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Abstract Determining the time-dependent transmission function that exactly repro-
duces disease incidence data can yield useful information about disease outbreaks,
including a range potential values for the recovery rate of the disease and could offer
a method to test the “school year” hypothesis (seasonality) for disease transmission.
Recently two procedures have been developed to recover the time-dependent trans-
mission function, β(t), for classical disease models given the disease incidence data.
We first review the β(t) recovery procedures and give the resulting formulas, using
both methods, for the susceptible-infected-recovered (SIR) and susceptible-exposed-
infected-recovered (SEIR) models. We present a modification of one procedure, which
is then shown to be identical to the other. Second, we explore several technical issues
that appear when implementing the procedure for the SIR model; these are important
when generating the time-dependent transmission function for real-world disease data.
Third, we extend the recovery method to heterogeneous populations modeled with a
certain SIR-type model with multiple time-dependent transmission functions. Finally,
we apply the β(t) recovery procedure to data from the 2002–2003 influenza season
and for the six seasons from 2002–2003 through 2007–2008, for both one population
class and for two age classes. We discuss the consequences of the technical conditions
of the procedure applied to the influenza data. We show that the method is robust in
the heterogeneous cases, producing comparable results under two different hypothe-
ses. We perform a frequency analysis, which shows a dominant 1-year period for the
multi-year influenza transmission function(s).
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1 Introduction

While the recovery rate of a disease can be measured in a controlled laboratory setting
and these values used to estimate the value during the actual disease outbreak, the same
is not true for the transmission rate. The transmission rate is known to be difficult to
measure due to its dependence on the probability of transmission between individuals
and social contact rates. On the other hand, there is a wealth of information that could
be extracted regarding disease transmission and recovery if the time-dependent trans-
mission function were known. For example, it would be possible to test hypotheses
such as whether the school year causes increased disease incidence due to increased
contacts among children.

The classical Kermack–McKendrick model for disease outbreaks (Kermack and
McKendrick 1927) (see also Brauer et al. 2008; Keeling and Rohani 2008; Murray
2002) considers a population split into three compartments: the susceptible individ-
uals S, the infected individuals I , and the recovered individuals R. The model is
commonly called the susceptible-infected-recovered (SIR) model. The model con-
tains two parameters which may be time-dependent: the transmission rate β and the
recovery rate ν. The model equations are

S′(t) = −β(t)S(t)I (t) (1)

I ′(t) = β(t)S(t)I (t) − ν(t)I (t) (2)

R′(t) = ν(t)I (t). (3)

We assume that S, I , and R are the fraction of the population in each class and in this
case β(t) and ν(t) have units time−1. The dependence of the parameters β and ν on
time, reflects some external forces that influence the course of the disease outbreak,
for example changes in the environment (seasonality) or changes in contact rates.
Throughout this paper we assume that the recovery rate ν is a constant and our goal
is to recover the time-dependent transmission rate β(t) given time series data on the
number of infected individuals.

Many approaches have been used to determine, as accurately as possible, the param-
eter values in epidemic models that best fit the disease data. One must first determine
the functional form of the time-dependent transmission rate, β(t). Using the fact that
outbreaks of diseases such as influenza and measles are periodic, researchers often
assume a sinusoidal functional form, as in Bailey (1975) (see also Keeling and Rohani
2008). Another approach is to separate the dependence of the transmission function on
environmental factors from the dependence on contact rates. For example, Ponciano
and Capistrán (2011) study SIR-type models with a sinusoidal function for the envi-
ronmental forcing and different disease incidence rates.

If a functional form can be decided on for a model, the second step is to numer-
ically determine the corresponding parameter values. These can be determined by a
search through the parameter space via the Nelder–Mead simplex method (Lagarias et
al. 1998), as done in Mkhatshwa and Mummert (2011) using MATLAB’s fminsearch
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program, or using more sophisticated techniques. Capistrán et al. (2009) demonstrate
how to determine model parameters by forming and numerically solving an appro-
priate constrained optimization problem with the (continuous ordinary differential
equation) model as a constraint.

Two recent papers, Pollicott et al. (2012) and Hadeler (2011), have presented pro-
cedures to recover the time-dependent transmission function β(t) from reported inci-
dence data for standard SIR-type disease models. These procedures do not assume any
a priori form for β(t), instead, they recover the time-dependent transmission function
which exactly reproduces the incidence data.

The classical SIR model, and all models presented in both Pollicott et al. (2012)
and Hadeler (2011), describe homogeneous populations. Due to social stratifications,
more realistic models consider heterogeneous populations, for example by splitting the
population into age classes. We extend the β(t) recovery procedure to SIR-type com-
partment models with multiple classes and thus multiple time-dependent transmission
functions.

The paper is organized as follows. In Sect. 2 we review the procedures presented
by Pollicott et al. (2012) and Hadeler (2011). We provide a modification of the first
procedure, which is seen to be identical to the second. The necessary conditions for
the recovery procedure, when applied to the SIR model, are also discussed in Sect. 2.
Section 3 extends the procedure to certain SIR-type models for heterogeneous pop-
ulations. We provide two different hypotheses and the corresponding necessary con-
ditions for the recovery procedure. We apply the method to influenza data for both
homogeneous and heterogeneous populations in Sect. 4, using both hypotheses. Our
discussion and conclusions follow in Sect. 5.

2 Review of previous methods

We review the procedures presented by Pollicott et al. (2012), called here the PWW
procedure, and Hadeler (2011), called here the H procedure. The procedures produce
the same β(t) through different techniques, as is mentioned in both Pollicott et al.
(2012) and Hadeler (2011). Another verification that the two methods produce the
same β(t) is provided in Hadeler (2012).

