak.
Denote by N̄∗

i = N∗
i /Ni the proportion of group i individuals ever infected. In a
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large population, then conditional upon the occurrence of a large outbreak, it is known
(Ball and Clancy 1993) that the distribution of N̄

∗ = (N̄∗
1 , N̄∗

2 , . . . , N̄∗
k ) is approxi-

mately multivariate normal with mean vector τ = (τ1, τ2, . . . , τk) satisfying

τi = 1 − exp

⎛

⎝−
k∑

j=1

τ j f jβ j i

⎞

⎠ for i = 1, 2, . . . , k. (3)

The elements of the corresponding variance matrix can also be written down in terms
of the parameters of the process (see Ball and Clancy 1993), but since fluctuations
about τ are of order 1/

√
N in the limit, we shall consider only mean behaviour.

Equation (3) has been analysed by Scalia-Tomba (1986) in the specific case of a
constant infectious period T = 1, known as the multitype Reed–Frost process, but
Eq. (3) is valid for any infectious period distribution of mean 1, see Ball and Clancy
(1993). Equation (3) clearly admits the solution τ = 0, corresponding to no major
outbreak. Lemma 1(i) of Scalia-Tomba (1986) shows that (provided the matrix with
entries f jβ j i is irreducible) for R0 ≤ 1 there is no non-zero solution in [0, 1]k , while
for R0 > 1 there is a unique non-zero solution in [0, 1]k corresponding to a major
outbreak.

Denote by τ = ∑k
i=1 fiτi the mean proportion of the entire population who become

infected (conditional upon a major outbreak), and by τ0 the corresponding quantity in
a homogeneous population. Then for R0 > 1, τ0 is the unique solution in 0 < τ0 ≤ 1
of τ0 = 1 − exp(−R0τ0). Similarly to Theorem 1 we have first the following result.

Theorem 4 If the columns of the matrix F M F−1 all sum to the same value, then the
mean size of a major outbreak is the same as for a homogeneous population with the
same R0 value. In particular,

(i) heterogeneous infectivity alone does not affect the mean major outbreak size;
(ii) when all groups sizes are equal, heterogeneous mixing alone does not affect the

mean major outbreak size.

Proof If
∑

j f jλ jπ j iμi takes the same value for every i , then R0 = β
∑

j f jλ jπ j iμi

(for any i) and Eq. (3) admit the symmetrical solution τi = τ0 for i = 1, 2, . . . , k.
Hence τ = ∑

i fiτi = τ0. Parts (i), (ii) follow immediately. �	
Theorem 4(i) was previously observed by Ma and Earn (2006).
For the separable case, Theorem 4 of Andreasen (2011) shows that if λ1 < λ2 <

· · · < λk and μ1 < μ2 < · · · < μk then τ ≤ τ0. The following result extends the
conditions under which this can be shown to hold true.

Theorem 5 For the separable case, if
∑

i λiμi fi ≥ 1 then τ ≤ τ0. That is, such
heterogeneity does not increase the mean size of a major outbreak, compared to the
homogeneous situation.

Note: Regarding the group label i as a random variable with probability mass function
f , the condition

∑
i λiμi fi ≥ 1 may be written as Covariance(λ,μ) ≥ 0. The condi-

tion that elements of λ and μ be similarly ordered clearly implies positive correlation
between λ and μ, so that Theorem 4 of Andreasen (2011) is a special case of our
result.
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Proof In the separable case we have βi j = (β/k)λiμ j , so writing C = ∑
i τiλi fi

then Eq. (3) reduces to

τi = 1 − exp (−(β/k)Cμi ) for i = 1, 2, . . . , k. (4)

Substituting back into the definition of C yields

C = 1 −
k∑

i=1

λi fi exp (−(β/k)Cμi ) .

Defining the function g to be

g(θ) = 1 −
k∑

i=1

λi fi exp (−(β/k)θμi ) for θ ∈ R,

then g is a strictly increasing concave function with g(0) = 0, g(θ) → 1 as θ → ∞,
and g′(0) = R0. So for R0 > 1 there is a unique C ∈ (0,∞) with g(C) = C , and Eq.
(4) with this value of C provides the unique non-zero solution in [0, 1]k of Eq. (3), in
agreement with Andreasen (2003).

