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Abstract The decoupled sites representation (DSR) is a theoretical instrument
which allows to regard complex pH titration curves of biomolecules with several
interacting proton binding sites as composition of isolated, non-interacting sites, each
with a standard Henderson—Hasselbalch titration curve. In this work, we present the
mathematical framework in which the DSR is embedded and give mathematical proofs
for several statements in the periphery of the DSR. These proofs also identify excep-
tions. To apply the DSR to any molecule, it is necessary to extend the set of binding
energies from R to a stripe within C. An important observation in this context is that
even positive interaction energies (repulsion) between the binding sites will not guar-
antee real binding energies in the decoupled system, at least if the molecule has more
than four proton binding sites. Moreover, we show that for a given overall titration
curve it is not only possible to find a corresponding system with an interaction energy
of zero but with any arbitrary fix interaction energy. This result also effects practical
work as it shows that for any given titration curve, there is an infinite number of cor-
responding hypothetical molecules. Furthermore, this implies that—using a common
definition of cooperative binding on the level of interaction energies—a meaningful
measure of cooperativity between the binding sites cannot be defined solely on the
basis of the overall titration. Consequently, all measures of cooperativity based on
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the overall binding curve do not measure the type of cooperativity commonly defined
on the basis of interaction energies. Understanding the DSR mathematically provides
the basis of transferring the DSR to biomolecules with different types of interacting
ligands, such as protons and electrons, which play an important role within electron
transport chains like in photosynthesis.

Keywords Decoupled sites representation - Protonation - Binding polynomial -
Interaction energy - Binding energy - Ligand binding

Mathematics Subject Classification (2010) 08B99 - 92E99 - 26C05 - 26C15

1 Introduction

The investigation of pH-dependent average binding of protons to binding sites of a mol-
ecule in equilibrium is a classical field of chemistry. Proton binding equilibria are a key
for understanding biological molecular mechanisms since proton binding leads also to
achange of the charge distribution. Thus, it can affect the catalytic center of an enzyme,
the affinity to the substrate (or to another type of ligand), and the tertiary structure of
macromolecules such as proteins and nucleic acids (Garcia-Moreno 1995). Moreover,
electron or proton transport chains in oxidation processes and photosynthesis can be
described by binding properties of the carrier proteins (Becker et al. 2007; Medvedev
and Stuchebrukhov 2006; Till et al. 2008). Certainly, the mathematical description of
titration curves of individual sites of macromolecules is much more complicated than
that of small molecules with only one binding site. The more complicated shape of the
titration curve of macromolecules is a result of interaction between the different sites
(Bombarda and Ullmann 2010; Onufriev and Ullmann 2004; Tanford and Kirkwood
1957). This interaction can lead to titration curves exhibiting strong deviations from
the classical Henderson—Hasselbalch (HH) curves (Ackers et al. 1983; Bashford and
Karplus 1991; Bombarda and Ullmann 2010; Onufriev and Ullmann 2004) given by

10PKa—pH
T 1+ 10PKa—pH

ey

(x

Thus, Eq. (1) has to be generalized adequately. Since the numerator and the denomi-
nator are polynomial functions of the ligand activity (of degree one), a generalization
leads to the concept of binding polynomials (bp) of degree n describing the overall
titration properties of a molecule with n proton binding sites (Cantor and Schim-
mel 1980; Schellman 1975; Wyman and Gill 1990). The decoupled sites representa-
tion (DSR) was developed to connect macroscopic and microscopic titration behavior
and to find an easy expression for the complex shape of microscopic titration curves
(Onufriev et al. 2001; Onufriev and Ullmann 2004). The main result is that for any
given macromolecule with n proton binding sites and interaction between theses sites,
there exists a molecule with n binding sites with the same binding polynomial but
without intrinsic interaction. Note that the “existence” refers to the mathematical
point of view, in terms of a tuple of n binding energies and not in terms of a certain
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A mathematical view of the DSR 479

chemical structure. Even though Onufriev et al. (2001) described how to calculate
the corresponding decoupled system, the mathematical structure of the problem was
not investigated deeply. This lack hampered further progress such as transferring the
DSR to macromolecules with different types of ligands (e.g. protons and electrons).
We close this gap by investigating the mapping of binding energies and interaction
energies of a molecule to its binding polynomial. This mapping shows that all mole-
cules sharing the same binding polynomial are elements of an algebraic variety. Due
to the special structure of the equations defining the sub-variety consisting of the mol-
ecule without interaction, no methods of algebraic geometry are required to prove the
existence' and uniqueness® of the decoupled system. We show that the DSR can be
generalized. For a given binding polynomial, it is not only possible to find a system
without interaction with this binding polynomial, but it is possible to find systems with
any interaction energy t with the same binding polynomial as long as the interaction
energy is the same between all sites. We call this extension of the theory the general-
ized DSR, which states that the DSR is not a special result of the “lack of interaction”,
but a consequence of identical interaction energies. Moreover, this implies that—using
the common definition of cooperative binding on the level of interaction energies—a
meaningful measure for cooperativity cannot only be based on the data provided by
the overall titration curve.

2 Basics of proton binding
2.1 Molecules with several proton binding sites

Let us regard a certain type of (bio)molecule M with n proton binding sites. The
proton binding properties of the molecule can be characterized by n binding energies
GM ..., G,’:4 and @ pairwise interaction energies le‘j’z, el WLMH, R W%Ln,
where W% is the interaction energy of the ith and jth proton binding site. As titration
properties are determined by these energies, every other system of proton binding sites
with identical binding and interaction energies is regarded as equal to M, as the aver-
age overall titration as well as the titration curve of every individual site are identical.
Thus, every molecule can be identified with at least one element
2 .

MeR (2)

(We will show later that it is necessary to extend the domain of energies from R to
a stripe within C.) Moreover, there is no natural order of the binding sites within a
molecule. Thus, one has to notice that one and the same molecule can be identified
with several tuples which is illustrated by Example 1.