We give the β(t) formula corresponding to the classical SIR and the susceptible-
exposed-infected-recovered (SEIR, Eqs. (6)–(9) below) models for each of the two
procedures. In both procedures, we assume that the incidence data, I (t), is known for
all t in some time interval. This can be achieved by interpolating the infection data as
described in Pollicott et al. (2012). When computing β(t) for an SIR model, the first
derivative of the incidence data is required. When computing β(t) for an SEIR model,
both the first and the second derivatives are required. We assume that the incidence
data function I (t) is sufficiently differentiable for the model.

Although both procedures compute the same time dependent transmission function,
one potential disadvantage of the PWW procedure is that it requires higher derivatives
of the infection function in order to verify the β(t) formula. Hadeler (2011) mentions
the requirement of fewer derivatives as a reason to prefer his approach.

Both β(t) recovery procedures can be extended to models with multiple infected
classes as long as the infected classes have the same transmission rate. An example

123



486 A. Mummert

of such a model, is the model developed by Mkhatshwa and Mummert (2011) to
study super-spreading events in the SARS outbreak. In this model, a super-spread-
ing individual transmits more virus because he or she remains out of the removed
class (quarantine or isolation) longer than regular infected individuals, that is, he or
she has the same transmission rate but a different recovery rate than regular infected
individuals do.

2.1 The modified PWW procedure

The idea behind the procedure of Pollicott et al. (2012) for an SIR-type model is to
use the differential equation for I (t), which corresponds to the known incidence data,
to solve for S(t). Then substitute this expression and its derivative into the differential
equation for S(t). This results in a differential equation for β(t). Solving this compan-
ion differential equation, gives the time-dependent transmission function. In general,
one works from the equation of the last compartment before the recovered class, R(t),
“up the system” through the equation for S′(t) to generate a companion differential
equation that can be solved.

We present a modification of the PWW procedure, which simplifies the calculation
of β(t).

Theorem 1 For the classical SIR model given by Eqs. (1)–(3), the time-dependent
transmission function is

β(t) = g(t)

I (t)
(
S(0) − ∫ t

0 g(s) ds
) , where g(t) = I ′(t) + ν I (t).

Proof Solve Equation (2) for S to find that

S(t) = I ′(t) + ν I (t)

β(t)I (t)
. (4)

Set the numerator and denominator to be functions g(t) and h(t), respectively.
Differentiate S(t) = g(t)/h(t), with respect to t , and set this equal to the right-

hand side of Eq. (1), which in terms of functions g(t) and h(t) is h(t)
( − g(t)/h(t)

)
.

Simplifying this equality results in the Bernoulli differential equation in variable h(t)

(−g(t)
)
h′(t) + (

g′(t)
)
h(t) = (−g(t)

)
h2(t).

This differential equation can be solved analytically by first making the substitution
x(t) = 1/h(t), which yields the differential equation

x ′(t) + (
g′(t)/g(t)

)
x(t) = −1, (5)
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and then by solving this new differential equation using the method of variation of
parameters (integrating factor). The solution is

x(t) = e−∫ t
0 g′(s)/g(s) ds

⎡

⎣ 1

h(0)
−

t∫

0

e
∫ s

0 g′(σ )/g(σ ) dσ ds

⎤

⎦

which can be simplified by noting that e
∫ t

0 g′(s)/g(s) ds = g(t)/g(0).
Finally, recalling that β(t)I (t) = h(t) = 1/x(t) and that S(0) = g(0)/h(0), we

find the expression given above for β(t). ��

The PWW procedure presented in Pollicott et al. (2012) uses the technique above to
determine and solve a Bernoulli differential equation for the parameter β(t) directly.
This leads to a seemingly more complicated, yet equivalent, expression for β(t). Using
the expression for β(t) presented (Pollicott et al. 2012), one must know or guess, a
priori, the value of β(0). For the expression presented above, one must know instead
S(0). From Eq. (4), we see that these two are not independent; knowing the value of
one gives the value of the other. Hadeler (2012) discusses some difficulties with guess-
ing and using the value of β(0) or S(0) and recommends instead using a weighted
average of the infection data.

There are conditions which must be satisfied to ensure that the recovered β(t) is
well-defined and positive. We discuss these below in Sect. 2.3.

The procedure presented here to recover β(t), which is a modification of the PWW
procedure, can be extended to a broad class of SIR-type compartment models. Pollicott
et al. (2012) discuss how to extend their procedure to the SIR model with waning
immunity and the SIR model with a time-dependent indirect transmission rate, among
others. We present here the generated β(t) for the SEIR model with vital rates using
the simplified procedure.

The SEIR model with vital rates is given by the equations

S′(t) = δ − β(t)S(t)I (t) − δS(t) (6)

E ′(t) = β(t)S(t)I (t) − αE(t) − δE(t) (7)

I ′(t) = αE(t) − ν I (t) − δ I (t) (8)

R′(t) = ν I (t) − δR(t), (9)

where δ (time−1) is the demographic birth and death rates, and 1/α (time) is the latency
period.

Theorem 2 For the SEIR model with vital rates the time-dependent transmission
function is

β(t) = h(t)eδt

I (t)
(
S(0) + ∫ t

0 eδs(δ − h(s)) ds
)
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where

h(t) = g′(t) + (α + δ)g(t) and g(t) = I ′(t) + (ν + δ)I (t)

α
.