By Jensen’s inequality,

C = 1 −
k∑

i=1

fiλi exp (−(β/k)Cμi )

≤ 1 − exp

(

−(β/k)C
k∑

i=1

fiλiμi

)

= 1 − exp (−R0C) ,

so that C ≤ τ0. Another application of Jensen’s inequality gives

τ =
k∑

i=1

fiτi = 1 −
k∑

i=1

fi exp (−(β/k)Cμi )

≤ 1 − exp

(

−(β/k)C
k∑

i=1

fiμi

)

= 1 − exp(−(β/k)C)

≤ 1 − exp (−(β/k)τ0) .

The condition
∑

i λiμi fi ≥ 1 is equivalent to β/k ≤ R0, and so τ ≤ 1 −
exp (−R0τ0) = τ0, as required. �	

Theorem 5 shows that with positive correlation between susceptibility and infec-
tivity, heterogeneity leads to reduced infectious spread. It is then natural to conjecture
that negative correlation will lead to an increase in mean outbreak size, but in fact
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Fig. 2 The effect of heterogeneity in both infectivity and susceptibility on the mean major outbreak size τ .
Fixed parameter values k = 2, f1 = f2 = 1/2,πi j = 1/2 for all i, j . Solid line represents the homogeneous
case μ = λ = (1, 1). Dashed lines all have μ = (1.6, 0.4), and from top to bottom correspond to
λ = (0.01, 1.99), (0.2, 1.8), (0.4, 1.6), (1.8, 0.2)

this is not always the case, as pointed out by Andreasen (2011). Figure 2 illustrates
the range of possible effects, with k = 2 equally sized groups. For all heterogeneous
cases we take susceptibility vector μ = (1.6, 0.4), so that with λ = (1.8, 0.2) there is
a positive correlation between susceptibility and infectivity, Theorem 5 applies, and
mean outbreak size is reduced in comparison to the homogeneous case. For the other
three cases shown there is negative correlation between susceptibility and infectivity,
and we see a range of possible behaviours. With λ = (0.01, 1.99), mean outbreak size
is greater than in the homogeneous case across the range of R0 values shown; with
λ = (0.2, 1.8), mean outbreak size is greater than the homogeneous case for small R0
but lower for large R0; and for λ = (0.4, 1.6) the mean outbreak size is less than in the
homogeneous case across the range of R0 values plotted, even though susceptibility
and infectivity are negatively correlated. Note that there is no distinction to be made
here between different infectious period distributions, since Eq. (3) depends only upon
the mean E[T ].

Although mean outbreak size is unaffected by heterogeneity in infectivity alone,
when heterogeneity is in both susceptibility and infectivity, we see from Fig. 2 that
different infectivity vectors λ do give rise to differences. In terms of rigorous com-
parison between different heterogeneous populations, we can show that increasing
heterogeneity in susceptibility leads to reduced mean major outbreak size, as follows.

Theorem 6 Consider two heterogeneous populations with heterogeneity in suscep-
tibility alone, each having the same group structure, i.e. f (1) = f (2) = f . Then
μ(1) ≺ f μ(2) ⇒ τ (1) ≥ τ (2).

Proof With λ = 1 then τ = C . From Lemma 1(ii),(iii) we have that μ(1) ≺ f μ(2) ⇒
g(1)(θ) ≥ g(2)(θ) for all θ , so that C (1) ≥ C (2), and the result follows. �	
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5 Endemic prevalence level

In order to study long-term endemic behaviour in the simplest possible context, we now
suppose that infection is followed by an immediate return to susceptibility, so we have
a multi-type susceptible-infective-susceptible (SIS) model. Provided the population is
sufficiently large (with every group large) the infection process may be approximated
by a deterministic system as follows. Denote by xi (t) the proportion of group i indi-
viduals who are infected at time t , by x0

i (t) the proportion of group i individuals who
were infective at time 0 and have not recovered by time t , and by F̄(u) = Pr(T > u)
the survival function of the infectious period T . Then the approximating deterministic
system is

xi (t) = x0
i (t)+

t∫

0

β (1−xi (u))
k∑

j=1

x j (u) f jλ jπ j iμi F̄(t−u) du for i = 1, 2, . . . , k.

(5)

Clearly the system (5) has a disease-free equilibrium point at x = (0, 0, . . . , 0). Sup-
pose now that the process is initiated from a non-zero equilibrium point x∗, at time
t = −∞ rather than t = 0. Then provided Pr(T < ∞) = 1, Eq. (5) simplifies to

x∗
i =

t∫

−∞
β

(
1 − x∗

i

) k∑

j=1

x∗
j f jλ jπ j iμi F̄(t − u) du.

