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Abstract We address the problem of finding the optimal radiotherapy fractionation
scheme, representing the response to radiation of tumour and normal tissues by the
LQ model including exponential repopulation and sublethal damage due to incomplete
repair. We formulate the nonlinear programming problem of maximizing the overall
tumour damage, while keeping the damages to the late and early responding normal
tissues within a given admissible level. The optimum is searched over a single week
of treatment and its possible structures are identified. In the two simpler but impor-
tant cases of absence of the incomplete repair term or of prevalent late constraint, we
prove the uniqueness of the optimal solution and we characterize it in terms of model
parameters. The optimal solution is found to be not necessarily uniform over the week.
The theoretical results are confirmed by numerical tests and comparisons with litera-
ture fractionation schemes are presented.
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312 A. Bertuzzi et al.

1 Introduction

Among the methods that aim to improve the outcome of cancer radiotherapy treat-
ment, the optimization of the fractionation protocol has a main role (see, for instance,
Jones and Dale 1999; Fowler 2010). The protocol optimization methods are based on
models of the radiation response of tumour and normal tissues. The processes that
characterize this response are denoted as the “four Rs” of radiotherapy: repair of the
radiation damage, redistribution of cells among the cell-cycle phases, repopulation
due to the regrowth of cells surviving the irradiation, reoxygenation of tissues (Wong
and Hill 1998).

The so-called linear-quadratic (LQ) model of the radiation effect (Thames 1985;
Fowler 1989; Jones and Dale 1999) appears to be the most regularly used model to
represent the relation between a single radiation dose d (Gy) and the fraction S of cells
surviving the irradiation

S = exp(−αd − βd2),

where the radiosensitivity parameters, α and β, account for non-repairable lesions to
DNA and, respectively, for the lethal misrepair events occurring in the repair process
of DNA double strand breaks (Hlatky et al. 1994). When multiple doses are delivered
and the cell repopulation is taken into account, the survival fraction is expressed by
more complex expressions compared with the basic formulation given above, as it will
be seen in Sect. 2 (Fowler et al. 2003; Fowler 2008).

A resensitization term, which was intended to account for both the redistribution
and the reoxygenation, has been included in the LQ model leading to the LQR model,
proposed by Brenner et al. (1995). The LQR model was applied to a variety of in
vitro and in vivo cell populations and its parameters were estimated from the data
(Brenner et al. 1995). However, the assessment of these parameters may be critical in
highly heterogeneous populations such as the human tumours. Different approaches
to represent the kinetic effects of repopulation and reoxygenation have been followed
in studies where the geometry of the tumour mass was explicitly taken into account
(Düchting et al. 1992, 1995). The diffusion/consumption of oxygen in the tumour
cell aggregate and the hypoxia-induced cell death have been represented in models
of the radiation response of tumour cords (Bertuzzi et al. 2008) and of multicel-
lular tumour spheroids (Bertuzzi et al. 2010). Simulation models with a cell-cycle
structure were also proposed to account for the different phase-specific radiosensi-
tivities of the cells (Dionysiou et al. 2004; Ribba et al. 2006). A recent review by
O’Rourke et al. (2009) examines the LQ formalism with emphasis on the modelling
of repopulation and redistribution mechanisms. A modified LQ model, the linear-qua-
dratic-linear model, was proposed in Guerrero and Li (2004) to provide a better fit to
radiation dose-response data at high fractional dose (Guerrero and Li 2004; Astrahan
2008).

The LQ and the LQR models have been used in recent papers looking for an
optimum radiotherapeutic strategy, consisting in achieving the best trade-off between
maximizing tumour cell kill and sparing normal tissues. For instance, Fowler (2007,
2008) used the LQ model with repopulation term to investigate optimum schedules for
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head and neck cancer, taking into account both the early reacting normal tissues and
the late complications. In these papers, the Author proposed an empirical procedure in
order to optimize the treatment overall time, keeping fixed the late tissue damage and
using schedules with uniform fraction size. Optimum overall times were found to be
in the range 22–32 days for a treatment with one fraction/day five times a week. Yang
and Xing (2005), using the complete LQR model with parameter values taken from
the literature, investigated by a numerical procedure (simulated annealing) optimum
radiotherapy schemes for fast proliferating and slowly proliferating tumours. The opti-
mization procedure searched for the highest tumour biologically effective dose (BED
= − ln(S)/α) over the total treatment length while the BED of the late normal tissue
was kept constant. Interestingly, the resulting optimal fractionation scheme was not
necessarily uniform. The LQR model was also used by Lee et al. Lee et al. (2006)
in a very complex numerical procedure (mixed integer programming) for improving
the 3-D distribution of the radiation dose by determining the optimal beam angles
and intensities in intensity-modulated radiation therapy (IMRT). Optimal adaptive
fractionation schemes have been used in Lu et al. (2008a,b).

In the present paper, the analytical formulation of an optimal radiotherapy problem
is proposed. In Sect. 2, we describe the cell response to radiation by the LQ model,
including the sublethal damage term due to incomplete repair and the repopulation
term. The aim is to find the size of the five weekly fractions maximizing the overall
tumour damage, while keeping the damages to the late and early responding normal
tissues within a given admissible level. In Sect. 3, after guaranteeing the existence of
an optimal solution, we give the possible structures of the solution, using the classi-
cal nonlinear programming necessary conditions. Two simpler problems previously
addressed in the literature (Fowler et al. 2003; Yang and Xing 2005; Fowler 2007,
2008) are then considered, and it is shown that they have a unique optimal solution.
The optimization problem when the repair process is completed within the inter-frac-
tion time interval is considered in Sect. 4. The optimal solution is given in terms of
tumour and normal tissue parameters and it is found to be not necessarily uniform
over the week. The optimization problem when the late tissue constraint prevails over
the early tissue constraint is studied in Sect. 5, showing that the optimal solution
is still unique and is a function of a global parameter depending on both tumour
and late normal tissue. Finally, in Sect. 6 several numerical results related to mean-
ingful literature cases are presented to confirm and complete the theoretical results
of the previous sections. Comparisons with literature fractionation schemes are also
presented.

A remarkable result emerging from the present study is that the tumour α/β ratio
strongly affects the fractionation scheme, that is, hypofractionation is convenient for
small α/β ratios whereas the optimal fractionation tends to be uniform for large α/β.
This result formalizes in mathematical terms and confirms previous observations, in
particular regarding hypofractionated treatments of tumours with small α/β (Brenner
and Hall 1999; Fowler et al. 2003). As noted in Astrahan (2008), the use of large doses
in hypofractionation becomes acceptable in view of recent technological advances,
such as the IMRT.
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2 Formulation of an optimal radiotherapy problem

The response to radiation of a (homogeneous) cell population is described in the present
paper by the LQ model, including lethal and sublethal damages and cell repopulation
(Brenner et al. 1995; Yang and Xing 2005; Fowler 2008; O’Rourke et al. 2009). We
assume that the radiation treatment is given over an integer number of weeks, ν, and
that one fraction per day is delivered, leaving a treatment break at each weekend
according to the usual medical practice. Denoting by di ≥ 0, i = 1, 2, . . . , 5ν, the
radiation dose given at day i-th, the cumulated effect due to the instantaneous lethal
damage is

E1 = α

5ν∑

i=1

di + β

5ν∑

i=1

d2
i , (2.1)

where α and β are the (strictly positive) LQ constants characterizing the intrinsic
radiosensitivity of the population. The sublethal damage due to incomplete repair is
modelled as

E2 = 2β

5ν∑

i=2

di

⎛

⎝
i−1∑

j=1

d j e
−(i− j)γ

⎞

⎠ , (2.2)

where γ is the ratio between the inter-fraction time interval Δ (one day) and the repair
time τR . Finally, the cell repopulation is represented by

E3 =

⎧
⎪⎨

⎪⎩

ln(2)[T − Tk]
TP

, T ≥ Tk,

0, elsewhere,

(2.3)

where the overall treatment time is T = 7ν − 3 days (number of days between the 1st
and the last dose), TP is the repopulation doubling time and Tk is the starting time of
compensatory proliferation (kick-off time). Therefore, the fraction of surviving cells
is given by

S = exp(−E1 − E2 + E3). (2.4)