To extend the modified PWW procedure to the SEIR model, solve the differential
equation of I (t) for E(t). Plug this expression and its derivative into the differential
equation for E(t) and solve for S(t). Use the expression for S(t) in the equation for
S′(t), create a companion differential equation, and solve for β(t).

2.2 The H procedure

Hadeler (2011) demonstrates how to recover β(t) in a different manner for the classical
SIR model. The main idea of the H procedure is to analytically solve differential equa-
tions where some of the functions are known (because the infection data is known).
The equation to integrate is created by adding together some of the equations of the
system. The goal is to eventually solve for S(t) in terms of the known functions and
also solve for S(t) another way (as in Eq. (4)). Equate the two expressions and solve
for β(t).

We demonstrate the H procedure using the classical SIR model. Though Hadeler
(2011) presents the method with a more involved SIR-type model that includes a loss of
immunity term and other time-dependent parameters, we use the classical SIR model,
Eqs. (1)–(3), in order to directly compare the PWW procedure and the H procedure.

Technique Begin by adding S′(t) + I ′(t) = −ν I (t). Note that, because the infection
data is known, the right-hand side of this equation, −ν I (t), is a known function. Solve
this differential equation and find S(t);

S(t) = S(0) + I (0) −
t∫

0

ν I (s) ds − I (t).

Solve for S(t) in Eq. (2) and equate the two expressions for S(t).

S(0) + I (0) −
t∫

0

ν I (s) ds − I (t) = I ′(t) + ν I (t)

β(t)I (t)
.

Solving for β(t) yields

β(t) = I ′(t) + ν I (t)

I (t)
(
S(0) + I (0) − ∫ t

0 ν I (s) ds − I (t)
) .

This expression for β(t) is presented as Corollary 2 in Hadeler (2011).
The β(t) computed using the H procedure is exactly that computed using the

modified PWW procedure presented in Theorem 1, which is seen by noting that
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I (0) − ∫ t
0 ν I (s) ds − I (t) = − ∫ t

0 ν I (s) + I ′(t) ds = − ∫ t
0 g(s) ds. Hadeler (2012)

demonstrates directly that the PWW and H procedures produce the same β(t), without
using the modification of the PWW procedure shown here.

The H procedure to recover β(t) can be extended to a broad class of SIR-type
compartment models. Hadeler (2011) discusses how to use his procedure in a discrete
time setting, in a stochastic setting, and assuming an specific exit distribution from
the infected class.

2.2.1 Extending the H procedure to the SEIR model

We demonstrate how to extend the H procedure the SEIR model given by Eqs. (6)–(9),
which is not shown in Hadeler (2011).

The technique is as follows. Add S′(t)+ E ′(t)+ I ′(t) and solve for S(t)+ E(t) in
terms of the known function I (t). Solve for E(t) in the equation for I ′(t), and take the
derivative. Use this to solve for S(t) in the equation for E ′(t). Add the resulting S(t)
and E(t), and equate the sum with the previously determined S(t) + E(t) equation.
Solve for β(t) to find

β(t) = h(t)eδt

I (t)
(
S(0) + E(0) + I (0) + ∫ t

0 eδt (δ − ν I ) ds − eδt (I (t) + g(t))
) ,

where g(t) and h(t) are as defined previously. Again, this can be shown to be exactly
the formula for β(t) recovered using the modified PWW procedure by noting that

−
t∫

0

eδsh(s) ds = I (0) + g(0) − eδt (I (t) + g(t)) −
t∫

0

eδsν I (s) ds

and that g(0) = E(0).

2.3 Necessary conditions

For the classical SIR model, there are two conditions that must be satisfied to guarantee
a well-defined and positive time-dependent transmission function β(t).

Condition 1: I ′(t) + ν I (t) > 0, for all t ;
Condition 2: S(0) − ∫ t

0 g(s) ds > 0, for all t .

In Pollicott et al. (2012) these conditions are also called Conditions 1 and 2; Hadeler
(2011) discusses these conditions, but does not name them specifically.

Condition 1 guarantees that the resulting β(t) is positive. If Condition 1 fails then
mathematically the procedure does recover a function β(t) that exactly reproduces
the infection data; however, the function will be negative at some times, which does
not make biological sense. Condition 2 guarantees that β(t) is well-defined. If Con-
dition 2 is satisfied up to some time and then fails, the procedure will reconstruct the
time-dependent transmission function up until this time and not beyond it.
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Not only do these conditions need to be satisfied mathematically to have a well-
defined and positive β(t), they should be satisfied as part of their interpretations in the
SIR model. Condition 1 is the numerator of an expression for the number of suscep-
tible individuals, and so should be greater than zero. The expression in Condition 2
is larger than the number of individuals who remain in the susceptible class at time t ,
and so should also be positive for all t .

When applying the β(t) recovery procedure to disease infection data, the model
parameters ν and S(0) need to be estimated. (Note that this implies that there is not
one unique β(t) that will recreate the infection data; there are infinitely many such
β(t).) The choice of the two parameters cannot be made independently due to the fact
that ν is influential in both Conditions 1 and 2. If ν is increased, then Condition 1
is more likely to be satisfied, and at the same time Condition 2 is less likely to be
satisfied, and vice versa. The initial number of susceptible individuals, S(0), appears
only in Condition 2. If S(0) is increased, then Condition 2 is more likely to satisfied;
if S(0) is decreased, then Condition 2 is less likely to be satisfied. See Sect. 4.1 where
we explore these conditions for a verifiable example.

When applying the procedure to infection data, we assume that S(0) is known; it
can be determined from the initial number of infected individuals. In Sect. 4.2, the
necessary conditions are used to determine a range for the recovery rate, ν days−1.

