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Abstract Plant–pollinator–robber systems are considered, where the plants and
pollinators are mutualists, the plants and nectar robbers are in a parasitic relation,
and the pollinators and nectar robbers consume a common limiting resource with-
out interfering competition. My aim is to show a mechanism by which pollination–
mutualism could persist when there exist nectar robbers. Through the dynamics of a
plant–pollinator–robber model, it is shown that (i) when the plants alone (i.e., without
pollination–mutualism) cannot provide sufficient resources for the robbers’ survival
but pollination–mutualism can persist in the plant–pollinator system, the pollination–
mutualism may lead to invasion of the robbers, while the pollinators will not be driven
into extinction by the robbers’ invasion. (ii) When the plants alone cannot support
the robbers’ survival but persistence of pollination–mutualism in the plant–pollinator
system is density-dependent, the pollinators and robbers could coexist if the robbers’
efficiency in translating the plant–robber interactions into fitness is intermediate and
the initial densities of the three species are in an appropriate region. (iii) When the
plants alone can support the robbers’ survival, the pollinators will not be driven into
extinction by the robbers if their efficiency in translating the plant–pollinator inter-
actions into fitness is relatively larger than that of the robbers. The analysis leads to
an explanation for the persistence of pollination–mutualism in the presence of nectar
robbers in real situations.
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1 Introduction

Floral visitors attracted to flowers consist of pollinators and nectar robbers. Pollinators
provide pollen transport service, while they consume nectar, pollen and other goods.
Nectar robbers take nectar away through holes bitten in flowers, without providing
pollination service. The robbers have been found in nature for hundreds of years. In
1793, Sprengel recorded that bumble bees perforate nectar spurs (Sprengel 1793). In
1859 and 1876, Darwin found that bumble bees steal nectar in clover flowers (Darwin
1859, 1876). Later researchers have shown that almost all plants, whose flowers are
tubular or have nectar spurs, have been robbed. Thus, nectar robbing is a widespread
and costly phenomenon in the growth of flowering plants. The plants may be able
to resist nectar robbing through morphological and chemical traits, but many of the
traits lead to deterrence to both the pollinators and robbers (McCall and Irwin 2006).
While pollinators are often regarded as mutualists with plants, the nectar robbers are
also called cheaters due to their adaptation in lowering robbing impact and frequency
(Wootton 1994; Werner and Peacor 2003). Mutualism theory exhibits that cooperation
cannot persist when there is no effective deterrence or serious punishment on cheaters.
However in real situations, the plant–pollinator mutualism persists stably. Hence, an
interesting question is raised by Irwin et al. (2010, page 287, the 8th question) ask-
ing why the plant–pollinator mutualism can persist when there exist nectar robbers
(cheaters).

Dynamic systems theory may provide a way to answer the question. Indeed, there
has been a growing literature on the study of plant–pollinator–herbivore systems
(Freedman and Waltman 1984; Liou and Cheng 1988; Waltman 1991; Hsu et al.
2001; Wang et al. 2011, etc.). Jang (2002) characterized the interactions between
plants and pollinators with the Holling II functional response. Based on her model,
an interaction among herbivores, plants and pollinators is proposed. Strong analysis
on global dynamics of the three-species model shows that an increasing pollination
visitation rate due to the presence of herbivores can promote persistence of the sys-
tem. In a recent study, Oña and Lachmann (2011) described plant–pollination systems
by mutualism models with various functional responses. Analysis on the model with
a linear functional response shows interesting thresholds of the ants’ aggressiveness
level, above which the pollinators will be driven into extinction. Fishman and Hadany
(2010) concluded that an analytical expression for population-level plant–pollinator
interactions can be approximated by the Beddington–DeAngelis functional response,
where an exploitation competition among pollinators is considered and the interactions
between the plants and pollinators are obligate. Qualitative analysis and numerical
simulations demonstrated that when the pollinators’ efficiency in translating plant–
pollinator interactions into fitness is large and the initial population densities of the
two species are not too small, the plants and pollinators could persist at a steady state.
As far as we know, plant–pollinator–robber systems have not been analyzed in detail.
Thus, formulating models and studying features of these systems is necessary.

In this paper, we consider biological systems consisting of plants, pollinators
and nectar robbers, in which the interactions between the plants and pollinators are
mutualistic with the Beddington–DeAngelis functional response, and the interactions
between the plants and robbers are parasitic with the Holling II functional response.

123



Dynamics of plant–pollinator–robber systems 1157

Global dynamics of a plant–pollinator model with the Beddington–DeAngelis
functional response are demonstrated. Based on the dynamics of a plant–pollina-
tor–robber model, we show that (i) when the plants alone cannot provide sufficient
resources for the robbers’ survival but pollination–mutualism can persist in the plant–
pollinator system, the pollination–mutualism promotes reproduction of the plants and
may lead to invasion of the robbers, while the pollinators will not be driven into extinc-
tion by the robbers’ invasion. (ii) When the plants alone cannot support the robbers’
survival but persistence of pollination–mutualism in the plant–pollinator system is
density-dependent, the pollinators and robbers could coexist if the robbers’ efficiency
is intermediate and the initial densities of the three species are in an appropriate region.
Otherwise, if the efficiency is too small, the robbers will go to extinction while the
plants and pollinators coexist; if the efficiency is too large and/or the initial densities
are beyond a certain level, both the pollinators and robbers will go to extinction while
the plants approach their carrying capacity. (iii) When the plants alone can support
the robbers’ survival, the robbers are always persistent in the plant–pollinator–robber
system. The pollinators will not be driven into extinction by the robbers if their effi-
ciency in translating plant–pollinator interactions into fitness is relatively larger than
that of the robbers. Otherwise, the pollinators will go extinct. Numerical simulations
show that when parameters (factors) in the system vary, interaction outcomes of the
three species could transition among extinction of the robbers, persistence of the three
species at a steady state, persistence of the three species in periodic oscillations, and
extinction of the pollinators. The analysis provides an explanation for the persistence
of pollinators and nectar robbers in real situations.

The paper is organized as follows. The plant–pollinator–robber model is charac-
terized in Sect. 2. Section 3 exhibits dynamics of the subsystems. Section 4 shows
persistence of the plant–pollinator–robber system. Discussions are in Sect. 5.

2 A plant–pollinator–robber model

In this section, we describe the plant–pollinator–robber system we are concerned with
and show boundedness of solutions of the model.

Since the plants provide resources for the pollinators and the pollinators supply
pollination service for the plants, the relationship between them is cooperative. Let x1
and x2 represent population densities of the plants and pollinators, respectively. Then
the plant–pollinator interaction can be approximated by the Beddington–DeAngelis
functional response (Fishman and Hadany 2010)

αx1x2

1 + αx1 + αβx2
.

Here, the parameter α is the effective equilibrium value for un-depleted plant–pollina-
tor interaction, which combines traveling and unloading times spent in central place
pollinator foraging, with individual-level plant–pollinator interactions (Fishman and
Hadany 2010). β denotes the intensity of exploitation competition among pollinators
(Pianka 1974).
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1158 Y. Wang

Let r1 represent the intrinsic growth rate of the plants and d1 their self-incompatible
degree. We obtain the equation for the growth of the plants as given by

dx1

dt
= x1

(
r1 − d1x1 + ηαx2

1 + αx1 + αβx2

)

where the parameter η denotes the plants’ efficiency in translating plant–pollinator
interactions into fitness (see Beddington 1975; DeAngelis et al. 1975; Fishman and
Hadany 2010 for details). Let μ denote the corresponding value for the pollinators
and let r2 be their death rate. Then we obtain the equation for the the growth of the
pollinators as given by

dx2

dt
= x2

(
−r2 + μαx1

1 + αx1 + αβx2

)
.