The above model is used to describe the response to radiation of the tumour and
the early and late responding normal tissues. In the following, the quantities in Eqs.
(2.1)–(2.3) related to the early and late tissues response are indexed by subscripts “e”
and “l” respectively. Since values reported in the literature for the repair times are
always not larger than 4.0 h [τR ≈ 0.5 h, τRe ≈ 0.5 h, τRl ≈ 4.0 h (Yang and Xing
2005)] and � = 24 h, the parameters γ, γe, γl are larger than 6.0. So the “interaction”
between fractions more than 1 day apart can be neglected and the expression of E2
simplifies as follows:
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Ẽ2 = 2βe−γ
5ν∑

i=2

di−1di . (2.5)

In this paper we formulate an optimal radiotherapy problem, assuming ν, and then
the overall treatment time T , assigned. We aim at minimizing the fraction of tumour
surviving cells S, and in particular its logarithm, with respect to the radiation doses,
that is the function

ln(S) = −E1 − Ẽ2 + E3. (2.6)

Noting that E3 does not depend on the doses, this is equivalent to minimize only
−E1 − Ẽ2. At the same time we have to account for suitable constraints related to the
maximal admissible damage to normal tissues. Denoting by Ce and Cl the logarithmic
maximal damage to the early and late responding tissues respectively, the constraints
take the form

− ln(Se) = E1e + Ẽ2e − E3e ≤ Ce, (2.7)

−ln(Sl) = E1l + Ẽ2l ≤ Cl (2.8)

where the constraint (2.8) does not contain the cell repopulation term, since it is neg-
ligible for late responding tissues.

To simplify the optimization problem by reducing the number of variables and at
the same time to strengthen the constraints (2.7) and (2.8) we consider the cumulative
damage equi-distributed over the treatment weeks. So we can formulate the optimi-
zation problem over a single week, assuming that the obtained solution is repeated
for each week of the treatment. Moreover, it is known that the damage to normal
tissues can be reduced by spatially modulating the radiation intensity using suitable
technological devices (Lee et al. 2006; Lu et al. 2008a,b). Therefore we introduce a
coefficient, f ∈ (0, 1), that globally accounts for the attenuation of the doses received
by normal tissues. This means that with regard to Eqs. (2.7) and (2.8) the actual doses
acting on normal tissues are f di , i = 1, . . . , 5.

Let us introduce the notations

ρ = α

β
, ρe = αe

fβe
, ρl = αl

fβl
, ke = Ce + E3e

f 2νβe
, kl = Cl

f 2νβl
. (2.9)

We observe that the α/β ratios for tumour and normal tissues are in general greater than
1 and typical values, reported in the literature (Williams et al. 1985), are ρ ∈ [1.5, 35]
while for normal tissues it is ρe > ρl . Defining the 5-dimensional vector d with
components di , i = 1, . . . , 5, the constraints (2.7) and (2.8) can be written in the form

ge(d) = ρe

5∑

i=1

di +
5∑

i=1

d2
i + 2e−γe

5∑

i=2

di−1di − ke ≤ 0, (2.10)
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gl(d) = ρl

5∑

i=1

di +
5∑

i=1

d2
i + 2e−γl

5∑

i=2

di−1di − kl ≤ 0. (2.11)

We can now formulate the following optimization problem.

Problem 1 Minimize the function

J (d) = −ρ

5∑

i=1

di −
5∑

i=1

d2
i − 2e−γ

5∑

i=2

di−1di (2.12)

on the admissible set

D = {d ∈ R5| ge(d) ≤ 0, gl(d) ≤ 0, gi (d) = −di ≤ 0, i = 1, . . . , 5}.
(2.13)

Obviously, when the parameters γ, γe, γl in Eqs. (2.12) and (2.13) are assumed to
be sufficiently large, the terms related to the sublethal damage become negligible
and Problem 1 reduces to that of optimizing the therapy with reference to the basic
linear-quadratic model.

3 Existence and structure of optimal solutions

A first important observation is that Problem 1 surely admits some optimal solutions.
Indeed the admissible set (2.13) is compact and the cost function (2.12) is continuous
on it. Then the Weierstrass theorem (Pierre 1969) guarantees the existence of opti-
mal solutions. It is evident that Problem 1 is not convex so that we can only use the
optimality necessary conditions provided by the Kuhn Tucker Theorem (Pierre 1969).

The Lagrangian function associated to Problem 1 is

L(d, λ0, ηe, ηl , η) = λ0 J (d) + ηege(d) + ηl gl(d) −
5∑

i=1

ηi di ,

where λ0 is a scalar multiplier and ηe, ηl and η (the 5-dimensional vector with com-
ponents ηi , i = 1, . . . , 5) are the multipliers related to the inequality constraints.
Introducing the notations

δ(λ0, ηe, ηl) = −λ0ρ + ηeρe + ηlρl ,

σ (λ0, ηe, ηl) = 2(−λ0 + ηe + ηl), (3.1)

τ(λ0, ηe, ηl) = 2(−λ0e−γ + ηee−γe + ηle
−γl ),

the necessary minimum and admissibility conditions are

∂L

∂d1
= δ(λ0, ηe, ηl) + σ(λ0, ηe, ηl)d1 + τ(λ0, ηe, ηl)d2 − η1 = 0, (3.2)
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∂L

∂di
= δ(λ0, ηe, ηl) + σ(λ0, ηe, ηl)di + τ(λ0, ηe, ηl)(di−1 + di+1)

−ηi = 0, i = 2, 3, 4, (3.3)

∂L

∂d5
= δ(λ0, ηe, ηl) + σ(λ0, ηe, ηl)d5 + τ(λ0, ηe, ηl)d4 − η5 = 0, (3.4)

ηege(d) = 0, (3.5)

ηl gl(d) = 0, (3.6)

ηi di = 0, i = 1, . . . , 5, (3.7)

ge(d) ≤ 0, gl(d) ≤ 0, di ≥ 0, i = 1, . . . , 5, (3.8)

λ0, ηe, ηl , ηi ≥ 0, i = 1, . . . , 5, (3.9)

where λ0, ηe, ηl , ηi , i = 1, . . . , 5, cannot be simultaneously equal to zero.
In order to find the possible solutions of the previous necessary conditions, first of

all we consider the multipliers λ0, ηe, ηl fixed and we solve the system of equations
(3.2), (3.3), (3.4), (3.7) with respect to the variables di , ηi , i = 1, . . . , 5.

With reference to the general Problem 1, we prove the following result.

Theorem 1 There are 25 possible structures for the solutions d of Problem 1, includ-
ing the trivial vector d = 0. The non trivial solutions may be grouped into 10 mutually
exclusive classes, as reported in Table 1. The classes are characterized by the num-
ber of non-zero doses, as well as by the number of consecutive non-zero doses. The
possible structures in each class are equivalent, in that they have the same size of
the non-zero doses and then give the same value of the cost function J . Moreover the
non-zero doses are given in terms of δ, σ, τ by the following expressions:

A(i) = − δ(i)

σ (i)
, i = 1, 2, 3, 5, 8,

B(i) = − δ(i)

σ (i) + τ (i)
, i = 4, 5, 7,

C (i) = − δ(i)
[
σ (i) − τ (i)

]

(σ (i))2 − 2(τ (i))2
, i = 6, 8,

D(i) = − δ(i)
[
σ (i) − 2τ (i)

]

(σ (i))2 − 2(τ (i))2
, i = 6, 8,

E (9) = − δ(9)σ (9)

(σ (9))2 + σ (9)τ (9) − (τ (9))2
, (3.10)

F (9) = − δ(9)
[
σ (9) − τ (9)

]

(σ (9))2 + σ (9)τ (9) − (τ (9))2
,

G(10) = −δ(10)
[
(σ (10))2 − σ (10)τ (10) − (τ (10))2

]

σ (10)
[
(σ (10))2 − 3(τ (10))2

] ,
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Table 1 Classes of equivalent structures for Problem 1

