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Abstract Although diseases such as influenza, tuberculosis and SARS are
transmitted through an environmentally mediated mechanism, most modeling work
on these topics is based on the concepts of infectious contact and direct transmis-
sion. In this paper we use a paradigm model to show that environmental transmission
appears like direct transmission in the case where the pathogen persists little time in the
environment. Furthermore, we formulate conditions for the validity of this modeling
approximation and we illustrate them numerically for the cases of cholera and influ-
enza. According to our results based on recently published parameter estimates, the
direct transmission approximation fails for both cholera and influenza. While environ-
mental transmission is typically chosen over direct transmission in modeling cholera,
this is not the case for influenza.

Keywords Environmental transmission · Environmental persistence ·
Direct transmission · Slow–fast dynamics

Mathematics Subject Classification (2000) 92D30 · 92D40 · 93A30

1 Introduction

Modeling infectious diseases that are environmentally transmitted is a field of growing
interest. In short, environmental transmission is the process by which a pathogen is
passed from an infected to a susceptible individual through the environment. Infected
individuals shed pathogen particles in the environment where the pathogen persists
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536 R. Breban

depending on temperature, humidity, acidity, etc. The pathogen is then harvested by
susceptible individuals that become infected depending on the ingested dose. This
mechanism is in contrast to direct transmission which postulates that the pathogen is
acquired through an infectious contact with an infected individual.

Pathogens persist on fomites (Rusin et al. 1998; Reynolds et al. 2005), in water
(Pepper et al. 2004) and aerosols (Gralton et al. 2011). Environmental transmission
is empirically recognized as an important transmission pathway for humans viruses
[e.g., gastroenteritis (D’Souza et al. 2006)], animal viruses [e.g., rabbit haemorrhag-
ic disease (Henning et al. 2005)], water-borne pathogens [e.g., cholera (King et al.
2008; Pascual et al. 2002), avian cholera (Blanchong et al. 2006)], bacteria [e.g., tet-
anus (Roper et al. 2007), salmonella (Xiao et al. 2007), epizootics of plague (Webb
et al. 2006)], prions [e.g., chronic wasting disease (Miller et al. 2006), bovine spon-
giform encephalopathy (Anderson et al. 1996)] and zoonotic pathogens [e.g., Nipah
and Hendra viral diseases (Field et al. 2001)]. Notably, environmental transmission
is the preferred mechanism modeled for the transmission of cholera (Codeço 2001;
Codeço et al. 2008; Jensen et al. 2006; Pascual et al. 2002; King et al. 2008). It has also
been included, together with direct transmission, in modeling transmission of avian
influenza in aquatic wild birds (Breban et al. 2009, 2010; Roche et al. 2009; Rohani
et al. 2009).

Li et al. (2009) have opened the discussion on the modeling principles of
environmental transmission, addressing the topic from a very general perspec-
tive. Using a paradigmatic mathematical model, they demonstrated that environ-
mental transmission appears like direct transmission in certain situations where
the density of the pathogens in the environment remains approximately constant.
Notably, Li et al. (2009) and Spicknall et al. (2010) emphasized that environ-
mental transmission is empirically recognized as mediating the spread of human
respiratory diseases such as tuberculosis, SARS and influenza. However, most
of the modeling work on these diseases uses a direct transmission mechanism,
despite difficulties in defining the notion of infectious contact. The direct trans-
mission incidence term is typically defined based on the principle of proportional
mixing between susceptible and infected individuals. Relaxing this principle by
using complex contact networks between individuals still relies on the notion of
infectious contact. Since direct transmission is widely used in the modeling of
environmentally transmitted diseases, it is important to study in what circum-
stances direct transmission represents a good approximation of environmental
transmission.

The purpose of this paper is to show that environmental transmission may be
approximated by direct transmission in the case where the pathogen persists lit-
tle time in the environment. We write the environmental transmission term as an
expansion in the persistence time. The first order represents the well-known direct
transmission term. Using the second order of the expansion, we formulate condi-
tions for the validity of this modeling approximation and we illustrate them numer-
ically for the cases of cholera and influenza. Using published parameter estimates,
we find that the validity conditions do not hold and the approximation is violated
in both cases.
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Environmental persistence and pathogen transmission 537

2 Model description

We generalize the SI model with environmental transmission proposed by Codeço
(2001), leaving the environmental transmission term broadly specified by several
unrestrictive axioms. The equations of our model are

d S/dt = π − μS − ρS f (V ), (1)

d I/dt = ρS f (V ) − (μ + γ )I, (2)

dV/dt = ωI − ηV, (3)

where S, I and V represent the number of susceptible individuals, infected individuals
and pathogens in the environment. The parameters 1/γ, 1/η and ω are the recovery
period, the persistence time of the pathogen and the rate at which pathogen is shed
by infected individuals; π is the susceptible inflow, μ is the natural death rate of
individuals and ρ represents the contact rate with the environment. All variables and
parameters are positively defined.