For simplicity, we rewrite the plant–pollinator model as

dx1

dt
= x1

(
r1 − d1x1 + a12x2

1 + αx1 + βx2

)

dx2

dt
= x2

(
−r2 + a21x1

1 + αx1 + βx2

) (2.1)

where a12(=ηα) can be regarded as the plants’ efficiency when α is fixed in our
discussion, and a21(=μα) is the corresponding value for the pollinators.

Let x3 represent the population density of the robbers. Since nectar robbers are pre-
dators to plants, the plant–robber system can be depicted by the predator–prey model
with the Holling II functional response

dx1

dt
= x1

(
r1 − d1x1 − a13x3

c + x1

)

dx3

dt
= x3

(
−r3 + a31x1

c + x1

) (2.2)

where the parameter a13 represents the saturation level in the Holling II functional
response and c denotes the half-saturation constant, while a31 can be regarded as the
robber’ efficiency in translating plant–robber interactions into fitness. r3 is the robbers’
per-capita death rate.

Since we assume that there is no interfering competition between the pollinators
and robbers, the plant–pollinator–robber system can be depicted by

dx1

dt
= x1

(
r1 − d1x1 + a12x2

1 + αx1 + βx2
− a13x3

c + x1

)

dx2

dt
= x2

(
−r2 + a21x1

1 + αx1 + βx2

)

dx3

dt
= x3

(
−r3 + a31x1

c + x1

)
.

(2.3)
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Dynamics of plant–pollinator–robber systems 1159

We consider solutions of (2.3) under the initial value conditions

x1(0) > 0, x2(0) > 0, x3(0) > 0. (2.4)

First of all, the solutions to the initial value problem (2.3)–(2.4) are nonnegative.
The main notion of persistence theory is permanence. Consider a dynamical system
for n interacting biological species

dxi

dt
= xi fi (x1, x2, . . . , xn), i = 1, 2, . . . , n, (2.5)

where xi is the density of the i th species. Let (x1(t), x2(t), . . . , xn(t)) be the solution
of (2.5) with positive initial values. System (2.5) is said to be weakly persistent if

lim sup
t→∞

xi (t) > 0, i = 1, 2, . . . , n,

persistent if

lim inf
t→∞ xi (t) > 0, i = 1, 2, . . . , n,

uniformly persistent if there is a constant δ0 > 0 such that

lim inf
t→∞ xi (t) ≥ δ0, i = 1, 2, . . . , n,

and permanent if there are constants δ0 > 0 and M0 > 0 such that

0 < δ0 ≤ lim inf
t→∞ xi (t) ≤ lim sup

t→∞
xi (t) ≤ M0, i = 1, 2, . . . , n.

Obviously, a permanent system is uniformly persistent and a uniformly persistent
system is persistent, while a dissipative and uniformly persistent system is permanent.
Moreover, positive solutions of a permanent system are not only uniformly bounded,
but eventually uniformly bounded away from the boundary. For further discussion
about persistence theory, we refer to Freedman and Moson (1990).

The following results show the boundedness of solutions of system (2.3).

Proposition 2.1 System (2.3) is dissipative.

Proof It follows from the first equation of (2.3) that

dx1

dt
≤ x1

(
r1 + a12

β
− d1x1

)

thus the comparison principle (Cosner 1996) implies that

lim sup
t→∞

x1(t) ≤ βr1 + a12

βd1
.
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Then for δ > 0 small, we have x1(t) ≤ δ + (βr1 + a12)/(βd1) when t is sufficiently
large. Let r0 = min{r2, r3}. By the three equations in (2.3), we have

d

dt

(
x1+a12

a21
x2+a13

a31
x3

)
= x1(r1−d1x1)+ 2a12x1x2

1+αx1+βx2
−a12

a21
r2x2−a13

a31
r3x3

< x1

(
r1 + 2a12

β

)
− r0

(
a12

a21
x2 + a13

a31
x3

)

≤
(

βr1 + a12

βd1
+ δ

) (
r0 + r1 + 2a12

β

)

−r0

(
x1 + a12

a21
x2 + a13

a31
x3

)
.

Citing the comparison theorem a second time, we have

lim sup
t→∞

(
x1 + a12

a21
x2 + a13

a31
x3

)
≤ 1

r0

(
βr1 + a12

βd1
+ δ

) (
r0 + r1 + 2a12

β

)

which implies that system (2.3) is dissipative. ��

It follows from the second equation of (2.3) that dx2/dt ≤ 0 if r2 ≥ a21/α.
By the Liapunov Theorem (Hofbauer and Sigmund 1998), we obtain limt→∞ x2(t) =
0. Similarly, we obtain limt→∞ x3(t) = 0 if r3 ≥ a31. Since we focus on permanence
of system (2.3) in this paper, we assume a21 > r2α, a31 > r3.

3 Subsystems

In this section we examine the dynamics of subsystems of (2.3). When there are
no plants in the system, we can see that both the pollinators and robbers will go to
extinction. Thus, two two-species subsystems need to be considered.

3.1 Subsystem I: the plant–pollinator system

First we consider the plant–pollinator system (2.1). The boundedness of solutions of
(2.1) can be obtained directly from Proposition 2.1, as shown in the following result.

Proposition 3.1 System (2.1) is dissipative.

Existence of periodic orbits can be excluded by the Bendixson–Dulac Theorem
(Hofbauer and Sigmund 1998). Indeed, let u(x1, x2) and v(x1, x2) denote the func-
tions on the right-hand sides of (2.1), respectively. Let ϑ(x1, x2) = 1/(x1x2), then
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Dynamics of plant–pollinator–robber systems 1161

∂(ϑu)

∂x1
+ ∂(ϑv)

∂x2
= −d1

x2
− αa12 + βa21

(1 + αx1 + βx2)2 < 0.

Thus, we conclude the following result.

Proposition 3.2 There is no periodic orbit of (2.1) in R2+.

Stability of equilibria is considered as follows. Denote f (x1, x2) = 1/(1 + αx1 +
βx2), then the Jacobian matrix J (x1, x2) of (2.1) is

(
r1 − 2d1x1 + a12x2 f (1 − αx1 f ) a12x1(1 + αx1) f 2

a21x2(1 + βx2) f 2 −r2 + a21x1 f (1 − βx2 f )

)
. (3.1)

There are two equilibria on the axes, namely O(0, 0) and E1(r1/d1, 0). O is a saddle
point with eigenvalues r1 and −r2, while E1 has eigenvalues −r1,−r2 + a21r1/(d1 +
αr1).

The positive equilibrium is derived as follows. By (2.1), a straightforward computa-
tion shows that there are at most two positive equilibria E−

12(x−
1 , x−

2 ) and E12(x+
1 , x+

2 ),
which can be expressed as follows when they exist

x±
1 = r2(1 + βx±

2 )

a21 − αr2
>

r1

d1
, x±

2 = −B ± √
�

2A
(3.2)

where

A = d1r2β
2

(a21 − αr2)2 , B = −a12

a21
− βr1

a21 − αr2
+ 2βd1r2

(a21 − αr2)2 ,

C = − r1

a21 − αr2
+ d1r2

(a21 − αr2)2 , � = B2 − 4AC.