Class Equivalent structures

Representative Number Elements

d(1) (A(1) 0 0 0 0) 5 (A(1) 0 0 0 0), (0 A(1) 0 0 0),

(0 0 A(1) 0 0), (0 0 0 A(1) 0),

(0 0 0 0 A(1))

d(2) (0 A(2) 0 A(2) 0) 6 (A(2) 0 A(2) 0 0), (A(2) 0 0 A(2) 0),

(A(2) 0 0 0 A(2)), (0 A(2) 0 A(2) 0),

(0 A(2) 0 0 A(2)), (0 0 A(2) 0 A(2))

d(3) (A(3) 0 A(3) 0 A(3)) 1 (A(3) 0 A(3) 0 A(3))

d(4) (0 B(4) B(4) 0 0) 4 (B(4) B(4) 0 0 0), (0 B(4) B(4) 0 0),

(0 0 B(4) B(4) 0), (0 0 0 B(4) B(4))

d(5) (A(5) 0 B(5) B(5) 0) 6 (A(5) 0 B(5) B(5) 0), (0 A(5) 0 B(5) B(5)),

(A(5) 0 0 B(5) B(5)), (B(5) B(5) 0 A(5) 0),

(B(5) B(5) 0 0 A(5)), (0 B(5) B(5) 0 A(5))

d(6) (0 C (6) D(6) C (6) 0) 3 (0 C (6) D(6) C (6) 0), (C (6) D(6) C (6) 0 0),

(0 0 C (6) D(6) C (6))

d(7) (B(7) B(7) 0 B(7) B(7)) 1 (B(7) B(7) 0 B(7) B(7))

d(8) (C (8) D(8) C (8) 0 A(8)) 2 (C (8) D(8) C (8) 0 A(8)), (A(8) 0 C (8) D(8) C (8))

d(9) (E (9) F (9) F (9) E (9) 0) 2 (E (9) F (9) F (9) E (9) 0), (0 E (9) F (9) F (9) E (9))

d(10) (G(10) H (10) I (10) H (10) G(10)) 1 (G(10) H (10) I (10) H (10) G(10))

H (10) = −δ(10)
[
σ (10) − 2τ (10)

]

(σ (10))2 − 3(τ (10))2
,

I (10) = − δ(10)
[
σ (10) − τ (10)

]2

σ (10)
[
(σ (10))2 − 3(τ (10))2

] ,

where

δ(i) = δ
(
λ

(i)
0 , η(i)

e , η
(i)
l

)
, σ (i) = σ

(
λ

(i)
0 , η(i)

e , η
(i)
l

)
,

τ (i) = τ
(
λ

(i)
0 , η(i)

e , η
(i)
l

)
, i = 1, . . . , 10

and λ
(i)
0 , η

(i)
e , η

(i)
l , i = 1, . . . , 10, are the fixed values of the multipliers λ0, ηe, ηl

associated to the i-th class of solutions d(i) and of related multipliers η(i).

Proof Let us multiply each equation
∂L

∂di
= 0 in (3.2)–(3.4) by the corresponding

dose di , i = 1, . . . , 5. In view of (3.7) we get
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d1[δ(λ0, ηe, ηl) + σ(λ0, ηe, ηl)d1 + τ(λ0, ηe, ηl)d2] = 0,

di [δ(λ0, ηe, ηl) + σ(λ0, ηe, ηl)di + τ(λ0, ηe, ηl)(di−1 + di+1)] = 0, i = 2, 3, 4,

d5[δ(λ0, ηe, ηl) + σ(λ0, ηe, ηl)d5 + τ(λ0, ηe, ηl)d4] = 0,

which is a system of five non linear equations in five unknowns. The system may be
solved sequentially starting, for instance, from the first equation. At the first step, we
obtain two solutions for d1, one of which depends on d2

d1 = 0, d1 = − δ(λ0, ηe, ηl)

σ (λ0, ηe, ηl)
− τ(λ0, ηe, ηl)

σ (λ0, ηe, ηl)
d2.

At the second step, substituting these two values into the second equation, we get four
values for d2, half of which dependent on d3. Proceeding in the same way, at the 5th
step we have 25 values for d5. Substituting backward the values obtained, we arrive
to the 25 possible structures for the solution d, obviously depending on λ0, ηe, ηl .
These solutions can be grouped into the 10 classes reported in Table 1. Coming back
to Eqs. (3.2)–(3.4) and substituting the values of d, it is immediate to deduce the cor-
responding vectors of multipliers η. In Table 1, the third column reports the number
of equivalent structures in each class. ��

Because of the equivalence of all the structures belonging to the same class, in
the following we consider a single structure as representative of the corresponding
class (see second column in Table 1). Therefore, from Theorem 1 we have only 10
different structures for the possible solutions d. As yet, the vectors d, just classified
in Theorem 1, are only candidates to be extremals of Problem 1. In fact, both the
solutions d and the corresponding multipliers η depend on λ0, ηe and ηl . However, it
is easy to exclude some of the 23 possible configurations of λ0, ηe, ηl corresponding
to the constraints (3.9), as shown by the following corollary.

Corollary 1 There exist no extremals d, and corresponding multipliers η, of Problem 1
either for ηe and ηl both equal to zero, or for λ0 = 0.

Proof If both ηe, ηl are equal to zero, the quantities δ, σ, τ in (3.1) are non-positive,
since ρ > 0. Then it cannot be λ0 = 0 because Eqs. (3.2)–(3.4) would imply
ηi = 0, i = 1, . . . , 5. If λ0 > 0 the same Eqs. (3.2)–(3.4) would imply ηi < 0,

i = 1, . . . , 5, which is excluded by inequalities (3.9). Therefore at least ηe or ηl

must be positive, so that from (3.5) and (3.6) it necessarily follows ge(d) = 0 and/or
gl(d) = 0, which excludes the solution d = 0 (thereby excluding ηi > 0 for all
i, i = 1, . . . , 5).

We can now exclude λ0 = 0. In fact, if λ0 = 0 the quantities δ, σ, τ in (3.1) are
positive, since ρe, ρl > 0 and ηe > 0 and/or ηl > 0. Then satisfying Eqs. (3.2)–(3.4)
would require ηi > 0, i = 1, . . . , 5, that is, d = 0, which is impossible. ��
Note that the proof of Corollary 1 shows that the vector d = 0 cannot be a solution.
Moreover, we can set λ0 = 1, as it cannot be λ0 = 0. In conclusion, we have the
following three possible cases of interest for the multipliers ηe, ηl :
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1. ηe = 0, ηl > 0;
2. ηe > 0, ηl = 0; (3.11)
3. ηe > 0, ηl > 0.

Remark 1 To actually determine the optimal solutions of Problem 1, the multipliers
ηe and ηl have to be computed from the necessary conditions (3.5), (3.6), and the
non-negative values obtained have to be substituted into the vectors d and η verifying
that they are non-negative. The solutions d so obtained are extremals of Problem 1,
that is, all the possible candidates to give the optimal solution. Finally, the optimal
solution can be determined by computing the cost function J for all the above extre-
mals. Obviously, the optimal solution can be a multiple solution when it is provided
by a class containing more than one equivalent structure. All the steps outlined above
can be numerically performed once the model parameters are known.

4 Optimal solution in the absence of the incomplete repair term

Most frequently in the literature the basic LQ model is considered (Fowler 2010).
Then, the term E2 due to incomplete repair is absent in Eq. (2.2). This amounts to
saying that the repair process can be considered completed within the inter-fraction
time interval �, which means that γ, γe, γl are very large. Under this assumption,
Problem 1 can be rewritten as follows.

Problem 2 Minimize the function

J̃ (d) = −ρ

5∑

i=1

di −
5∑

i=1

d2
i (4.1)

on the admissible set

D̃ = {d ∈ R5| g̃e(d) = ρe

5∑

i=1

di +
5∑

i=1

d2
i − ke ≤ 0,

g̃l(d) = ρl

5∑

i=1

di +
5∑

i=1

d2
i −kl ≤0, gi (d)=−di ≤0, i = 1, . . . , 5}.

(4.2)

For Problem 2 the results of the previous section become easier.

Theorem 2 The 25 − 1 possible structures for the non-trivial solutions of Problem 2
with e−γ = e−γe = e−γl = 0, may be grouped into 5 mutually exclusive classes, as
reported in Table 2. The classes are characterized only by the number of non-zero
doses. The possible structures in each class are equivalent, in that they have the same
size of the non-zero doses and then give the same value of the cost function J̃ .

The non-zero values of doses are

A(i) = − δ(i)

σ (i)
, i = 1, . . . , 5, (4.3)
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Table 2 Classes of equivalent structures for Problem 2

Class Equivalent structures

Representative Number

d(1) (A(1) 0 0 0 0) 5

d(2) (A(2) A(2) 0 0 0) 10

d(3) (A(3) A(3) A(3) 0 0) 10

d(4) (A(4) A(4) A(4) A(4) 0) 5

d(5) (A(5) A(5) A(5) A(5) A(5)) 1

where

δ(i) = δ
(
λ

(i)
0 , η(i)

e , η
(i)
l

)
, σ (i) = σ

(
λ

(i)
0 , η(i)

e , η
(i)
l

)
, i = 1, . . . , 5,

and λ
(i)
0 , η

(i)
e , η

(i)
l , i = 1, . . . , 5, are the fixed values of the multipliers λ0, ηe, ηl asso-

ciated to the i-th class of solutions d(i) and related multipliers η(i).