Example 1 Letn = 3. Then the tuple

(G1,G2,G3, Wi, Wi3, Wa3)=(1,2,3,1,2,3)

I' 1o prove the existence means to show that the corresponding variety is not the empty set.

2 The decoupled system is unique with respect to an equivalence relation.
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480 J. W. R. Martini, G. Matthias Ullmann

and
(G1,G2,G3, Wi, W13, Wa3)=(2,3,1,3,1,2)

belong to the same molecule.

This is a result of the disorderliness of the binding sites: One can number the binding
sites in any order. However, it is important that the interaction energies are permuted
accordingly. This property motivates the definition of an equivalence relation.

Definition 1 Let

a= (G4 Gs, ...Go .. W )

cn—1.n

and

n(n+1)

b=(G}. G5 ..Gh .. W yeR 2.

Then a is equivalent to b (Notation: a ~ b) if and only if there exists a permutation
o of (1, ..., n) such that

b b b b b b
a= (Ga(l)’ GU(Z)’ co Go(n)’ Wo(l),U(Z)’ Wa(l),a(S)’ AR Wa(n—l),a(n))‘ (&)
This means that every molecule can be identified with exactly one element
m
Me “/ 4)
with m =
Having defined the set of molecules or more general systems, we investigate how an

element M is mapped to its bp, which is an element of R[A] (the polynomial ring in
one variable A and coefficients in R).

nn+1)
—s -

2.2 The binding polynomial

The bp of a molecule M is defined by

(M) := > exp(—BGH)A'® (5)
keK

where k is a microstate and K is the set of all microstates? (Schellman 1975; Wyman
and Gill 1990). A microstate k = (xf, ..., x¥) is an n-Tupel with x € {0, 1} describ-

ing the protonation state of the molecule by

x{‘ =1 <= thei th binding site is protonated in microstate k.

3 The cardinality of K is givenby #K = 2", if each site can exist in two states: protonated and deprotonated.
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A mathematical view of the DSR 481

Moreover,
n
1(k) := fo, (6)
i=1

G* is the standard Gibbs free energy of microstate k, 8 € R is constant (depending on
the temperature which is assumed constant) and A is the variable of the polynomial
(Schellman 1975; Wyman and Gill 1990). For the sake of simplicity, in this work, we
set B := 1, abandon all units and define

n n n
GF = "xkGi+ D> bk, 7)
i=1 i=1 j>i

where G; denotes free binding energy of site i if all other sites are unoccupied (compare

Onufriev et al. 2001; Schellman 1975; Wyman and Gill 1990).
With these simplifications Eq. (5) rewrites

o(M) = > | T] [ exp(—xfGM) [ exp—xfxbwy | A0 ] )

kek | i=1 i<j

We see here that the map

o: RV, R[A]
M — &(M)

can be factored into & = ¥, o & with

m +"l
D L — R ~

(G1,...Gpy .. Wy_10) = (exp(—=G1), ...,exp(—=Gy),...exp(=Wy—1.4)) (9)

and

Dy T L — R[A]
TIPSR TR 3 | § § P8 § P P BT
kek | i=1 i<j
As notation we use
(8152 8ns oo s Wy—1.0) == DP1(Gr,...Gpu,y .. . W1 n)
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482 J. W. R. Martini, G. Matthias Ullmann

to indicate that we are considering the image of ®. Additionally, we call
exp(—G;) and exp(—W; ;)

binding and interaction constant to underline that these values are not energies. More-
over, R[A] denotes the polynomial ring in the variable A and coefficients in R. Note
that ®; is well defined as

a~b< di(a) ~ D1(b).

@, being a bijection, we can work with its image values—that is every molecule M is

described by (g{” ey g,ﬁ” s w,i”_ 1.»)—and concentrate on the investigation of ®;:

The map is well defined as for two representatives of the same equivalence class
a~b= ®y(a) = O2(b).

Moreover, we can rewrite ®, without using microstates k € K but with focus on the
coefficients of ®(M):

Do(g1. .. Wp—1,1)

=H gini,j An+z H gi H wj, j A1
ieN

i<j PEN | ieN,i#p i<j,j#p

+ > I s 1 wl|a=2++> aa+1 an

(p1.p2)eN? PIF#I#D2 i<j ieN
PI#D2 PIFj#P2

with N := {1, .. .n}. Thus, &> maps a system of several interacting protonation sites
to its bp which determines the overall titration curve (Corollary 1).

2.3 Titration curves of a certain site and of overall proton binding

Let M = (g1,..., 8 Win, .., Wn—1,,) be a molecule. Moreover, let gk denote the
free energy of a microstate k € K

k k .k
k. H i H i
g = gl.’ wi’j

ieN i<j
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Then the average protonation of site i is given by

_Zi(M)
(M)

(xi) 12)

with

ZiMy= D, AW
{keK|xk=1}

= &i H EmWm,i H W, j A"

meN j#i
m#£i m<j

+ei > | T |gmwmi [T wms || A"+ +gia, (13)

peN menN i#j#p
p#i | pFEmMFE m<j

and @ (M) denoting the bp of the molecule. Equation (13) means that only those micro-
states in which site i is protonated define the polynomial Z; (M) (Cantor and Schimmel
1980; Onufriev et al. 2001; Schellman 1975; Wyman and Gill 1990). Consequently,
the overall titration curve has the shape

_ Z?:l Zi (M)
() = =S
(M)

(14)
Proposition 1 Let M be a molecule with
D(M) = an A" + ap A" Fan oA 4 ag A+ L

Then its overall titration curve is given by

nap A" + (n — Dap_1 A"+ (n — a2 A" 24 +a A
(M) '

Proof The p-th coefficient a;, of P(A) is given by

ap = Z gk.

{keK|I(k)=p}

We compare it to the p-th coefficient a;, of Z; which is
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Thus, every g* with [(k) = p is summand of p coefficients a;. Consequently,

n
Sd=r > d=ra
i=1

{keK|l(k)=p}

Corollary 1 The overall titration curve is determined by the bp.