For all we know, dynamical behavior of (2.1) has not been analyzed completely.
The following result shows global dynamics of the system.

Theorem 3.3 (i) (Wang et al. 2012) If a21 > r2(d1 + αr1)/r1, then there is a
unique positive equilibrium E12(x+

1 , x+
2 ) in (2.1) and solutions of (2.1) with

positive initial values converge to E12.
(ii) Assume a21 < r2(d1 + αr1)/r1. If B ≥ 0 or � < 0, then solutions of (2.1)

with x1(0) > 0 converge to E1(r1/d1, 0).
(iii) If a21 < r2(d1 +αr1)/r1, B < 0 and � > 0, then E1 is locally asymptotically

stable and there are two positive equilibria E−
12(x−

1 , x−
2 ) and E12(x+

1 , x+
2 ),

as shown in Fig. 1. E−
12 is a saddle point while E12 is locally asymptotically

stable. The separatrices of E−
12 subdivide the interior of (x1, x2)-plane into two

regions: the region below the separatrices is the basin of attraction of E1, while
the region above them is the basin of attraction of E12.

(iv) If a21 < r2(d1 +αr1)/r1, B < 0 and � = 0, then E1 is locally asymptotically
stable and there is a unique positive equilibrium E12, which is a saddle-node
point. The separatrices of E12 subdivide the interior of (x1, x2)-plane into two
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Fig. 1 Phase-plane diagram for the dynamics of (2.1) when there are two positive equilibria E−
12 and E12.

Stable and unstable equilibria are identified by solid and open circles, respectively. Vector fields are shown
by gray arrows. The separatrices (the black line) of E−

12 subdivide the plane into two regions. The region
below them is the basin of attraction of E1 while the region above them is that of E12

regions: one is the basin of attraction of E1, while the other is the basin of
attraction of E12.

Proof (ii) Since a21 < r2(d1 +αr1)/r1, E1 is locally asymptotically stable and
C > 0. If B ≥ 0 or � < 0, it follows from (3.2) that there is no positive
equilibrium in (2.1). Then E1 is globally asymptotically stable in the interior
of the (x1, x2)-plane.

(iii) When B < 0 and � > 0, there are two positive equilibria E+
12 and E−

12,
as shown in (3.2). By (3.1), we can see that tr(J (E12)) < 0. A long but
straightforward computation shows that

det J (E12) = r2a21x+
2 (2A − βB)

(a21 − αr2)2

(
x+

2 − 2βC − B

2A − βB

)
.

A direct computation shows

(2A − βB)(−B + √
�) − 2A(2βC − B) = (2A − βB)

√
� + β� > 0

and then

x+
2 = −B + √

�

2A
>

2βC − B

2A − βB
.
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L
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Fig. 2 Bifurcation diagram on the (r3, a31)-parameter plane for the transition of dynamics. Denote L1 :
a31 = 1.1583 ∗ r3 (the red line) and L2 : a31 = 65.7222 ∗ r3 (the green line). Then L1 and L2 divide the
(r3, a31)-plane into three regions. In region I, we have a31 < 1.1583 ∗ r3. That is, the robbers’ efficiency
a31 in translating plant–robber interactions into fitness is small. Thus the robbers cannot invade the plant–
pollinator system and will go to extinction. In region II, we have 1.1583 ∗ r3 < a31 < 65.7222 ∗ r3. That
is, the efficiency is appropriate. Thus the robbers can invade the plant–pollinator system and will coexist
with the pollinators. In region III, we have a31 > 65.7222 ∗ r3. That is, the efficiency is too large. Thus
the robbers will invade the plant–pollinator system and drive the pollinators into extinction (color figure
online)

Thus we have det J (E+
12) > 0, which implies E+

12 is locally asymptotically
stable.

Since

β2� − (2A − βB)2 = −4A2 + 4β AB − 4β2 AC < 0,

then β
√

� − (2A − βB) < 0 and

(2A − βB)[−B − √
�] − 2A(2βC − B) = √

�[β√
� − (2A − βB)] < 0.

Thus we have

x−
2 = −B − √

�

2A
<

2βC − B

2A − βB
.

Hence, det J (E−
12) < 0, which implies E−

12 is a saddle point. Thus the result in (iii) is
proven.

(iv) When B < 0 and � = 0, there is a unique positive equilibrium E22,
which is the overlapping point of equilibria E−

22 and E+
22. By the criterion
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Fig. 3 a When a31 = 0.44, i.e., the robbers’ efficiency in translating plant–robber interactions into fitness
is small, the robbers with density x3 go to extinction and the plants and pollinators with densities x1 and x2
coexist at a steady state. Here, the robbers can not invade the plant–pollinator system. b When a31 = 0.63,

i.e., the robbers’ efficiency is intermediate, the three species with densities x1, x2 and x3 coexist at a steady
state. Here, the robbers can invade the plant–pollinator system. c When a31 = 0.65, i.e., the robbers’
efficiency is large, the three species with densities x1, x2 and x3 coexist in periodic oscillations. d When
a31 = 12.4, i.e., the robbers’ efficiency is extremely large, the pollinators with densities x2 go to extinction,
while the plants and robbers with densities x1 and x3 coexist in periodic oscillations

for saddle-node points (e.g., Zhang et al. 1992), the equilibrium is a saddle-
node point. Similar to the proof of (iii), the result in (iv) is proven.

��

Theorem 3.3 provides criteria for persistence of the pollinators. (i) When the
pollinators’ efficiency in translating plant–pollinator interactions into fitness is large
(i.e., a21 > r2(α + d1/r1)), the pollinators will persist while the plants approach
a density larger than their carrying capacity when in isolation from the pollinators
(i.e., x+

1 > r1/d1). (ii) When the pollinators’ efficiency is intermediate as shown in
Theorem 3.3(iii)(iv), the pollinators can persist in the plant–pollinator system only if
the initial densities of the two species are above the separatrices of E−

12. (iii) When
the pollinators’ efficiency is small as shown in Theorem 3.3(ii), the pollinators cannot
survive in the plant–pollinator system.
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The following results (Propositions 3.4 and 3.5) show monotonicity of x±
1 and x±

2
when parameters in (3.2) vary, which is useful in applications of our results.

Proposition 3.4 When E−
12 and/or E12 exist,

∂x−
1

∂a12
< 0,

∂x−
1

∂a21
< 0,

∂x−
1

∂r1
< 0,

∂x−
1

∂d1
> 0,

∂x−
1

∂α
> 0,

∂x−
1

∂β
> 0

∂x+
1

∂a12
> 0,

∂x+
1

∂a21
> 0,

∂x+
1

∂r1
> 0,

∂x+
1

∂d1
< 0,

∂x+
1

∂α
< 0,

∂x+
1

∂β
< 0

where x±
1 are given in (3.2).

Proof We prove the inequalities for x−
1 , while a similar proof can be given for x+

1 .
It follows from (3.2) that x−

1 > r2/(a21 − αr2). By (2.1), we have

Āx2
1 + B̄x1 + C̄ = 0 (3.3)

where

Ā = a21βd1r2

α
> 0, B̄ = r2[a12r2 − a21

α
(a12 + βr1)] < 0, C̄ = a12

α
r2

2 > 0.