The environmental transmission rate is modeled by the term ρS f (V ). The function
f : [0,∞) → [0, 1] represents the probability that an individual is infected when
exposed to a population of V pathogens in the environment. It is empirically charac-
terized by ID50, the quantity of pathogen which gives 50% probability of infection.
Previous work (Codeço 2001; Codeço et al. 2008; Jensen et al. 2006; Pascual et al.
2002; King et al. 2008; Breban et al. 2009, 2010; Roche et al. 2009; Rohani et al.
2009; Dennis et al. 1989) has used either a negative exponential

fNE(V ) = 1 − e−αV (4)

or a rectangular hyperbola

fRH(V ) = V

V + κ
(5)

for the analytic forms of f (·), where α and κ are constants that relate to ID50 (i.e.,
α = loge 2/ID50 and κ = ID50). However, currently available data on environmental
transmission are too scarce to select an analytical form for f (·) on the basis of empir-
ical evidence. Hence, we leave the function f (·) unspecified and we only make use
of properties that derive from its biological meaning. We thus postulate the following
(Breban et al. 2010):

Property 1 The probability of infection vanishes in absence of pathogen [i.e., f (0) =
0] and approaches 1 as the pathogen population becomes large [i.e., limV →∞ f (V ) =
1];

Property 2 The probability of infection f (V ) increases with the pathogen population
V ; i.e., f ′(V ) > 0, where prime denotes derivative with respect to the argument.

Furthermore, for technical reasons, we require
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Property 3 f (V ) is twice differentiable in the neighborhood of zero and its second
derivative is continuous in the neighborhood of zero.

Note that Properties 1 and 3 yield f (V ) = f ′(0)V + f ′′(0)V 2/2! + O(V 3).

3 Model equilibria and epidemic threshold

The model has a unique disease-free state (SDFS, IDFS, VDFS) = (π/μ, 0, 0). All other
equilibria have nonzero values for the number of pathogens and infected individuals;
they are called endemic states, denoted by (S∗, I ∗, V ∗). Their components are as
follows. V ∗ is a positive solution of the equation

f (V ∗) = (μ/ρ)V ∗/(Vc − V ∗) ≡ g(V ∗), (6)

where Vc ≡ (ω/η)π/(μ + γ ). Note that Vc represents the amount of the pathogen
established in the environmental reservoir in the very extreme case where the inflow
of infected individuals equals the inflow of susceptible individuals, π . Hence, Vc is
independent of the details of the environmental transmission mechanism and repre-
sents the maximum amount of pathogen that could be established in the environmental
reservoir.

Given the hyperbolic form of the function g(·) in the right hand side of Eq. (6) and
the properties postulated for the function f (·), Eq. (6) has a positive solution (i.e., a
solution that can be assigned a biological interpretation) if and only if

g′(0) < f ′(0) ⇔ 1 <
ρω f ′(0)SDFS

η(μ + γ )
. (7)

Furthermore, if the solution exists, then it is unique and satisfies 0 < V ∗ < Vc. The
other components of the endemic equilibria are given by

I ∗ = ηV ∗/ω, (8)

S∗ = SDFS(1 − V ∗/Vc). (9)

Hence, the endemic state is unique.
Linear stability analysis shows that the disease-free state and the endemic state

switch stability through a transcritical bifurcation when

Renv
0 ≡ ρω f ′(0)SDFS

η(μ + γ )
= 1. (10)

If Renv
0 > 1 then the endemic state is stable and the disease-free state is unstable

while if Renv
0 < 1 then the endemic state is unstable [and has non-biological values

according to Eq. (6)] and the disease-free state is stable [see Li et al. (2009), Rohani
et al. (2009) and Breban et al. (2010) for similar results]. Note that we may have values
of Renv