Proof This is a direct consequence of Proposition 1. O

3 The decoupled sites representation
3.1 The extension of the domain of energies

Onufriev et al. (2001) presented the main result of the DSR, saying that for every
molecule M = (g{”, e, wrll"l_l’n) there exists exactly one system L = (glL, e, g,f,
1,...,1) such that

P2 (M) = Pa(L).

However, it is possible that this might require the use of complex energies with a
non-zero imaginary part which is illustrated by Example 2.

Example 2 Let M be a molecule with two interacting protonation sites and
g, g wih) = (1,1,2).

Another molecule L = (glL, gZL, 1) with the same bp solves, according to Eq. (11),
the system

gtk =gl et wl, =2
btk =gl +e =2

Solving these equations gives the unique solution L = (gF, gk, 1) = (1+i,1—i, 1)
which is equal to (1 — i, 1 47, 1) as we are dealing with equivalence classes.

This statement can easily be generalized to all molecules with two (or more) binding
sites:

Lemma 1 A molecule described by (g1, g2, w1,2) € R+3 requires the use of complex

binding constants with a non-zero imaginary part to be presented as decoupled system
if and only if

(g1 +82)% < dg1g2w1 2.
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A mathematical view of the DSR 485

Proof

(g1, g2, w1.2) = g1g2wi 2 A% + (g1 + g2)A + 1

A system (d, e, 1) without interaction has to solve the equations:

de = gi1gowi 2
d+e=g +g.

Thus, d has to solve
d* — (g1 + g2)d + g1gowi 2 =0

which shows that d ¢ R if and only if

(g1 +82)% < dg1g2w1 2. (15)
o

This example shows that if the DSR shall be valid for all molecules, it is necessary
to allow g;, w; ; € C\{0} =: C*. This set would be appropriate as it guarantees the
existence of a decoupled system with the same bp, and additional bps with coefficients
in C\R do not have to be considered. However, complex numbers with imaginary part
iy # 0 pose a problem for physical interpretation as it might not be regarded as bind-
ing “energy”. A discussion of this phenomenon can be found in Sect. 6.

The following corollary illustrates that complex binding energies with non-zero imag-
inary part are an indicator for negative interaction energies in the original molecule in
the case of two binding sites.

Corollary 2 Let (g1, g2, wi2) € RT3 be a molecule with two ligand binding sites
and interaction constant wi > < 1. Then the binding constants of the corresponding
decoupled system are real.

Proof
wia < 1= gl + Q2 —4win)gig+ 85 > (31— 2)* = 0.
This implies
(g1 + £2)* = 4g182w12

which proves the statement due to Lemma 1. O

Remark 1 Numerical analysis in the work of Onufriev et al. (2001) led to the con-
jecture that repulsion (w; ; < 1 Vi, j) is sufficient for the binding energies of the
corresponding decoupled system to be real. For the case of two binding sites this
statement was shown in Corollary 2. However, this assumption is not always true:
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486 J. W. R. Martini, G. Matthias Ullmann

Example 3 Let us regard the molecule

D1 (M) = (g1, 82, 83> 845 85> W1,2, W] 3, W] 4, W] 5, W2 3, W2 4, WD 5, W3 4, W3 5, W4 5)
1023 1023 1 1023 1023 1 1 1 1 1 )

=12.2,222, , ; ; ) , ; , ; ;
( 1024° 1024 1024 1024 1024 1024 1024 1024 1024 1024

with positive interaction energies (repulsion). However, its bp has two complex roots
with non-zero imaginary part which can be shown easily by an investigation of its
extremes. This example demonstrates that even if repulsion is assumed decoupling
can require the use of complex binding constants (see Corollary 4).

Having illustrated the importance of an extended domain of energies, we have to
adapt the definitions. In Eq. (10) the domain and image space of the map &, has to
be changed to

o : C L — CIA] (16)
where the definition of the equivalence relation “ ~ ” in Eq. (3) is not affected. How-

ever, one has to think about the appropriate domain of ®;. As exp : C —> C* is not
bijective it is necessary to change expression (9) to

D" *M
D T — T 17
with D := {x +iy|x € R,y € [-m, w[} C C. Consequently, Eq. (4) rewrites
me Pr. (18)

To simplify notation we will use
D:= D?N and H := C*/N.

3.2 The decoupled sites representation

With this framework we can express the DSR as proposition.

Proposition 2 (The decoupled sites representation)
Let M = (g{”, e, g%, e, wflw_l 2) € H be a molecule. Then there exists a unique

system L = (glL, ...,gﬁ, 1,...,1) € H such that
D2 (M) = P2(L).
The proof of Proposition 2 is based on the properties of ®,. The argumentation is the

following: We define O, := {(g1, g2, ..., &n, 1, ..., 1) € H}, the set of all molecules
without interaction, and show that ®; is injective on O,,. Moreover, we show that
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A mathematical view of the DSR 487

D2(0p) = P (H) =: Im(P2),

i.e., the image set of the restriction is still the same. This means that for every M € H
there exists at least one element L € O, with

Dy (M) = Oy (L).
Moreover, this means that
D50, : 0p — Im(®5)

is also surjective to Im(®,), thus bijective and consequently there exists an inverse
map

@)y, : Im(®2) —> O,
This gives
L= q>5,10n o &y (M). (19)

Bijectivity of &, ¢, guarantees existence of the inverse map and thus uniqueness of
L. In the following, we will explain every statement required for the proof of Propo-
sition 2 in detail. However before, we will analyze the properties of the unrestricted
map 5. Let

Pi(A) = ap A" + an i AV 4+ 1 e Im(dn)

be a polynomial. ®; is not injective as every preimage p of P;(A) has to fulfill a
system of n equations, given by ay, . . ., a,, with @ = m variables represented by
the binding and interaction constants (see Eq. 11). This system of equations describes
an affine algebraic variety of dimension larger than 0. Thus, a solution solving all
equations simultaneously is not unique. However, if the domain is reduced by fixing
some variables, a restriction of ®, allows a one-to-one identification between Im(®P»)
and the restricted domain. If all w; ; are fixed, for example w; ; = 1Vi, j € N, which
means reducing the domain to O,, the system of equations which has to be solved is
reduced to:

an=[le ar=2leir a1=2 e (20)

ieN keN ieN keN
i#k

This new system (20) consists of n non-linear equations with n variables {g; }icn, and
shows a certain type of symmetry since the role of g; does not depend on i.