Denote �̄ = B̄2 − 4 ĀC̄ . By taking partial derivatives on a12 in both sides of (3.3),
we have

∂x−
1

∂a12
= − r2

α
√

�̄
(a21 − αr2)

(
x−

1 − r2

a21 − αr2

)
< 0.

Similarly, we have

∂x−
1

∂a21
= − C̄ + r2

2 a21x−
1

a21

√
�̄

<0,
∂x−

1

∂r1
= − βr2a21x−

1

α
√

�̄
<0,

∂x−
1

∂d1
=βr2a21x+2

1

α
√

�̄
> 0,

∂x−
1

∂α
= a12r2

2 x+
1

α
√

�̄
> 0,

∂x−
1

∂β
= d1r2a21

α
√

�̄
x−

1

(
x−

1 − r1

d1

)
> 0.

Thus, Proposition 3.4 is proven. ��
Proposition 3.5 When E−

12 and/or E12 exist,

∂x−
2

∂a12
< 0,

∂x−
2

∂a21
< 0,

∂x−
2

∂r1
< 0,

∂x−
2

∂d1
> 0,

∂x−
2

∂α
> 0,

∂x−
2

∂β
> 0

∂x+
2

∂a12
> 0,

∂x+
2

∂a21
> 0,

∂x+
2

∂r1
> 0,

∂x+
2

∂d1
< 0,

∂x+
2

∂α
< 0,

∂x+
2

∂β
< 0

where x±
2 are given in (3.2).
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Proof By (2.1), we have

Ãx2
2 + B̃x2 + C̃ = 0 (3.4)

where

Ã = d1r2β
2, B̃ = 2d1r2β − r1β(a21 − αr2) − a12(a21 − αr2)

2/a21,

C̃ = d1r2 − r1(a21 − αr2).

Denote �̃ = B̃2 − 4 ÃC̃ . By taking partial derivatives on α in both sides of (3.4), we
have

∂x−
2

∂α
= r1r2(1 + βx−

2 ) + 2a12r2(a21 − αr2)/a21√
�̃

> 0,

∂x+
2

∂α
= −r1r2(1 + βx+

2 ) + 2a12r2(a21 − αr2)/a21√
�̃

< 0.

By (3.2), we obtain

r2(1 + βx±
2 ) = (a21 − αr2)x±

1 . (3.5)

By taking partial derivatives in both sides of (3.5), it follows from Proposition 3.4 that

∂x−
2

∂a12
< 0,

∂x−
2

∂r1
< 0,

∂x−
2

∂d1
> 0,

∂x−
2

∂β
> 0,

∂x+
2

∂a12
> 0,

∂x+
2

∂a21
> 0,

∂x+
2

∂r1
> 0,

∂x+
2

∂d1
< 0,

∂x+
2

∂β
< 0.

By (3.4), we obtain

x−
2 x+

2 = C̃/ Ã = d1r2 − r1(a21 − αr2)

d1r2β2 .

By taking partial derivatives on a21 in both sides of the equation, we obtain

x+
2

∂x−
2

∂a21
+ x−

2
∂x+

2

∂a21
= −r1

d1r2β2 < 0.

Since ∂x+
2 /∂a21 > 0, then ∂x−

2 /∂a21 < 0. Thus, Proposition 3.5 is proven. ��
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3.2 Subsystem II: the plant–robber system

Second, we consider the plant–robber system (2.2). If a31 > r3(cd1 + r1)/r1, there is
a positive equilibrium E13(x#

1 , x#
3 ) in (2.2) where

x#
1 = cr3

a31 − r3
, x#

3 = a31x#
1 (r1 − d1x#

1 )

a13r3
. (3.6)

Dynamics of system (2.2) are well understood. We cite the results as follows.

Theorem 3.6 (Kuang and Freedman 1988)

(i) If

r1

d1
≤ cr3

a31 − r3
,

solutions of (2.2) with x1(0) > 0 converge to equilibrium (r1/d1, 0).
(ii) If

cr3

a31 − r3
<

r1

d1
≤ c(a31 + r3)

a31 − r3
, (3.7)

solutions of (2.2) with positive initial values converge to E13.
(iii) If

r1

d1
>

c(a31 + r3)

a31 − r3
, (3.8)

E13 is unstable and there is a unique limit cycle Eφ(φ1(t), φ3(t)). Solutions of
(2.2) with positive initial values (except E13) converge to Eφ .

4 Permanence

In this section, we consider permanence of system (2.3). Since the system is dissi-
pative, we need to show the uniform persistence of (2.3), that is, we need to study
dynamics of (2.3) on the boundaries of the positive cone.

Let g(x1) = x1/(c + x1). The Jacobian matrix J (x1, x2, x3) of (2.3) is⎛
⎝ r1 − 2d1x1 + a12x2 f (1 − αx1 f ) − a13x3ġ a12x1(1 + αx1) f 2 −a13g

a21x2(1 + βx2) f 2 a21x1 f (1 − βx2 f ) − r2 0
ca31x3ġ 0 a31g − r3

⎞
⎠

(4.1)

Then the equilibrium O(0, 0, 0) is a saddle point with eigenvalues r1,−r2 and −r3.
The equilibrium P1(r1/d1, 0, 0) has eigenvalues

λ
(1)
1 = −r1, λ

(1)
2 = −r2 + a21r1

d1 + αr1
, λ

(1)
3 = −r3 + a31r1

cd1 + r1
. (4.2)

Here, λ
( j)
i denotes the eigenvalue of equilibrium Pj in the xi -direction.
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The persistence of (2.3) is considered in the following three cases: λ
(1)
2 > 0, λ

(1)
3 >

0; λ
(1)
2 > 0, λ

(1)
3 < 0; λ

(1)
2 < 0.

Case 1 λ
(1)
2 > 0, λ

(1)
3 > 0.

In this case, P1 is a saddle point. It is asymptotically stable in the x1-direction and is
unstable in the x2- and x3-directions. Since λ

(1)
2 > 0, the equilibrium P12(x+

1 , x+
2 , 0)

is globally asymptotically stable in the interior of the (x1, x2)-plane by Theorem 3.3(i).
Its eigenvalue in the x3-direction is

λ
(12)
3 = −r3 + a31x+

1

c + x+
1

. (4.3)

Since λ
(1)
2 > 0 and x+

1 > r1/d1, it follows from the monotonicity of function x1/(1 +
x1) that λ

(12)
3 > 0. Then P12 is a saddle point. It is globally asymptotically stable in

the interior of the (x1, x2)-plane by Theorem 3.3(i), and is unstable in the x3-direction.
Since λ

(1)
3 > 0, P13(x#

1 , 0, x#
3 ) is an equilibrium of (2.3). By (4.1), its eigenvalue

in the x2-direction is

λ
(13)
2 = −r2 + a21x#

1

1 + αx#
1

. (4.4)

Thus, if λ
(13)
2 > 0 and condition (3.7) holds, P13 is a saddle point. It is globally asymp-

totically stable in the interior of the (x1, x3)-plane by Theorem 3.6(ii) and is unstable
in the x2-direction. If λ

(13)
2 > 0 and condition (3.8) holds, P13 is unstable in R3+.