0 around 1 even though η is large because the shedding rate ω or the number of
susceptible individuals at the disease-free state SDFS could be large, as well.
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Environmental persistence and pathogen transmission 539

4 The limit of low persistence times

We are interested in the case where the persistence time of the pathogen in the
environment is small. That is, pathogen decay is much faster than all the other processes
or time scales of the system. We show that, under these conditions, the environmental
transmission mechanism appears like a direct transmission mechanism. We start with
formally solving Eq. (3) as

V (t) = V (0)e−ηt + e−ηt

t∫

0

ds ωI (s)eηs, (11)

which, for t � 1/η, becomes

V (t) ≈
t∫

0

ds e−ηsωI (t − s). (12)

Since η is large, the exponential e−ηs defines just a narrow time window in the variable
s, [0, 1/η], where the integrand is significantly different from zero. In this narrow time
window, I (t − s) does not change much and can be approximated by its Taylor series
expansion around I (t) truncated at the first two terms

I (t − s) ≈ I (t) − s d I (t)/dt. (13)

For moments of time much larger than the persistence time of the virus (i.e., t � 1/η),
Eqs. (12) and (13) yield the following expansion up to second order in 1/η

V (t) ≈ ω

η
I (t) − ω

η2

d I (t)

dt
, (14)

demonstrating that V (t) is small when the persistence time of the virus in the envi-
ronment is small. Using Eq. (2) to replace the derivative d I (t)/dt in Eq. (14), we
obtain

V (t) ≈ ω

η

(
1 + μ + γ

η

)
I (t), (15)

since, due to Properties 1 and 3, the term

ρS(t) f (V ) ≈ ρS(t) f ′(0)V (t) ≈ ρS(t) f ′(0)I (t)ω/η, (16)

is proportional with 1/η and does not contribute to the second order in the expansion in
1/η. Substituting V (t) as given by Eq. (15) in Eqs. (1) and (2) and using the expansion
of f (V ) in the neighborhood of zero, we arrive at the following approximation of our
model

d S

dt
≈ π − μS − βSI

[
1 + μ + γ

η
+ ω f ′′(0)

2η f ′(0)
I

]
, (17)
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d I

dt
≈ βSI

[
1 + μ + γ

η
+ ω f ′′(0)

2η f ′(0)
I

]
− (μ + γ )I, (18)

where we introduced the notation β ≡ ρω f ′(0)/η. Hence, in the first order in
1/η, Eqs. (17) and (18) represent the expected SI model with a direct transmission
mechanism of transmissibility β. In addition, we obtained the next order corrections
(i.e., second order in 1/η) to the direct transmission term.

We note that our analysis may be difficult to apply to general models with envi-
ronmental transmission. However, for obtaining results emerging from the first order
expansion in the pathogen persistence time (e.g., the direct transmission model and
its corresponding transmissibility formula) one may use the slow–fast dynamics for-
malism, a general technique of singular perturbation theory. See the appendix for the
application of this technique to our model example.

4.1 Discussion of the correction terms

Both correction terms have transparent biological interpretations. The term (μ+γ )/η

stands for the fact that a susceptible individual may become infected with pathogen
that persisted past the recovery period of the shedder; note that an infectious indi-
vidual cannot cause infections past their infectious period with a direct transmission
mechanism. This term adds transmissibility and becomes important as the persistence
time of the pathogen 1/η becomes larger than the infectious period of the shedder
1/(μ + γ ).

The second correction term requires a slightly more elaborated discussion. First,
we define an infectious dose ÎD such that, for amounts of pathogen less than ÎD, the
probability of infection is small; hence, f (ÎD) ≈ 0. We use the expansion of f (ÎD)

in the neighborhood of zero to estimate ÎD

f (ÎD) ≈ f ′(0)ÎD + f ′′(0)ÎD
2
/2 ≈ 0 ⇒ ÎD ≈ −2 f ′(0)/ f ′′(0). (19)

We note that, under weak assumptions, the theory of birth processes demonstrates
that f (·) is concave [see Breban et al. (2010), Dennis et al. (1989) and references
therein]; thus, f ′′(0) < 0. (N.b., both fNE(·) and fRH(·) are concave.) Therefore,
Eq. (19) makes biological sense for many reasonable choices of the function f (·). The
resulting ÎD relates to ID50; e.g., ÎD = 2 ID50/ loge 2 for fNE(·) and ÎD = ID50 for
fRH(·).