Remark 2 A solution p € C*" to system (20) can be regarded as an element of H by
extending it to
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488 J. W. R. Martini, G. Matthias Ullmann

C* x(1,...,1
g1,...ngn1,.... 1) € ————— = Op.

This means solving system (20) equals finding a preimage of Pi(A) w.r.t. @3 o, .

A lot of important statements about properties of ®; ¢, including the results required
for the proof of Proposition 2 are a consequence of the following essential consider-
ation: The Fundamental Theorem of algebra allows to define the map

O3 Im(dy) — O,

from a polynomial to its roots. It is well defined due to the equivalence relation of O,,.
As the set Im(®») is “normed* by ap = 1, ®3 is bijective with inverse map

;' 0, — Im(®)
n n
_ 1
<I>31(g1,...,gn,1,...,1)=H(A—g,-)-1'[(—z). 1)
i=1 i=1 !

n

1
The factor H (— —) is required to ensure ag = +1. Moreover, we define the bijec-
8i

i=1
tive function

d4: 0, — O,

1 1
Da(gr, oo nns .., ) =(——,..,—, 1,..., . (22)
81 8n

Lemma2 &, o, = <I>3_1 o ®y.

Proof Calculating ¢;10®4(g1, ooy 8ny L., 1) givesEq. (11) withw; ; =1 Vi, j.
O

Actually, this lemma is sufficient to prove Proposition 2, due to the following corollary.
However, we will highlight the important facts once more.

Corollary 3 &, o, is bijective.

Proof As ®3 0, = @5 Lo @y, itisa composition of two bijective maps and conse-
quently bijective. O

Corollary 4 Let P(A) := ap A" + a1 A"V + ...+ 1 € Im(Pr) be a polynomial
andlet S = (g1,...,8n, 1,..., 1) bein O,. Then

P2(S) = P(A)
— (23)

(—gil, e —gln) is a permutation of the roots (with multiplicity) of P(A).
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PrOOf (DZ,On = CD;I o CD4 — @3 (¢} q)z’on = q>4 O
Corollary 5 @, ¢, (0,) = Im(®3).

Proof Every polynomial P(A) € Im(®,) has nroots Ay, ..., A, (with multiplicity).
1

According to Corollary 4 (—Al], v —a0 LD is a preimage in O,. O
Proof (of Proposition 2) The proof of Proposition 2 follows from the previous results,
as already described. O

Remark 3 The use of the Fundamental Theorem of algebra for the definition of @3
was permitted by the extension of the set of constants. Note that the statements of
Lemma 2 and Corollary 3 are sufficient to prove Proposition 2. However, Corollary 4
is a useful tool we would like to highlight. Moreover, note that this presented proof
includes the argumentation for the proof of Vieta’s formulas, which could also be used
directly to deduce Corollary 4 and also to prove the DSR.

An important point is that the existence of a unique non-interacting system for every
bp is not a result of the lack of interaction, but of the reduced number of variables in
the system of equations (20). This means for every other fixed value of w; ; =t Vi, j
there is a system with identical bp. This statement is a generalization of the DSR.

Proposition 3 (Generalized DSR)

Let M = (g{”, e, g,/l"’, o wé‘”_l ,) € H be a molecule. Then V¢ € C* there exists
a unique system L = (glL, g,]; t,...,t) € Hsuch that

Dy (M) = Oy (L).

Proof Wedefine O, (t) :={(g1, ..., &n»---» Wp—1,0) € Hw; j =1 Vi, j } the setof
all molecules with interaction constants w; ; = ¢. Furthermore, we define the bijective
map

D5, : Im(Py) — Im(Py)
s (@ A" + ap A" 4 @A Far A+ 1)

nn—1) (n—1)(n—-2)
=t 2 a,AN"+1t

a1 A"Vt AP+ oA+ 1. (24)
Thus, we receive for the restriction ®; ¢, ) of @2 on O, (1):
D 0,0) = P51 0 <D3_1 o 4. (25)

The rest of the argumentation is analogue to the proof of Proposition 2. O

Remark 4 The generalized DSR described in Proposition 3 is a generalization of the
DSR to any value ¢ of all interaction constants w;, ;. However, all interaction constants
are fixed to the same value. A further generalization to any value of (wy 2, w1 3,...) =
(t1,12,...) with t; # t; is also possible but the proof of Proposition 3 can not be
transferred directly, as the equivalence relation on the set leads to impermutability
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490 J. W. R. Martini, G. Matthias Ullmann

of the roots of the polynomial. This means the order of the roots is important, and
it is not possible to factor out a power of ¢ which is used to define ®5;. As fixing
(w12, w13,...) = (t1, 12, ...) leads to a system of n equations and n variables one
might assume that the existence of a solution is obvious, however this is not clear as
the system does not consist of linear equations. Instead methods of algebraic geometry
have to be used. We will present a proof for the case n = 3 later.

4 Special considerations of the case n = 2

At first we will give an example for Proposition 3 for n = 2.

Example 4 Let M be a molecule with two interacting binding sites described by
D (M) = (a, b, c). Then there exists a system (d, e, 4) with the same bp

@, (a, b, ¢) = abcA* + (a + b)A + 1.
A system (d, e, 4) with the same bp has to solve the equations:

dde = abc
d+e=a+b

Thus, d has to solve

b
dz—(a+b)d+%:o.