3 Extending the β(t) recovery procedure to models for heterogenous
populations

We extend the β(t) recovery procedure(s) to SIR-type compartment models for het-
erogeneous populations with two population classes, for example a population split
into two age classes, one corresponding to adults and one corresponding to children.
We demonstrate the β(t) recovery procedure assuming that the length of the disease
outbreak is short compared with the time required to “grow up” from the child class
into the adult class. Thus there is no movement from one class to another. With two
classes, there is a possibility of four different transmission rates within and between
the two groups, and two different recovery rates. The system of differential equations
now has six equations:

S′
1(t) = −β11(t)S1 I1 − β12(t)S1 I2 (10)

I ′
1(t) = β11(t)S1 I1 + β12(t)S1 I2 − ν1(t)I1 (11)

R′
1(t) = ν1(t)I1 (12)

S′
2(t) = −β21(t)S2 I1 − β22(t)S2 I2 (13)

I ′
2(t) = β21(t)S2 I1 + β22(t)S2 I2 − ν2(t)I2 (14)

R′
2(t) = ν2(t)I2 (15)

The transmission rate from infected class I j to susceptible class Si is denoted βi j (t)
time−1, where i, j = 1, 2. We assume that the two recovery rates are constant and
equal, ν1(t) = ν2(t) = ν time−1.
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Theorem 3 For the SIR model for two population classes given in Eqs. (10)–(15), the
time-dependent transmission functions satisfy the system of equations

β11(t)I1(t) + β12(t)I2(t) = g1(t)

S1(0) − ∫ t
0 g1(s) ds

β21(t)I1(t) + β22(t)I2(t) = g2(t)

S2(0) − ∫ t
0 g2(s) ds

where

g1(t) = I ′
1(t) + ν I1(t) and g2(t) = I ′

2(t) + ν I2(t).

Proof Solve Equation (11) for S1(t) and plug this into Eq. (10). Form a companion
differential equation for h(t) = β11(t)I1(t)+β12 I2(t) and solve to find the first equa-
tion. To find the second equation, repeat the above steps for the second class using
Eqs. (13) and (14). ��

Extending the β(t) recovery procedure to more than two populations can be done
similarly. For more than two populations, one may find the matrix notation presented
in Hadeler (2012) more convenient to use.

For two populations, assume that the incidence data functions, I1(t) and I2(t),
are known. If additional information is known about the disease spread then it may
be possible to solve for the βi j (t) completely. For example, one could assume that
β1(t) = β11(t) = β12(t) = β21(t) and β2(t) = β22(t). If Population 1 is the adults
and Population 2 is the children, then this condition means that the disease spread
is different between adults and among the two classes than among the children only.
In this case, the two time-dependent transmission functions, β1(t) and β2(t), can be
uniquely determined. In Sect. 4, this assumption is called A1.

A second method to reduce from four transmission functions to two, is to assume
that each of the transmission functions βi j has the form bi c j , that is to assume that the
transmission matrix [βi j ]i, j=1,2 is separable (has proportionate mixing). (See Hethcote
1996.) In this case, the number of contacts between individuals in two different groups
is assumed to be proportional to the activity levels and sizes of the groups. In particular,
the “infectivities”, c j , of each group are the same (c j (t) ≡ 1) and only the “susceptibil-
ities”, bi , of the groups are different. This assumption, called A2 in Sect. 4, simplifies
the time-dependent transmission functions to the form βi j (t) = bi (t). Hadeler (2012)
gives the details of this case for heterogeneous SIR models with n populations.

We note that making any a priori assumption on the form of the four time-depen-
dent transmission functions is likely to cause the model to be less accurate than other
simpler models, such as the classical SIR model.

Corollary 1 (Assumption A1) Assuming that β1(t) = β11(t) = β12(t) = β21(t) and
β2(t) = β22(t) the time-dependent transmission functions are
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β1(t) = g1(t)(
I1(t) + I2(t)

)(
S1(0) − ∫ t

0 g1(s) ds
) (16)

β2(t) = g2(t)

I2(t)
(
S2(0) − ∫ t

0 g2(s) ds
) − β1(t)I1(t)

I2(t)
(17)

(Assumption A2) Assuming that b1(t) = β11(t) = β12(t) and that b2(t) = β21(t) =
β22(t) the time-dependent transmission (susceptibility) functions are

b1(t) = g1(t)(
I1(t) + I2(t)

)(
S1(0) − ∫ t

0 g1(s) ds
) (18)

b2(t) = g2(t)(
I1(t) + I2(t)

)(
S2(0) − ∫ t

0 g2(s) ds
) (19)

Notice that β1(t) = b1(t), meaning that one of the two transmission functions is
the same under the different assumptions A1 and A2. Only the transmission functions
β2(t) and b2(t) are different.

3.1 Necessary conditions

For the SIR model for two populations under either assumption A1 or A2 from Cor-
ollary 1, there are four conditions that must be satisfied to guarantee well-defined and
positive transmission functions. These are the natural extensions of Conditions 1 and 2
for the classical SIR model (see Sect. 2.3).

Condition 1∗(a): I ′
1(t) + ν I1(t) > 0, for all t

Condition 1∗(b): I ′
2(t) + ν I2(t) > 0, for all t

Condition 2∗(a): S1(0) − ∫ t
0 g1(s) ds > 0, for all t .

Condition 2∗(b): S2(0) − ∫ t
0 g2(s) ds > 0, for all t .

Under assumption A1, the resulting time-dependent transmission functions β1(t)
and β2(t) are dependent (see Eq. 17). The requires an additional necessary condition
for a well-defined and positive function β2(t).

