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Abstract Previous neural field models have mostly been concerned with predic-
tion of mean neural activity and with second order quantities such as its variance,
but without feedback of second order quantities on the dynamics. Here the effects of
feedback of the variance on the steady states and adiabatic dynamics of neural systems
are calculated using linear neural field theory to estimate the neural voltage variance,
then including this quantity in the total variance parameter of the nonlinear firing
rate-voltage response function, and thus into determination of the fixed points and the
variance itself. The general results further clarify the limits of validity of approaches
with and without inclusion of variance dynamics. Specific applications show that sta-
bility against a saddle-node bifurcation is reduced in a purely cortical system, but
can be either increased or decreased in the corticothalamic case, depending on the
initial state. Estimates of critical variance scalings near saddle-node bifurcation are
also found, including physiologically based normalizations and new scalings for mean
firing rate and the position of the bifurcation.
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1476 P. A. Robinson

1 Introduction

Physiologically based neural-field modeling of brain activity has enabled successful
predictions of a wide variety of phenomena in normal waking and sleeping brain
states and abnormal regimes (Robinson et al. 1997, 1998, 2000, 2001, 2002, 2004,
2007; Robinson 2005; Rowe et al. 2004; Bressloff 2002; Bressloff and Cowan 2002;
O’Connor and Robinson 2003; O’Connor et al. 2002; Rennie et al. 2002; Deco et al.
2008; Jirsa and Haken 1996; Steyn-Ross et al. 1999, 2001b,a, 2005a,b, 2006; Nunez
1995; Wright and Liley 1996; Freeman 1975; Lopes da Silva et al. 1974; Wilson et al.
1973; Breakspear et al. 2006; Kim and Robinson 2007; Nunez 1974; Suffczynski et al.
2006, 2005; Liley and Bojak 2005). These include time series, spectra, correlation and
coherence functions, and other properties of electroencephalograms (EEGs), responses
evoked by impulsive or sinusoidal stimuli, and links with functional magnetic reso-
nance imaging (fMRI) via the blood oxygen level dependent (BOLD) signal. Despite
the highly nonlinear nature of many neural phenomena, these works have found that
a large body of experimental results in these areas can be successfully accounted for
by linear dynamics relative to a nonlinearly determined fixed point of normal brain
activity. However, it is also clear that many phenomena, especially seizures, require
nonlinear analysis of the dynamics of neural field equations, which yield time series
and bifurcation structures that are in good agreement with observations (Robinson
et al. 2002; Breakspear et al. 2006; Kim and Robinson 2007).

While nonlinear analyses of a given physiological model are more general than
linear ones, linear analyses typically yield much greater insight, often in analytic
form, within their regimes of validity. Typically, they yield the linear dynamics of
mean quantities such as firing rates and soma voltages, relative to a fixed point, which
is determined from the steady-state solutions of the fully nonlinear neural field equa-
tions. Quadratic quantities, such as power spectra and correlation functions are easily
computed for small perturbations from steady states, but do not affect the original
steady states in such analyses. Adding feedback of such quantities on the dynamics in
the vicinity of the steady state will allow the regime of validity of the linear approxima-
tion to be better understood, and will enable an expansion of the analytically tractable
regime to include weak nonlinearities.

One potential mechanism for such a feedback is the effect of voltage fluctuations on
the voltage diffusion of neurons from their post-spike voltage back to firing threshold,
as studied in stochastic leaky integrate-and-fire neural models, for example (Meffin
et al. 2004), where this diffusion rate has been shown to broaden the distribution of
effective thresholds.

The firing threshold distribution enters neural field theories via parameters of the
relationship assumed between firing rate and soma voltage (Freeman 1975; Robinson
et al. 2007). In most neural-field theories, this is approximated by a sigmoidal function,
with a transition from low to high firing rates, whose width reflects the distribution of
neural properties and inputs relative to the mean. In most cases, this width is assumed
to be constant, but this ignores the effects of population variance in soma voltage, or
equivalently afferent spike rates, on the fraction of neurons that attain their individual
firing thresholds per unit time: a larger variance in inputs means that the neurons in the
broadened tail of the distribution can reach threshold and fire more often. This effect
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is well known in the literature on leaky integrate-and-fire (LIF) neurons (Meffin et al.
2004), for example, but has not yet been fully explored in neural field theory, despite
several recent papers on generalizing standard mean-field approximations in various
models (Buice and Cowan 2007, 2009; Buice et al. 2010; Bressloff 2009; Marreiros
et al. 2008, 2010); in particular, applications to critical points and critical scalings
remain to be explored in detail—a particular focus of the present work.

In Sect. 2 we write down nonlinear neural field equations, including the effect of the
voltage variance on the sigmoidal function by making the approximation of Gauss-
ian-distributed voltage fluctuations. We then approximate this variance in terms of
linear transfer functions that relate it to the variance of external inputs to the brain,
which we approximate as spatiotemporally white. These forms diverge near certain
bifurcation points (Robinson et al. 1997; Steyn-Ross et al. 1999, 2006)—saddle-node
bifurcations in particular—so their linear approximations eventually break down in
those neighborhoods. However, the existence of the divergence is robust and, away
from the singularity, the quantitative form is also correct. The results here enable the
limits of validity of approaches with and without inclusion of variance feedback to be
clarified. The effects on a cortical system are explored and illustrated in Sect. 3, along
with discussion of the corticothalamic case. In Sect. 4 we summarize the main results.

2 Theory

Here we write down the neural field equations of interest, based closely on those of
Robinson et al. (1997) and Robinson (2005), to which papers the reader is referred
for further details, especially of the physiological details and approximations made.
In doing so, we generalize these equations to incorporate how the variance of neural
activity affects the sigmoidal function that relates mean firing rate to soma voltage.
We then estimate the variances using linear transfer functions and discuss the regime
of validity of analyses with and without variance feedback.