The periodic orbit Pφ(φ1(t), 0, φ3(t)) exists when condition (3.8) holds, where
φ1(t) and φ3(t) are shown in Theorem 3.6. Since Pφ(t) is asymptotically stable on
the (x1, x3)-plane, we only need to deal with its stability in the x2-direction, which is
determined by the Floquet multipliers of the variational system

d�(t)

dt
= J (φ1(t), 0, φ3(t))�(t), �(0) = I

where J (x1, x2, x3) is given in (4.1) and I is the 3 × 3 identity matrix. Let T denote
the period of Pφ(t). The Floquet multiplier in the x2-direction is

exp

⎡
⎣ 1

T

T∫
0

(
−r2 + a21φ1(t)

1 + αφ1(t)

)
dt

⎤
⎦ .

Thus, if

λ
(φ)
2 = −r2 + 1

T

T∫
0

a21φ1(t)

1 + αφ1(t)
dt > 0, (4.5)
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then Pφ(t) is unstable in the x2-direction. If λ
(φ)
2 < 0, it is locally asymptotically

stable.
It follows from the proof of Proposition 2.1 that there is a constant H > 0 (e.g.,

H = [δ + (βr1 + a12)/(βd1)](r0 + r1 + 2a12/β)/r0 ) such that d
dt (x1 + a12x2/a21 +

a13x3/a31) < 0 as x1 + a12x2/a21 + a13x3/a31 ≥ H . Thus, the set

� =
{
(x1, x2, x3) ∈ R3+ : 0 ≤ x1 + a12

a21
x2 + a13

a31
x3 ≤ H

}

is forward invariant and includes all ω-limit points of (2.3).

Theorem 4.1 Assume λ
(1)
2 > 0 and λ

(1)
3 > 0.

(i) If λ
(13)
2 < 0 and condition (3.7) holds, every solution of (2.3) with x3(0) > 0

converges to P13(x#
1 , 0, x#

3 ).

(ii) If λ
(13)
2 > 0 and condition (3.7) holds, system (2.3) is permanent.

(iii) If λ
(13)
2 < 0, λ

(φ)
2 < 0 and condition (3.8) holds, every solution of (2.3) with

x2(0) > 0 satisfies limt→∞ x2(t) = 0.

(iv) If λ
(13)
2 > 0, λ

(φ)
2 > 0 and condition (3.8) holds, system (2.3) is permanent.

(v) If λ
(13)
2 λ

(φ)
2 < 0 and condition (3.8) holds, system (2.3) is not persistent.

Proof (i) When λ
(13)
2 < 0, there is no positive equilibrium of (2.3). Indeed, sup-

pose P∗(x∗
1 , x∗

2 , x∗
3 ) is a positive equilibrium of (2.3). Then x∗

1 = x#
1 by the

third equation of (2.3). It follows from (4.4) that

−r2 + a21x∗
1

1 + αx∗
1 + βx∗

2
< −r2 + a21x#

1

1 + αx#
1

< 0

which is a contradiction by the second equation of (2.3).
Since λ

(13)
2 < 0 and condition (3.7) holds, P13 is globally asymptotically stable in

the interior of the (x1, x3)-plane and is locally asymptotically stable in R3+. Let �13 be
the basin of attraction of P13 in �. Then �13 is open and forward invariant and �−�13
is closed and forward invariant in �. Suppose the interior of �−�13 (i.e., int(�−�13))
is not empty, then orbits of (2.3) in int(�−�13) will not converge to P13 since they are
not in the basin of attraction of P13. Let (x1(t), x2(t), x3(t)) be a solution of (2.3) with
(x1(0), x2(0), x3(0)) ∈ int(�−�13), then we have lim supt→∞ xi (t) > 0, i = 1, 2, 3.

Indeed, if limt→∞ x2(t) = 0, then the ω-limit set of the orbit lies on the (x1, x3)-
plane. On the (x1, x3)-plane, P13 is globally asymptotically stable while O and P1 are
hyperbolic saddle points. We apply a result of Thieme (1992) and conclude that this
orbit converges to P13, which is a contradiction. Similar discussions could show that
lim supt→∞ xi (t) > 0, i = 1, 3. Hence system (2.3) is weakly persistent on �−�13.
Since the boundary equilibria O, P1 and P12 are hyperbolic saddle points and can
not form a heteroclinic cycle, hypotheses of (H-1) to (H-4) derived by Butler et al.
(1986) are satisfied on �−�13. Thus, system (2.3) restricted on �−�13 is uniformly
persistent and has a positive equilibrium P∗ as a result of Butler et al. (1986) (see also
Butler and Waltman 1986; Freedman et al. 1994; Yang and Ruan 1996). This forms a
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contradiction since there is no positive equilibrium. Thus, int(� − �13) is empty and
the result in (i) is proven.

(ii) Since λ
(13)
2 > 0 and condition (3.7) holds, P13 is a saddle point. It is globally

asymptotically stable in the interior of the (x1, x3)-plane and is unstable in
the x2-direction. Since the boundary equilibria are hyperbolic saddle points
and can not form a heteroclinic cycle, hypotheses of (H-1) to (H-4) derived by
Butler et al. (1986) are satisfied. Thus, system (2.3) is uniformly persistent.
By Proposition 2.1, (2.3) is permanent.

(iii) Since λ
(φ)
2 < 0 and condition (3.8) holds, Pφ is locally asymptotically stable.

Let �φ be the union of basins of attraction of P13 and Pφ in �. Similar to
the proof in (i), int(� − �φ) is empty and the result in (iii) is proven.

(iv) Since λ
(13)
2 > 0, P13 is unstable in the x2-direction. Since λ

(φ)
2 > 0 and con-

dition (3.8) holds, Pφ is unstable, while it is globally asymptotically stable
in the interior of the (x1, x3)-plane (except P13) by Theorem 3.6(iii). Thus,
the boundary equilibria and periodic orbits are hyperbolic and can not form
a heteroclinic cycle. Similar to the proof of (ii), system (2.3) is permanent.

(v) When λ
(13)
2 > 0 and λ

(φ)
2 < 0, Pφ is locally asymptotically stable in �. When

λ
(13)
2 < 0 and λ

(φ)
2 > 0, P13 is asymptotically stable in the x2-direction, and

there is a positive solution of (2.3) which converges to P13. Thus, system
(2.3) is not persistent.

��
Theorem 4.1 provides criteria for pollinators’ persistence in the presence of rob-

bers’ invasion. In this paper, our discussion focuses on the animals’ efficiencies (i.e.,
a21, a31) in translating plant-animal interactions into fitness, while a similar discussion
can be given for other parameters. Here, condition λ

(1)
3 > 0 implies that the plants

alone can provide sufficient resources for the robbers’ survival. Thus, the robbers
can always invade the plant–pollinator system since the pollinators have an indirect
positive effect on the robbers through the plants. Although condition λ

(1)
2 > 0 implies

that the plants and pollinators can coexist in the absence of robbers, the pollinators
may be driven into extinction by the robbers’ invasion. Indeed, Theorem 4.1(i) shows
that the pollinators will be driven into extinction when the robbers’ efficiency is inter-
mediate (e.g., r3(1 + cd1/r1) < a31 ≤ r3(1 + cd1/r1)/(1 − cd1/r1)) as c < r1/d1 )
but the pollinators’ efficiency is small (i.e., a21 < r2(α + 1/x#

1 )).
Theorem 4.1(ii) shows that the pollinators can persist when the robbers’ efficiency

is intermediate but the pollinators’ efficiency is large (i.e., a21 > r2(α+1/x#
1 )). Theo-

rem 4.1(iii) shows that the pollinators will be driven into extinction when the robbers’
efficiency is large (e.g., a31 > r3(1 + cd1/r1)/(1 − cd1/r1) as c < r1/d1) but the
pollinators’ efficiency is extremely small (i.e., a21 < r2(α + 1/x#

1 ) and λ
(φ)
2 < 0).