Condition 3∗:
g2(t)

I2(t)
(
S2(0) − ∫ t

0 g2(s) ds
) >

β1(t)I1(t)

I2(t)
, for all t

To reconstruct the two time-dependent transmission functions, the model param-
eters ν, S1(0), and S2(0) need to be estimated. The relationship between these three
parameters and the resulting transmission function is more complicated than in the
case of the classical SIR model. We explore these conditions in a verifiable example
in Sect. 4.1.

Again, when applying the procedure to infection data we assume that S1(0) and
S2(0) are known, and the necessary conditions are used to determine a range for the
recovery rate, ν days−1 (see Sect. 4.2).
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4 Applying the recovery procedure

In this section we demonstrate the β(t) recovery procedure in a verifiable case. We
also apply the procedure to influenza data from 2002–2003 and to the six seasons
from 2003–2003 through 2007–2008. In the heterogeneous case, we consider two
populations and examine the two assumptions

– Assumption A1: β1(t) = β11(t) = β12(t) = β21(t) and β2(t) = β22(t)
– Assumption A2: b1(t) = β11(t) = β12(t) and b2(t) = β21(t) = β22(t)

4.1 A verifiable example

The goal of demonstrating the recovery procedure for verifiable data is twofold. First,
we demonstrate that the procedure does indeed generate the time-dependent transmis-
sion function(s) that recreate the infection data, and second, we examine the effect of
varying the “unknown” model parameters on the resulting β(t) function(s). (See also
Pollicott et al. 2012).

4.1.1 Homogeneous population

We demonstrate the recovery procedure in the case of a homogeneous population and
the classical SIR model. We generate the infection data by solving the SIR model with
β(t) = cos(3t)+1.2 time−1, ν = 1/3 time−1, S(0) = 0.8, I (0) = 0.01, R(0) = 0.19
from t = 0 to t = 20. The infection curve of the SIR model is sampled every 0.5 time
units. The collected infection data is interpolated using a spline, and this continuous
and differentiable representation of the infection data is used in the β(t) recovery
procedure as the infection function I (t).

The time-dependent transmission function is generated and the SIR model solved
with this generated β(t), with ν = 1/3 and S(0) = 0.8. The sampled infection data
along with the reconstructed I (t) solution curve are shown in Fig. 1a. Figure 1b, c
shows the original and generated β(t) functions on time interval t = 0 to t = 20 and
t = 0 to t = 4, respectively. We provide the second time interval in order to show
that the generated β(t) is not exactly the original one due to the culmination of small
numerical error, which is not obvious from the longer time interval.

We examine the effect of changing the recovery rate ν on the resulting β(t) while
holding S(0) = 0.8. For Condition 1, when ν is greater than or equal to 0.97 ∗ (1/3),
the condition is satisfied on the interval t = 0 to t = 20. For ν = 0.96 ∗ (1/3) (and
smaller) Condition 1 is not satisfied on the interval. As ν decreases from 0.97 ∗ (1/3),
the time when Condition 1 fails decreases. Figure 2a shows the time when Condition 1
fails as a function of the recovery rate ν.

We find that for ν less than or equal to 1.07∗ (1/3), Condition 2 is satisfied on time
interval t = 0 to t = 20, while for ν = 1.08 ∗ (1/3) (and larger) Condition 2 is not
satisfied on the interval. As ν increases from 1.07 ∗ (1/3), the time when Condition 2
fails decreases. Figure 2b shows the time when Condition 2 fails as a function of the
recovery rate ν.
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Fig. 1 Simulated data,
homogeneous population.
a The sampled infection data
and the reconstructed I (t)
solution curve. b The original
and generated β(t) from t = 0
to t = 20. c The original and
generated β(t) from t = 0 to
t = 4
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Fig. 2 Simulated data,
homogeneous population.
a Time to failure of Condition 1
as a function of ν for fixed S(0).
b Time to failure of Condition 2
as a function of ν for fixed S(0).
c Time to failure of Condition 2
as a function of S(0) for fixed ν
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We conclude that for S(0) = 0.8, the recover rate must be in the interval 0.97 ∗
(1/3) ≤ μ ≤ 1.07 ∗ (1/3) for the resulting β(t) to be well-defined and positive in the
interval t = 0 to t = 20.

Now we examine the effect of changing the initial number of susceptible individuals
S(0) on the resulting β(t) while holding ν = 1/3. First, note that S(0) is limited in size
by the relation that 1 = S(0)+ I (0)+ R(0), and the requirement that S, I, and R must
be non-negative. This leads us to the initial restriction 0 ≤ S(0) < 1.25 ∗ (0.8) = 1.

We find that for S(0) larger than or equal to 0.93 ∗ (0.8), Condition 2 is satisfied on
the interval t = 0 to t = 20. For S(0) = 0.92 ∗ (0.8) (and smaller) Condition 2 is not
satisfied on the interval. As S(0) decreases from 0.92∗ (0.8), the time when Condition
2 fails decreases. Figure 2c shows the time when Condition 2 fails as a function of the
initial number of infected individuals S(0).

We conclude that for ν = 1/3, the initial number of susceptible individuals must
be in the interval 0.93 ∗ (0.8) ≤ S(0) ≤ 1.25 ∗ (0.8) for the resulting β(t) to be
well-defined and positive in the interval t = 0 to t = 20.

Finally, we demonstrate the effect of changing ν and S(0) in their allowable ranges
on the resulting β(t) function. Figure 3a shows the resulting transmission functions
for different allowable values of ν while fixing S(0) = 0.8; increasing ν results in
a higher β(t) function. Figure 3b shows the resulting transmission functions for dif-
ferent allowable values of S(0) while fixing ν = 1/3; increasing S(0) results in a
lower β(t).