2.1 Neural field equations

As in previous work, we make a continuum approximation in which neural properties
are averaged over spatial scales of a tenth of a mm or so: sufficient to contain large
numbers of neurons, but small enough to resolve quite fine structure in the brain and
its activity. To focus on the effects of interest, we specialize here to the case where
all parameters, other than the transition width of the sigmoidal rate-voltage response
function, are treated as constant.

We assume that the brain contains multiple populations of neurons, distinguished
by a subscript a, which simultaneously labels both the structure in which a given
population lies (e.g., a particular nucleus) and the type of neuron (e.g., interneu-
ron, pyramidal cell). The continuum soma potential Va is the sum of contributions
Vab resulting at the soma from activity that arrives at each type of (mainly) dendritic
synapse b, where b denotes both the afferent (incoming) population and neurotrans-
mitter type. Thus we write
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1478 P. A. Robinson

Va(r, t) =
∑

b

Vab(r, t), (1)

where r denotes the spatial coordinates, t the time, the summation is assumed to be
linear, and all potentials are measured relative to resting. The cortex is approximated
as a two dimensional sheet and r is assumed to be the actual position in the case of the
cortex. Some key structures, such as the thalamus, are linked to the cortex via a primary
topographic map (which does not exclude the possibility of other connections), that
links points in a one-to-one manner between structures, so we assign the same value
of r to such points. Hence, in structures other than the cortex, the map coordinate r
denotes a rescaled physical dimension (i.e., the physical coordinate multiplied by the
ratio of the cortical scale to the structure’s scale), a point that must be remembered
when considering values of spatial parameters in these structures.

The subpotentials Vab respond in different ways to incoming spikes, depending on
their synaptic dynamics (ion-channel kinetics, diffusion in the synaptic cleft, release
and reuptake processes, etc.), subsequent signal dispersion in the dendrites, and capaci-
tive effects at the cell body. The resulting response of the soma potential to a delta-func-
tion input at the synapse can be approximated via the differential equation (Robinson
et al. 1997)

Dab(r, t)Vab(r, t) = νab(r, t)φab(r, t − τab), (2)

Dab(r, t) = 1

αabβab

d2

dt2 +
(

1

αab
+ 1

βab

)
d

dt
+ 1, (3)

where αab is the mean decay rate of the soma response to a delta-function synaptic
input, βab is the mean rise rate, τab is the discrete time delay between remotely situated
populations, which is assumed constant here, νab is a local coupling-strength, given
by

νab = Nabsab, (4)

where Nab is the mean number of connections from cells of type b per cell of type a
and sab is their mean strength, and where the pulse density field φab is the weighted
average rate at which spikes arrive at (r, t) and comprises signals from population b
to a.

Action potentials are produced at the axonal hillock when the soma potential
exceeds a threshold θa . When averaged over a population of neurons with normal
response characteristics, a good approximation to the firing rate Qa is

Qa(r, t) = Qa maxSa[Va(r, t); σa], (5)

where Qa max is the maximum firing rate, Sa is the rate-voltage response function,
and σa is the population standard deviation of the soma voltage relative to the firing
threshold. We examine (5) in detail in Sect. 2.2.
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Considerable theoretical and experimental work has shown that, to a good approxi-
mation, the mean field of axonal signals propagates within a smoothly structured neural
population approximately as if governed by a damped wave equation (Robinson 2005;
Jirsa and Haken 1996; Robinson et al. 1997; Nunez 1995; Xu et al. 2007; Rubino et al.
2006; Schiff et al. 2007). For an isotropic damped wave equation of the form (Robinson
et al. 1997; Robinson 2005)

[
1

γ 2
ab

∂2

∂t2 + 2

γab

∂

∂t
+ 1 − r2

ab∇2

]
φab(r, t) = Qb(r, t), (6)

where γab = vab/rab is the temporal damping coefficient and vab is the wave velocity
in coordinate units. We note that this equation is the two-dimensional generalization
of the telegrapher’s equation.

Equation (6) encapsulates propagation from soma location to soma location. The
effective range rab of the propagator accounts for both the coordinate divergence hab

of fibers traveling from b to a and the extent of arborization da of dendritic trees of
type a, giving an approximate range rab = (h2

ab + d2
a )1/2.

2.2 Rate-voltage response function

We now examine the population-averaged rate-voltage response function (5) in detail,
in order to approximate the effects of the variance in soma voltage on its form.

A neuron produces action potentials, or spikes, when its soma potential exceeds a
threshold θ̃a , where the tilde indicates the value for an individual neuron. After the
spike, the potential resets to a lower value Ṽ res

a . In idealized analyses, these values
are the same for all neurons, but real neurons have a distribution of numbers and con-
ductivities of ion channels, and other relevant biophysical quantities, which lead to
probability distributions of both potentials; in particular, we assume here that θ̃ has
the Gaussian distribution

p(θ̃a; σθa) = 1

σθa
√

2π
exp

[
− (θ̃a − θa)2

2σ 2
θa

]
, (7)

where σθa is the standard deviation. To focus on the effects of variance in the present
work, we do not include additional complexities such as modulation of the threshold
by the effects of slow currents that can lead to history-dependent bursting behavior,
for example; however, these can be straightforwardly included in mean-field modeling
(Robinson et al. 2007).