Proof The proof follows the same line of the proof of Theorem 1, with the quantity
τ (λ0, ηe, ηl) in Eq. (3.1) set to zero. ��

Also in this case we consider a single structure as representative of the correspond-
ing class, so we have only 5 different structures of possible solutions. Obviously, the
statement of Corollary 1 still holds (see (3.11)) and correspondingly we have at most
3 possible values for each A(i), given by Eq. (4.3). Therefore, in principle, we can
expect 15 different solutions.

It is interesting to further characterize the possible extremals taking into account
the normal tissue constraints (3.5), (3.6), (3.8). A first result establishes that there are
at most 5 possible extremals and the dose size only depends either on the early or the
late normal tissue parameters.

Corollary 2 There are at most 5 different candidates to be the extremals of Problem 2,
each given by a different class of Table 2. The values of the doses are

A(i) = min{A(i)
e , A(i)

l }, i = 1, . . . , 5, (4.4)

where

A(i)
e = −ρe

2
+

√(ρe

2

)2 + ke

i
, A(i)

l = −ρl

2
+

√(ρl

2

)2 + kl

i
, i = 1, . . . , 5.

(4.5)

Proof In case 1 of the choices in (3.11), from Eq. (3.6) it follows g̃l(d) = 0. By
substituting the structure of d(i), we obtain the second degree equation

i
(

A(i)
)2 + iρl A(i) − kl = 0, i = 1, . . . , 5, (4.6)
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that has the only positive solution A(i) = A(i)
l , with A(i)

l given by (4.5). Moreover,
A(i) must satisfy the constraint g̃e(d) ≤ 0:

i
(

A(i)
)2 + iρe A(i) − ke ≤ 0, i = 1, . . . , 5, (4.7)

that is, A(i) ≤ A(i)
e , where A(i)

e is given by (4.5).
In case 2 of (3.11), the dose A(i) is solution of

i
(

A(i)
)2 + iρe A(i) − ke = 0, i = 1, . . . , 5, (4.8)

that is, A(i) = A(i)
e . Moreover, A(i) must satisfy the constraint

i
(

A(i)
)2 + iρl A(i) − kl ≤ 0, i = 1, . . . , 5, (4.9)

that is, A(i) ≤ A(i)
l .

Finally, in case 3 of (3.11), it must be A(i) = A(i)
e = A(i)

l because Eqs. (4.8) and
(4.6) must simultaneously hold. Therefore, for each given i , if the parameters are
such that A(i)

e = A(i)
l , the same solution comes from the three possibilities mentioned

before and it is A(i) = A(i)
e = A(i)

l . Otherwise, if A(i)
e �= A(i)

l , the unique solution is
given by (4.4). ��

Another result concerning the number of extremals can be derived from conditions
(3.2)–(3.4) and (3.9). This result is directly related to the tumour parameter ρ.

Corollary 3 Let us denote by d(i)
e and d(i)

l , i = 1, . . . , 5, the vectors with compo-

nents A(i)
e and A(i)

l , respectively. Recalling that ρe > ρl , the following three cases are
possible:

if ρ ≤ ρl , at most 5 extremals d(i) can exist, with A(i) = min{A(i)
e , A(i)

l }
i = 1, . . . , 5;

if ρl <ρ ≤ρe, at most 5 extremals can exist: d(i) =d(i)
e , i =1, . . . , 4 and d(5)

with A(5) =min{A(5)
e , A(5)

l };
if ρ > ρe, only one extremal exists: d(5) with A(5) = min{A(5)

e , A(5)
l }.

Proof Let us consider again cases 1 and 2 in (3.11). In case 1, Eqs. (3.2)–(3.4) become
of two kinds at most:

−ρ + η
(i)
l ρl + 2 (−1 + η

(i)
l ) A(i)

l = 0, i = 1, . . . , 5, (4.10)

−ρ + η
(i)
l ρl − η

(i)
j = 0, i = 1, . . . , 4, j = i + 1, . . . , 5. (4.11)
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From Eq. (4.10), we have

η
(i)
l = ρ + 2A(i)

l

ρl + 2A(i)
l

> 0, i = 1, . . . , 5.

For i = 1, . . . , 4, substituting η
(i)
l in Eq. (4.11), we have

η
(i)
j = 2A(i)

l
ρl − ρ

ρl + 2A(i)
l

, j = i + 1, . . . , 5,

that is, all the multipliers η
(i)
j are nonnegative if and only if ρ ≤ ρl . Then the solutions

d(i)
l , i = 1, . . . , 4 are possible extremals. The solution d(5)

l is always a possible extre-
mal, irrespective of ρ and ρl . The above five solutions are actually extremals provided
that they satisfy the early constraint.

By applying the same argument to case 2, it is proved that solutions d(i)
e ,

i = 1, . . . , 4 are possible extremals if and only if ρ ≤ ρe, while the solution d(5)
e

is always a possible extremal. These solutions are actually extremals if they satisfy the
late constraint. Taking into account the statement of Corollary 2, the proof is complete.

��
As far as min{A(i)

e , A(i)
l } is concerned, it is possible to see that the minimum only

depends on the sign of the difference ke − kl and on a second global parameter, as
shown by the following corollary.

Corollary 4 If ke − kl ≤ 0, the extremals of Problem 2 are

d(i) = d(i)
e , i = 1, . . . , 5.

Otherwise, for ke − kl > 0, defining the quantity

v = (ke − kl)
2

(ρe − ρl)(ρekl − ρl ke)
, (4.12)

we have

if v ≤ 1, d(i) = d(i)
e , i = 1, . . . , 5;

if 1 < v < 5, d(i) =
{

d(i)
l , i = 1, . . . , [v],

d(i)
e , i = [v] + 1, . . . , 5;

if v ≥ 5, d(i) = d(i)
l , i = 1, . . . , 5;

where [v] denotes the integer part of v.

Proof First of all, we recall that all the possible solutions come from cases 1 and 2 in
(3.11), that is, d(i) = d(i)

l or d(i) = d(i)
e . Let us consider ke ≤ kl . Then, case 1 cannot

give any solution. In fact, by subtracting (4.6) from (4.7) we get the inequality
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i(ρe − ρl)A(i) − (ke − kl) ≤ 0, i = 1, . . . , 5,

which cannot be satisfied, as ρe > ρl . Therefore, all the solutions come from case 2,
that is, d(i) = d(i)

e , i = 1, . . . , 5.
Let us consider now ke > kl . For each given i, g̃e and g̃l as functions of a generic

variable x can be rewritten as follows:

{
ye = i x2 + iρex − ke,

yl = i x2 + iρl x − kl .
(4.13)

The zeroes of ye, yl are given by (4.5) and, as already stated in Eq. (4.4), the smallest
one is the solution A(i). The system (4.13) has the unique intersection point (xi , yi ):

xi = ke − kl

i(ρe − ρl)
> 0, yi = 1

i

(
ke − kl

ρe − ρl

)2

+ ρl ke − ρekl

ρe − ρl
,

and it is easy to see that A(i) only depends on the sign of yi , as the ordering of A(i)
e

and A(i)
l only depends on it. Hence, for each given i , if yi > 0, it is A(i)

l < A(i)
e

and A(i) = A(i)
l is the unique solution. If yi < 0, A(i)

e < A(i)
l and the solution is

A(i) = A(i)
e . When yi = 0, the unique solution is A(i) = A(i)

l = A(i)
e . In view of the

previous argument, to select the i-th solution (4.4) we define the real quantity v in
(4.12), such that

1

v

(
ke − kl

ρe − ρl

)2

+ ρl ke − ρekl

ρe − ρl
= 0.

The proof is then completed by noting that

⎧
⎨

⎩

yi > 0, i = 1, . . . , 5 for v > 5,

yi < 0, i = 1, . . . , 5 for v < 1,

yi > 0, i = 1, . . . , [v] and yi < 0, i = [v] + 1, . . . , 5 for 1 < v < 5.

If v is an integer and 1 ≤ v ≤ 5 the i-th solution is just A(i) = A(i)
l = A(i)

e , with
i = v. ��

Table 3 summarizes the results proved in this section reporting the extremals of
Problem 2.

We are now in the position to establish the final result of this section.