Substituting v = t − u we have
∫ t
−∞ F̄(t − u) du = ∫ ∞

0 F̄(v) dv = E[T ] = 1,
and so

x∗
i = β

(
1 − x∗

i

) k∑

j=1

x∗
j f jλ jπ j iμi for i = 1, 2, . . . , k. (6)

When infectious periods are exponentially distributed, Eq. (5) may be written as

dxi

dt
= β (1 − xi )

k∑

j=1

x j f jλ jπ j iμi − xi for i = 1, 2, . . . , k. (7)

For the system (7), Lajmanovich and Yorke (1976) showed that if M is irreducible
then (i) for R0 ≤ 1 the disease-free equilibrium is globally asymptotically stable (and
hence the unique feasible equilibrium point); (ii) for R0 > 1 there exists a globally
asymptotically stable non-zero equilibrium point x∗ in [0, 1]k . Although their analysis
relied upon the assumption that infectious periods are exponentially distributed, Eq.
(6) depends only upon the mean of the infectious period. It follows that for R0 > 1, for
infectious period T having any distribution such that E[T ] = 1 and Pr(T < ∞) = 1,
there exists a unique non-zero equilibrium point x∗, the endemic equilibrium.
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Equation (6) is sufficiently similar in structure to Eq. (3) that the analysis can
proceed in a closely parallel manner. We denote by x∗ = ∑k

i=1 fi x∗
i the overall

endemic prevalence level, and note that in a homogeneous population the endemic
prevalence level is given by x∗

0 = 1 − (1/R0) for R0 > 1.

Theorem 7 If the columns of the matrix F M F−1 all sum to the same value, then the
endemic mean prevalence of infection is the same as for a homogeneous population
with the same R0 value. In particular,

(i) heterogeneous infectivity alone does not affect the endemic prevalence level;
(ii) when all groups sizes are equal, heterogeneity in mixing alone does not affect the

endemic prevalence level.

Proof Since R0 = β
∑

j f jλ jπ j iμi (for any i), Eq. (6) admits the symmetrical solu-
tion x∗

i = x∗
0 for i = 1, 2, . . . , k. Hence x∗ = ∑

i fi x∗
i = x∗

0 . Parts (i),(ii) follow
immediately. �	

The following result is analogous to Theorem 5.

Theorem 8 For the separable case, if
∑

i λiμi fi ≥ 1 then x∗ ≤ 1 − (1/R0). That
is, such heterogeneity does not increase the endemic mean prevalence of infection,
compared to the homogeneous situation.

Proof With βi j = (β/k)λiμ j Eq. (6) becomes

xi = β

k
(1 − xi )μi

k∑

j=1

x j f jλ j for i = 1, 2, . . . , k.

Following Nold (1980) we set D = (β/k)
∑

j x j f jλ j . The elements of the endemic
equilibrium point x∗ are then given by

x∗
i = Dμi

1 + Dμi
for i = 1, 2, . . . , k. (8)

The value of D may be determined by substituting back from (8) into the definition
of D, giving either D = 0 (corresponding to the disease-free equilibrium) or

β

k

k∑

j=1

μ j f jλ j

1 + Dμ j
= 1,

given as equation (5.3) in Nold (1980). Defining the function h by

h(θ) = β

k

k∑

j=1

μ j f jλ j

1 + θμ j
for θ ∈ R, (9)

then h is a strictly decreasing continuous function with h(0) = R0 and h(θ) → 0 as
θ → ∞. Consequently, for R0 > 1 there is a unique D ∈ (0,∞) satisfying h(D) = 1.
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By Jensen’s inequality,

h(θ) = β

k

k∑

j=1

f jλ j

(
μ j

1 + θμ j

)

≤ β

k

( ∑
j f jλ jμ j

1 + θ
∑

j f jλ jμ j

)

= R0

1 + θ
∑

j f jλ jμ j
.