It is the distribution of Ṽa − θ̃a of soma voltage relative to threshold that determines
the rate at which neurons reach threshold and fire. The distributions of Ṽa and θ̃a must
thus be convolved, whence the standard deviation σV a of Ṽa affects the distribution
that determines the firing rate. Neurons in vivo usually fire as a result of many small
inputs, rather than a few large ones or a steady current, as in in vitro experiments
(Deco et al. 2008). Stochasticity in the arrival rate of these inputs yields variance in
the soma potential relative to threshold, which smears out the response function for a
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given mean potential. Equivalently, the effective value of σa is increased. If we assume
a Gaussian distribution as the simplest approximation, the net effect is to increase the
relevant variance from σθa to a value given by

σ 2
a = σ 2

θa + σ 2
V a . (8)

Incidentally, the assumption of an approximately Gaussian form is also supported by
stochastic neuron theory, which has shown that the distribution of leaky integrate and
fire (LIF) neurons with a reset voltage V res

a for V res
a < Va < θa , is a Gaussian modi-

fied by a cutoff due to the absorbing boundary condition at θ̃a that arises from the firing
and consequent voltage reset that occur at that point. The effect of adding variance
in the threshold is to make the distribution of voltage relative to threshold broader
than that for fixed threshold, as in (8) (Marreiros et al. 2008, 2010). The Gaussian
approximation captures the key qualitative effect, but could break down in detail if the
input signals were significantly skewed, or if endogenous oscillations were generated
by the system, e.g., as in seizures (Robinson et al. 2002; Breakspear et al. 2006).

The effective rate-voltage response function, averaged over the population can now
be written in the form (5), with σa interpreted as in (8), whereas previous work omit-
ted the last term in (8). A commonly used approximation to the resulting sigmoidal
rate-voltage response function, written in terms of mean quantities, is

Sa[Va(r, t); σa)] = 1

1 + exp[−C{Va(r, t) − θa}/σa] , (9)

where C = π/
√

3. The derivative of (9) with respect to Va defines a probability den-
sity ρa(Va)/Qmax of voltage relative to threshold that approximates a Gaussian (the
factor Qmax is included to accord with notation in previous works and below). An
alternative form of (9) is

Sa[Va(r, t); σa)] = 1

2
(1 + erf[{Va(r, t) − θa}/σa

√
2]), (10)

whose derivative is Gaussian with standard deviation σa .

2.3 Approximation of voltage variance

To close our system of equations (1)–(9), we need to calculate the voltage variance
σ 2

V a . We note that these equations have been found to have an odd number of fixed
points for constant σa , and we assume that at least one stable fixed point exists in
the cases of interest here, as has been established previously for fixed σa (Robinson
et al. 1998, 2004). We then expand (1)–(9) to first order relative to this fixed point and
approximate the variance by its linear value; i.e., the value relative to the fixed point,
whose location is now determined in part by the variance itself. As mentioned earlier,
the quantitative accuracy of the approximation will break down when the variance is
large enough that σV a > σθa . This is because the sigmoid (9) can be approximated by
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Fig. 1 Schematic of connectivities in the corticothalamic system considered. The cortical populations of
excitatory (e) and inhibitory (i) neurons are shown, along with those of the reticular (r ) and specific (s)
relay nuclei of the thalamus. Also shown are the pulse-rate fields φab (= φb under the random connectivity
approximation, RCA), including the external input φsn (= φn under the RCA). A cortical system is obtained
by deleting the reticular nucleus and the cortical feedback to the relay nuclei, making the latter part of the
input pathway

a straight line only over voltage ranges smaller than the characteristic range σθa over
which its curvature can be neglected. Hence, the linear approximation will break down,
for example, very near a saddle-node bifurcation where the fixed point loses stability
and σV a becomes large; however, it is accurate in the linearly stable regime away from
this point, and certainly better than the assumption of constant σa in previous work,
which is a limiting case of the present analysis.

The corticothalamic system of interest here is shown schematically in Fig. 1, where
the input φsn determines the other φab. The Va are then determined by (1) and (2),
where the labels a are summarized in the caption. Their linear variances can be straight-
forwardly estimated by Fourier methods, using the transfer functions Tan(k, ω) =
Va(k, ω)/Vn(k, ω) that link voltage fluctuations Va(k, ω) at wave vector k and angu-
lar frequency ω to those in the external noise source Vn(k, ω) that sets the overall
level of fluctuations (Robinson 2005; Robinson et al. 1997). Here, all quantities in
Fourier space denote first-order perturbations relative to the assumed fixed point. We
also write φsn and Qn in terms of Vn , simply to enable the results to be expressed in
terms of voltage transfer functions; this gives φsn(k, ω) = Qn(k, ω) = ρn Vn(k, ω).
This latter assumption places no special restriction on the input φsn received at the
thalamus, which is the physically relevant quantity; nor does it involve any specific
assumptions about sensory input systems.

In answer to the possible objection that many aspects of brain dynamics are
nonlinear, we note that a large-scale fixed point is entirely compatible with non-
linear dynamics at the small scale (e.g., nonlinear generation of axon potentials and
nonlinear interactions of microscopic neural assemblies). Moreover, there is extensive
evidence that large-scale linear instabilities are associated with the onset of nonlinear
dynamics involving excessive synchrony, such as during epileptic seizures (Robinson
et al. 2002; Breakspear et al. 2006).
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The variance of Va can be written

σ 2
V a =

∑

K

∫
dω

2π
|Tan(K, ω)|2|Vn(K, ω)|2, (11)

where K runs over the wavevectors (more generally the spatial eigenvalues) that label
the spatial eigenfunctions of the system, which is of finite physical size (Robinson
et al. 2000). It has been shown previously that, in the absence of large discrete stimuli,
a wide variety of EEG phenomena can be quantitatively accounted for by approxi-
mating Vn(K, ω) by white noise in (11) (Robinson 2005; Robinson et al. 1997, 2001;
Deco et al. 2008; Steyn-Ross et al. 1999, 2006), whose modulus is assumed to be a
constant Un henceforth. We thus find

σ 2
V a = U 2

n

∑

K

∫
dω

2π
|Tan(K, ω)|2. (12)

Strictly, a low-frequency cutoff should be imposed in (12) so that fluctuations with
ω � Qa are treated as nonrandom; however, the result is semiquantitatively correct
without this refinement, but we note that it would tend to somewhat reduce the effects
found below.