Theorem 4.1(iv) shows that the pollinators can persist when the robbers’ efficiency is
large but the pollinators’ efficiency is extremely large (i.e., a21 > r2(α + 1/x#

1 ) and

λ
(φ)
2 > 0). Theorem 4.1(v) shows that the pollinators may be driven into extinction

when the robbers’ efficiency is large but the pollinators’ efficiency is not extremely
large (i.e., λ

(13)
2 λ

(φ)
2 < 0).
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Therefore, when the plants alone could support the robbers’ survival, the pollina-
tors can persist only if their efficiency is relatively larger than that of the robbers as
shown in Theorem 4.1(ii)(iv). On the other hand, since the pollinators can persist in
the plant–pollinator system, it is the robbers’ invasion that leads to the pollinators’
extinction in the situations of Theorem 4.1(i)(iii)(v).

Case 2 λ
(1)
2 > 0, λ

(1)
3 < 0.

In this case, P1 is globally asymptotically stable in the interior of the (x1, x3)-plane,
and is unstable in the x2-direction.

Theorem 4.2 Assume λ
(1)
2 > 0 and λ

(1)
3 < 0.

(i) If λ
(12)
3 < 0, every solution of (2.3) with x2(0) > 0 converges to P12(x+

1 , x+
2 , 0).

(ii) If λ
(12)
3 > 0, system (2.3) is permanent.

Proof (i) Since λ
(12)
3 < 0, then −r3 +a31x+

1 /(c + x+
1 ) < 0. By the monotonicity

of function x1/(c + x1), there are constants δ > 0, ε > 0 such that when
0 ≤ x1 < x+

1 + δ, we have

−r3 + a31x1

c + x1
< −ε < 0.

Let x(t) be a solution of (2.3) with xi (0) > 0, i = 1, 2, 3. Let x̄(t) be a solution
of (2.1) with x̄i (0) = xi (0), i = 1, 2. By (2.3), x(t) satisfies

dx1

dt
≤ x1

(
r1 − d1x1 + a12x2

1 + αx1 + βx2

)

dx2

dt
≤ x2

(
−r2 + a21x1

1 + αx1 + βx2

)
.

It follows from the comparison theorem (Cosner 1996) that xi (t) ≤ x̄i (t) as
t > 0, i = 1, 2.

Since λ
(1)
2 > 0, P12 is globally asymptotically stable in the interior of the (x1, x2)-

plane by Theorem 3.3(i). Thus, there is T > 0 such that when t > T, x̄1(t) < x+
1 + δ.

Then x1(t) < x+
1 + δ as t > T . Hence, dx3/dt < −εx3 as t > T, which implies

limt→∞ x3(t) = 0. As a result of Thieme (1992), systems (2.3) and (2.1) have the
same asymptotic dynamics. Thus, (i) is proven.

(ii) Since λ
(12)
3 > 0, the equilibrium P12(x+

1 , x+
2 , 0) is a saddle point. It is globally

asymptotically stable in the interior of the (x1, x2)-plane and is unstable in the
x3-direction. Since the boundary equilibria O, P1 and P12 are hyperbolic saddle
points, hypotheses of (H1) to (H4) derived by Freedman and Waltman (1984)
are easily satisfied. Thus, system (2.3) is persistent as a result of Freedman and
Waltman (1984). It follows from Proposition 2.1 that compactness criteria (c1.1)

and (c4.1) derived by Thieme (1993) are satisfied. Thus, system (2.3) is permanent
as a result of Thieme (1993). ��
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Theorem 4.2 provides criteria for the robbers’ invasion. Here, condition λ
(1)
3 < 0

implies that the plants alone cannot provide sufficient resources for the robbers’ sur-
vival. Thus, the robbers can persist only if there exists pollination–mutualism. Since
λ

(1)
2 > 0, pollination–mutualism can persist in the absence of robbers. However, the

mutualism cannot guarantee the robbers’ survival. Indeed, Theorem 4.2(i) shows that
when the robbers’ efficiency is small (i.e., a31 < r3(1+c/x+

1 )), they cannot invade the
plant–pollinator system and will go to extinction. Moreover, Theorem 4.2(ii) shows
that when the robbers’ efficiency is large (i.e., a31 > r3(1 + c/x+

1 )), they can invade
the plant–pollinator system and persist. Since the robbers cannot survive in the plant–
robber system, it is the pollination–mutualism that leads to the robbers’ persistence in
the situation of Theorem 4.2(ii), where the pollinators will not be driven into extinction
by the robbers’ invasion.

Case 3 λ
(1)
2 < 0.

Theorem 4.3 Assume λ
(1)
2 < 0 and λ

(1)
3 > 0. Every solution of (2.3) with x2(0) > 0

satisfies limt→∞ x2(t) = 0.

Proof Let x(t) be a solution of (2.3) with xi (0) > 0, i = 1, 2, 3. Since λ
(1)
2 < 0, P1

is locally asymptotically stable in the interior of the (x1, x2)-plane. By Theorem 3.3,
either there is no positive equilibrium, or there are two positive equilibria of system
(2.1).

When there is no positive equilibrium of system (2.1) as discussed in Theorem 3.3
(ii), P1 is globally asymptotically stable in the interior of the (x1, x2)-plane. Thus,
for the solution x̄(t) = (x̄1(t), x̄2(t)) of (2.1) with x̄i (0) = xi (0), i = 1, 2, we have
limt→∞ x̄2(t) = 0. Similar to the proof of Theorem 4.2(i), we have x2(t) ≤ x̄2(t).
Thus, limt→∞ x2(t) = 0.

When there are two positive equilibria of system (2.1) as discussed in Theo-
rem 3.3(iii), the stable manifold of equilibrium E−

12(x−
1 , x−

2 ) subdivides the (x1, x2)-
plane into two regions: one is the basin of attraction of P1, which is denoted by �1;
the other is that of P+

12, which is denoted by �12. Then for any solution x̄(t) =
(x̄1(t), x̄2(t)) of (2.1) with (x̄1(0), x̄2(0)) ∈ �1, we have limt→∞ x̄2(t) = 0. Sim-
ilar to the proof above, we have limt→∞ x2(t) = 0 for any solution of (2.3) with
(x1(0), x2(0)) ∈ �1 and x3(0) > 0. Let �3 ⊆ � denote the set in which solutions of
(2.3) with x(0) ∈ � satisfy limt→∞ x2(t) = 0, then �3 is open and forward invariant,
and � − �3 is closed and forward invariant in �.