4.1.2 Heterogeneous population

We demonstrate the recovery procedure in the case of a heterogeneous population with
two time-dependent transmission functions under assumption A1 (a similar explora-
tion could be done for assumption A2). We assume that Population 1 is 75 % and Pop-
ulation 2 is 25 % of the total population. The infection data is generated by solving the
SIR model for two populations with β1(t) = 0.75 ∗ (cos(3t) + 1.2) time−1, β2(t) =
0.25 ∗ (cos(3(t + π/2) + 1.2)), time−1ν = 1/3 time−1, S1(0) = 0.75 ∗ 0.8, S2(0) =
0.25 ∗ 0.8, I1(0) = 0.75 ∗ 0.01, I2(0) = 0.25 ∗ 0.01, R1(0) = 0.75 ∗ 0.19, and
R2(0) = 0.25 ∗ 0.19. The infection curves of the SIR model are sampled every 0.5
time units. The collected infection data sets were interpolated using a spline, and these
continuous and differentiable representation of the infection data were used in the β(t)
recovery procedure as the infection functions I1(t) and I2(t). Figure 4a verifies that the
reconstruction procedure generates the I1(t) and I2(t) functions; the figure shows the
sampled infection data and the reconstructed I (t) solution curves for both populations.
Figure 4b shows the original and generated β1(t) and β2(t) functions.

Figure 5a, b shows the resulting transmission functions for different allowable val-
ues of ν while fixing the initial number of susceptible individuals to their original
values; increasing ν results in a higher β1(t) and a lower β2(t). Figure 6a, b shows the
resulting transmission functions for different allowable values of S1(0) while fixing
ν = 1/3 and S2(0) = 0.25∗0.8; increasing S1(0) results in a lower β1(t) and a higher
β2(t). The value of S2(0) only effects the transmission function β2(t). Figure 6c shows
the resulting transmission function for different allowable values of S2(0) while fixing
ν = 1/3 and S1(0) = 0.75 ∗ 0.8; increasing S2(0) results in a lower β2(t).

123



Studying the recovery procedure for the time-dependent transmission rate(s) 497

Fig. 3 Simulated data,
homogeneous population. Effect
of variations in model
parameters on the generated
time-dependent transmission
function β(t). a Effect of
variations in ν for fixed S(0).
b Effect of variations in S(0) for
fixed ν
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4.2 Influenza data

In this section we apply the β(t) recovery procedure to 2002–2003 influenza data. The
number of influenza-like illnesses reported to the U.S. Center for Disease Control and
Prevention1 is used as the base for the number of infected individuals. These numbers
were then scaled by 1/.4 for adults (25+ years) and 1/.56 for children (0–24 years) to
account for individuals who are infected but do not seek health care (Biggerstaff and
Balluz 2011).

We normalize the total population size to 1, assuming that the size of the U.S.
population is 287, 000, 000, which was the approximate reported U.S. population in

1 http://www.cdc.gov/flu/weekly/ussurvdata.htm; accessed October 26, 2011.
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Fig. 4 Simulated data,
heterogeneous population.
a The sampled infection data
and the reconstructed I1(t) and
I2(t) solution curves. b The
original and generated β1(t); the
original and generated β2(t)
from t = 0 to t = 20
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July of 2002.2 We assume that 65 % of the US population is adult, 25+ years, and the
remaining 35 % are youth, 0–24 years.3 We set the initial percentage infected in each
class to be the percentage infected according to the data. Finally, we assume that there
are no individuals in the recovered class(es) at time 0.

We assume that the initial number of susceptible individuals is known; it is the total
population less the initial number of infected individual. Therefore, we do not explore
the effect of changing the initial number of susceptible individuals for the actual flu
data.

2 http://www.census.gov/population/estimates/state/st-99-1.txt; accessed October 26, 2011.
3 Estimated for 2000; http://censtats.census.gov/data/US/01000.eps; accessed October 26, 2011.
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Fig. 5 Simulated data,
heterogeneous population.
Effect of variations in model
parameter ν on the generated
time-dependent transmission
functions β1(t) and β2(t) for
fixed S1(0) and S2(0). a Effect
on β1(t). b Effect on β2(t)
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4.2.1 Homogeneous population

We begin by assuming that all infected individuals are in one population class and
that the disease spread can be modeled by the classical SIR model. The infection data
was interpolated using a spline and this continuous and differentiable representation
of the infection data was used in the β(t) recovery procedure.

We find that the recovery rate ν must be in the range ν = 0.08 days−1 to 52.00
days−1 to have well-defined and positive transmission function. This corresponds to
a recovery time between 0.02 and 12.50 days.

Figure 7 shows the resulting transmission function for different allowable values
of ν corresponding to recovery times of 3, 4, 5, 6, and 7 days. Increasing ν results in
a higher β(t).
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Fig. 6 Simulated data,
heterogeneous population.
Effect of variations in model
parameters on the generated
time-dependent transmission
functions β1(t) and β2(t) for
fixed ν. a Effect of variations in
S1(0) on β1(t) for fixed S2(0).
b Effect of variations in S1(0)

on β2(t) for fixed S2(0). c Effect
of variations in S2(0) on β2(t)
for fixed S1(0)
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Fig. 7 2002–2003 influenza
data, homogeneous population.
Effect of variations in model
parameter ν on the generated
time-dependent transmission
function β(t) for fixed S(0)
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4.2.2 Heterogeneous population

Now we assume that the 2002–2003 influenza outbreak can be modeled by the SIR
model for two populations with two transmission functions. We assume that the adults
are Population 1 and the youth are Population 2. The infection data was interpolated
using a spline and the two continuous and differentiable representations of the infection
data were used in the β(t) recovery procedure.