Theorem 3 Problem 2 admits a unique optimal solution, apart from the previously
mentioned equivalence of the structures, when ρ �= ρl and ρ �= ρe. Table 4 reports the
optimal solutions for ρ �= ρl and ρ �= ρe, while Table 5 reports the optimal solutions
for ρ = ρl and for ρ = ρe.
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Table 3 Extremals of Problem 2

ρ ≤ ρl ρl < ρ ≤ ρe ρ > ρe

ke − kl ≤ 0 d(1)
e , d(2)

e , d(3)
e , d(4)

e , d(5)
e d(1)

e , d(2)
e , d(3)

e , d(4)
e , d(5)

e d(5)
e

v ≤ 1 d(1)
e , d(2)

e , d(3)
e , d(4)

e , d(5)
e d(1)

e , d(2)
e , d(3)

e , d(4)
e , d(5)

e d(5)
e

ke − kl > 0 1 < v < 5 d(1)
l , . . . , d([v])

l , d([v]+1)
e , . . . , d(5)

e d([v]+1)
e , . . . , d(5)

e d(5)
e

v ≥ 5 d(1)
l , d(2)

l , d(3)
l , d(4)

l , d(5)
l d(5)

l d(5)
l

Table 4 Optimal solutions of Problem 2 for ρ �= ρl and ρ �= ρe

ρ < ρl ρl < ρ < ρe ρ > ρe

ke − kl ≤ 0 d(1)
e d(1)

e d(5)
e

v ≤ 1 d(1)
e d(1)

e d(5)
e

ke − kl > 0 1 < v < 5 d(1)
l d([v]+1)

e d(5)
e

v ≥ 5 d(1)
l d(5)

l d(5)
l

Table 5 Optimal solutions of Problem 2 for ρ = ρl and ρ = ρe

ρ = ρl ρ = ρe

ke − kl ≤ 0 d(1)
e d(1)

e , d(2)
e , d(3)

e , d(4)
e , d(5)

e

v ≤ 1 d(1)
e d(1)

e , d(2)
e , d(3)

e , d(4)
e , d(5)

e

ke − kl > 0 1 < v < 5 d(1)
l , . . . , d([v])

l d([v]+1)
e , . . . , d(5)

e

v ≥ 5 d(1)
l , d(2)

l , d(3)
l , d(4)

l , d(5)
l d(5)

l

Proof As a first point, we prove that the total (weekly) dose increases with the number
of positive doses, i.e., i A(i)

l and i A(i)
e are monotone increasing functions of i . Setting

iρl

2
= x and keeping in mind Eq. (4.5), we can rewrite the total dose i A(i)

l as a function

f of the variable x , assumed to be continuous:

f (x) = −x +
√

x2 + x
2kl

ρl
.

It is easy to verify that
d f

dx
is positive for x > 0, which means that the total dose

i A(i)
l increases with i . By evaluating the cost function (4.1), and taking into account

Eq. (4.6), we have

J̃
(

d(i)
l

)
= −i

(
A(i)

l

)2 − iρ A(i)
l = i A(i)

l (ρl − ρ) − kl . (4.14)

Then, for ρl > ρ, J̃
(

d(i)
l

)
is an increasing function of i .
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The same argument applies to i A(i)
e and it implies that the cost function J̃

(
d(i)

e

)

increases with i , for ρe > ρ. All the results given in Table 4 are so proved, except for

ke > kl , 1 < v < 5, ρ < ρl , when it is enough to compare J̃
(

d(1)
l

)
and J̃

(
d([v]+1)

e

)

in view of the monotonic behaviour of J̃ . Since A([v]+1)
e < A([v]+1)

l , according to
Corollary 4, we have

J̃
(

d([v]+1)
e

)
= −([v] + 1)

[(
A([v]+1)

e

)2 + ρ A([v]+1)
e

]

> −([v] + 1)

[(
A([v]+1)

l

)2 + ρ A([v]+1)
l

]
= J̃

(
d([v]+1)

l

)
> J̃

(
d(1)

l

)
,

which completes the proof of Table 4.

From (4.14), when ρ = ρl , it follows J̃
(

d(i)
l

)
= −kl , i = 1, . . . , 5 and similarly,

when ρ = ρe, it is J̃
(

d(i)
e

)
= −ke, i = 1, . . . , 5. Recalling the extremals reported in

Table 3, the results of Table 5 are also proved. ��
We remark that Table 5 refers to limit conditions where the tumour response

becomes equal to that of a normal tissue. For instance, when ρ = ρl , the optimum can
be no longer unique, since all the solutions d(i)

l yield the same cost function value.
It is common in the literature (Yang and Xing 2005; Fowler 2010) to assume, for

the maximal admissible damages to normal tissues, values corresponding to the dam-
ages produced by a reference radiotherapy protocol with equal doses d̄. In fact, with
reference to the late responding tissue, the biologically effective dose is given by

BEDl = 5νd̄

(
1 + d̄

ρl

)
, (4.15)

where 5ν is the total number of doses. Correspondingly, recalling (2.9), we have

kl = ρl
BEDl

ν
= ρl5d̄

(
1 + d̄

ρl

)
. (4.16)

For the early responding tissue, taking into account the cell repopulation term, we
have

ke = ρe5d̄

(
1 + d̄

ρe

)
. (4.17)

It is easy to verify that ke > kl since ρe > ρl , and, from (4.12), that v = 5. There-
fore, if the optimization problem is formulated assuming as maximal damages those
produced by the reference protocol, from Corollary 4 follows that only the late tissue
constraint provides extremals of the problem and then the optimal solution, according
to Theorem 3, is d(1)

l when ρ < ρl or d(5)
l when ρ > ρl .
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5 Optimal solution when the late constraint is prevalent

In this section we show that suitable assumptions on kl , ke allow to further develop
the results of Sect. 3. In particular, given ρl and ρe, if

ke > kl , v = (ke − kl)
2

(ρe − ρl)(ρekl − ρl ke)
≥ 5, (5.1)

the general Problem 1 reduces to a simpler problem with a single equality constraint
on the late tissue. Then, we find how the structure of the optimal solution changes
when the tumour parameters ρ and γ change. Furthermore, we note that inequalities
(5.1) are obviously verified when kl and ke are given by (4.16) and (4.17), which is
equivalent to fixing the maximal BED of normal tissues (Yang and Xing 2005; Fowler
2010).

A first interesting property is given in the following theorem.

Theorem 4 If ke > kl , v ≥ 5, and if d ∈ R5, di ≥ 0, i = 1, . . . , 5, satisfies

gl(d) = ρl

5∑

i=1

di +
5∑

i=1

d2
i + 2e−γl

5∑

i=2

di−1di − kl ≤ 0,

or

ge(d) = ρe

5∑

i=1

di +
5∑

i=1

d2
i + 2e−γe

5∑

i=2

di−1di − ke ≤ 0,

then the total weekly dose is such that

5∑

i=1

di < 5A(5)
e = 5

[
−ρe

2
+

√(ρe

2

)2 + ke

5

]
. (5.2)

Proof First we prove property (5.2) for vectors d satisfying the early constraint
ge(d) ≤ 0. Let us consider the problem of finding the maximal total dose over the
set

S =
{

d ∈ R5| ρe

5∑

i=1

di +
5∑

i=1

d2
i − ke ≤ 0, di ≥ 0, i = 1, . . . , 5

}
, (5.3)

that is, the minimum problem:

min
d∈S

{
−

5∑

i=1

di

}
.

123



328 A. Bertuzzi et al.

As the problem is convex, the classical sufficient conditions of optimality apply giving
the following unique uniform solution:

d = (A(5)
e , A(5)

e , A(5)
e , A(5)

e , A(5)
e ), (5.4)

so that the maximal total dose is equal to 5A(5)
e , where A(5)

e is defined in (4.5). There-
fore, it is evident that any point of S different from the minimum is such that

5∑

i=1

di < 5A(5)
e .

The first part of the proof is completed noting that the set

S′ =
{

d ∈ R5| ge(d) ≤ 0, di ≥ 0, i = 1, . . . , 5
}

is such that S′ ⊂ S, because
5∑

i=2

di−1di ≥ 0, and noting that S′ does not contain the

vector (5.4). Hence, all vectors d ∈ S′ verify (5.2).
Let us now prove property (5.2) assuming that the vector d satisfies the late con-

straint gl(d) ≤ 0. With similar arguments, we have

5∑

i=1

di < 5A(5)
l ,

where A(5)
l is given in (4.5). Recalling Corollary 4, with the assumptions (5.1), it

follows

min{A(5)
e , A(5)

l } = A(5)
l ,

which completes the proof. ��
We consider now the reduced problem in which only the constraint on the late

responding tissue is present as an equality constraint. We show that the optimal solu-
tions of this new problem coincide with the optimal solutions of the original Problem 1.
We can now formulate the reduced problem.