Since λ
(1)
3 > 0 and x±

1 > r1/d1, the eigenvalues of equilibria P−
12(x−

1 , x−
2 , 0) and

P12(x+
1 , x+

2 , 0) in the x3-direction satisfies λ
(12)
3 > λ

(12−)
3 > 0 by (4.3). Thus, the

boundary equilibria are hyperbolic saddle points and cannot form a heteroclinic cycle.
Similar to the proof of Theorem 4.1(i), the set int(� − �3) is empty. Thus, solutions
of (2.3) with x2(0) > 0 satisfy limt→∞ x2(t) = 0. Similar discussion can be given
for the situation in Theorem 3.3(iv). ��

Theorem 4.3 demonstrates a situation in which the pollinators are driven into extinc-
tion by the robbers’ invasion. Here, condition λ

(1)
3 > 0 implies that the plants alone

can provide sufficient resources for the robbers’ survival. Thus, the robbers can always
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invade the plant–pollinator system. Since λ
(1)
2 < 0, the pollinators can persist in the

plant–pollinator system only if their initial population density is large and efficiency is
intermediate as shown in Theorem 3.3(ii)(iii). This persistence will not happen in the
presence of the robbers’ invasion. As shown in Theorem 4.3, for any initial density of
the pollinators, the pollinators will go to extinction due to the robbers’ invasion. Since
the pollinators with a large initial density can survive in the plant–pollinator system,
it is the robbers’ invasion that leads to the pollinators’ extinction.

Theorem 4.4 Assume λ
(1)
2 < 0 and λ

(1)
3 < 0. Let M−

12 denote the stable manifold of
the saddle point P−

12(x−
1 , x−

2 , 0) when it exists.

(i) If B ≥ 0 or � < 0, every solution of (2.3) with x1(0) > 0 converges to P1.
(ii) If B < 0,� > 0 and in addition

(a) If λ
(12)
3 < 0, then M−

12 subdivides R3+ into two invariant subsets S1 and
S12 such that P1 ∈ S1 and P12 ∈ S12. Except on a set of initial condi-
tions of Lebesgue measure zero, solutions of (2.3) with x(0) ∈ S1 and
x1(0) > 0 converge to P1, while solutions of (2.3) with x(0) ∈ S12 and
x1(0) > 0 converge to P12.

(b) If λ
(12−)
3 < 0 and λ

(12)
3 > 0, then M−

12 subdivides R3+ into two invariant
subsets S1 and S12 such that P1 ∈ S1 and P12 ∈ S12. Except on a set
of initial conditions of Lebesgue measure zero, solutions of (2.3) with
x(0) ∈ S1 and x1(0) > 0 converge to P1, while solutions of (2.3) with
x(0) ∈ S12 and x1(0) > 0 satisfy lim inf t→∞ xi (t) ≥ ε0 for some ε0 > 0.

(c) If λ
(12−)
3 > 0, every solution of (2.3) with x1(0) > 0 converges to P1.

Proof Since λ
(1)
3 < 0, it follows from Theorem 3.6(i) that P1 is globally asymptoti-

cally stable in the interior of the (x1, x3)-plane.

(i) Since B ≥ 0 or � < 0, P1 is globally asymptotically stable in the interior of
the (x1, x2)-plane by Theorem 3.3(i). Similar to the proof of Theorems 4.2(i)
and 4.3, we obtain limt→∞ xi (t) = 0, i = 2, 3.

(ii) Since B < 0 and � > 0, there are two equilibria P−
12(x−

1 , x−
2 , 0) and P12(x+

1 ,

x+
2 , 0) in the interior of the (x1, x2)-plane.

(a) Since λ
(12)
3 < 0, it follows from the monotonicity of function x1/(c+x1)

that λ
(12−)
3 < λ

(12)
3 < 0. Thus P−

12 is a saddle point whose stable mani-
fold M−

12 is two-dimensional, while P12 is locally asymptotically stable.
By Theorem 3.3(iii) and the comparison theorem, solutions of (2.3) with
x1(0) > 0 satisfy either lim supt→∞ x1(t) ≤ r1/d1, lim supt→∞ x2(t) ≤
0, or lim supt→∞ x1(t) ≤ x+

1 , lim supt→∞ x2(t) ≤ x+
2 . For the for-

mer situation, we have limt→∞ x2(t) = 0 and then limt→∞ x3(t) = 0.
For the latter situation, similar to the proof of Theorem 4.2(i), we have
limt→∞ x3(t) = 0. Since S1 and S12 are forward invariant, the result in
(a) is proven by Theorem 3.3(iii).

(b) Similar to the proof in (a), solutions of (2.3) with x(0) ∈ S1 and x1(0) > 0
converge to P1. In the subset S12, since λ

(12)
3 > 0, P12 is unstable in the

x3-direction. Thus, system (2.3) restricted on S12 is uniformly persistent.
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(c) Since λ
(12−)
3 > 0, then λ

(12)
3 > λ

(12−)
3 > 0. Here, P1 is locally asymptot-

ically stable in R+
3 . Let �1 be the basin of attraction of P1 in �. Then �1

is open and forward invariant, and �−�1 is closed and forward invariant
in �. Suppose int(�−�1) is not empty. Since the equilibria P−

12 and P12
are saddle points, similar to the proof of Theorem 4.1(ii), system (2.3)
is uniformly persistent and has a positive equilibrium P∗(x∗

1 , x∗
2 , x∗

3 ) in
� − �1.

Let x̄(t) be the solution of (2.1) with x̄i (0) = x∗
i , i = 1, 2. Similar to the proof

of Theorem 4.2(i), we obtain x̄i (t) ≥ x∗
i as t > 0, i = 1, 2. Since λ

(12−)
3 > 0, then

−r3 + a31x−
1 /(c + x−

1 ) > −r3 + a31x∗
1/(c + x∗

1 ) = 0. It follows from the mono-
tonicity of function x1/(c + x1) that x∗

1 < x−
1 . On the (x1, x2)-plane, we denote the

x1-isocline of (2.1) by l1 : r1 −d1x1 +a12x2 f = 0, and denote the x2-isocline of (2.1)
by l2 : −r2 + a21x1 f = 0, as shown in Fig. 1. The intersection of l1 (resp. l2) with
the x2-axis is Q1(0,−r1/(a12 + r1β)) (resp. Q2(0,−1/β)). Thus, Q2 is below Q1.
Since there is no intersection of l1 and l2 as x1 < x−

1 , l2 is below l1 as x1 < x−
1 . By

the monotonicity of function x2 f on the variable x2, the vector field of (2.1) satisfies
dx1/dt < 0 in the region below l1. Thus, l2 is below the stable manifold of E−

12 as
x1 < x−

1 , as shown in Fig. 1. While the point (x∗
1 , x∗

2 ) with x∗
1 < x−

1 is on l2, it is
below the stable manifold. It follows from Theorem 3.3(iii) that limt→∞ x̄2(t) = 0.
Then x∗

2 = 0, which is a contradiction. ��
Theorem 4.4 displays a situation in which persistence of the three species is density-

dependent. Here, condition λ
(1)
3 < 0 implies that the plants alone cannot support the

robbers’ survival. Thus, the robbers could survive only if there exists pollination–mutu-
alism. Since λ

(1)
2 < 0, the pollination–mutualism can persist only if the initial densities

of the plants and pollinators are above the stable manifold of E−
12 [Theorem 3.3(ii)].

Theorem 4.4(i) shows that when pollination–mutualism in the plant–pollinator system
cannot persist, the robbers will go to extinction.

Theorem 4.4(iia) shows that when pollination–mutualism in the plant–pollinator
system can persist, the robbers cannot invade the plant–pollinator system and will go
to extinction if the robbers’ efficiency is too small (i.e., a31 < r3(1 + c/x+

1 )). Theo-
rem 4.4(iib) shows that the system is permanent when the initial densities of the three
species are in the region S12 and the robbers’ efficiency in translating plant–robber
interactions into fitness is intermediate (i.e., r3(1 + c/x+

1 ) < a31 < r3(1 + c/x−
1 )).