Second, we consider the amount of virus shed by I infectious individuals during the
persistence time of the pathogen, ωI/η. If ωI/η < ÎD, then susceptible individuals
are protected from infection (as compared to direct transmission) since the pathogen
always passes through the environment where it does not accumulate in sufficient
amounts to create new infections because it undergoes fast decay. Hence, a term like

ωI

ηÎD
= − ω f ′′(0)

2η f ′(0)
I (20)

would appear as a negative correction to transmissibility.
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Environmental persistence and pathogen transmission 541

Table 1 Parameter values for the simulations in Fig. 1

Case ξ Î

A 0.001 100,000

B 0.5 100,000

C 0.001 1,000

D 0.5 1,000

We have chosen Renv
0 = 1.5 and γ = 50 years−1. The vital dynamics parameters are π = 1,000 years−1

and μ = 0.01 years−1; i.e., SDF S = 100,000. The rest of the parameters are calculated such that ξ and Î
take the values listed below. (N.b., The amount of pathogen in measured in infectious doses; hence κ = 1.)

4.2 Validity conditions for the direct transmission approximation

We use the conditions that the magnitude of each correction term is much smaller than
1 to establish when environmental transmission may be approximated with a direct
transmission term. Thus, we obtain

μ + γ

η
≡ ξ � 1, (21)

and

I � Î ≡ ηÎD

ω
. (22)

Hence, in the paradigm model that we study here, the direct transmission approxima-
tion holds if two conditions are satisfied. First, the persistence time of the pathogen
is much less than the recovery period of the shedder. Second, the number of infected
individuals is much less than Î . In practical terms, for the second condition to hold
for all time, Î should be of the order of SDFS.

4.3 Numerical illustration of analytic results

We illustrate numerical simulations of the paradigm model given by Eqs. (1)–(3) for
various cases of validity of the conditions (21) and (22). We choose f (·) ≡ fRH(·),
where we measure the amount of pathogen in infectious doses ID50; hence, κ = 1. We
analyze four cases: case A, both approximation conditions hold; case B, the first con-
dition holds but the second fails; case C, the second condition holds and the first fails;
and case D, where neither condition holds. The parameter choices are presented in
Table 1 and computations of prevalence versus time are illustrated in the correspond-
ing panels of Fig. 1. To maintain some means of comparison between the panels, we
fixed Renv

0 = 1.5 in each case.
In case A, the first order expansion in 1/η (i.e., the direct transmission model

illustrated by a thin line) is close to the exact model (thick line) and the second
order approximation (dashed line) is even closer. In cases B and D, where ξ ∼ 1
(i.e., η ∼ (μ + γ )), the direct transmission approximation fails since the pathogen
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a b

c d

Fig. 1 Successive orders of approximation for a model with environmental transmission (i.e., f (·) =
fRH(·)). a The case where both conditions of the direct transmission approximation hold; ξ � 1 and
Î ∼ SDF S . b The case where the first approximation condition fails but the second holds; ξ ∼ 1,
but Î ∼ SDF S . c The case where the first approximation condition holds but the second fails; ξ � 1,
but Î � SDF S . d The case where both approximation conditions fail; ξ ∼ 1 and Î � SDF S

persists well in the environment. In case C, where the persistence time of the pathogen
is short, the direct transmission approximation works as long as the number of infected
individuals does not grow above Î (i.e., a prevalence of ∼10−3). Once I > Î , the
prevalence curves of the exact model and the direct transmission model differ substan-
tially. The curve of the exact model achieves a maximum in the neighborhood of Î , then
declines steadily. In contrast, the prevalence curve of the direct transmission model
continues to rise significantly higher than Î , then declines sharply. The phenomenon
of epidemic decline after disease invasion is known as depletion of susceptibles and,
in this case, appears less significant for the model with environmental transmission
than for its corresponding model with direct transmission.