For example, the system (a, b, ¢) = (1, 1, 2) shares its bp
P(A) =2A7 +2A +1

with the system (1 + «/Li’ 1-— \/LE’ 4).
Another possibility to receive this result is using Eq. (25) to see:

®y(a,b,¢) = Ba(d, e, 1) = 5, 0 D3 0 Du(d, e, 1)
which gives for t = 4 and (a, b,c) = (1, 1, 2)
Dy o @300 da(1,1,2) = (d, e, 4).

Moreover, it is not only possible to fix w2 but a certain constant g; to find a unique
solution.

Proposition 4 Let &1 (M) = (a, b, 1) be a system without intrinsic interaction. Then
for every d € C*\{a + b} there exists a system L = (d,a + b — d, d(aj:+d)) which
has the same bp. Moreover, all systems sharing the same bp are of this shape.
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Proof Calculating the bp of L proves the first result. The argumentation to prove the
second statement is the following: Let L be a molecule possessing the same bp, then
L has to solve the following equations:

g{‘ gé‘ wf , =ab
gh+gh =a+b.
Defining d := gf‘ proves the second result. O
Remark 5 Note that in Proposition 4 it is not possible to find a system

ab
L=Wa+b—d —2
(da+ datb—d)

if
d=a-+b,
as this leads to a division by zero. Moreover, there is no ¢ € C such that

ed=0=a+b—d.

4.1 Average protonation curves of individual sites

In the following, we will dedicate our attention to the average protonation (x;) of every
site x; in the case of two binding sites. Let ®1(M) = (a, b, ¢) be a molecule with two
proton binding site. According to Sect. 2, the average protonation curves of site A and
B are given by

abcA? + aA
(xa) = 3
abcA“+ (a+b)A + 1
abcA? + bA
(xB)

ZabcAz—l—(a—i-b)A—i-l'

Onufriev et al. (2001) derived that it is always possible to represent every titration
curve of a certain site as convex combination of the HH titration curves of the sites
of the corresponding decoupled system. We will give a proof for this being true for
nearly every case. However, this proof identifies exceptions, too.

Proposition 5 Let (M) = (a, b, 1) be a system without intrinsic interaction with
a # b and let (x;) denote the average protonation of site i € {A, B}. Moreover, let
®(L)=(d,a+b—d, Wl];d)) be another system with the same bp (d # a+b) and

let j € {D, E} denote the binding sites of L. Then there exists a unique t = (%) eC
such that

(xp) =t{xa) + (1 = 1)(xp) (26)
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and
(xg) = (1 = 1){xa) +1{xp). 27

Proof The average protonation of the sites of system M can be written as

abA? + aA
(xa) = 5
abA2 + (a + b)A + 1
abA? + bA
(xB)

T abA+ (a+ DA+ 1

As the systems have the same bp the corresponding titration curves of the second
system can be written as:

xp) abA? +dA

X =

Pl abA2 4+ (a + D)A + 1

) abA* + (a+b—d)A
£) =

T abA2 4 (a+bh)A+1

Consequently, for 1 = % the equalities (26) and (27) hold. Conversely, let 7 solve

(26) and (27) then it is of form ¢t = 21%2 and consequently unique. O

In this situation 7 is neither necessarily in [0, 1] C R, nor in R at all. This fact has to be
emphasized as it shows that ¢ can not be interpreted as a probability of protonation of
the original sites at a certain pH. The importance of the restriction a # b is highlighted
by the next example.

Example 5 Let (a, b, 1)=(2, 2, 1) be the decoupled system to (d, e, wq ) = (1, 3, %).
Then it is impossible to present (xp) as a convex combination of (x4) and (xp), as
(x4) = (xp) implies

t{xa) + (1 —0){xp) = t{xa) + (1 —1)(xa) = (xa) V1 €C
and

(xa) # (xp).
This can also be seen the following way: We look for ¢, t» € C such that
ti{xa) + t2{xp) = (xp).

In particular, this means the numerator of #{(x4) + f2(xp) equals the numerator of
(xp) and consequently ¢1, #; have to solve the equations

tyab+trab = dewg,, = ab
ha+nb=d.
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This can be rewritten

The first line means t», = 1 — ;. In the case a = b we receive det(A) = 0 which
means there is no solution if d # a and an infinite number of solutions if a = b = d,
as every (t1,1) = (t,1 —t) for any ¢ € C solves the system.

5 Special considerations of the case n=3

The next proposition generalizes Proposition 3 even further for the case of three bind-
ing sites.

Proposition 6 Ler ®1(M) = (a, b, c, 1, 1, 1) be amolecule. Then for every (t1, t2, 13)
€ C* there exists a system ©((L) = (g1, &2, &3, 11, b2, 13) such that

Pr(a,b,c,1,1,1) = da(g1, 82, 83, 11, 12, 13). (28)

Proof Equation (28) means (g1, g2, £3) is a solution to the system

fie abc = 11113818283
f: ab+ac+bc=11g18 + 108183 + 138283
f3: a+b+c=g1+g+g

We will show that a solution exists, independently of the choice of (a, b, ¢) and
(t1, 2, 13). To this end, we regard equations fi, f>, f3 as polynomials in

Clgi1. 2. 83,a,b,c,11, 2, t3].

We used the computational algebra system Magma to calculate the Grobner basis
(w.r.t. the lexicographic order: g1 > g2 > g3 >a > b > c¢ >t > th > t3) of
the corresponding ideal { f1, f2, f3). This Grobner basis consists of 11 polynomials.
The second elimination ideal is generated by the last polynomial which is of degree
six in g3 with constant term ag # O (as a, b, ¢, t1, 2, 13 # 0). This means that for
any choice of a, b, ¢, t; € C* we will find six solutions of g3 (with multiplicity). The
Extension Theorem (Cox et al. 2008, p. 165) tells us that those partial solutions can
be extended to solutions to the first elimination ideal if the leading coefficients of
the generators (regarded as polynomials in g7) of the first elimination ideal do not
all vanish at the partial solution. Looking at the second polynomial, we see that the
leading coefficient is #1. This means, in the present situation of #; # 0, all solutions
can be extended. Regarding the first polynomial of the Grobner basis shows that the
leading coefficientis 1 # 0. This means those solutions can be extended further to full
solutions of the whole system. Obviously, this leads to six simultaneous solutions of
equations f1, f2, f3 (with multiplicity). For additional information about the Grobner
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basis, the Extension and the Elimination Theorem see Cox et al. (2005, 2008). The
corresponding Magma code can be found in the appendix. O

We will give an example.

