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Abstract Homeostatic control of cell volume and intracellular electrolyte content is
a fundamental problem in physiology and is central to the functioning of epithelial sys-
tems. These physiological processes are modeled using pump-leak models, a system
of differential algebraic equations that describes the balance of ions and water flowing
across the cell membrane. Despite their widespread use, very little is known about
their mathematical properties. Here, we establish analytical results on the existence
and stability of steady states for a general class of pump-leak models. We treat two
cases. When the ion channel currents have a linear current-voltage relationship, we
show that there is at most one steady state, and that the steady state is globally asymp-
totically stable. If there are no steady states, the cell volume tends to infinity with time.
When minimal assumptions are placed on the properties of ion channel currents, we
show that there is an asymptotically stable steady state so long as the pump current
is not too large. The key analytical tool is a free energy relation satisfied by a gen-
eral class of pump-leak models, which can be used as a Lyapunov function to study
stability.
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1 Introduction

Cells contain a large number of organic molecules that do not leak out through the cell
membrane. The presence of organic molecules and their attendant counterions results
in excess intracellular osmotic pressure. The plasma membrane is not mechanically
strong enough to withstand significant differences in osmotic pressure, and thus the
cell will tend to swell and burst. Plant cells and bacteria have a mechanically rigid cell
wall to guard against this tendency. Animal cells maintain their cell volume with ionic
pumps and ionic channels that together regulate the ionic composition of the cytosol
(Hoffmann et al. 2009; Evans 2009; Boron and Boulpaep 2008).

This “pump-leak” mechanism is typically modeled in the following fashion (Keener
and Sneyd 1998; Hoppensteadt and Peskin 2002). Consider a cell of volume v and
let [·]i,e be the intracellular and extracellular ionic concentrations, respectively. We
only consider the ions Na+, K+ and Cl−. Let the cell be in a large and well-stirred
extracellular bath so that [·]e can be assumed constant. We have the following balance
equations for the three ionic species.

d

dt

(
Fv[Na+]i

) = −gNa

(
φ − RT

F
ln

( [Na+]e

[Na+]i

))
− 3αF, (1.1a)

d

dt

(
Fv[K+]i

) = −gK

(
φ − RT

F
ln

( [K+]e

[K+]i

))
+ 2αF, (1.1b)

d

dt

(−Fv[Cl−]i
) = −gCl

(
φ + RT

F
ln

( [Cl−]e

[Cl−]i

))
. (1.1c)

Here, φ is the membrane potential, g· are the ion channel conductances for each spe-
cies of ion, α is the strength of the pump current, F is the Faraday constant, and RT is
the ideal gas constant times absolute temperature. The pump current for Na+ and K+
has a ratio of 3:2 reflecting the stoichiometry of the Na–K ATPase (in Hoppensteadt
and Peskin 2002, this ratio is set to 1:1 for simplicity). The above balance laws are
supplemented by the following:

0 = [Na+]i + [K+]i − [Cl−]i + z A

v

= [Na+]e + [K+]e − [Cl−]e, (1.1d)
dv

dt
= ζ RT

(
[Na+]i + [K+]i + [Cl−]i + A

v

−([Na+]e + [K+]e + [Cl−]e)
)
. (1.1e)

Equation (1.1d) is the electroneutrality condition, where A is the total amount of
organic molecules in the cell and z the average charge on one organic molecule. We
have assumed that there are no organic molecules outside the cell and that they do
not pass through the membrane. Equation (1.1e) says that water flows into or out of
the cell according to the osmotic pressure difference across the membrane. Here, ζ is
the membrane permeability to water flow. System (1.1) forms a system of differential
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algebraic equations. We would like to see under what condition the above system
possesses a stable steady state, representing a cell with a stable cell volume and ionic
composition.

Models of this type were first introduced in Tosteson and Hoffman (1960), Toste-
son (1964) and have since been extended and modified by several authors to study
cell volume control (Jakobsson 1980; Lew et al. 1991; Hernández and Cristina 1998);
(Armstrong 2003). Pump-leak models are widely used in epithelial physiology.
Epithelial cells need to maintain their cell volume and ionic composition in the face
of widely varying extracellular ionic and osmotic conditions. There is a large body of
mathematical modeling work in the context of renal physiology (see Weinstein 1994,
2003 for review). Mathematical modeling studies of other systems using pump-leak
models include Larsen et al. (2002), Fischbarg and Diecke (2005), and Yi et al. (2003).