Here we are chiefly concerned with the effects of variance on the global steady
states about which linearization is carried out, which have K = 0. Because these cor-
respond to K = 0 and the activity spectra that give rise to the variance are dominated
by low K and ω, we restrict attention to K = 0 in what follows, and omit the first
argument of the quantities on the right of (12) when this leads to no confusion. Hence,
(12) becomes

σ 2
V a = U 2

n

∫
dω

2π
|Tan(ω)|2, (13)

with Tan(ω) = Tan(0, ω). These approximations can be relaxed straightforwardly,
and it is worth noting that it is a common misconception that K = 0 activity exists
at high levels only in generalized seizures. On the contrary, the majority of normal
activity is concentrated at the lowest K (Nunez and Srinivasan 2006; Robinson et al.
2000; O’Connor et al. 2002; O’Connor and Robinson 2003).

The transfer functions Tan are written down in Appendix A for the system shown
in Fig. 1. EEG spectral power is usually dominated by very low frequencies, partic-
ularly near saddle-node bifurcations, which are where voltage variances are largest
(Robinson et al. 1997; Steyn-Ross et al. 1999, 2006) and which are of particular inter-
est below. This enables the Tan to be approximated and allows (13) to be analytically
evaluated. Details of these steps are found in Appendix B.

Our final, closed equation set is (1)–(6), (8), (9), and

σ 2
V a ≈ U 2

n E2
a

2A0|A1| , (14)
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from (70), with the Ea and A j defined in Appendix B. The physiological parameters
that determine the quantities in (14) are not precisely known for all the corticothalamic
structures of interest (see Sect. 3.1); however, previously published estimates of these
parameters (Robinson et al. 2004; Rowe et al. 2004) imply that σV a is typically of the
same order as the input standard deviation σV n because typical net gains are of order
unity (Robinson et al. 1997, 2001, 2004). We can estimate this quantity by noting that
it is of order 1/ρa(Va) times the standard deviation of the corresponding firing rate. If
firing rates are approximately Poisson processes, the latter quantity is the square root
of the typical mean firing rate of ∼10 s−1 (Robinson et al. 2004), giving a standard
deviation of ∼3 s−1. This implies σVa ∼ 1 mV ≈ 0.3σθ under typical conditions.
Alternatively, estimates from scalp EEG signals (a few μV) also yield σV a ∼ 1 mV
after allowing for attenuation by a factor of ∼100 by volume conduction (Nunez 1995;
Nunez and Srinivasan 2006). These estimates imply that σVa is usually small enough
that there are regimes where the constant-variance approximation is reasonable (thus
explaining its many successful applications, as mentioned in Sect. 1), while it is large
enough that other regimes exist where variance feedback will be significant (e.g., near
instability and/or at high levels of external stimulation).

3 Corticothalamic systems

To explore the effects of including voltage variance in the equations for the steady
states and dynamics, we begin by examining the cortical part of the system shown in
Fig. 1, and assume that the fields of outgoing pulses from a given population have the
same propagation characteristics, regardless of their destination—a good approxima-
tion in the cortex. This enables us to write rab = rb, vab = vb, and thus γab = γb and
φab = φb for a = e, i and b = e, i, s. For simplicity, we further assume that connec-
tivity in the cortex is random (i.e., the numbers of synapses made are proportional to
the numbers of afferent and efferent neurons available, which is a good approximation
(Braitenberg and Schüz 1998; Wright and Liley 1996; Robinson et al. 1997), and that
the parameters Qa max, θa , and σθa are the same for all populations, and write them as
Qmax, θ , and σθ from now on. These approximations can be easily relaxed, but at the
cost of complicating the analysis and obscuring the main effects of voltage variance
that we wish to explore here. In the same vein, we concentrate mostly on the cortical
system to illustrate the main effects, but more general results for the system of Fig. 1
are stated in the Appendixes and discussed qualitatively in Sect. 3.5.

3.1 Cortical steady state equations

Upon making the above assumptions, and setting space and time derivatives to zero
in (3) and (6), we find the equations for uniform steady states of activity

Ve = Vi , (15)

= (νee + νei )QmaxS(Ve; σe) + Pes, (16)

Pes = νesφs = νesνsnρsρn Vn, (17)
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where Vn is the constant spatially uniform part of the external drive. If one treats σe

as being fixed, (16) is equivalent to results in the works cited in Sect. 1. Equation (16)
can be rewritten in terms of Qe as f (Qe) = 0, with

f (Qe) = S−1(Qe; σe) − νQe − Pes, (18)

with ν = νee + νei and where S−1 is the inverse of S. Using the form (9), this yields

f (Qe) = θe + σe

C
ln

(
Qe

Qmax − Qe

)
− νQe − Pes, (19)

whose zeros determine the global, spatially uniform fixed points of the system. These
steps restrict the analysis to regions close to the fixed points of the original λ = 0
system.

We now allow for the effects of a steady-state level of fluctuations around the
fixed point, and their feedback on it via their variance. In the presence of temporal
fluctuations in Vn at K = 0, we find

σ 2
e = σ 2

θ + σ 2
V e, (20)

≈ σ 2
θ + U 2

n E2
e

2A0|A1| , (21)

= σ 2
θ + λ

1 − ρeν
, (22)

λ ≈ U 2
n ρ2

s ν2
es

4
(

1
α

+ νee
γeν

) , (23)

ρe = C Qmax

σe

1

1 + exp[−C(Ve − θ)/σe] , (24)

= (C Qe/σe)(1 − Qe/Qmax), (25)

where ρe = ∂ Qe/∂Ve is evaluated at the steady-state value of Ve, ρe ≈ 1/ν for small
A0 where σ 2

V e will be appreciable, and the approximation (22) holds where the second
term on the right is small and positive, and on stable branches close to saddle-node
bifurcations. As mentioned at the end of Sect. 2.3, estimates of the above physiologi-
cal quantities (Robinson et al. 2004; Robinson 2005; Rowe et al. 2004) imply that the
second term on the right of (22) can be of order unity, and thus that the fluctuation-
induced changes in the effective threshold variance can be comparable with the static
variance.