Problem 3 Minimize the function

J (d) = −ρ

5∑

i=1

di −
5∑

i=1

d2
i − 2e−γ

5∑

i=2

di−1di

on the admissible set

D′ = {d ∈ R5| gl(d) = 0, gi (d) = −di ≤ 0, i = 1, . . . , 5}. (5.5)
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We can prove the following result.

Theorem 5 If ke > kl and v ≥ 5 the optimal solutions of Problem 1 and of Problem 3
coincide.

Proof First of all, let us consider the set

D′′ = {d ∈ R5| gl(d) ≤ 0, gi (d) = −di ≤ 0, i = 1, . . . , 5}, (5.6)

and the problem of minimizing J (d) on D′′. It is easy to verify that the optimal solu-
tions for the cost function (2.12) on the admissible set (5.6) coincide with the optimal
solutions of the original problem. The Lagrangian function associated to the problem
defined on D′′ is

L ′′(d, λ0, ηl , η) = λ0 J (d) + ηl gl(d) −
5∑

i=1

ηi di .

The necessary minimum and admissibility conditions are

∂L ′′

∂d1
=(−λ0ρ + ηlρl)+2(−λ0+ηl)d1+2(−λ0e−γ + ηle

−γl )d2−η1 =0, (5.7)

∂L ′′

∂di
= (−λ0ρ + ηlρl) + 2(−λ0 + ηl)di + 2(−λ0e−γ + ηle

−γl )

(di−1 + di+1) − ηi = 0, i = 2, 3, 4, (5.8)
∂L ′′

∂d5
= (−λ0ρ + ηlρl) + 2(−λ0 + ηl)d5 + 2(−λ0e−γ + ηle

−γl )d4 − η5 = 0, (5.9)

ηl gl(d) = 0, (5.10)

ηi di = 0, i = 1, . . . , 5, (5.11)

gl(d) ≤ 0, di ≥ 0, i = 1, . . . , 5, (5.12)

λ0, ηl , ηi ≥ 0, i = 1, . . . , 5, (5.13)

where λ0, ηl , ηi , i = 1, . . . , 5, cannot be simultaneously equal to zero. Following the
proof of Corollary 1, it is easy to verify that Problem 3 admits extremals only for
λ0 = 1 and ηl > 0. Furthermore, the set of conditions (5.7)–(5.13) with λ0 = 1 and
ηl > 0 coincides with the set of conditions (3.2)–(3.9) with λ0 = 1, ηe = 0 and
ηl > 0, which we identified as case 1 in (3.11), except for inequality ge(d) ≤ 0.
However, this inequality is automatically satisfied when (5.1) holds. In fact, it can be
verified that the same assumptions imply

ke − kl

ρe − ρl
≥ 5A(5)

e . (5.14)
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Furthermore, the pair of conditions gl(d) = 0 and ge(d) ≤ 0 is equivalent to the pair
gl(d) = 0 and ge(d) − gl(d) ≤ 0. The latter condition takes the form

5∑

i=1

di − 2

(
e−γl − e−γe

ρe − ρl

) 5∑

i=2

di−1di ≤ ke − kl

ρe − ρl
,

which is actually strictly verified in view of properties (5.1), (5.2) and since e−γl >

e−γe and ρe > ρl .
On the other hand, cases 2 and 3 in (3.11) would require

5∑

i=1

di − 2

(
e−γl − e−γe

ρe − ρl

) 5∑

i=2

di−1di ≥ ke − kl

ρe − ρl
,

which is in contrast with properties (5.1), (5.2). Then only case 1 in (3.11) provides
the extremals of Problem 1 and, therefore, the sets of optimal solutions of the two
problems coincide.

Finally, we observe that the optimal solutions on the admissible set D′′ coincide
with those on the admissible set D′. In fact, the extremals of the problem on D′′ belong
to D′ since there are no extremals for ηl = 0. It follows that the optimal solutions for
the problem on D′′ belong to D′. ��

In order to simplify the study of the reduced Problem 3, we substitute the equality
constraint into the cost function, obtaining

J (d) = 2
(
e−γl − e−γ

)
[

ρl − ρ

2
(
e−γl − e−γ

)
5∑

i=1

di +
5∑

i=2

di−1di − kl

2
(
e−γl − e−γ

)
]

.

Defining the global parameter

Q = ρ − ρl

2
(
e−γl − e−γ

) , (5.15)

and noting that γl < γ (Turesson and Thames 1989; Yang and Xing 2005), minimizing
J (d) on D′ is equivalent to minimizing

J ′(d) = −Q
5∑

i=1

di +
5∑

i=2

di−1di (5.16)

on D′. The Lagrangian function is

L ′(d, λ0, λ, η) = λ0 J ′(d) + λgl(d) −
5∑

i=1

ηi di .
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The necessary minimum and admissibility conditions are

∂L ′

∂d1
= λ0(−Q + d2) + λ(2d1 + ρl + 2e−γl d2) − η1 = 0, (5.17)

∂L ′

∂di
= λ0(−Q + di−1 + di+1) + λ[2di + ρl + 2e−γl (di−1 + di+1)]

−ηi = 0, i = 2, 3, 4, (5.18)

∂L ′

∂d5
= λ0(−Q + d4) + λ(2d5 + ρl + 2e−γl d4) − η5 = 0, (5.19)

ηi di = 0, i = 1, . . . , 5, (5.20)

gl(d) = 0, (5.21)

di ≥ 0, i = 1, . . . , 5, (5.22)

λ0, ηi ≥ 0, i = 1, . . . , 5, (5.23)

where λ0, λ, ηi , i = 1, . . . , 5, cannot be simultaneously equal to zero. It is easy to
verify that it must be λ0 > 0. In fact, with λ0 = 0, there is no λ verifying the above
conditions: if λ < 0 it follows ηi < 0, i = 1, . . . , 5; if λ = 0 all the multipliers are
zero; if λ > 0 it is ηi > 0, i = 1, . . . , 5 and then d = 0, which is not admissible.
Therefore, assuming λ0 = 1, we redefine the quantities δ, σ, τ in (3.1) now depending
only on λ:

δ(λ) = −Q + λρl ,

σ (λ) = 2λ, (5.24)

τ(λ) = 1 + 2λe−γl .

By solving the conditions (5.17)–(5.20) with respect to di , ηi , i = 1, . . . , 5, as
functions of λ, according to Theorem 1 we get 25 − 1 possible extremal structures for
Problem 3, just as reported in Table 1 whose entries are given by expressions (3.10),
with δ(i), σ (i), τ (i) now expressed by (5.24).

Obviously, the content of Remark 1 still holds, including the numerical approach
previously outlined. Nevertheless, taking into account that the solutions d, η depend
only on λ, further analytical results can be developed so to characterize in terms of the
global parameter Q the optimal solutions of Problem 1 when assumptions (5.1) hold.

Theorem 6 Under the assumptions (5.1), Problem 1 admits a unique optimal solu-
tion, apart from the equivalence of the structures, when ρ �= ρl . In particular, the
optimal solutions belong to different classes of Table 1 depending on the tumour type,
that is on the value of Q, as follows:

(i) if Q < 0 (ρ < ρl ) the unique optimal solution is d(1) with

A(1) = A(1)
l = −ρl

2
+

√(ρl

2

)2 + kl ; (5.25)

123



332 A. Bertuzzi et al.

(ii) if Q = 0 (ρ = ρl ) there are three optimal solutions d(i), i = 1, 2, 3, with

A(i) = A(i)
l = −ρl

2
+

√(ρl

2

)2 + kl

i
, i = 1, 2, 3 ; (5.26)

(iii) if Q ∈ (0, Q], where

Q =
√

ρ2
l + 4

3 kl

1 − 2e−γl
, (5.27)

the unique optimal solution is d(3) with

A(3) = A(3)
l = −ρl

2
+

√(ρl

2

)2 + kl

3
; (5.28)

(iv) if Q > Q the unique optimal solution is d(10), with dose values G(10), H (10),

I (10) now depending on Q, which means that they depend not only on the late
normal tissue but also on the tumour tissue. The dose values can be computed
from the necessary conditions, given the parameters Q, ρl , γl , kl .