Despite their widespread use and fundamental physiological importance, there seem
to be very few analytical results regarding the behavior of pump-leak models. As for
system (1.1), Keener and Sneyd (1998) show the following. Assuming z ≤ −1, there
is a unique steady state with a finite positive cell volume if and only if:

[Na+]e exp(−3αF/(gNa RT/F)) + [K+]e exp(2αF/(gK RT/F))

[Na+]e + [K+]e
< 1. (1.2)

This means that if condition

3[Na+]e/gNa > 2[K+]e/gK, (1.3)

is satisfied, system (1.1) possesses a steady state for sufficiently small α > 0.
To the best of the author’s knowledge, there are no analytical results on the stabil-

ity of these steady states. In Weinstein (1997) the author studies an epithelial model
of greater complexity than (1.1). The author obtains an algebraic expression for the
linearized matrix around steady state and numerically studies its eigenvalues for phys-
iological parameter values. The computation of this linearization is complicated by
the presence of an algebraic constraint (the electroneutrality condition). Some authors
have considered simpler non-electrolyte models of (epithelial) cell volume control and
solute transport. Analytical results for such models can be found in Weinstein (1992),
Hernández (2003, 2007), and Benson et al. (2010).

The goal of this paper is to establish analytical results on the existence and stability
of steady states for a large class of pump-leak models that includes (1.1) and other
representative models as special cases. In Sect. 2, we introduce the general class of
pump-leak models that we shall treat in this paper. We consider N -species of ions sub-
ject to the electroneutrality constraint. Cell volume is controlled by the transmembrane
osmotic pressure difference. The key observation of this Section is that the system of
equations satisfies a free energy identity. This identity and its variations will be the
main tool in studying the stability of steady states. The presence of a free energetic
structure in pump-leak models leads us to natural structure conditions to be imposed
on current-voltage relationships for ionic channel currents.

In Sect. 3, we study the case when the ionic channel current (or passive ionic flux) has
a linear current-voltage relationship, the pump currents are constant and water flow is
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linearly proportional to the transmembrane osmotic pressure difference. System (1.1)
is an example of such a system. We first establish the necessary and sufficient con-
dition under which the system possesses a unique steady state. This condition, when
applied to system (1.1), reduces to (1.2) (in fact, our conclusion is slightly stronger;
we shall see that the restriction z ≤ −1 is not needed in (1.2)). We then prove that
this steady state is globally asymptotically stable. If a steady state does not exist, the
cell volume v tends to infinity as time t → ∞ for any initial condition. The main
tool in proving these statements is a modified version of the free energy introduced in
Sect. 2. This modified free energy G̃ satisfies dG̃/dt = −J, J ≥ 0, thus defining a
Lyapunov function. Asymptotic stability of steady states follows by an examination
of G̃. To prove the global statements, we also make use of the fact that J is a Lyapunov
function. This is a consequence of the fact that, in a suitable set of variables, the system
is a gradient flow of the convex function G̃ with respect to a suitable metric. We thus
have a clear dichotomy; if the system has a steady state, it is globally asymptotically
stable and if not, the cell bursts. In Sect. 3.3, we discuss a simple epithelial model in
which the cell is in contact with a mucosal and serosal bath. When the current voltage
relationships for the ionic channels are all linear, the same stability results hold for
this simple epithelial model.

In many modeling studies using the pump-leak model, the current-voltage relation
for the ionic channel current is not linear. The popular Goldman current voltage rela-
tion is one such example. The goal of Sect. 4 is to establish a result on the existence
and stability of steady states with minimal assumptions on the current–voltage rela-
tion. Indeed, all we assume here are properties required on thermodynamic grounds.
We first discuss solvability of the differential algebraic system. Solvability is not
entirely trivial given the algebraic constraint of electroneutrality. We then show that
for a general class of pump-leak models, there is a steady state for sufficiently small
positive pump rates so long as a generalization of condition (1.3) is satisfied. We then
show that this steady state is asymptotically stable. Our main tool here is again the
modified or relative free energy. The main difficulty in establishing stability is that
the current voltage relation cannot in general be written as a function of the chemical
potential jump only (this difficulty is not present when the current voltage relation is
linear). We shall see that this effect is small when the pump rate is sufficiently small,
which allows us to establish asymptotic stability of the steady state.