3.2 Cortical steady states and stability

Equation (22) yields a cubic equation in σe:

0 = (σ 2
e − σ 2

θ )[σe − νC Qe(1 − Qe/Qmax)] − λσe, (26)
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which must be satisfied at the zeros of (19), where

σe = C(νQe + Pes − θ)

ln[Qe/(Qmax − Qe)] . (27)

If we substitute (27) into (26) and make the definitions q = Qe/Qmax,� =
λ/σ 2

θe, N = νC Qmax/σθe, and U = C(Pes − θ)/σθe, where all quantities are steady-
state values, we obtain a single equation whose zeros yield the fixed points of the
system:

0 = [{ln[q/(1 − q)]}2 − (Nq + U )2]
× {Nq + U − Nq(1 − q) ln[q/(1 − q)]}
+ �(Nq + U ){ln[q/(1 − q)]}2. (28)

This equation has just three parameters—N , U , and �—the last of which represents
the feedback of variance on the sigmoid.

3.3 Cortex without variance feedback (� = 0)

If we rearrange (28) into the form

0 = ln[q/(1 − q)] − (Nq + U )

+�(Nq + U ){ln[q/(1 − q)]}2

h(q)
, (29)

h(q) = {ln[q/(1 − q)] + Nq + U }
×{Nq + U − Nq(1 − q) ln[q/(1 − q)]}, (30)

the zeros of the first line of (29) yield the fixed points in the absence of variance feed-
back on the sigmoid (� = 0). In this case, our previous analysis (Robinson et al. 1997,
1998, 2004) shows that either 1 or 3 roots exist, with the single root being stable in
the first case, and two stable roots separated by an unstable root in the second case. In
both cases, it is possible for a low-Qe stable root to exist for physiologically realistic
parameters, and we previously identified this with the normal waking state, which has
nonzero firing rate even for Pes = 0 (Robinson et al. 1997, 1998). Figure 2 shows the
roots as a function of the external drive parameter U for N = 50. At large negative
U there is a single stable fixed point at low q, while a single stable high-q fixed point
exists at large positive U . At intermediate U three fixed points exist—the two stable
fixed points just mentioned, and an unstable one at intermediate q. All these features
are in accord with those previously found and verified in the case of � = 0 (Robinson
et al. 1997). We discuss dynamics near fixed points further near the end of this section.
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Fig. 2 Roots of the steady-state
equation (28) for � = 0 as
functions of the drive parameter
U . a Solid curves show zeros of
(28), with ‘S’ and ‘US’ denoting
the stable and unstable branches,
respectively; the two curves
marked ‘X’ denote additional
zeros of h(q). b Zoom of part of
a, showing the S, US, and X
branches near a saddle-node
bifurcation, where they all meet
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As U increases in Fig. 2, the lower and middle fixed points eventually merge at a
saddle-node bifurcation (Robinson et al. 1997). Near this point, provided N is large,
we find Nq ≈ 1 and q ≈ exp(U + 1) at the bifurcation. Expanding f (Q) to second
order in Q about the bifurcation point, we find (noting that σe = σθ for � = 0)

Ve ≈ θ + (σθ/C) ln(σθ/CνQmax) − √
2σθ |�Pes |/C, (31)

Qe = φe ≈ (σθ/Cν) exp[±√
2C |�Pes |/σθ ], (32)

= σθ

Cν
±

(
2|�Pes |σθ

Cν2

)1/2

, (33)

where �Pes = Pes − Pcrit
es is the deviation (a negative quantity) from the voltage

Pcrit
es at the bifurcation point, the upper and lower signs refer to the unstable and lower

stable branches in Fig. 2, respectively, and (33) applies for small �Pes . The trend
given by (32) is for φe to increase as σθ increases.

If we substitute (31) and (32) into (22), we find that the voltage variance is of the
form

σ 2
V e = λ

1 − exp[−√
2C |�Pes |/σθ ] , (34)
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which yields

σ 2
V e ≈ λ

√
σθ/2C |�Pes |, (35)

provided |�Pes | � σθ/2; this inequality, together with the requirement σ 2
V e � σ 2

θ

implies λ � σ 2
θ for the validity of (35). When this inequality is violated, one has

σ 2
V e ≈ λ, (36)

and justification of the approximation � = 0 again requires λ � σ 2
θ [which is equiv-

alent to � � 1, as one might expect from direct expansion of (28)]. The above con-
ditions imply that the small-λ approximation is valid provided λ � σ 2

θ ; i.e., provided
that fluctuations do not move the system very far along the sigmoid in (9) compared to
the parameter σθ , which is the characteristic distance over which its curvature becomes
significant. The divergence of (35) as �Pes → 0 has been previously noted (Robinson
et al. 1997; Steyn-Ross et al. 1999, 2006), but without derivation of prefactors from
physiology.

Slow dynamics in the vicinity of fixed points can be studied by retaining only first-
order time derivatives in (6) and assuming ω � α, β, γe, and this also allows us to
determine the low-frequency stability of these points very easily via a force function
or, equivalently, a potential function (Robinson et al. 1998). It is straightforward to
show that the resulting dynamical equation for the corticothalamic system must have
the form

dφe(t)

dt
= γe

2
g[φe(t), φe(t − t0), φn(t − t0/2)], (37)

for equal corticothalamic and thalamocortical delays, where g is a function whose
form is determined by solving a transcendental equation (Kim and Robinson 2007).
This form is equivalent to that of friction-dominated dynamics of a particle under the
influence of a force g. If the cortex alone is considered, one can simply set t0 = 0 in
(36) and omit the redundant second copy of the repeated argument φe(t) on the right
to give a simplified two-argument function. In Appendix C we derive the equivalent
form by a route more similar to that used in earlier work (Robinson et al. 1998). This
yields

dφe(t)

dt
≈ γe

2

F[φe(t)]
|νei | + 1/ρe

, (38)

with F[φe(t)] given by (77)–(80), which generalize previous results (Robinson et al.
1998) to include variance feedback. The force function F has zeros at the fixed points
of the system dynamics, whose locations are modified via the dependences on the σa ,
and the effective inertia [proportional to the denominator in (37)] also increases with
increasing σe. Applied to Fig. 2, the force function confirms that the upper right and
lower left branches are stable, with dynamics causing the system to approach the fixed
point.