Example 6 Let &1(M) = (2, —%, 4,1,1,1) be a system without interaction. We
look for molecules ®{(L) = (d, e, f, 2, 4, 3) with the same bp and use the computer
algebra system Maxima to calculate the solutions of the system

1

—gzdef
5 =2de + 4df + 3ef
11

The six solutions are (d, e, ) €

{(5.313833028641072, —0.10698947820485, 0.29315667609982),
(4.928390901432182, 0.62565997888068, —0.054051184028884),
(0.60206626291414, 4.953815261044177, —0.055881066899869),
(0.31463862460357, —0.10021762785637, 5.285578747628083),
(—0.083397327599447, 5.199003322259136, 0.38439389576735),
(—0.075531559612602, 0.4287288758266, 5.146802325581396)}.

All molecules described by the different solutions have the same bp and the same inter-
action energies but different binding energies. Note that the precision is necessary to
see that the bps are equal.

A nice by-product of Corollary 4 is the following potential algorithm for the cal-
culation of a molecule (d, e, f, t1, t2, t3) with a given bp in a different way.

Proposition 7 Let (M) = (a,b,c, 1,1, 1) be a molecule without interaction.
Moreover, let ®1(L) = (d,e, f, 11, 2, 13) be a molecule possessing the same bp.
Then (d, e, f) is a fixed point of the following potential algorithm:

dy =1, e; =1, fi:=1

abc (ab +ac + bc
1t

15 13
difi(l— =2 -2
PR +di fi( t1)+e1f1( t1))

A+ (@a+b4c)A+ 1(Ai—1.1, Ai—1.2, Ai—13) := Roots of P;_,

d ) ( 1 1 1 )
is€i, i) = - s s .
v AN AN A

Moreover, every fixed point (h, i, j) of this potential algorithm satisfies

Pi(A) := A+

®r(a,b,c, 1,1,1) = ®a(h, i, j, 11, 12, 13).
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Proof (d, e, f) being a fixed point means that (—%, —é, —%) are the roots of

abc Ay (ab+ac+bc
13 I3
+@+b+co)A+1.

Ldf( -2y yera - t—3>) A2
I3 11

According to Corollary 4, (—5, —ZE, —%) are the roots of the polynomial
OA) :=defA+(de+df +ef)A+(d+e+ fHA+ 1.

To show that (d, e, f) is a fixed point, we have to show that P(A) = Q(A) which
means

abc
e _ def (29)
(et ar (1-2) s (1-2)) = e dr +en GO
1 1 !
(@+b+c)=d+e+f). <D

Correctness of Egs. (29)—(31) is a result of
¢2(611 b? C! 17 11 1) = ¢2(61’ e? f’ tl? t2’ [3)'

Let (h, i, j) be a fixed point. Then (—%, —%, —l.) are the roots of the corresponding
polynomial. This means (4, i, j) fulfills Eqs. (25)—(31) and consequently

@y(a,b,c, 1,1,1) = ®a(h, i, j, 11, 12, 13).

O

Remark 6 Two open questions concerning this potential algorithm are whether it
always converges to a fixed point (attraction of a solution) and which of the six pos-
sible solutions will be found. The attraction of the solution is not obvious as a small
perturbation of the coefficients may have a huge effect on the roots of the polynomial.

Example 7 We have implemented this potential algorithm using the computer algebra
system Maxima to calculate a solution of Example 6. Let &1 (M) = (2, — %, 4,1,1,1)
be a system without interaction. We look for a system ® (L) = (d, e, f, 2, 4, 3) with
the same bp. The algorithm described in Proposition 7 gives for 1000 iteration steps:

d,e, f)=(4.92839118225807, 0.62565999882172, —0.054051181079786).

This represents the second solution of Example 6.

These results draw the following picture: For a given bp P(A) and interaction con-
stants 71, 1>, t3 there are in general six different corresponding molecules possessing
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the bp P(A). If two interaction constants are equal e.g. #{ = t», the role of g, and
g3 in the system of equations given by the coefficients and the map (Eq. 11) is iden-
tical. This means if (g1, g2, g3, w1, w2, w3) = (d, e, f, 11, 11, t3) is a solution, then
, f.e, 11,1, 13) is a solution, too. Due to the equivalence relation (Eq. 3) both solu-
tions are equivalent which means that there are not more than three different solutions.
In the case of #; = #, = t3 all solutions coincide, resulting in the uniqueness of the
solution which is the statement of the (generalized) DSR.

5.1 Average protonation curves of individual sites
The next step is to investigate whether Proposition 5 can be extended to the situation
of three binding sites. We show that this is possible in a certain way. Let there be

two molecules L = (a,b,c,1,1,1) and M = (d, e, f, w1, wa, w3) € H, sharing the
same bp:

®>(L) = abcA> + (ab +ac + bo)A> + (a+ b+ c)A + 1.