2 Model formulation and the free energy identity

Consider N species of ion and let ck, k = 1, . . . , N be the intracellular concentra-
tions of the k-th species of ion. We let ce

k be the extracellular concentrations of these
ions, which are assumed to be positive and constant independent of time. Let v be the
volume of the cell. The balance equation for the ions can be written as follows:

d

dt
(vck) = − jk(φ, c, ce) − pk(φ, c, ce), k = 1, . . . , N . (2.1)

Here, we have written the transmembrane flux as the sum of the passive flux jk and
the active flux pk . The active flux, typically generated by ionic pumps, requires energy
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expenditure whereas the passive flux, carried by ionic channels and transporters, does
not. The flux functions jk and pk depend on the transmembrane potential φ (intracel-
lular potential minus the extracellular potential) as well as the vector of intracellular
and extracellular concentrations c = (c1, . . . , cN )T and ce = (ce

1, . . . , ce
N )T , where ·T

denotes the transpose. We assume that jk and pk are C1 functions of their arguments.
Since the ce are assumed constant, the ce only appear as parameters of the above
differential equation. The dependence on ce will thus often not be shown explicitly.

The functional form of the active flux function pk can be arbitrary, but for jk , we
must impose structure conditions so that it represents a passive flux. Commonly used
examples of jk are:

jL
k = Gk

(
RT ln

(
ck

ce
k

)
+ Fzkφ

)
= Gkμk, Gk > 0, (2.2)

jGHK
k = Pk

Fzkφ

RT

ck exp
(

Fzkφ
RT

)
− ce

k

exp
(

Fzkφ
RT

)
− 1

= Pkce
k

Fzkφ/RT

exp
(

Fzkφ
RT

)
− 1

(
exp

( μk

RT

)
− 1
)

, Pk > 0, (2.3)

where RT is the ideal gas constant times absolute temperature, F is the Faraday con-
stant and zk is the valence of the k-th species of ion (e.g., 1 for Na+,−1 for Cl− and
so on). We assume that there is at least one ionic species for which zk �= 0. In the
above, μk is the chemical potential of the k-th intracellular ion measured with respect
to the extracellular bath:

μk = RT ln

(
ck

ce
k

)
+ Fzkφ. (2.4)

Expression jL
k is linear in μk . If we multiply this by Fzk to change units from ion flux

into electric current, we obtain a linear current voltage relationship for this ionic cur-
rent. This was used in (1.1). Expression jGHK

k can be derived by assuming a constant
electric field across the ion channel, and is known as the Goldman–Hodgkin–Katz
current formula. An important feature of both jL

k and jGHK
k is that they are increasing

functions of μk for fixed φ and that it is 0 when μk is 0. In the general case, we require
jk to satisfy a somewhat weaker version of these properties, which we shall discuss
later in relation to Proposition 2.1.

Observe that ck can be expressed in terms of μk and φ through (2.4). We shall
often find it useful to view jk as a function of φ and μ = (μ1, . . . , μN )T instead of
φ and c. We shall write this as jk(φ,μ) in a slight abuse of notation. We note that the
dependence of jk on μl , l �= k expresses the possibility that the flow of the k-th ion
may be driven by the chemical potential gradient of the l-th ion. This is the case with
many ionic transporters in which the flow of one species of ion is coupled to another.
Indeed, many models of ionic transporter currents have this feature (Weinstein 1983;
Strieter et al. 1990).
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Equation (2.1) is supplemented by:

0 =
N∑

k=1

Fzkck + Fz A

v
=

N∑

k=1

Fzkce
k, (2.5)

dv

dt
= − jw(c, ce, v). (2.6)