Thus, the permanence is density-dependent while the two-dimensional stable mani-
fold M−

12 is the threshold for the initial population densities. That is, when the densities
are beyond M−

12, the three species coexist; otherwise, both the pollinators and robbers
go to extinction. Theorem 4.4(iic) shows that when the robbers’ efficiency is too large
(i.e., a31 > r3(1 + c/x−

1 )), the robbers can invade the plant–pollinator system but will
drive the pollinators into extinction, and then lead to extinction of themselves since the
plants alone cannot support the robbers’ survival. On the other hand, it follows from
Proposition 3.4 that ∂x−

1 /∂a21 < 0 and ∂x+
1 /∂a21 > 0. Thus, an increase of the pollin-

ators’ efficiency enlarges the coexistence interval r3(1+c/x+
1 ) < a31 < r3(1+c/x−

1 ),
and promotes persistence of the three species. A similar discussion can be given for
other parameters in Propositions 3.4 and 3.5.
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5 Discussion

In this paper, we consider systems of flowering plants, pollinators and nectar robbers.
Global dynamics of the plant–pollinator–robber model show mechanisms by which
the robbers can invade the plant–pollinator system, and by which the pollinators would
not be driven into extinction by the robbers’ invasion.

Properties of the pollinators play a role in the robbers’ invasion. As shown in Theo-
rem 4.2(ii), when the plants alone cannot provide sufficient resources for the robbers’
survival (i.e., r1/d1 < cr3/(a31 − r3)), pollination–mutualism enhances reproduction
of the plants, which leads to the robbers’ invasion. Here, the enhanced density (x+

1 ),
which is expressed in (3.2), is determined by the pollinators’ properties. As shown in
Proposition 3.4, an increase of pollinators’ efficiency (a21), a decrease of the com-
petition degree (β), or a decrease of the pollinators’ death rate (r2), will enhance the
plants’ reproduction and may lead to the robbers’ persistence (invasion). After the
invasion, it is worth noticing that the pollinators will not be driven into extinction.
Indeed, when the pollinators’ density is so small that the pollination–mutualism can-
not lead to sufficient resources for the robbers’ survival, the robbers will decrease and
go to extinction. At that time, the pollinators’ density will increase. Hence, the poll-
inators will not go to extinction. The underlying reason is that the plants alone cannot
support the robbers’ survival. A similar discussion can be given for the situation in
Theorem 4.4(iib).

Properties of the robbers are crucial to the pollinators’ persistence. When the
plants alone can provide sufficient resources for the robbers’ survival (i.e., r1/d1 >

cr3/(a31−r3)), the robbers can always invade the plant–pollinator system. If the plant–
pollinator subsystem can persist, Theorem 4.1(ii)(iv) shows that the pollinators can be
persistent if the robbers’ efficiency is relatively less than that of the pollinators. Other-
wise, the pollinators will be driven into extinction as shown in Theorem 4.1(i)(iii)(v).
Moreover, if persistence of pollination–mutualism in the plant–pollinator system is
density-dependent as shown in Theorem 4.4(iib), the pollinators and robbers would
coexist when the robbers’ efficiency is intermediate and the initial densities of the
three species are in an appropriate region. Otherwise, both the pollinators and rob-
bers will go to extinction as shown in Theorem 4.4(iic). On the other hand, when the
plants alone cannot support the robbers’ survival but the plants-pollinator subsystem
can persist as shown in Theorem 4.2(ii), the pollinators and robbers would coexist if
the robbers’ efficiency is large. Hence, the situations shown in Theorem 4.1(ii)(iv),
Theorem 4.2(ii) and 4.4(iib) provide possible answers to the question raised by Irwin
et al. (2010).

Properties of the plants are important to both the robbers’ invasion and pollina-
tors’ persistence. As shown in Proposition 3.4, an increase of the plants’ intrinsic
growth rate (r1) and/or efficiency (a12), or a decrease of the plants’ death rate (d1),
will enhance the plants’ reproduction, which promotes both of the robbers’ invasion
and pollinators’ persistence (Theorems 4.1, 4.2 and 4.4). On the other hand, prop-
erties of the plants may reduce the robbers’ efficiency and promote the pollinators’
persistence (Theorems 4.1(ii), 4.4(iib)). For example, in Pavonia dasypetala, nectar
robbing by T. ferricauda is both energetically expensive and time consuming due to the
thickened tissue of the flower’s calyx (Roubik 1982; Inouye 1983). Hence the trait of
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Pavonia dasypetala reduces the efficiency of T. ferricauda and promotes the pollina-
tors’ persistence.

Varying parameters in the system may lead to interesting transitions of interaction
outcomes of the three species. First, we show that varying two parameters would lead
to the transition through a bifurcation diagram on the (r3, a31)-parameter plane, while
similar discussions can be given for other pairs of parameters. Fix r1 = 1.0, r2 =
0.45, d1 = 0.01, a12 = 0.55, α = 0.35, β = 0.2, a13 = 0.3, a21 = 0.74, c = 50,

and let r3 and a31 vary. Denote lines

L1 : a31 = 1.1583 ∗ r3, L2 : a31 = 65.7222 ∗ r3.

As shown in Fig. 2, L1 and L2 subdivide the (r3, a31)-plane into three regions.
In region I, we have a31 < 1.1583 ∗ r3. That is, λ

(1)
2 > 0 and λ

(1)
3 < λ

(12)
3 < 0. It fol-

lows from Theorem 4.2(i) that the robbers will go to extinction since their efficiency in
translating plant–robber interactions into fitness is relatively small (a31 < 1.1583∗r3).
In region II, we have 1.1583∗r3 < a31 < 65.7222∗r3. It follows from Theorems 4.1(ii)
and 4.2(ii) that the robbers can invade the plant–pollinator system and will coexist with
the pollinators since their efficiency is appropriate (1.1583∗r3 < a31 < 65.7222∗r3).
In region III, we have a31 > 65.7222∗ r3. It follows from Theorem 4.1(i) that the rob-
bers will invade the plant–pollinator system and drive the pollinators into extinction
since their efficiency is too large (a31 > 65.7222 ∗ r3).

Second, we show that varying one parameter could also lead to the transition. We
focus on the robbers’ efficiency (a31), while similar discussions can be given for other
parameters. In the following numerical simulations, we fix r1 = 1.0, r2 = 0.45, r3 =
0.45, d1 = 0.01, a12 = 0.55, α = 0.35, β = 0.2, a13 = 0.3, a21 = 0.74, c = 50, and
let a31 vary. When their efficiency is small (i.e., a31 = 0.44), the robbers will go to
extinction (Fig. 3a). When the efficiency is intermediate (a31 = 0.63), the three spe-
cies will coexist at a steady state (Fig. 3b). When the efficiency is large (a31 = 0.65),

the three-species system is permanent in periodic oscillations (Fig. 3c). When the
robbers’ efficiency is extremely large (a31 = 12.4), the pollinators will be driven into
extinction by the robbers’ invasion and the plant–robber system persists (Fig. 3d).

It follows from the boundedness of solutions and uniform persistence that system
(2.3) has a unique positive equilibrium. Hence, our analysis here could be used to
obtain more results about the dynamics of the systems. For example, varying param-
eter values may change stability of the positive equilibrium and lead to emergence of
three-dimensional periodic solutions via Hopf bifurcation as shown in Fig. 3c. Since
our aim in this paper is to establish permanence of the three-species system, we do
not consider the point further.
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