Let A, B, C, D, E, F denote the corresponding binding sites. The average protonation
of sites A, B, C are described by

abe A3 + (ab 4+ ac)A? +aA + 1

(xa) = o> (L) (32)
3 2
(xg) = abcA” + (ab+bc) A" +bA + 1 (33)
Dy (L)
. abeA3 + (ac +be) A2 +cA + 1
(xc) = ®2(L) (34)

We look for ¢4 1, t4,2, t4,3 such that
(xp) =tag1{xa) + ta2(xp) + ta3(xc) (35)
with

_abcA® + (dew) +dfwy)A* +dA + 1
B P2(L) '

(xp) (36)

Equality of the numerators means (f4.1, f4.2, t4,3) has to solve the following system
of linear equations:

1 1 1 4.1 1
a b c iz | = d . 37
ab+ac ab+bc ac+ bc 143 dewy +dfw;
=A
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If det(A)# 0, the solution (#4.1, t4.2, t4,3) is unique. The same is true for (1, f¢,2, te.3)
and (7,1, 1,2, tr,3). Calculating (¢ 1, t 2, t;,3) for the situation of Example 6 shows
that the solutions are not permutations of each other. However,

thi+tei+tri=1 Vie{l 23}

For this reason, one might suggest that Proposition 5 can be generalized to the case
n=3.
Proposition 8 Let & (M) = (a,b,c,1,1,1) and ®(L) = (d,e, f, wy, w2, w3)

have the same bp. Moreover, let

1 1 1
det(A) := det a b c # 0.
ab+ac ab+bc ac+ be

Then there exists a unique matrix

g1 a2 143

T := Te1l le2 o3
tfyl tf,z tfy3
such that
(xa) (xp)
T | (xg) | =|xE)
(xc) (xF)
and

tin+tio+tiz=l=tg;+t.;+tr; Vie{l,2,3},Vjelde, [}

Proof As det(A) is assumed non-zero a unique solution to equation (37) exists. We
can rewrite equation (37)

1 1 1 td.1 1
0 bc—ac bc — ab tg3 | = | dewy +dfwy —ab —ac
bc—ab dewi+dfwy—ab—ac
0 0 c—a— "% 142 d—a—%C
This means

dc —dewy —dfwy + ab
2 —ac—bc+ab

tq2 =

The same calculation for e and f gives

ec —dew; —efws +ab
¢z —ac —bc+ab

te,2 -

@ Springer



498 J. W. R. Martini, G. Matthias Ullmann

and
fc—dfwy —efws +ab
tfo = 3 .
c*—ac—bc+ab
Thus,
tap+tep+1tpo=1.
Calculating t; 3 and ¢; 1 proves Proposition 8. O

6 Biological consequences and interpretations of the described phenomena
6.1 Complex energies and cooperativity

If the DSR shall be applicable for any possible molecule, it is necessary to extend
the set of binding energies from the real numbers R to a larger subset of C. In this
work, we found two new results in this context. First, we showed that if the decoupled
system shall be unique, the set of energies has to be restricted to D (Eq. 17). Secondly,
we showed that repulsion in the original system is not sufficient to guarantee real
binding energies in the corresponding decoupled system (Example 3). Consequently,
the question arises how complex energies can be interpreted physically. A direct phys-
ical meaning of a non-zero imaginary part of a binding energy is not obvious to us.
However, Corollary 2 shows that a non-zero imaginary part of the binding energies
of the decoupled system L implies that the interaction energy in the original sys-
tem &1 (M) = (a, b, w) is negative (w > 1). We use the term “positive-cooperative
binding” for this phenomenon, according to the following definition.

Definition 2 Let (M) = (g1, ..., &, W12, . .., Wy—1,,) be amolecule. The ligand
18 said to bind

— positive-cooperatively to sites i and j if and only if w; ; > 1.
— non-cooperatively to sites i and j if and only if w; ; = 1.
— negative-cooperatively to sites i and j if and only if w; ; < 1.

Thus, positive-cooperative binding to site i and j means that binding of the ligand
to site i increases the affinity of the ligand to site j and vice versa. This definition
is commonly used (Berg et al. 2007; Ben-Naim 2001; Ullmann and Ullmann 2011)
and is adequate to characterize biochemical regulatory mechanisms by pointing out
whether a ligand enhances or represses the binding to other sites.

In the case of two binding sites the we have the following implications: According
to Corollary 2, for a molecule ®(M) = (a, b, w) € R13 with two ligand binding
sites and non-positive-cooperative binding (w < 1) the roots of the bp, and conse-
quently the binding constants of the corresponding decoupled system will always be
real. As the bp has only real and positive coefficients, its real roots have to be negative
which means the binding constants are positive and the binding energies are real, too.
Thus, complex binding energies with non-zero imaginary part of the decoupled system
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indicate positive-cooperative binding of the ligand in the original system (Onufriev and
Ullmann 2004). Conversely, real roots of the bp do not imply non-positive cooperation
between the ligands which is illustrated by the following example.

Example 8 Let ®1(M) = (0.1, 2.9, %) be a molecule with two ligand binding sites.
The bp is given by

O(M) =A% +3A+1.

The corresponding decoupled system is (1.5+ %, 1.5— \/g , 1). Obviously, the roots
of the bp are real and the ligand binds positive-cooperatively to the molecule M.

However, it is not possible to regard truly complex binding energies of a decoupled
system in general as indicator for positive-cooperative binding of the ligands which
was illustrated in Example 3.

6.2 Consequences of the generalized DSR on the interpretation of overall titration
curves

The statement of the generalized DSR is that for any given bp and any interaction con-
stantt € C*, we can find a hypothetical molecule L with wif =t Vi, j possessing the
given bp. This is a generalization as it shows that for a given titration curve, there are
not only two systems—one with interaction and one without—sharing the same bp,
but there is an infinite number of molecules sharing the same titration curve. A major
consequence of this statement for experimental work is that using Definition 2, it is
not possible to distinguish from the overall titration curve between positive-coopera-
tive binding on one hand and negative- or non-cooperative binding on the other hand.
This also implies that it is impossible to define a meaningful measure of cooperativity
only based on the overall titration curve. Importantly, using Definition 2, a binding
curve with two-step shape does not imply non-positive-cooperative ligand binding
to the molecule which is demonstrated by the example @1 (M) = (2, 107, 103). In
the following example three systems of qualitatively different ligand binding type are
presented which share the same bp.