In (2.5), A > 0 is the total amount of organic molecules inside the cell, and z is the
average valence of intracellular organic molecules. Equation (2.5) states that both the
intracellular and extracellular concentrations satisfy the electroneutrality constraint.
Electroneutrality of the extracellular space, together with the requirement that zk �= 0
for at least one k, requires that there must be at least two ionic species. In (2.6), jw is
the passive transmembrane water flux. An example of jw is:

jw = −ζπw, πw = RT

(
N∑

k=1

ce
k −

(
N∑

k=1

ck + A

v

))

(2.7)

where ζ > 0 is the hydraulic conductivity of water through the membrane. This simple
prescription is what is used in (1.1) and many other models of cell volume and elec-
trolyte control. In this example, water flow is proportional to πw, the osmotic pressure
difference across the membrane, whose expression is given by the van’t Hoff law. We
shall assume that jw is a C1 function only of πw. The important property of (2.7)
is that jw = 0 when πw = 0 and that it is increasing in πw. This property will be
discussed further in relation to Proposition 2.1.

We seek solutions to the differential algebraic system (2.1), (2.5) and (2.6) given
initial values for c = (c1, . . . , cN )T , v and φ that satisfy the algebraic constraint
(2.5). We require that ck > 0, k = 1, . . . , N and v > 0 for all time. The membrane
potential φ evolves so that the electroneutrality constraint (2.5) is satisfied at each
instant. Multiplying (2.1) by Fzk and summing in k, we have:

I (φ, c) =
N∑

k=1

Fzk( jk(φ, c) + pk(φ, c)) = 0, (2.8)

where we used (2.5) to conclude that I , the total transmembrane electric current, must
be 0. This gives us an algebraic equation for φ that must be solved at each instant.
The solvability of this equation is a necessary condition for the initial value problem
to be solvable. For certain specific functional forms of jk and pk , like those of (2.2)
and (2.3) with pk constant, the solvability of (2.8) is immediate. We shall discuss the
general case in Sect. 4.

One way to avoid the above difficulty arising from the algebraic constraint is to
replace (2.5) with the following relation for intracellular concentrations:

Cmφ = F

(

v

N∑

k=1

zkck + z A

)

, (2.9)
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where Cm is the total membrane capacitance. This states that the total charge inside
the cell is equal to the charge stored on the membrane capacitor. We note that (2.9)
has its own difficulties as a biophysical model. If the concentrations are defined as
the total amount of intracellular ions divided by volume, (2.9) is indeed correct. If we
define ck to be the ionic concentration away from the surface charge layer (on the order
of Debye length ≈1 nm in width), we must introduce surface ionic densities as was
done in Mori and Peskin (2009). As we shall see shortly, the left hand side of (2.9) is
often negligibly small and the electroneutrality condition (2.5) can thus be seen as a
perturbative limit of condition (2.9). We shall discuss this point further after we make
our system dimensionless.

Scale ionic concentration, volume and membrane potential as follows and introduce
the primed dimensionless variables:

ck = c0c′
k, ce

k = c0ce′
k , v = v0v

′, φ = RT

F
φ′, (2.10)

where c0 and v0 are the typical concentrations and volumes, respectively. Equa-
tions (2.1), (2.5) and (2.6) become:

d(v′c′
k)

dt ′
= − j ′k(φ′,μ′) − p′

k(φ
′, c′), μ′

k = ln

(
c′

k

ce′
k

)
+ zkφ

′, (2.11a)

0 =
N∑

k=1

zkc′
k + z

A′

v′ =
N∑

k=1

zkce′
k , A′ = A

c0v0
, (2.11b)

dv′

dt ′
= − j ′w(π ′

w), π ′
w =

N∑

k=1

ce′
k −

(
N∑

k=1

c′
k + A′

v′

)

, (2.11c)

whereμ′ = (μ′
1, . . . , μ

′
N )T and c′ = (c′

1, . . . , c′
N )T . Time t , the flux functions jk, pk

and jw are suitably rescaled to yield their respective primed variables. We note that
it is possible to further reduce the number of constants, for example, by taking c0 to
be the total extracellular concentration. We shall not pursue this here, since it leads to
some difficulty in understanding the physical meaning of each term in the resulting
dimensionless system.