Proof In case (i) we firstly note that the class of solutions d(1) satisfies all the neces-
sary conditions (5.17)–(5.23), since for Q < 0 all the multipliers η j , j = 1, . . . , 5,
are non negative and the dose (5.25) is the unique positive solution of (5.21), when
the structure d(1) is imposed. Moreover, denoting by D(i) the total dose of the class
d(i), it is easily verified that

D(1) < D(i), i = 2, 3, . . . , 10. (5.29)

In fact, for the class d(1) the constraint (5.21) becomes

(
D(1)

)2 + ρlD(1) − kl = 0,

whereas for any other class it is

(
D(i)

)2 + ρlD(i) − kl > 0, i = 2, 3, . . . , 10.

Then, for the cost function we have

J ′(d(1)) = −QD(1) < −QD(i) < J ′(d(i)), i = 2, 3, . . . , 10,

regardless of the actual existence of extremals in the class d(i), i = 2, 3, . . . , 10.
Similarly, in case (ii) it is possible to verify that the classes d(i), i = 1, 2, 3, are ex-

tremals with positive doses given in (5.26). Moreover, it is J ′(d(i)) = 0 for i = 1, 2, 3,
whereas J ′(d(i)) > 0 for i = 4, 5, . . . , 10.
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Coming to case (iii), for Q ∈ (0, Q] it is possible to show that the unique structure
of the class d(3) is an extremal with A(3) given by (5.28); the proof of the optimality of
d(3) has been done by specializing the conditions (5.17)–(5.23) for all the structures
d(i) and verifying that J ′(d(i)), i �= 3, is greater than J ′(d(3)). The details of the proof
are given in Papa and Sinisgalli (2011).

Finally, in case (iv), by using the same procedure of the previous cases, we verified
that no extremals exist but for the class d(10) (Papa and Sinisgalli 2011). In fact, by
specializing the conditions (5.17)–(5.23) for all the structures d(i), it can be seen that
when Q > Q the multiplier vectors η(i), i = 1, . . . , 9, have at least one negative entry.
Then, in view of the existence of an optimal solution guaranteed by the Weierstrass
Theorem (Pierre 1969), the solution must belong to the class d(10). As for the values
G(10), H (10), I (10), we are not able to give explicit expressions in terms of Q, ρl , γl , kl ,
but we can characterize them exploiting the conditions (5.17)–(5.23) written for the
structure d(10). More precisely, by expressing the multiplier λ in terms of the doses,
we get the following quadratic system of three equations in the three unknown doses:

2
(

G(10)
)2 + 2

(
H (10)

)2 +
(

I (10)
)2 + ρl

(
2G(10) + 2H (10) + I (10)

)

+4e−γl H (10)
(

G(10) + I (10)
)

− kl = 0, (5.30)
(

I (10)
)2 − H (10) I (10) −

(
H (10) − G(10)

)2 = 0, (5.31)

−4
(

H (10)
)2 + 2

(
I (10)

)2 + 2G(10) I (10) + ρl

(
G(10) − 2H (10) + I (10)

)

+2Q
[
e−γl G(10) + (

1 − 2e−γl
)

H (10) − (
1 − e−γl

)
I (10)

]
= 0. (5.32)

In order to prove that for Q ∈ (Q,+∞) the system (5.30)–(5.32) admits only one
real positive solution, that means to prove the existence of a unique extremal (and
consequently optimal) solution in the class d(10), we remark the following points:

– the real positive solutions of (5.30)–(5.32) for Q ∈ (Q,+∞) are points

P(Q) =
(

G(10)(Q), H (10)(Q), I (10)(Q)
)T

of a connected arc C ⊂ (R+)3 of a regular curve, belonging to the intersection
between the surfaces (5.30) and (5.31);

– as Q → +∞, there exists a unique solution point P(∞) ∈ C, with coordinates

G(10)∞ = hn(a, b)

hd(a, b)

[
−ρl

2
+

√(ρl

2

)2 + hd(a, b)

h2
n(a, b)

kl

]
,

H (10)∞ = a G(10)∞ , (5.33)

I (10)∞ = b G(10)∞ ,
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1 2 3 4 5 days

Gy

1 2 3 4 5 days

Gy

1 2 3 4 5 days

Gy

1 2 3 4 5 days

Gy

Q < 0 0 < Q < Q Q > Q Q >> Q

Fig. 1 Patterns of the optimal solution for different Q values

where hn(a, b) = 2 + 2a + b and hd(a, b) = 2 + 2a2 + b2 + 4e−γl a(b + 1), with

a = 1 − 2e−γl

1 − e−γl − e−2γl
and b = 1 − 2e−γl + e−2γl

1 − e−γl − e−2γl
;

– the solutions of Eqs. (5.30)–(5.32) are continuous functions of the parameter Q,
and each point on C is associated to a single value of Q (since (5.32) is linear in
Q). Therefore, starting from P(∞) and decreasing Q, there exists a unique point
P(Q) solution of the system (5.30)–(5.32), continuously moving on C in a single
direction; when Q ↓ Q, P(Q) converges to the solution point (A(3)

l , 0, A(3)
l )T ;

– for each Q̃ ∈ (Q,∞), the point P(Q̃) is the only real positive solution of sys-
tem (5.30)–(5.32). In fact, if a different solution point R(Q̃) existed on C, then
two different points would exist on C with the same value of Q̃. Consequently,
a value Q′ ∈ (Q,∞), Q′ �= Q̃, would exist such that P(Q′) ≡ R(Q̃), which is
impossible according to the previous item. ��

Some remarks can be made about the optimal solutions given by Theorem 6
(see also Papa and Sinisgalli 2011).

First, the structure of the optimal solution depends on both the tumour and the nor-
mal tissue, that is, in our formulation, on the global parameter Q. At least for Q ≤ Q,
the size of the optimal doses depends instead only on the normal tissue parameters.

The value Q = 0 (ρ = ρl ), which gives three optimal solutions for Problem 1, must
be considered as a limit case because tumour and normal tissues are indistinguishable.
In fact, the cost functions J ′(d(i)), i = 1, 2, 3, do not contain the interaction terms Ẽ2
in Eq. (2.5) and then are equal to zero.

A further remark is that for no value of Q, the five doses of the optimal solution
given by Theorem 6 are equal: this is obvious for cases (i), (ii), (iii) in which some
of the optimal doses are zero. In case (iv) all the optimal doses are positive but never
equal, in fact G(10)(Q) > I (10)(Q) > H (10)(Q), even for Q → +∞. The optimal
solution becomes uniform only in the limit γ, γl → +∞ (and for ρ > ρl ), that is in
the absence of interactions between adjacent doses, as pointed out in Sect. 4. Figure 1
qualitatively shows different patterns of the optimal solution in four intervals of the
parameter Q.

The behaviour of the optimal weekly dose D(10), as well as of the single optimal
doses, has been studied when Q ∈ (Q,+∞). The function D(10)(Q) is monotonically
increasing from the value
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 0
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-  20  30  40  50

Q (Gy)

Optimal doses G(10), H(10), I(10) (Gy)

Al
(3)

d
-

G(10)

H(10)

I(10)

 7

 8

 9

 10

 11

Q
-  20  30  40  50

Q (Gy)

Optimal total dose D(10) (Gy)

5d
-

3Al
(3)

D(10)

Fig. 2 Behaviour of the single and total optimal doses for Q ∈ (Q, 50] with Q = 8.7, assuming ρl = 3
Gy, γl = 6, d̄ = 2 Gy

D(10)(Q) = 3A(3)
l = 3

[
−ρl

2
+

√(ρl

2

)2 + kl

3

]
, (5.34)

to the value

D(10)∞ = lim
Q→+∞ D(10)(Q) = h2

n(a, b)

hd(a, b)

[
−ρl

2
+

√(ρl

2

)2 + hd(a, b)

h2
n(a, b)

kl

]
< 5A(5)

l ,

(5.35)

where A(5)
l is defined in (4.5). For γl sufficiently large, the ratio

h2
n(a, b)

hd(a, b)
tends to 5

and D(10)∞ → 5A(5)
l .

As far as the single optimal doses are concerned, it can be verified that the first and
the fifth component of d(10), G(10)(Q), monotonically decrease from A(3)

l to G(10)∞ in
(5.33); the second and the fourth dose, H (10)(Q), monotonically increase from zero to
H (10)∞ in (5.33); the central dose I (10)(Q) decreases at first from A(3)

l to its minimum
value

I (10)
min = 20

21 + 27e−γl

[
−ρl

2
+

√(ρl

2

)2 + kl
21 + 27e−γl

100

]
, (5.36)

and then it increases up to the final value I (10)∞ in (5.33). Figure 2 reports the behaviour
for Q > Q of the single and total optimal doses using the notations of Table 1.
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6 Numerical results

To verify the general results presented and to compare them to the related literature,
we have considered some numerical examples referring to the general problem of
Sect. 3 and to the simpler problems formulated in Sects. 4 and 5. All the results in
the present section refer to the same values of normal tissue parameters: αl/βl = 3
Gy, γl = 6, αe/βe = 10 Gy, γe = 48 (Yang and Xing 2005; Fowler 2010) and to the
choice f = 1 (so that ρl = 3 Gy and ρe = 10 Gy).