In Table 2, we illustrate the conditions under which the direct transmission approx-
imation holds for cholera (Codeço 2001) and influenza (Li et al. 2009). For each of
these diseases, the approximation fails in a different way. For cholera, direct transmis-
sion could properly model the infection of tens of thousands of individuals. However,
its long persistence time (in aquatic environment) renders ξ comparable to 1; the sit-
uation is similar to that presented in panel B of Fig. 1. In contrast, influenza viruses
persist much less (in air or on fomites); hence, in this case, ξ is significantly less than 1.
However, given that influenza viruses are shed at high rates in the environment, direct
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Table 2 Numerical check of the conditions that a direct transmission mechanism could be used to model
environmental transmission

Disease Persistence environment ξ Î References

Cholera Water 0.61 33,000 Codeço (2001)

Influenza Air 0.023 0.17 Li et al. (2009)

Influenza Frequently touched fomites 0.070 5.5 Li et al. (2009)

Influenza Infrequently touched fomites 0.070 0.028 Li et al. (2009)

transmission does not accurately model more than several infections. The situation is
similar to that presented in panel C of Fig. 1.

5 Discussion and conclusions

Although many pathogens are transmitted from person to person through an interme-
diary environmental reservoir, most modeling work on their epidemic spread is based
on the concepts of infectious contact and direct transmission. Hence, it is important to
study the circumstances where direct transmission represents a good approximation
of environmental transmission.

In this work, we have shown using a paradigm model that direct transmission holds
as an approximation for the environmental transmission mechanism in the case where
the persistence time of the pathogen in the environment is short. We derived a second
order expansion of the model with environmental transmission in the persistence time
of the pathogen. The first order in the expansion is a model possessing the well-known
direct transmission mechanism. Using the second order of the expansion, we derived
two explicit conditions for when the first order approximation holds: (1) the persis-
tence time of the pathogen is much less than the recovery period of the shedder, and
(2) the number of infected individuals is much less than a certain bound given in terms
of model parameters.

Whenever applicable, the direct transmission approximation has the advantages that
it reduces (i) the dimensionality of the model by excluding the dynamics of the path-
ogen population in the environment and (ii) the number of parameters by combining
some of them into the direct transmissibility β. We note that when the direct trans-
mission approximation fails, adding higher order corrections no longer collapses the
parameter space. This is readily obvious in the next order correction that we obtained
here. Using the framework of Breban et al. (2010), the results of this paper could
be easily generalized for the case of models describing several strains with perfect
strain-transcending cross-immunity.

Two human diseases have been modeled so far using environmental transmission
terms: cholera and influenza. While it appears that there is consensus in modeling
cholera using environmental transmission, this is not the case for influenza where
most work uses direct transmission. However, according to our results based on the
parameters developed by Li et al. (2009) and Spicknall et al. (2010), the direct trans-
mission approximation fails for influenza. A large shedding rate and a low persistence

123



544 R. Breban

time of the virus in the environment causes much virus to decay before reaching sus-
ceptible individuals. Consequently, the environmental transmission model reveals less
depletion of susceptibles than its counterpart having a direct transmission mechanism.

Our findings may bring insight into recent studies revisiting the role of depletion of
susceptibles in influenza epidemiology. Theoretical studies using models with direct
transmission advocate for the importance of this phenomenon in curbing down the
epidemic and public health applications (Vardavas et al. 2007; Ballesteros et al. 2009;
Chowell et al. 2007; Handel et al. 2007). However, analyses of epidemic curves find
that depletion of susceptibles does not play the expected role in epidemic decline and
stress out the potential impact of behavior change during epidemics (Caley et al. 2008;
Goldstein et al. 2009). Our new results suggest that this discrepancy may be resolved
by using models with environmental transmission to describe influenza epidemics.

In conclusion, our work discusses environmental transmission in the case where
the persistence time of the pathogen in the environment is small. Using a paradigm
model, we established the conditions under which environmental transmission can be
approximated by direct transmission. We found that these conditions are violated for
both cholera and influenza. While the case of cholera is fairly well understood, much
remains to be investigated about human influenza viruses, given their strain diversity
and multitude of parameters driving their environmental persistence.
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Appendix

A Calculation of the direct transmissibility parameter using the slow–fast
dynamics formalism

We approach the problem through the slow–fast dynamics formalism (Fenichel 1979;
Sakamoto 1990; Berglund and Gentz 2006), a technique that belongs to the singu-
lar perturbation theory. Indeed, in the case where the persistence time of the path-
ogen is small (i.e., η is large and t is thought as a slow time), V is a fast variable
(i.e., |dV/dt | = O(η)) while S and I are slow variables (i.e., |d S/dt | =
O(1), |d I/dt | = O(1)). However, a direct approach using 1/η as the only small
parameter does not provide the expected outcome: V vanishes in the zeroth order in
1/η [c.f., Eq. (3)] and the resulting slow system has only a disease free state and no
epidemic threshold.