Example 9 The following molecules are examples of positive-, negative-, or non-
cooperative ligand binding, but share the same overall titration curve:

100
QJJwL05+JL%J5—JL%JL®LZQan

Remark 7 Note that in literature several measures of cooperativity can be found which
are only based on the overall titration curve. The most famous one is the Hill coef-
ficient. However, it is obvious that a concept of cooperativity based only on the data
provided by the overall titration curve has to differ from the presented Definition 2.
For this reason, we think the use of different terms for the types of cooperativity is nec-
essary. Moreover, we think a precise definition of the concept of cooperativity, which
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is measured by the Hill coefficient, on the level of interaction energies is required to
make this concept clear and to distinguish between both concepts.

6.3 Identified constraints of statements in the periphery of the DSR and their
physical interpretation

In Proposition 4, we showed that for a given bp
Dy(a,b, 1) =aaA> +a A + 1

and any binding constant d € C*\{a + b}, we can find a molecule ®| (M) = (d, e, w)
possessing this bp. The exception d = a + b = a; can be interpreted the following
way: If both molecules share the same bp, the equation

a+b=d+e

is valid. This means the sum of the exponential of the negative binding energies has
to be equal. Thus, if d is changed, this equation will allow to adapt e accordingly.
If d comes close to a + b and thus e close to zero, the distribution of the bind-
ing energies on the two binding sites of the corresponding molecule will become
extremely asymmetric. A small absolute value of the binding constant e has to be
compensated by a great interaction constant w. The exception d = a + b corre-
sponds to the limit case of ¢ = 0 (G, = 00) and |w| = oo (W = —o0). It can be
interpreted physically as molecule with only one ligand binding site since an infinite
amount of energy is required to bind the ligand to the second binding site. In Propo-
sition 5, we mentioned the exception that the presentation of the titration curve of an
individual site of the original molecule as linear combination of the titration curves
of the individual sites of the decoupled system will not be possible if the binding
energies of the corresponding decoupled system are identical. This means the pre-
sentation is not possible in the case of an absolutely symmetric decoupled system
(in terms of equally distributed binding energies). Analogously to the exception in
Proposition 4, this situation can be regarded as a limit case. If both binding sites
have the same individual titration curve, the linear combination will be identical for
any weight. In the following, we will investigate which properties a molecule has
to have to possess a symmetric decoupled system in the case of two binding sites.

Proposition 9 Let ©(M) = (a, b, w) be a molecule. The corresponding decoupled
system has the shape (d, d, 1) if and only if

d =0.5a 4+ 0.5b
which is equivalent to

(XD) = 05<XA> + 05()(3)
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Proof Let (a, b, w) and (d, d, 1) share the same bp ®(M). Then abw = d*a+b=
2d, and

(M) (xp) = d’ A% +dA = abwA? +0.5(a + b)A = (M) (0.5(x4) + 0.5(xg)).
Conversely, let (a, b, w) and (d, e, 1) share the same bp and let
(xp) = 0.5(xa) +0.5(xp).

Then d = 0.5a + 0.5b. As the molecules share the same bp this givesd +e =a + b
and thus d = e. O

This proposition can be generalized to molecules with three binding sites which de-
scribes the exception of Proposition 8.

7 Conclusions and outlook

In this paper, we presented the mathematical framework in which the DSR is embed-
ded and which allowed to prove its consistence with standard binding theory (Propo-
sition 2). However, to use it as a “general law” we showed that it is necessary to extend
the set of binding energies from R to a larger subset of C (Lemma 1). We found that,
contradictorily to a former conjecture, repulsion (w; ; < 1 Vi, j) of the ligands is not
sufficient to guarantee real roots of the binding polynomial. This was illustrated by
Example 3. Moreover, we showed that the DSR is the result of the special structure of
a system of polynomial equations with the binding energies of the decoupled system
as variables and generalized its statement (Proposition 3). The fact that for any given
tuple (z,...,t) € C** of interaction constants and any bp there exists a molecule
with these interaction constants and this bp shows that it is absolutely impossible to
deduce the binding or interaction energies unambiguously from a given overall titra-
tion curve (Propositions 3 and 6). Moreover, our discussion underlines that the term
cooperativity is used for different concepts in literature. Using a common definition
of cooperativity, it is impossible to define a meaningful measure based only on the
overall titration curve. We consider the mathematical nature of the set H derived from
C™ and the equivalence relation “~” as well as the connection to the polynomial ring
C[A] to be of interest for further investigation. The maps within the polynomial ring
and within H turned out to be a useful tool to calculate molecules sharing the same
bp (Eq. 25). However, the next major step would be to use methods from algebraic
geometry to transfer the DSR to bps in C[A, A2] which describe the binding behavior
of molecules with different types of ligands such as protons and electrons. This topic
is of large interest as proteins of electron transport chains or photosynthesis are often
located in membranes with pH-gradient. Applying the DSR to those molecules might
help understanding the biophysical nature of these essential processes which are the
basis of life.
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Appendix

We used the following short Magma code for the proof of Proposition 6:
R<x1,x2,x3,tl,t2,t3,a,b,c> := PolynomialRing (Rationals (), 9);
egns := [x1*x2*x3*tl*t2*t3-a*b*c,

x1*x2*tl + t2*x1*x3 + t3*x2*x3 - a*b-a*c- c*b,

xl + x2 + x3 - c-a-b];

I := ideal<R | egns>;

GB:=GroebnerBasis (I) ;

#GB;

GB[11];
GB[10];
GB[2];
GB[1];

The algorithm described in Proposition 7 was implemented the following way:
a:2;
b:-0.5;
c:4;
wl:2;
w2:4;
w3:3;
a3d: (a*b*c/ (wl*w2*w3)) ;
al: (at+b+c) ;

Hh O Q
[

block(for p: 1 thru 1000 do (
block(a2: (a*b+a*c+b*c) / (wl)+ (1-w2/wl) *d*f+ (1-w3/wl) *e*f,

g(x):= a3*x"3 + a2*x"2 + al*x+1,
[1[1],1[2],1([3]]:allroots(g(x)),
h:ev(x,1[1]1),

i:ev(x,1[2]),

jrev(x,1[31),

d:-1/h,

e:-1/1,

f:-1/3

)))
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