Equation (2.9) yields:

εφ′ =
(

v′
N∑

k=1

zkc′
k + z A′

)

, ε = Cm RT/F

Fc0v0
(2.12)

where ε is a dimensionless parameter expressing the ratio between the amount of ions
contributing to the surface charge and the absolute amount of charge in the cytosolic
bulk. This quantity is typically very small (about 10−7) and we thus expect that it is
an excellent approximation to let the left hand side of (2.12) be 0 and adopt condition
(2.5) (or its dimensionless version (2.11b)), if the membrane potential does not vary
too rapidly. Most, if not all modeling studies of cellular electrolyte and water balance
use the electroneutrality constraint (2.5) or (2.11b) and we shall treat this case only.
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We shall henceforth deal almost exclusively with the dimensionless system.
To avoid cluttered notation, we remove the primes from the dimensionless variables.

An important property of the above system is that it possesses a natural energy
function.

Proposition 2.1 Let v and ck, k = 1, . . . , N satisfy system (2.11). Then, the following
equality holds:

dG

dt
= −

N∑

k=1

μk( jk + pk) − πw jw, (2.13)

where

G = vσ, σ =
N∑

k=1

(
ck

(
ln

(
ck

ce
k

)
− 1

)
+ ce

k

)
+ A

v

(
ln

(
A

v

)
− 1

)
. (2.14)

Identity (2.13) is not entirely new. In Sauer (1973), Fromter (1974), and Weinstein
(1983) the authors argue on thermodynamic grounds that free energy dissipation and
input for an epithelial system should be given by the right hand side of (2.13). The
new observation here is that, by appropriately defining a free energy function (that
is to say, the left hand side of (2.13)), this thermodynamic property can be turned
into a mathematical statement about system (2.11). We also point out that a similar
identity valid for a system of partial differential equations describing electrodiffusion
and osmosis was proved in Mori et al. (2011). In subsequent sections we will use this
as a tool to study stability of states.

Proof of Proposition 2.1 View σ as a function of ck and cA = A/v. Note that:

d

dt
(vcA) = d A

dt
= 0, (2.15)

since A is constant. Define the chemical potential of intracellular organic molecules as:

μA = ln cA + zφ = ∂σ

∂cA
+ zφ. (2.16)

Note that:

μk = ∂σ

∂ck
+ zkφ. (2.17)
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Multiply (2.1) by μk , multiply (2.15) by μA and take the sum. The left hand side
yields:

N∑

k=1

μk
d

dt
(vck) + μA

d

dt
(vcA)

=
N∑

k=1

(
∂σ

∂ck
+ zkφ

)
d

dt
(vck) +

(
∂σ

∂cA
+ zφ

)
d

dt
(vcA)

= d

dt
(vσ ) +

(
N∑

k=1

ck
∂σ

∂ck
+ cA

∂σ

∂cA
− σ

)
dv

dt
+ φ

d

dt

(

v

N∑

k=1

zkck + zvcA

)

= d

dt
(vσ ) − πw

dv

dt
, (2.18)

where we used (2.5) and (2.14) in the third equality. We thus have:

d

dt
(vσ ) − πw

dv

dt
= −

N∑

k=1

μk( jk + pk). (2.19)

Equation (2.13) thus follows from (2.6). 	

The function σ should be interpreted as the free energy per unit volume of intracel-

lular electrolyte solution. A key fact that was used in the above proof is the identity:

πw = σ −
(

N∑

k=1

ck
∂σ

∂ck
+ cA

∂σ

∂cA

)

. (2.20)

This relation, connecting the free energy with osmotic pressure, is well-known in
physical chemistry (Doi and See 1996).

When pk = 0, k = 1, . . . , N in (2.13), there are no active currents and we have:

dG

dt
= −

N∑

k=1

μk jk − πw jw. (2.21)

Given the interpretation of G as the total free energy of the system, the second law of
thermodynamics requires that G be decreasing in time. The negativity of (2.21) when
μ �= 0 and πw �= 0 is equivalent to the statement that the following conditions be
satisfied:

N∑

k=1

μk jk(φ,μ) > 0 for all φ and μ �= 0, (2.22)

πw jw(πw) > 0 if πw �= 0. (2.23)
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Condition (2.22), together with continuity of jk and jw with respect to its arguments
immediately implies that:

jk(φ,μ = 0) = 0, k = 1, . . . , N , jw(πw = 0) = 0, (2.24)

where the conditions on jk is to be satisfied for all φ. Taking the derivative of the
above expression for jk with respect to φ, we see that:

∂ jk
∂φ

(φ,μ = 0) = 0, k = 1, . . . , N . (2.25)

We shall find this expression useful later on.
Let us require that the derivative of jw with respect to πw be non-zero at πw = 0.