For pathogen to remain present in the environment when its decay rate is large
(i.e., η � 1) and the number of shedders is small (i.e., I = O(1) during disease
invasion), we must also have that shedding rates are large; i.e., ω/η = O(1). Hence,
the slow system associated to our model is given by

d S/dt = π − μS − ρS f (Ṽ (I )), (23)

d I/dt = ρS f (Ṽ (I )) − (μ + γ )I, (24)
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where

Ṽ (I ) ≡ (ω/η)I. (25)

defines the plane (S, I, Ṽ (I )) as a stable slow manifold. A well-established theorem
ensures that the dynamics of a slow–fast dynamical system having a stable slow man-
ifold converges to the manifold (Fenichel 1979; Sakamoto 1990; Berglund and Gentz
2006). Furthermore, the system is dimensionally reduced (as a first order approxima-
tion) to its corresponding slow system evolving within the slow manifold. Applying
these results to our model, we have that Eqs. (23), (24) and (25) provide an approxi-
mation of our original model given by Eqs. (1)–(3) once t � 1/η.

The incidence term ρS f (Ṽ (I )) can be further rewritten using the approximation
f (Ṽ (I )) ≈ f ′(0)Ṽ (I ) (Properties 1 and 3) since η is large and thus Ṽ (I ) is small.
We obtain

ρS f (Ṽ (I )) ≈ [ρω f ′(0)/η]SI, (26)

which represents a direct transmission term with transmissibility β = ρω f ′(0)/η.
Hence, in the slow system, environmental transmission is approximated by a direct
transmission mechanism.

References

Anderson RM, Donnelly CA, Ferguson NM, Woolhouse ME, Watt CJ, Udy HJ, MaWhinney S,
Dunstan SP, Southwood TR, Wilesmith JW, Ryan JB, Hoinville LJ, Hillerton JE, Austin AR, Wells
GA (1996) Transmission dynamics and epidemiology of BSE in British cattle. Nature 382(6594):
779–788

Ballesteros S, Vergu E, Cazelles B (2009) Influenza A gradual and epochal evolution: insights from simple
models. PLoS One 4(10):e7426

Berglund N, Gentz B (2006) Noise-induced phenomena in slow–fast dynamical systems: a sample-paths
approach. Springer, Berlin

Blanchong JA, Samuel MD, Goldberg DR, Shadduck DJ, Lehr MA (2006) Persistence of pasteurella multo-
cida in wetlands following avian cholera outbreaks. J Wildl Dis 42(1):33–39

Breban R, Drake J, Rohani P (2010) A general multi-strain model with environmental transmission: invasion
conditions for the disease-free and endemic states. J Theor Biol 264(3):729–736

Breban R, Drake JM, Stallknecht DE, Rohani P (2009) The role of environmental transmission in recurrent
avian influenza epidemics. PLoS Comput Biol 5(4):e1000346

Caley P, Philp DJ, McCracken K (2008) Quantifying social distancing arising from pandemic influenza.
J R Soc Interface 5(23):631–639

Chowell G, Nishiura H, Bettencourt LMA (2007) Comparative estimation of the reproduction number for
pandemic influenza from daily case notification data. J R Soc Interface 4(12):155–166

Codeço C (2001) Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect
Dis 1(1):1

Codeço C, Lele S, Pascual M, Bouma M, Ko A (2008) A stochastic model for ecological systems with
strong nonlinear response to environmental drivers: application to two water-borne diseases. J R Soc
Interface 5(19):247–252

Dennis B (1989) Allee effects: population growth, critical density, and the chance of extinction. Nat Resour
Model 3(4):481–538

D’Souza DH, Sair A, Williams K, Papafragkou E, Jean J, Moore C, Jaykus L (2006) Persistence of
caliciviruses on environmental surfaces and their transfer to food. Int J Food Microbiol 108(1):84–91

Fenichel N (1979) Geometric singular perturbation theory for ordinary differential equations. J Differ Equ
31(1):53–98

123



546 R. Breban

Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J (2001) The natural history of Hendra and Nipah
viruses. Microbes Infect 3(4):307–314

Goldstein E, Dushoff J, Ma J, Plotkin JB, Earn DJD, Lipsitch M (2009) Reconstructing influenza incidence
by deconvolution of daily mortality time series. Proc Natl Acad Sci USA 106(51):21825–21829