Now h(D) = 1, and so

R0

1 + D
∑

j f jλ jμ j
≥ 1

⇒ D
∑

j

f jλ jμ j ≤ R0 − 1 (10)

⇒ D ≤ R0 − 1,

since
∑

j f jλ jμ j ≥ 1 by assumption. Applying Jensen’s inequality once more,

x∗ =
k∑

i=1

fi x∗
i = D

k∑

i=1

fi

(
μi

1 + Dμi

)

≤ D

( ∑
i fiμi

1 + D
∑

i fiμi

)

= D

1 + D

≤ R0 − 1

R0
,

as required. �	
Theorem 8 provides a sufficient condition, but not a necessary condition, for het-

erogeneities to result in a decrease in endemic prevalence. An alternative sufficient
condition, and a necessary (but not sufficient) condition, are provided by the following
result. The proof is based upon that of theorem 4 of Andreasen (2011).

Theorem 9 Consider a heterogeneous population in the separable case and label
the groups such that μ1 ≤ μ2 ≤ · · · ≤ μk . If λ1μ1 ≤ λ2μ2 ≤ · · · ≤ λkμk , then
x∗ ≤ 1 − (1/R0). Conversely, if λ1μ1 ≥ λ2μ2 ≥ · · · ≥ λkμk , then x∗ ≥ 1 − (1/R0).

Proof From formula (8) and definition (9), the equation h(D) = 1 may be written as
(β/k)

∑k
j=1 μ j f jλ j (1 − x∗

j ) = 1, or equivalently

β

k

k∑

j=1

μ j f jλ j x∗
j = R0 − 1. (11)
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Fig. 3 The effect of heterogeneity in both infectivity and susceptibility on the endemic prevalence level
x∗. Fixed parameter values k = 2, f1 = f2 = 1/2, πi j = 1/2 for all i, j . Solid line represents the
homogeneous case μ = λ = (1, 1). Dashed lines all have μ = (1.6, 0.4), and from top to bottom
correspond to λ = (0.01, 1.99), (0.2, 1.8), (1.8, 0.2)

Regarding the group label j as a random variable with probability mass function f ,
and denoting Λ = diag (λ1, λ2, . . . , λk), then

Covariance
(
μΛ, x∗) =

k∑

j=1

f jλ jμ j x∗
j −

⎛

⎝
k∑

j=1

f jλ jμ j

⎞

⎠

⎛

⎝
k∑

j=1

f j x∗
j

⎞

⎠

= k R0

β

(

1 − 1

R0
− x∗

)

.

From formula (8) we see that x∗
j is an increasing function of μ j , so that provided

the elements of μΛ and μ are similarly ordered, it follows that the variables μΛ and
x∗ have positive correlation with respect to any probability mass function f , and the
result follows. The converse follows similarly, with opposite ordering of μΛ and μ

implying a negative correlation. �	
For k = 2 groups, Theorem 9 covers all possibilities, although not for k ≥ 3.

Figure 3 shows some numerical examples for k = 2 equally sized groups.
As for mean outbreak size, we see from Fig. 3 that when heterogeneity is in both

susceptibility and infectivity then different infectivity vectors λ can give rise to dif-
ferences in endemic prevalence level. The following result, analogous to Theorem
6, shows that increasing heterogeneity in susceptibility leads to a reduced endemic
prevalence level.

Theorem 10 Consider two heterogeneous populations with heterogeneity in suscep-
tibility alone, each having the same group structure f . Then μ(1) ≺ f μ(2) ⇒ x∗(1) ≥
x∗(2).
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Proof With λ = 1 then D = (β/k)x∗. From Lemma 1(ii),(iii), since ξ(μ) =
−μ/

(1 + θμ) is a convex function for any θ > 0, we have that μ(1) ≺ f μ(2)

implies

h(1)(θ) = β

k

k∑

j=1

f j

(
μ
(1)
j

1 + θμ
(1)
j

)

≥ β

k

k∑

j=1

f j

(
μ
(2)
j

1 + θμ
(2)
j

)

= h(2)(θ),

so that D(1) ≥ D(2) and the result follows. �	

6 Time to fade-out of infection

When an infection becomes endemic in a population, beyond the endemic preva-
lence level the next characteristic of interest is the persistence time of the infection,
often referred to as the time to fade-out. For the multi-type SIS model of the preced-
ing section, provided infectious periods are exponentially distributed, the infectives
process X(t) is a Markov chain on a finite state-space with a single absorbing state
at X = 0, all other states forming a single communicating class. It follows that with
probability 1 the process will be absorbed at X = 0 within finite time; that is, infec-
tion is certain to die out eventually. If R0 > 1 then the time to absorption can be
very long, and in the meantime the process will settle to a (unique) quasi-stationary
distribution (Darroch and Seneta 1967). Denoting by qx the quasi-stationary prob-
ability of being in state x, and by ei the vector with 1 as the i th component and
zeros elsewhere, then starting from quasi-stationarity the (constant) hazard rate for
absorption is