123



1488 P. A. Robinson

Fig. 3 Roots of the steady-state
equation (28) for � = 1 as
functions of the drive parameter
U . a Solid curves show zeros of
(28), as in Fig. 2. b Zoom of part
of a, showing the stable (S),
unstable (US), and X branches
near a saddle-node bifurcation,
where the X and S branches join
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3.4 Cortex with variance feedback (� �= 0)

If we set � �= 0 in (28) or (29), we include variance feedback in determining the
steady states. Figure 3 shows the resulting fixed points for � = 1 (we choose this
relatively large illustrative value of � for clarity). We see that the fixed point topology
is changed, with the X branch joining smoothly onto the stable and unstable branches,
instead of crossing. The result is that the bifurcation point is moved to lower U than in
Fig. 2, implying that the system is less stable, which can be understood qualitatively
by noting that this fixed point has Ve < θe, so an increase in σe in (9) pushes the system
to higher firing rates for given inputs, and thus closer to instability. Accordingly, the
firing rate at the bifurcation point is lower for nonzero �.

The behavior of the lower stable branch (corresponding to normal brain activity)
in Fig. 2 can be understood analytically by substituting (35) into (8) and expanding to
first order in λ. If |�Pes | � σθ/2, then

σe ≈ σθ + λ/(8Cσθ |�Pes |)1/2; (39)

otherwise, σe ≈ σθ + λ/2σθ . By expanding (32) around the saddle node bifurcation
(where �Pes = 0), (38) can be re-expressed as
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Fig. 4 Scalings of bifurcation
point versus �. a |�q|, with the
solid line showing the prediction
(41). b |�U |, with the solid line
showing the prediction (42)
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σe ≈ σθ + λ

2Cν(Q0 − Q)
, (40)

for Q < Q0 where Q0 is the location of the bifurcation point for � = 0.
If we again expand f (Qe) to second order in Q relative to the saddle-node bifur-

cation, assuming small Qe, but using (39) for σa , we find that the firing rate on the
curve at given �Pes is changed relative to the λ = 0 case (32) by an amount

�Q = −Q0

[
�

2
ln

(
1

q0

)]1/3

, (41)

with q0 = σθ/CνQmax ≈ 1/N [see just before Eq. (31)] and Q0 = Qmaxq0, provided
the right hand side remains small compared to Q0 (higher order corrections are, of
course, required close to the bifurcation). Numerical calculation of the location of the
rightmost point on the lower stable branch (seen in Figs. 2, 3) confirms the form (41),
with reasonable quantitative agreement for � � 0.1, as shown in Fig. 4a.

By re-expressing �Pes in terms of �Q, via (33), we find that the shift in the
bifurcation point relative to its location at � = 0 is

�U ≈ −1

2

[
�

2
ln

(
1

q0

)]2/3

, (42)
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since �U = C�Pes/σθ . The �2/3 scaling of this result agrees with numerical results,
as seen in Fig. 4b, but the numerical normalization is found to be roughly twice as
large, apparently due to the change in topology of the modes for � > 0.

The noninteger scalings in (41) and (42) do not appear to have been previously
noted in the literature. Since their derivatives with respect to � diverge at � = 0,
they imply that the bifurcation point is extremely sensitive to variance feedback, even
for small values of � (although the range over which this sensitivity is significant
shrinks as � decreases). From (23) we see that � is a quadratic function of stimulus
amplitude, so strong stimuli favor �-dependent effects.

3.5 Corticothalamic case

In the full corticothalamic system of Fig. 1, there are both excitatory and inhibi-
tory feedbacks of the cortex on itself via the thalamus, which itself contains distinct
excitatory and inhibitory structures. These effects can change the position of the sad-
dle-node bifurcation relative to the purely cortical case (Robinson et al. 1998, 2002,
2004), where this position is determined by the zero of the denominator 1 − ρeν in
(22), and this denominator is proportional to A0 [see (70)]. In the corticothalamic case,
the more general result (68) must be used for A0, so the corresponding denominator
is

1 − ρe(ν + ρsνesνse + ρsρrνesνsrνre), (43)

whose zero determines the location of the saddle-node bifurcation and the associated
spectral divergence.

Since only νsr is negative in (43), the net effect of the additional terms in this expres-
sion can be positive or negative. The overall effects of including voltage variance can
be to increase or decrease the proximity to the saddle-node bifurcation, increase or
decrease firing rates, and/or destabilize or stabilize the system relative to the case with
� = 0. Using the results (40) and (41), and expanding in powers of �1/3, we can
write