This non-degeneracy condition, together with (2.23), leads to:

∂ jw
∂πw

(πw = 0) > 0. (2.26)

Let j = ( j1, . . . , jN )T and let ∂j/∂μ be the Jacobian matrix with respect to μ for fixed
φ. That is to say, the kl entry of the N × N matrix ∂j/∂μ is given by ∂ jk/∂μl . The
non-degeneracy condition for j is that ∂j/∂μ be non-singular at μ = 0. We require
the following condition:

∂j
∂μ

(φ,μ = 0) is symmetric positive definite for all φ. (2.27)

The symmetry of the Jacobian matrix does not follow from the non-degeneracy con-
dition and condition (2.22). In fact, these two conditions imply only that:

1

2

(
∂j
∂μ

+
(

∂j
∂μ

)T
)

(φ,μ = 0) is symmetric positive definite for all φ.

(2.28)

The symmetry of ∂j/∂μ is required by the Onsager reciprocity principle (Onsager
1931; Katzir-Katchalsky and Curran 1965; Kjelstrup and Bedeaux 2008). We note
that (2.27) is the same as the condition introduced in Sauer (1973), Fromter (1974),
and Weinstein (1983). It is easy to see that both (2.2) and (2.3) satisfy (2.22), (2.24)
and (2.27) and that (2.7) satisfies (2.23), (2.24) and (2.26).

Note that (2.23) together with (2.11c) implies that the intracellular and extracel-
lular osmotic pressures must be equal at steady state. We are thus assuming that the
membrane cannot generate any mechanical force to balance a difference in osmotic
pressure. If the cell membrane (or its attendant structures) can generate some elastic
force, it would make it easier for the cell to maintain its volume.

Our starting point in deriving the above structure conditions for jk and jw was the
requirement that the right hand side of (2.21) be negative. If jk is allowed to depend
on πw and jw on μ, a more general structure condition can be formulated. Although
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it should not be difficult to extend the results to follow to this more general case, we
will not pursue this here to keep the presentation reasonably simple.

3 Results when the flux functions are linear in the chemical potential jump

Before dealing with the general case in Sect. 4, we treat the simpler case when jk and
jw are linear in μ and πw, respectively, and pk are constants in (2.11). In this case, we
obtain a more or less complete picture of the behavior of our system. System (2.11)
becomes:

d

dt
(vc) = −Lμ− p, (3.1a)

0 =
N∑

k=1

zkck + z A

v
=

N∑

k=1

zkce
k, (3.1b)

dv

dt
= −ζπw, (3.1c)

where L = ∂j/∂μ is an N × N matrix, which by (2.27), is symmetric positive def-
inite, and p = (p1, . . . , pN )T is the vector of the active fluxes. The hydraulic per-
meability ζ = ∂ jw/∂πw is positive by (2.26). The extracellular ionic concentrations
ce

k > 0, k = 1, . . . , N and the amount of impermeable organic solute A are assumed
positive as discussed in the previous Section. We seek solutions (c, v) ∈ R

N+ × R+
where R+ denotes the set of positive real numbers.

Here and in the sequel, we shall often find it useful to refer to the pair (c, v) as
well as the triple (c, v, φ) ∈ R

N+ × R+ × R. We shall often view the pair and the
triple as being members of R

N+1+ and R
N+1+ × R, respectively, and write (c, v) ∈

R
N+1+ and (c, v, φ) ∈ R

N+1+ × R ⊂ R
N+2. The more “correct” notation may be to

write (cT , v)T = (c1, . . . , cN , v)T ∈ R
N+1+ , (cT , v, φ)T = (c1, . . . , cN , v, φ)T ∈

R
N+1+ × R given that c is a column vector. We will not adopt this unnecessarily ugly

notation. Similar comments apply to the pair (a, v) and the triple (a, v, φ) where
a = vc.