∑k
i=1 qei , so that the time to extinction is exponentially distributed with

mean (
∑k

i=1 qei )
−1 (see, for instance, Nåsell 1999). Since we are interested in the

time to extinction given that the infection has become established in the population,
it is natural to consider the process to be initiated from quasi-stationarity. The quasi-
stationary distribution may be evaluated as an eigenvector of the transition rate matrix
of the process, but since there is no explicit form for the elements qx this is not
very useful for investigating the effects of heterogeneities, so instead we proceed as
follows.

For R0 > 1, the process (X(t) − N F x∗)(N F)−1/2, where x∗ is the determin-
istic endemic equilibrium point of Sect. 4 and F = diag ( f1, f2, . . . , fk), may
be approximated by a k-dimensional Ornstein–Uhlenbeck process, at least so long
as the process remains in the neighbourhood of the point X = N F x∗, and so the
quasi-stationary distribution can be approximated using the stationary distribution of
this Ornstein–Uhlenbeck process. The method is based on results such as those of
Barbour (1972, 1976) and Section 11.2 of Ethier and Kurtz (1986), and has previously
been used to investigate quasi-stationary behaviour of a variety of epidemic models,
for instance see Nåsell (1999, 2002, 2005), Andersson and Britton (1998), Lindholm
(2008), Clancy and Mendy (2011). The approximation becomes precise in the limit
as N → ∞.

The approximating Ornstein–Uhlenbeck process has local drift matrix given by the
Jacobian J of the differential equation system (7) at x∗, with elements
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Ji j = β
(
1 − x∗

i

)
f jλ jπ j iμi − δi j

(

β

k∑

r=1

x∗
r frλrπriμi + 1

)

= β
(
1 − x∗

i

)
f jλ jπ j iμi − δi j

(
x∗

i

1 − x∗
i

+ 1

)

(due to Eq. (6))

= β
(
1 − x∗

i

)
f jλ jπ j iμi − δi j

1 − x∗
i
.

where δi j is the Kronecker delta symbol. The local variance matrix of the Ornstein–
Uhlenbeck process is a diagonal matrix G with diagonal entries

Gii = β
(
1 − x∗

i

) k∑

r=1

xr frλrπriμi + x∗
i = 2x∗

i .

The stationary distribution of the Ornstein–Uhlenbeck process is (Gardiner 2009,
Section 4.5.6) a k-dimensional normal distribution with mean zero and variance matrix
S satisfying the Lyapunov equation

J S + S J T + G = 0. (12)

From Laub (2005), Theorem 13.21, we know that since x∗ is locally stable equation
(12) has a unique solution S, and since G is symmetric it follows that S is also
symmetric.

Infection dies out when the process makes an excursion away from N F x∗ to 0,
the chance of which depends upon the variance of the quasi-stationary distribution.
Denoting by σT otal the standard deviation (in the normal approximation) of the total
number of infectives in the population, then an indication of typical time to fade-out of
infection is given by the reciprocal of the coefficient of variation CV = σT otal/N x∗,
where x∗ = ∑

i fi x∗
i . That is to say, a small value of CV suggests a large expected

persistence time (Hagenaars et al. 2004; Clancy and Mendy 2011). This treatment
of persistence time is rather approximate, but gives some indication of the effects of
model parameters.

For simplicity, for the remainder of this section we consider only the case of equally-
sized groups. In this case, fi = 1/k for all i and

CV 2 = σ 2
T otal

(N x∗)2
= k

∑
i, j Si j

N
(∑

i x∗
i

)2 . (13)

A general algebraic solution to equation (12) is rather complicated, so we restrict
ourselves to considering the three types of heterogeneity (in mixing, in infectivity, and
in susceptibility) separately.

Theorem 11 For a population of k equally-sized groups, consider the coefficient of
variation of the total number of infectives present in quasi-stationarity, as approxi-
mated via Eq. (13).
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(i) With heterogeneity in mixing alone, CV takes the same value as in the homoge-
neous case.