ρa = ρ(0)
a + ρ(1)

a �1/3, (44)

to lowest nontrivial order, where ρ
(0)
a and ρ

(1)
a are constants. On substituting (44) into

(43), the sign of the �-dependent terms proves to be a nonlinear function of the system
state, which cannot be expressed in closed form because it involves the solution of
a set of transcendental equations for the steady states (Robinson et al. 1998, 2002,
2004). Moreover, the bifurcation structure near the instability onset has a resulting
complex dependence on multiple parameters (Breakspear et al. 2006). Hence, numer-
ical analysis, based in part on the expressions derived here, will be needed to obtain
systematic results. Nonetheless, the example in the next paragraph gives some insight
into the effects to be expected.
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In an exemplar case with Grs = 0 (which simplifies the situation by severing the
intrathalamic feedback loop in Fig. 1), (68) can be interpreted as involving both direct
cortical feedback on itself, embodied in the gains Gee = ρeνee and Gei = ρeνei ,
and feedbacks via the thalamus, embodied in the other gains. In the waking state, the
positive term ρsνesνse is larger than the final term in (43) and steady state firing rates in
cortex and thalamus increase in tandem with increasing external drive (Robinson et al.
2001, 2002, 2004). This causes ρe and ρs to increase with increasing �, leading to ear-
lier onset of the saddle-node bifurcation. In sleep, the negative term ρsρrνesνsrνre is
the larger of the final two terms in (43), and the reticular nucleus has an elevated firing
rate, while the relay nuclei’s activity is suppressed (Robinson et al. 2001, 2004). This
leads to the � dependence of the final term in (43) opposite to that of the remainder
of the expression, thus tending to postpone the onset of the saddle-node bifurcation,
which may help to oppose the onset of some types of epileptic seizure (Robinson et al.
2002; Breakspear et al. 2006).

4 Summary and discussion

We have extended a widely applied neural field theory to approximate the effects of
feedback of voltage variance on the firing-rate response function. In particular, we
have examined how voltage fluctuations feed back on the nonlinear response proper-
ties of neural field models to affect the fixed points that correspond to steady states,
perturbing them away from their no-feedback forms. This has been done by calculat-
ing the contribution of these fluctuations to the standard deviation of the threshold of
the rate-voltage response function, using linear theory to approximate the variance.
The regimes of validity of approaches with and without variance feedback have been
estimated. Results found for adiabatic dynamics enable the system evolution to be
tracked in the vicinity of the fixed points in the presence of variance feedback.

It has been found that the likely magnitude of variance-feedback effects is small in
many situations, thereby explaining the widespread success of constant-variance the-
ories in explaining many EEG phenomena. However, the variance coupling strength
can be sufficiently large to cause significant effects, especially near saddle-node bifur-
cations of brain dynamics where the brain is close to a marginal stability, a state that
its dynamics are widely believed to favor.

The main effects of variance feedback are found to occur near saddle-node bifurca-
tions, where the low-frequency spectral power diverges. The divergence of the voltage
variance scales with the same exponent of 1/2 as estimated in previous work, but the
normalization is calculated here from physiology for the first time. Noninteger expo-
nents of 2/3 and 1/3 are found for the scaling versus variance coupling strength � of
the position and firing rate, respectively, at the saddle-node bifurcation of the stable
branch corresponding to normal brain activity. Significantly, these noninteger expo-
nents imply a high susceptibility of the steady state properties to variance feedback.
Since the brain is thought to operate relatively close to the saddle-node bifurcation
to maintain marginal stability (Robinson et al. 1997, 2001, 2004), the resulting mod-
ulations may be significant in normal brain states, especially if external stimuli are
strong, since � increases in proportion to the power input from external stimuli. This
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may also provide a route to probe and manipulate such effects experimentally, and
thus to estimate quantities such as �, σe, and their underlying physiological variables
in vivo.

For a cortical system, it is found that fixed points tend to be destabilized by vari-
ance feedback, but in the full corticothalamic system, they can either be destabilized
or stabilized, depending on the sign of the thalamic feedback and the precise state of
the system. Full analysis of the effects of variance dynamics on these characteristics
and on seizure onset will require inclusion of effects on the Hopf bifurcations that lead
most directly to seizure onset at higher frequencies (Robinson et al. 2002; Breakspear
et al. 2006). Another possible outcome of the differential effects of variance dynamics
on the components of the corticothalamic system is that they may introduce additional
fixed points by modifying the gains into regions where at least five fixed points are
already known to be possible (Robinson et al. 1998, 2004). This could affect some
of the phase transitions that have been argued to be related to sleep and anesthesia
(Steyn-Ross et al. 1999, 2001a,b, 2005a, 2006). Further applications of the present
results would include extension to include higher moments, and detailed investigation
of steady states, bifurcation structures, and seizure thresholds in the full corticotha-
lamic system. Contributions of axonal voltage fluctuations via antidromic propagation
to the cell body and dendritic synapses could also be included.

Acknowledgments The author thanks A. N. Burkitt, A. Peterson, H. Meffin, and D. B. Grayden for
stimulating discussions. The Australian Research Council supported this work.

Appendix A: Transfer functions

Transfer functions for the systems shown in Fig. 1 have been derived before, mainly
in the form required to express φa in terms of φn (Robinson 2005). These can be
straightforwardly re-expressed in the form linking Va to Vn required here; i.e., Tan =
Va(k, ω)/Vn(k, ω).

For the corticothalamic system in Fig. 1, at k = 0, and assuming the simplifications
mentioned in Sect. 2.3 and at the start of Sect. 3, we find

Ten = ρn De

ρe

φe

φn
, (45)

φe

φn
= Jes Jsn

(1 − Jsr Jrs)(1 − Jei )

1

q2r2
e
, (46)

De = (1 − iω/γe)
2, (47)

q2r2
e = De − 1

1 − Jei

[
Jee + Jes(Jse + Jsr Jre)

1 − Jsr Jrs

]
, (48)

Jab = Lab(ω)Gabeiωτab , (49)

Lab = (1 − iω/αab)
−1(1 − iω/βab)

−1, (50)

Gab = ρaνab, (51)
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where the parameters in (45)–(51) are defined in Sect. 2.1. In deriving (45)–(51) we
have noted that for the parameters of relevance here, Di ≈ Dr ≈ Ds ≈ 1 (Robinson
2005). Henceforth, we also set αab = α and βab = β for all ab for simplicity, and we
set all the τab = 0 except for τse = τre = τes = t0/2, where t0 is a constant (Robinson
2005).