For system (3.1), we may compute φ explicitly in terms of c by solving the (dimen-
sionless version of) (2.8):

φ = −〈z, Lγ + p〉RN

〈z, Lz〉RN
, γ = (γ1, . . . , γN )T , γk = ln

(
ck

ce
k

)
, (3.2)

where z = (z1, . . . , zN )T . Substituting the above expression for φ into (3.1a), we
obtain:

d

dt
(vc) = −L̂(γ + q), L̂kl = Lkl − (Lz)k(Lz)l

〈z, Lz〉RN
,

q = (q1, . . . , qN )T , q = L−1p,

(3.3)
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where Lkl , L̂kl are the kl entries of the N × N matrix L , L̂ and (Lz)k is the k-th
component of the vector Lz ∈ R

N . Note that L−1 exists given that L is positive
definite. Replacing (3.1a) with (3.3), we now have a system of ordinary differential
equations (ODEs) for c and v only. Applying the standard existence and uniqueness
theorem for ODEs, we conclude that a unique solution always exist for sufficiently
short time so long as the solution remains in (c, v) ∈ R

N+1+ .
Even though our ODE system is for N + 1 variables c = (c1, . . . , cN )T and v, our

dynamical system is only N dimensional, since the dynamics is constrained by the
electroneutrality condition (3.1b). The initial value problem for (3.1) can thus only be
solved if the initial values satisfy (3.1b). In the proof of Proposition 3.4, we will find
it useful to make a change of variables to remove this constraint.

3.1 Existence of steady states and asymptotic stability

Our first observation is the following.

Proposition 3.1 Consider the function:

f (φ) =
N∑

k=1

ce
k (exp(−qk − zkφ) − 1), (3.4)

where qk, k = 1, . . . , N was defined in (3.3). The function f (φ), φ ∈ R has a unique
minimizer φ = φmin. System (3.1) has a unique steady state if this minimum value is
negative:

fmin(q, ce, z) ≡ f (φmin) < 0. (3.5)

Otherwise, the system does not have any steady states.

The above condition can be interpreted as follows. At steady state, it is easily seen
that the concentrations ck must be equal to c∗

k = ce
k exp(−qk − zkφ

∗) where φ∗ is the

value of φ at steady state (see (3.7)). We need f (φ∗) = ∑N
k=1(c

∗
k − ce

k) < 0 since
there must be “osmotic room” for the impermeable solutes. This is only possible if
the minimum of f (φ), φ ∈ R is negative. We also point out that the above condition
depends only on q = L−1p, ce and z and does not depend on z or A.

Proof of Proposition 3.1 Set the right hand side of (3.1a) and (3.1c) to zero. We have:

q = L−1p = −μ, πw = 0. (3.6)

Solving for ck in the first expression we have:

ck = ce
k exp(−qk − zkφ), k = 1 . . . , N . (3.7)

123



Erratum to: Mathematics of pump-leak models 885

Substitute this into πw = 0 and (3.1b). We have:

f (φ) + A

v
= 0, (3.8)

−d f

dφ
+ z A

v
=

N∑

k=1

zkce
k exp(−qk − zkφ) + z A

v
= 0, (3.9)

where f (φ) is given by (3.4). We must find solutions φ and v > 0 to the above system.
Note that:

d2 f

dφ2 =
N∑

k=1

z2
kce

k exp(−qk − zkφ) > 0, lim
φ±∞

d f

dφ
= ±∞. (3.10)

The second property comes from the fact that there are ions with negative and positive
valences among the N species of ions and that ce

k > 0. We can thus solve (3.9) for φ

uniquely in terms of v. Let this function be φ = ϕ(v). We have:

dϕ

dv
= −

(
d2 f

dφ2

)−1
z A

v2 . (3.11)

Consider the left hand side of (3.8) and substitute φ = ϕ(v) into this expression:

R(v) ≡ f (ϕ(v)) + A

v
= 0. (3.12)

Our problem of finding steady states is reduced to the question of whether the above
equation in v has a positive solution. We have:

d R

dv
= d f

dφ

dϕ

dv
− A

v2 = −
(

d2 f

dφ2

)−1
(z A)2

v3 − A

v2 ≤ − A

v2 < 0 (3.13)

where we used (3.9) and (3.11) in the second equality and (3.10) in the first inequality.
Therefore, R(v) is monotone decreasing. Note that:

R(ε) = R(1) −
1∫

ε

(
d R

dv

)
dv ≥ R(1) +

1∫

ε

(
A

v2

)
dv = R(1) + A(ε−1 − 1).