(ii) With heterogeneity in infectivity alone, then for two population with infectivity
vectors λ(1),λ(2) we have λ(1) ≺ λ(2) ⇒ CV (1) ≤ CV (2). In particular, CV is
minimised in the homogeneous case.

(iii) With heterogeneity in susceptibility alone, CV is at least as great as in the homo-
geneous case.

Proof (i) With fi = 1/k and μi = λi = 1 for all i , then x∗
i = 1 − (1/R0) for all i

where R0 = β/k, and Eq. (12) reduces to

2R0Si j −
k∑

r=1

(
πri Sr j + πr j Sir

) = 2

(

1 − 1

R0

)

δi j for i, j = 1, 2, . . . , k. (14)

Summing equations (14) over i and j and making use of the constraints
∑

j πi j =
1, we find that

∑
i, j Si j = k/R0, and so formula (13) reduces to

CV 2 = R0

N (R0 − 1)2
.

In particular, the value of CV does not depend upon the parameters πi j .
(ii) With fi = 1/k, μi = 1 and πi j = 1/k for all i, j , then once again x∗

i =
1 − (1/R0) for all i where R0 = β/k, and Eq. (12) reduces to

2R0Si j − 1

k

k∑

r=1

λr
(
Sr j + Sir

) = 2

(

1 − 1

R0

)

δi j for i, j = 1, 2, . . . , k. (15)

With the aid of the Maple symbolic algebra package, the solution is found to have
elements

Si j = k (R0 − 1)
(
λi + λ j

) + ∑
r λ

2
r

k2 R2
0 (2R0 − 1)

+
(

R0 − 1

R2
0

)

δi j (16)

for i, j = 1, 2, . . . , k. Note that Maple was not able to directly solve Eq. (15),
but rather was used to solve for the cases k = 2, 3. It was then possible to guess
the form of the solution for general k, and straightforward to check that the form
(16) does indeed satisfy Eq. (15). Formulae (16) imply that

∑

i, j

Si j = k

R0
+

(∑
r λ

2
r

) − 1

R2
0 (2R0 − 1)

and so

CV 2 = 1

N (R0 − 1)2

(

R0 + (1/k)
(∑

r λ
2
r

) − 1

(2R0 − 1)

)

.
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Now since ξ(λr ) = λ2
r is a convex function, it follows from Lemma 1(i),(iii) that

λ(1) ≺ λ(2) ⇒ CV (1) ≤ CV (2).
(iii) With fi = 1/k, λi = 1 and πi j = 1/k for all i, j , then R0 = β/k and x∗

i =
Dμi/(1 + Dμi ) for i = 1, 2, . . . , k with D defined as in Sect. 5. Equation (12)
in this case can be written as

(
1

1 − x∗
i

+ 1

1 − x∗
j

)

Si j − R0

k D

(

x∗
i

k∑

r=1

Sr j + x∗
j

k∑

r=1

Sir

)

= 2x∗
i δi j

for i, j = 1, 2, . . . , k. With the aid of Maple, the solution is found to have elements

Si j =
x∗

i

(
1 − x∗

i

)
x∗

j

(
1 − x∗

j

)
R0

k D − R0
∑k

r=1 x∗
r

(
1 − x∗

r

) + x∗
i

(
1 − x∗

i

)
δi j for i, j = 1, 2, . . . , k,

so that, after a little simplifying algebra, we have

∑

i, j

Si j = k D
∑

r x∗
r

(
1 − x∗

r

)

k D − R0
∑k

r=1 x∗
r

(
1 − x∗

r

) .

The definition of D from Sect. 5 reduces here to D = (R0/k)
∑

r x∗
r , so

CV 2 = k
(∑

r x∗
r

) (∑
r x∗

r

(
1 − x∗

r

))

∑
r x∗

r − ∑k
r=1 x∗

r

(
1 − x∗

r

)

/

N

(
∑

r

x∗
r

)2

= k

N

(
1

∑
r

(
x∗

r

)2 − 1
∑

r x∗
r

)

. (17)

Since x∗
i is an increasing function of μi and the ratio x∗

i /μi is a decreasing
function of μi , then with respect to the probability mass function μ/k,

Covariance
(
x∗, x∗ diag (1/μ1, 1/μ2, . . . , 1/μk)

) ≤ 0.