Likewise, one finds

Tin = Ten, (52)

Tsn = ρn

ρs(1 − Jsr Jrs)

[
(Jse + Jsr Jre)

φe

φn
+ Jsn

]
, (53)

Trn = ρn

ρr (1 − Jsr Jrs)

[
(Jre + Jrs Jse)

φe

φn
+ Jrs Jsn

]
. (54)

The case of a cortical system is derived from Fig. 1 by setting Jre = Jse = Jrs =
Jsr = 0, so (45)–(54) yield

Ten = ρn De Jes Jsn

ρe(1 − Jei )

1

q2r2
e
, (55)

q2r2
e = De − Jee

1 − Jei
, (56)

with (52) continuing to apply.

Appendix B: Approximate evaluation of transfer functions

The transfer functions (and spectrum) in (13) are often dominated by low frequencies.
This is especially true near a saddle-node bifurcation, when the global steady state
loses stability at zero frequency (Robinson et al. 1997). Hence, we seek to approximate
the Tan at small ω. We note that the transfer functions in Appendix A can all be written
as

Tan(ω) ≈ Ea

q2(ω)r2
e

+ Fa(ω), (57)

where the Ea are constants, with

Ee = ρn

ρe

Ges Gsn

(1 − Gsr Grs)(1 − Gei )
, (58)

Ei = Ee, (59)

Es = ρe

ρs

Jse + Jsr Jre

1 − Gsr Grs
Ee, (60)

Er = ρe

ρr

Jre + Jrs Jse

1 − Gsr Grs
Ee, (61)
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for the system of Fig. 1, and

Ee = ρnGes Gsn

ρe(1 − Gei )
, (62)

for the cortical system derived from Fig. 1, with (59) also applying. Here the ran-
dom connectivity approximation has been invoked to infer that ρe = ρi in deriving
(58)–(62).

The cases in which σV a affects the dynamics significantly are those where it is
large. These correspond to q2r2

e being close to zero at ω = 0. We thus expand q2(ω)

to second order in −iω, writing

q2(ω)r2
e ≈ A0 − iωA1 − ω2 A2, (63)

where the coefficients A j are discussed below and this equation is valid provided ω

is small compared to α, β, γe, and 2π/t0, which are all of order 100 s−1 (Robinson
et al. 2004; Robinson 2005).

Sufficiently close to the zero of q2(ω) we can consider only the first term in (57).
Then (13) becomes

σ 2
V a ≈ U 2

n

∫
dω

2π

|Ea |2
|A0 − iωA1 − ω2 A2|2 , (64)

≈ U 2
n

∫
dω

2π

E2
a

A2
0 + (A2

1 − 2A0 A2)ω2
, (65)

= U 2
n E2

a

2A0

√
A2

1 − 2A0 A2

, (66)

where terms of order ω3 and higher have been neglected in obtaining (65) from (64)
and A0 > 0 is required for the state to be stable at zero frequency (Robinson et al.
1997, 2001). Equation (66) usually only yields large contributions for cases where
the denominator is small. In particular, A0 = 0 represents a saddle-node bifurcation
where the spectrum diverges (Robinson et al. 1997, 2001, 2002; Steyn-Ross et al.
1999, 2006). In this vicinity, we can make the further approximation

σ 2
V a ≈ U 2

n E2
a

2A0|A1| , (67)

provided A1 is nonzero.
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The coefficients A0 and A1 in (63) are given by

A0 = 1

1 − Gei

[
1 − Gee − Gei − Ges(Gse + Gsr Gre)

1 − Gsr Grs

]
, (68)

A1 = 2

γe
+ 1

1 − Gei

(
1

α
+ 1

β

)[
1 − A0 + Ges

1 − Gsr Grs

{
(Gse + Gsr Gre)

×
(

αβt0
α + β

+ 2

1 − Gsr Grs

)
− Gse

}]
, (69)

for the system in Fig. 1, which yields

A0 = 1 − Gee

1 − Gei
, (70)

A1 = 2

γe
+

(
1

α
+ 1

β

)
Gee

(1 − Gei )2 , (71)

for the cortical system of Fig. 1.

Appendix C: Adiabatic dynamics

Here we derive equations for the adiabatic dynamics of the system near to fixed points,
in terms of a force function that can be integrated to obtain a potential.

If we set the αab and βab to infinity in (3) and assume that the τab are short compared
to the time scales of the slow dynamics. If we retain only the first-order time derivative
in (6) and ignore spatial structure for now, as in the rest of the paper, we find (using
the random connectivity approximation)

(
2

γe

d

dt
+ 1

)
φe = S(Ve; σe), (72)

φi = S(Ve; σe), (73)

φs = S(Vs; σs), (74)

φr = S(Ve; σr ). (75)

From these equations, one can eliminate φi , φs , and φr in turn. This yields steady-state
equations equivalent to those of Robinson et al. (2004) if variances are fixed and equal.
More generally, expansion of terms involving Deφe in Taylor series in d/dt yields

dφe(t)

dt
≈ γe

2

F[φe(t)]
|νei | + (1 − Gsr Grs)/ρe

, (76)
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with

F[φe(t)] = S−1[φe(t); σe] − (νee + νei )φe(t)

− νes S[Vs(t); σs], (77)

Vs(t) = νseφe(t) + νsnφn(t) + νsr S[Vr (t); σr ], (78)

Vr (t) = νreφe(t) + (νrs/νes)S−1[φe(t); σe], (79)

S−1(φa; σa) = θa + (σa/C) ln[qa/(1 − qa)], (80)

with the σa obeying (8) and (67).
The purely cortical case is obtained from (76)–(80) by setting Grs Grs = 0 in (76)

and νse = νsr = νrs = νsr = 0 in (77)–(79).
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