Gralton J, Tovey E, McLaws ML, Rawlinson WD (2011) The role of particle size in aerosolised pathogen
transmission: a review. J Infect 62(1):1–13

Handel A, Longini IM, Antia R (2007) What is the best control strategy for multiple infectious disease
outbreaks? Proc R Soc B 274(1611):833–837

Henning J, Meers J, Davies PR, Morris RS (2005) Survival of rabbit haemorrhagic disease virus (RHDV)
in the environment. Epidemiol Infect 133(4):719–730

Jensen M, Faruque SM, Mekalanos JJ, Levin B (2006) Modeling the role of bacteriophage in the control
of cholera outbreaks. Proc Natl Acad Sci USA 103(12):4652

King AA, Ionides EL, Pascual M, Bouma MJ (2008) Inapparent infections and cholera dynamics. Nature
454(7206):877–880

Li S, Eisenberg J, Spicknall I, Koopman J (2009) Dynamics and control of infections transmitted from
person to person through the environment. Am J Epidemiol 170(2):257–265

Miller MW, Hobbs NT, Tavener SJ (2006) Dynamics of prion disease transmission in mule deer. Ecol Appl
16(6):2208–2214

Pascual M, Bouma M, Dobson A (2002) Cholera and climate: revisiting the quantitative evidence. Microbes
Infect 4(2):237–245

Pepper IL, Rusin P, Quintanar DR, Haney C, Josephson KL, Gerba CP (2004) Tracking the concentration
of heterotrophic plate count bacteria from the source to the consumer’s tap. Int J Food Microbiol
92(3):289–295

Reynolds KA, Watt PM, Boone SA, Gerba CP (2005) Occurrence of bacteria and biochemical markers on
public surfaces. Int J Environ Heal R 15(3):225–234

Roche B, Lebarbenchon C, Gauthier-Clerc M, Chang CM, Thomas F, Renaud F,Werf S, van der Guégan JF
(2009) Water-borne transmission drives avian influenza dynamics in wild birds: the case of the
2005–2006 epidemics in the Camargue area. Infect Genet Evol 9(5):800–805

Rohani P, Breban R, Stallknecht DE, Drake JM (2009) Environmental transmission of low pathogenic-
ity avian influenza viruses and its implications for pathogen invasion. Proc Natl Acad Sci USA
106(25):10365–10369

Roper MH, Vandelaer JH, Gasse FL (2007) Maternal and neonatal tetanus. Lancet 370(9603):1947–1959
Rusin P, Orosz-Coughlin P, Gerba C (1998) Reduction of faecal coliform, coliform and heterotrophic plate

count bacteria in the household kitchen and bathroom by disinfection with hypochlorite cleaners.
J Appl Microbiol 85(5):819–828

Sakamoto K (1990) Invariant manifolds in singular perturbation problems for ordinary differential
equations. P Roy Soc Edinb A 116(1–2):45–78

Spicknall IH, Koopman JS, Nicas M, Pujol JM, Li S, Eisenberg JNS (2010) Informing optimal environmen-
tal influenza interventions: how the host, agent, and environment alter dominant routes of transmission.
PLoS Comput Biol 6(10):e1000969

Vardavas R, Breban R, Blower S (2007) Can influenza epidemics be prevented by voluntary vaccination?
PLoS Comput Biol 3(5):e85

Webb CT, Brooks CP, Gage KL, Antolin MF (2006) Classic flea-borne transmission does not drive plague
epizootics in prairie dogs. Proc Natl Acad Sci USA 103(16):6236–6241

Xiao Y, Bowers RG, Clancy D, French NP (2007) Dynamics of infection with multiple transmission
mechanisms in unmanaged/managed animal populations. Theor Popul Biol 71(4):408–423

123


	Role of environmental persistence in pathogen transmission: a mathematical modeling approach
	Abstract
	1 Introduction
	2 Model description
	3 Model equilibria and epidemic threshold
	4 The limit of low persistence times
	4.1 Discussion of the correction terms
	4.2 Validity conditions for the direct transmission approximation
	4.3 Numerical illustration of analytic results

	5 Discussion and conclusions
	Acknowledgments
	Appendix
	A Calculation of the direct transmissibility parameter using the slow--fast dynamics formalism
	References