Under assumption A1, we find that the recovery rate ν must be in the range ν = 0.10
days−1 to ν = 18.00 days−1 to have well-defined and positive transmission functions.
This corresponds to a recovery time in the range 0.06 days to 10.00 days.

Figure 8a, b shows the resulting transmission functions for different allowable val-
ues of ν corresponding to recovery times of 3, 4, 5, 6, and 7 days, under assumption
A1. Increasing ν results in a higher β1(t) and β2(t).

Under assumption A2, we find that the recovery rate ν must be in the range ν = 0.10
days−1 to ν = 13.92 days−1 to have well-defined and positive transmission functions.
This corresponds to a recovery time in the range 0.07 days to 10.00 days.

Figure 9 shows the generated β2(t) and b2(t) using assumptions A1 and A2, respec-
tively, for the heterogeneous SIR model with ν = 1/5 days−1.

4.2.3 Multiple years

We examine the β(t) recovery procedure for the six flu seasons, 2002–2003 through
2007–2008. We assume that the size of the U.S. population is the approximate average
U.S. population from 2002–2008; that is, 295,850,000.4

We begin by assuming that all infected individuals are in one population class and
that the disease spread for the entire six flu seasons can be modeled by the classical
SIR model. The infection data was interpolated using a spline and this continuous
and differentiable representation of the infection data was used in the β(t) recovery

4 http://www.census.gov/population/estimates/state/st-99-1.txt; accessed October 26, 2011.
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Fig. 8 2002–2003 influenza
data, heterogeneous population,
under assumption A1. Effect of
variations in model parameter ν

on the generated time-dependent
transmission functions β1(t) and
β2(t) for fixed S1(0) and S2(0).
a Effect on β1(t). b Effect on
β2(t)
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(b)

Fig. 9 2002–2003 influenza
data, heterogeneous population.
Comparison of the generated
time-dependent transmission
functions β2(t) and b2(t) under
assumptions A1 and A2, with
ν = 1/5 days−1
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Fig. 10 2002–2003 through
2007–2008 influenza data,
heterogeneous population.
The adult (25+ years) and youth
(0–24 years) scaled
influenza-like-illness data and
the reconstructed I1(t) and I2(t)
solution curves, under
assumption A1, with
ν = 1/5 days−1
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procedure. We find that ν must be in the range ν = 0.13 days−1 up to ν = 13.18
days−1. This corresponds to a recovery time in the range 0.08 days to 7.69 days.

Now we assume that the six influenza seasons can be modeled by the SIR model
for two populations with two transmission functions. The infection data was interpo-
lated using a spline and the two continuous and differentiable representations of the
infection data were used in the β(t) recovery procedure.

Under assumption A1, we find that the recovery rate ν must be in the range ν = 0.14
days−1 to ν = 7.69 days−1 to have well-defined and positive transmission functions.
This corresponds to a recovery time in the range 0.13 days to 7.14 days. Under assump-
tion A2, we find that the recovery rate ν must be in the exact same range as under
assumption A1.

Figure 10 shows the scaled influenza-like-illness data for the adult and youth pop-
ulations along with the reconstructed infection curves I1(t) and I2(t), with ν = 1/5
days−1, under assumption A1. A comparison of the time dependent transmission func-
tions reconstructed using different allowable values of ν corresponding to recovery
times of 3, 4, 5, 6, and 7 days, under assumption A1, are in Fig. 11a, b, respectively.
Increasing ν results in a higher β1(t) and β2(t).

Figure 12 shows the generated β2(t) and b2(t) using assumptions A1 and A2,
respectively, for the heterogeneous SIR model with ν = 1/5 days−1 for the 2002–
2003 through 2007–2008 influenza seasons.

4.2.4 Frequency analysis

We apply frequency analysis via the Fourier transform to the recovered β(t), for the
homogeneous SIR model and the β1(t) and β2(t) for the heterogeneous SIR model
under assumption A1, for the multi-year influenza data from the 2002–2003 season
through the 2007–2008 season, using ν = 1/5 days−1. Figure 13 shows the nor-
malized spectrum for the generated time-dependent transmission function β1(t), in
the heterogeneous case; the spectra for β(t) in the homogeneous cases and β2(t) in
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Fig. 11 2002–2003 through
2007–2008 influenza data,
heterogeneous population, under
assumption A1. Effect of
variations in model parameter ν

on the generated time-dependent
transmission functions β1(t) and
β2(t) for fixed S1(0) and S2(0).
a Effect on β1(t). b Effect on
β2(t)
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Fig. 12 2002–2003 through
2007–2008 influenza data,
heterogeneous population.
Comparison of the generated
time-dependent transmission
functions β2(t) and b2(t) under
assumptions A1 and A2, with
ν = 1/5 days−1
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the heterogeneous case are similar. The dominant frequency component of β1(t) is
at 0.00275 per day, meaning that the length of one complete flu cycle is 1/0.00275
= 363.63 days, approximately one year. The same dominant period appears for both
β(t) and β2(t).
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Fig. 13 2002–2003 through
2007–2008 influenza data,
heterogeneous population, under
assumption A1. Frequency
transform of the generated
time-dependent transmission
function β1(t), with ν = 1/5
days−1, showing the dominant
frequency component
(normalized modulus)

0 0.05 0.1 0.15 0.2
0

0.25

0.5

0.75

1

Frequency (per day)