That is,

∑

r

(μr/k)x∗
r (x

∗
r /μr ) ≤

(
∑

r

(μr/k)x∗
r

) (
∑

r

(μr/k)(x∗
r /μr )

)

∑

r

(
x∗

r

)2 ≤ 1

k

(
∑

r

μr x∗
r

) (
∑

r

x∗
r

)

.

Equation (11) with fi = 1/k and λi = 1 gives
∑

r μr x∗
r = k(R0 − 1)/R0, and

we also have
∑

r x∗
r = k D/R0, so that
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∑

r

(
x∗

r

)2 ≤ k D (R0 − 1) /R2
0 .

Equation (17) now yields

CV 2 ≥ k

N

(
R2

0

k D (R0 − 1)
− R0

k D

)

= R0

N D (R0 − 1)
,

but from inequality (10) we know that D ≤ R0 − 1, and so finally

CV 2 ≥ R0

N (R0 − 1)2
.

The right hand side of this last inequality gives the value of CV 2 in the homoge-
neous case, and the result follows.

�	
Given the link between coefficient of variation and mean persistence time, Theorem

11 indicates that for a population of k equally-sized groups, (i) heterogeneity in mixing
alone does not affect (to first order) the mean time to fade-out of infection; (ii) with
heterogeneity in infectivity alone, the greater the heterogeneity the more rapidly fade-
out will occur, on average; (iii) heterogeneity in susceptibility alone reduces the mean
time to fade-out of infection, compared to the homogeneous case. It is interesting to
note that heterogeneity in susceptibility alone and heterogeneity in infectivity alone
can both affect persistence times, in contrast to the results of Sects. 3, 4, 5.

7 Discussion

In general, our results suggest that in many circumstances population heterogeneities
tend to result in rarer, less severe and less prolonged outbreaks of infection, compared
to the homogeneous situation, although when different types of heterogeneities are
combined this is not always the case. The most obvious interpretation is that if we know
the true value of R0, and mistakenly assume the population to be homogeneous, we
may overestimate the likely severity of an outbreak. However, the question then arises
as to how we can know the true value of R0, since using an estimation procedure based
upon an incorrect assumption of homogeneity will lead to an incorrect R0 estimate.
This suggests the following alternative interpretation of our results: if one attempts
to estimate R0 based upon (for instance) the observed size of a major outbreak or
observed endemic prevalence level, then under the assumptions of Theorems 5, 9, an
incorrect assumption of homogeneity is likely to lead to underestimation of R0. This
is in line with observations reported in Hethcote (1996).

It has previously been observed that heterogeneity in susceptibility alone does
not affect the probability of a major outbreak (Becker and Marschner 1990), while
heterogeneity in infectivity alone does not affect the mean size of a major outbreak
(Ma and Earn 2006). We have shown that more generally, the major outbreak prob-
ability is unaffected by heterogeneities for which the value of

∑
j λiπi jμ j f j does
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not depend upon i ; that is, the average total number of infectious contacts emanating
from an infected individual does not depend upon the group to which the individual
belongs. Mean outbreak size, and likewise the endemic mean prevalence level, are
unaffected by heterogeneities for which

∑
i fiλiπi jμ j does not depend upon j ; that

is, the average number of infectious contacts received by a susceptible individual from
an infective individual chosen uniformly at random from the whole population does
not depend upon the group to which the susceptible individual belongs. In contrast,
Corollary 2 shows that increasing heterogeneity in infectivity leads to a reduction in
the major outbreak probability, while Theorems 6, 10 show that increasing heterogene-
ity in susceptibility leads to a reduction in mean outbreak size and in endemic mean
prevalence level. The mean time to fade-out of infection is affected by heterogeneities
in either susceptibility alone or infectivity alone, with either form of heterogeneity
leading to more rapid fade-out (Theorem 11).

In studying major outbreak probability and persistence time, a stochastic model
is essential. In studying major outbreak size and endemic prevalence level, we were
justified in adopting a deterministic approach. Nevertheless, it is important to be aware
of the underlying stochastic model, to avoid over-interpretation of the deterministic
approximation. In particular, our results of Sects. 4, 5 rely upon the numbers of indi-
viduals in each group being sufficiently large that the relevant approximations hold. If
instead we are interested in a population consisting of a large number of small groups,
such as households, then entirely different deterministic approximations are required,
and even the characterisation of the basic reproduction number R0 as the maximal
eigenvalue of the next generation matrix is no longer appropriate—see Ball (1999),
Ball et al. (2004), Neal (2006) for details.