To begin with, let us consider the easier Problem 2 when the incomplete repair
term is absent. In order to establish the value of kl and ke we have considered a ref-
erence radiotherapy protocol with equal doses d̄ and we have computed the damages
that it produces on normal tissues according to Eqs. (4.16) and (4.17). In particular
we have chosen the so-called “strong standard” fractionation schedule (Fowler 2008;
Yang and Xing 2005), 35F × 2 Gy = 70 Gy/46 days (ν = 7, d̄ = 2 Gy), that yields
BEDl = 116.7 Gy and BEDe = 53.1 Gy assuming for the early tissue Tk = 7 days
and Tp = 3 days. Furthermore, we have considered a second fractionation schedule,
25F × 2.531Gy = 63.275Gy/32 days (ν = 5, d̄ = 2.531 Gy), giving the same value
of BEDl (116.7 Gy), which is still tolerable and gives an higher value of the tumour
cell killing (Fowler 2008).

Tables 6 and 7 report the optimal solutions of Problem 2 for d̄ = 2 Gy and respec-
tively d̄ = 2.531 Gy, when the tumour parameter ρ ranges between 1.5 and 20 Gy. The
numerical results are in agreement with the theoretical results of Tables 4 and 5 for
v = 5, including the five optimal solutions at ρ = ρl = 3 Gy. It should be noted that
since v = 5 the extremals d(5) are identical for any choice of the pair ηl , ηe in (3.11),
i.e., either when the late constraint is active or when the early constraint is active.
Then, for each ρ we have at most 5 different extremals according to Corollary 2.

For a comparison with the literature, we focused on the values ρ = 1.5 Gy and ρ =
10 Gy, typically associated to slowly proliferating tumours (prostate) and respectively
to fast proliferating tumours (head and neck or lung). The results are given in Tables 8
and 9 where we included the computation of the “tumour log cell kill” defined by

log10

(
1

S

)
= log10(e)

(
E1 + Ẽ2 − E3

)
(6.1)

where S is given by Eq. (2.4), setting Ẽ2 = 0 and evaluating E1, E3 as in (2.1), (2.3). In
particular, for ρ = 1.5 Gy we set α = 0.1 Gy−1, τR = 1.9 h, TP = 40 days, Tk = 300
days. For ρ = 10 Gy we set α = 0.35 Gy−1, τR = 0.5 h, TP = 3 days, Tk = 21 days.

As expected, for ρ = 10 Gy, the optimal solution coincides with the corresponding
reference protocol and gives the same values of log10 (1/S), BEDl , BEDe. In par-
ticular, the second protocol gives a better tumour log cell kill than the first one, still
giving a tolerable value of BEDe (<61 Gy). On the contrary, when ρ = 1.5 Gy, the
optimal solution is (obviously) better than the uniform one, as far as the tumour log
cell kill is concerned, while it results in a markedly smaller BEDe (see Tables 8, 9).
The optimality of the hypofractionation when ρ < ρl was already pointed out by
Brenner and Hall (1999), by Fowler et al. (2003) and by O’Rourke et al. (2009), and
agrees with the results obtained in Yang and Xing (2005).
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A second group of numerical examples refers to the general Problem 1, with kl and
ke still computed by (4.16) and (4.17). This choice implies that the optimal solutions
are conservative, since the maximum admissible damage to normal tissues is strictly
lower than that obtainable taking into account the incomplete repair term. Moreover,
the theoretical results of Sect. 5 hold, as confirmed by the numerical results reported
in Tables 10 (d̄ = 2 Gy) and 11 (d̄ = 2.531 Gy). In particular we have considered ten
different values of ρ in the range [1.5, 20]. The corresponding values of τR are known
for slowly proliferating tumours (ρ = 1.5 Gy) and for fast proliferating tumours
(ρ = 10 Gy) (Yang and Xing 2005). The other τR values have been obtained by linear
interpolation when ρ ∈ [1.5, 10] or have been set to 0.5 h when ρ > 10 Gy. However,
the results only depend on the value of Q, as already mentioned in Sect. 5.

We observe that, even though more than one extremal can exist, the optimal solution
is always unique, with the late constraint gl always active and prevalent (ge(d̂) < 0).
The optimal doses and the total weekly dose are in agreement with the statements of
Theorem 6 and Fig. 2. In particular, the optimal solution is never uniform, but when ρ

increases the differences among optimal doses become really small. Tables 12 and 13
report the optimal values of log10 (1/S), BEDl , BEDe for ρ = 1.5 Gy and ρ = 10 Gy.
When ρ = 10 Gy, the optimal tumour log cell kill is lower than the tumour log cell kill
of the reference protocol. However, the protocol BEDl is larger than the maximum
admissible value and, therefore, in the presence of the incomplete repair term, the
reference protocol does not belong to the admissible set.

As a third group of examples, let us consider the general Problem 1 with the pre-
vious two reference schedules, when the related damages are computed according to
the LQ model including the sublethal damage term due to incomplete repair:

kl = ρl5d̄

(
1 + d̄

ρl

)
+ 8e−γl d̄2, (6.2)

ke = ρe5d̄

(
1 + d̄

ρe

)
+ 8e−γe d̄2. (6.3)

The values of ρ and τR in Tables 14 and 15 are the same of Tables 10 and 11. For
ρ ≤ 4 Gy, the optimal solution makes the late constraint active and prevalent. When
ρ increases the optimal solution tends to be uniform and equal to the reference pro-
tocol faster with respect to ρ than in the previous group of examples (ρ > 10 Gy).
In general, the number of positive fractions and the total weekly dose increase as ρ

increases. Moreover, the optimal value of J , that is the tumour survival without repop-
ulation term (2.3), markedly decreases. We also observe that the late constraint is
substantially always active (gl(d̂(10)) ∈ (−10−15, 0] for ρ > 10 Gy), while the early
constraint becomes active only for high values of ρ. Therefore, the late constraint is
almost dominant, which is not surprising, as the values assumed for kl and ke in (6.2)
and (6.3) are substantially equivalent to those given by (4.16) and (4.17), since the
interaction terms 8e−γl d̄2 and 8e−γe d̄2 are very small.

A last remark can be made about the portion f of dose actually received by normal
tissues. According to Eq. (2.9), when f decreases from 1, ρl and ρe increase, and it is
reasonable to augment d̄ in order to keep the same standard BEDl = 116.7 Gy. Then,
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kl and ke will correspondingly increase according to (4.16), (4.17) or (6.2), (6.3). The
optimal solutions turn out to be structurally identical to those of the previous tables
with f = 1 but, with respect to ρ, are characterized by a downward shift of the solution
patterns as well as by larger optimal doses.

7 Concluding remarks

The problem of finding the optimal radiotherapy fractionation scheme has been stud-
ied assuming that the overall treatment time is assigned and under the simplifying
assumption that cumulative damage to normal tissues is equi-distributed over every
week of treatment. The obtained results still hold as long as the weekly damage to
the normal tissues is assigned, even though not necessarily constant over the weeks
of treatment. The influence of reoxygenation and redistribution on the radiotherapy
optimization problem, which might be an interesting research subject, has not been
considered.

An important point is that when the maximal admissible damage to normal tissues is
expressed in terms of the biologically effective dose (BED), its value becomes depen-
dent on the treatment protocol and on the model assumed to represent the damage. So
the optimal solution will depend on the assumed model, as it has been shown in the
present work (see Tables 10, 11 compared to Tables 14, 15).

A remarkable result of the present study is the influence of the tumour α/β ratio
on the fractionation scheme. Indeed, as previously observed (Brenner and Hall 1999;
Fowler et al. 2003), we recognized by means of the mathematical formulation of the
optimization problem that hypofractionation is convenient when α/β is small, whereas
the optimal fractionation tends to be uniform for large α/β.

While assessing the validity of the present results in clinical practice is a point
worthy of future investigation, this work provides a framework for determining ana-
lytically the optimal fractionation of radiation dose as a function of tumour type.
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