N
or

m
al

iz
ed

 S
pe

ct
ru

m

5 Discussion

In this paper we have reviewed the two recent procedures for recovering the time-
dependent transmission function, β(t), for SIR-type compartment models. Using a
modification of the PWW procedure, the two procedures are shown to produce exactly
the same function β(t). We have investigated the necessary conditions to ensure a well-
defined and positive β(t) for the classical SIR model. The recovery procedure was
extended to certain SIR-type models for heterogeneous populations. The procedure
was demonstrated for a verifiable example for both a single and a multiple population
model. Finally, the procedure was applied to homogeneous and heterogeneous influ-
enza data from the 2002–2003 flu season and for the six flu seasons from 2002–2003
through 2007–2008. Two assumptions were considered in order to apply the procedure
to the heterogenous population model.

In the verifiable example in Sect. 4.1, the range of feasible ν values is very small and
contains the “known” value of ν. The same is true for the interval of allowable S(0)

values. While the specific intervals found here apply only to the scenario described
above, we conjecture that the same would be true when dealing with real-world data.
If the data can indeed be modeled with a given model, then the calculated range of
allowable ν values should contain the actual value.

Individuals who are infected with influenza are infectious (shed virus) starting
around the second day after exposure and for up to 8 days (Carrat et al. 2008). In
other words, infected individuals have a recovery time of 8 or fewer days. All of the
situations explored in this paper result in an allowable range of ν values that overlaps
this region (see Table 1). We conclude that none of the models considered here are
unreasonable models for the influenza data. If one of the models were to produce a
range of recovery times corresponding to, say, 3 or fewer days, then we would conclude
that the given model is not appropriate for the data.

We note that the allowable range of ν values for the three situations homogeneous,
heterogeneous (two age classes) under assumption A1, and heterogeneous (two age
classes) under A2 are approximately the same when considering just one flu season or
when considering the six seasons together (Table 1). We believe that this demonstrates
the robustness of the procedure and the soundness of SIR-type models for modeling
influenza.
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Table 1 Comparison of the allowable range of recovery times, 1/ν days, determined by the recovery
procedure for the time-dependent transmission rate(s)

Influenza season Recovery time
SIR model type, assumption 1/ν days

2002–2003

Homogeneous 0.02 ≤ 1/ν ≤ 12.50

Heterogeneous, A1 0.06 ≤ 1/ν ≤ 10.00

Heterogeneous, A2 0.07 ≤ 1/ν ≤ 10.00

2002–2003 through 2007–2008

Homogeneous 0.08 ≤ 1/ν ≤ 7.69

Heterogeneous, A1 0.13 ≤ 1/ν ≤ 7.14

Heterogeneous, A2 0.13 ≤ 1/ν ≤ 7.14

It is interesting to note that the general shape of the transmission function curves
remain the same even with differing ν. This is true for both the verifiable example
and the influenza example, and for both the homogeneous and heterogeneous models.
We conjecture that the relationship between the shape of the transmission function(s)
and the disease dynamics gives important information about the transmissibility of the
disease over the course of the disease outbreak and we believe that this opens a new
area of study that should be explored.

In the case of a heterogeneous population, the time-dependent transmission func-
tions β1(t) and b1(t) are the same regardless of the assumption of A1 or A2. We
provide Figs. 9 and 12 to compare the resulting β2(t) and b2(t) with ν = 1/5 days−1,
for the single and multiple flu seasons, respectively. Note that the resulting trans-
mission functions have the same general shape. Again, we believe that this provides
important information about the transmission dynamics. It seems to not be impor-
tant, for this particular outbreak, which assumption is used. Assumptions A1 and A2
produce similar β2(t) and b2(t) (and similar allowable ν ranges).

We believe that the reconstructed β(t) functions for influenza can help determine
specific effects on transmissibility. For example, the β(t) recovery procedure gives a
new way to test the “school year” hypothesis (seasonality). Flu experts believe that
the typical structure of a flu season can be accounted for by increased social con-
tacts among children during the school year. Reconstructing the exact time-dependent
transmission function for data will allow one to examine whether there is a drop in the
transmission rate over the summer months.

In Pollicott et al. (2012), frequency analysis is applied to the recovered time-depen-
dent transmission function, β(t), for the SEIR model applied to multi-year prevaccina-
tion UK measles data. Measles are believed to conform to the “school year” hypothesis
(Grassly and Fraser 2006; Keeling and Rohani 2008) and their resulting β(t) confirms
this hypothesis. They find that the resulting β(t) for measles shows dominate spectral
peaks with 1- and 1/3-year periods, concluding that measles transmission is driven
by school contacts. (There were three major school breaks during these years.) This
demonstrates a second method to use the reconstructed time-dependent transmission
function(s) to test the “school year” hypothesis.
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There are many avenues of exploration left open regarding the β(t) recovery pro-
cedure for epidemic models. We have noted a few above and list a few more here.
First, the procedure has been applied to several SIR-type compartment models, some
here and others in Pollicott et al. (2012) and Hadeler (2011). The procedure should be
explored for more models, including for heterogenous populations. General conditions
should be found for which classes of models the procedure applies to and which it
does not. Second, we have provided graphs on the time to failure of Conditions 1 and 2
for the verifiable example using the SIR model (Fig. 2). The resulting “time to failure”
graphs are intriguing and deserve further study. And third, further work needs to be
done with real-world infection data. For example, we believe that the method can be
applied to influenza data and the resulting time-dependent transmission functions can
help determine which, if any, seasons conform to the “school year” hypothesis.
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