Results similar to our Theorems 2, 5 have been obtained in the context of an infec-
tion spreading across a network by Miller (2008); it is assumed that individuals are
exchangeable, and so the issue of choice of the initial infected individual in Theorem
2 does not arise; and an individual’s infectivity and susceptibility are assumed inde-
pendent of one another, so that the non-negative correlation condition of Theorem 5
is automatically satisfied. A network model in which an individual’s infectivity and
susceptibility may be correlated is studied in Meester and Trapman (2011).

The modelling assumptions we have adopted in order to prove our results become
more stringent as we move from earlier to later stages of the infectious process. We
now discuss the extent to which our results would be expected to remain robust to
relaxation of the various assumptions.

We have assumed throughout that the infectious period distribution T is the same
for every group. It is straightforward to extend the results of Sects. 4, 5, 6 to allow
for differing infectious period distributions in different groups (although in Sect. 6 we
still require infectious periods to be exponentially distributed); for the results of Sect.
3, this remains true provided that the distributions differ only by linear scaling.

In investigating the initial outbreak of infection, whether in terms of the probability
of a major outbreak or mean outbreak size, although we did not explicitly incorporate
a latent period in our model the results of Sects. 3 and 4 remain valid for a latent period
having any specified (almost surely finite) distribution, since the inclusion of such a
latent period does not alter which individuals become infected but only the times at
which infections occur (see Ball 1986). The fact that our model neglects demographic
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processes (birth, death, immigration, emigration) is not a serious restriction in the
initial outbreak phase, provided only that any outbreak takes place over a relatively
short time period, during which the effects of such demographic processes are negli-
gible. In computing the probability of a major outbreak, we did not need to make any
assumptions regarding immune response—whether infection is followed by complete
lifelong immunity, by an immediate return to susceptibility, or by some form of tem-
porary or partial immunity, the branching process approximation valid in this early
stage remains unaltered. For mean outbreak size, although we assumed that infection
is followed by lifelong immunity, in practice our results remain valid provided the
immune response is sufficient that the number of individuals becoming infected twice
during a single outbreak remains negligible.

In studying endemicity, our assumptions become a little more restrictive. So far
as demographic processes are concerned, one would not expect their effect to be
negligible over the time scale relevant to an infection in endemic equilibrium. However,
provided the population size in each group is approximately constant, with births and
deaths balancing out, since the mean effect is zero there is some justification for
neglecting demographic processes in the formulation of model (7). This is not an
entirely convincing argument, because deaths of infective individuals would need to
be balanced by births of new infected individuals, and deaths of susceptibles by births
of new susceptibles. In fact, the mechanism allowing an infection to maintain itself in
endemic equilibrium will often be recruitment of new susceptible individuals through
birth or immigration, rather than the return of previously-infected individuals to a
susceptible state. A model explicitly incorporating such demographic processes will
be less amenable to rigorous analysis than our multigroup SIS model of Sects. 4, 5; we
have deliberately chosen to focus upon the simplest possible model to allow a clear
exposition of the effects of heterogeneities. Nevertheless, our multigroup SIS model
is not unrealistic for certain infections, and in particular such a model has been used
in practice to study the spread of gonorrhea (Hethcote and Yorke 1984; Lajmanovich
and Yorke 1976; Nold 1980).

Our modelling assumptions become less tenable when we move on to consider
persistence time of the infection, partly because we must now consider a longer time
scale, and partly because quantification of variability is crucial to the results of Sect. 6.
Thus Theorem 11 is concerned explicitly with variances computed based upon a
form of central limit theorem. The assumption of exponentially distributed infectious
periods is thus a significant restriction, since one would expect not only the mean,
but also the variance of the infectious period distribution to be relevant. Demographic
processes are important at this stage, not only because we have a longer time scale to
deal with, but also because even if births and deaths balance each other on average, the
amount of variability is now relevant. It is worth noting that Theorem 11(i) is somewhat
at odds with the conclusions of Hagenaars et al. (2004), who considered an SIR
model incorporating demographic processes and found that increasing heterogeneity
typically led to more rapid fade-out of infection. The model of Hagenaars et al. (2004)
allows for heterogeneity in mixing only, specifically taking πi i = ρ for all i and
πi j = (1−ρ)/(k −1) for i �= j with 1/k ≤ ρ ≤ 1 (assortative mixing). Clearly there
is much scope for further work in this area.
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