(3.14)

Therefore, R(v) → ∞ as v tends to 0 from above. Thus, (3.12) has a unique positive
solution if:

lim
v→∞ R(v) < 0, (3.15)
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and otherwise, there is no solution. Let ϕ∞ = limv→∞ ϕ(v). Note that this limit exists
since, by (3.11), ϕ(v) is monotone if z �= 0 and constant if z = 0. Taking the limit
v → ∞ on both sides of (3.9), we see that ϕ∞ is the unique solution to d f/dφ = 0 as
an equation for φ. Given (3.12), condition (3.15) can be written as f (ϕ∞) < 0. The
statement follows by taking φmin = ϕ∞. 	


Condition (3.5) applied to (1.1) yields condition (1.2). Since condition (3.5) is valid
regardless of the value of z, we may lift the restriction z ≤ −1 found in Keener and
Sneyd (1998).

Fix q = L−1p and ce so that (3.5) is satisfied. Since condition (3.5) does not depend
on z or A, a unique steady state (c, v, φ) = (c∗, v∗, φ∗) exists for any value of z and
A > 0. We may thus view (c∗, v∗, φ∗) as a function of A and Q A = z A, defined for
A > 0 and Q A ∈ R. We can compute the dependence of v∗ on Q A and A as follows.

∂v∗

∂ A
=
((

Q A

v∗

)2

+ d2 f

dφ2

A

v∗

)−1
d2 f

dφ2 > 0, (3.16)

∂v∗

∂ Q A
=
((

Q A

v∗

)2

+ d2 f

dφ2

A

v∗

)−1
Q A

v∗ . (3.17)

From a biophysical standpoint, (3.16) is reasonable since more impermeable solute
leads to greater osmotic pressure. Note that (3.17) says that the v∗ increases if the
absolute amount of charge (whether negative or positive) increases. This is also bio-
physically reasonable since more charge on the impermeable solute leads to a greater
amount of intracellular counterions, thus increasing intracellular osmotic pressure.

We now turn to the question of stability. Let:

S =
{

(c, v) ∈ R
N+1+

∣∣∣∣∣

N∑

k=1

zkck + z A/v = 0

}

. (3.18)

The dynamical system defined by (3.1) lives on this set. We must thus modify the
definition of stability accordingly. A steady state of (3.1) is stable if all solutions with
initial values in S and near the steady state stay close to the steady state. A steady state
is asymptotically stable if it is stable and if all solutions with initial values in S and
near the steady state converge to the steady state as t → ∞. A steady state is globally
asymptotically stable if it is stable and if all solutions starting from initial values in S
converge to the steady state as t → ∞. If we make a change of variables to obtain an
N -dimensional dynamical system without the implicit constraint of electroneutrality,
the above definitions of stability reduce to the usual ones for ODEs.

We saw in Proposition 2.1 that in the absence of active currents, the free energy G
defined in (2.14) is decreasing. We now construct a free energy like quantity that is
decreasing in the presence of active currents. Define:

G̃ = v

N∑

k=1

(
ck

(
ln

(
ck

ce
k

)
− 1 + qk

)
+ ce

k

)
+ A

(
ln

(
A

v

)
− 1

)
(3.19)
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where qk was defined in (3.4). For G̃, we have the following analogue of Proposi-
tion 2.1.

Lemma 3.2 Let c, v, φ satisfy system (3.1). We have:

dG̃

dt
= −J,

J = 〈μ+ q, L(μ+ q)〉RN + ζπ2
w = 〈γ + q, L̂(γ + q)

〉
RN + ζπ2

w,

(3.20)

where 〈·, ·〉RN is the inner product in R
N . The function G̃ is thus a Lyapunov function

in the sense that it is non-increasing in time.

Proof The proof is almost identical to the proof of Proposition 2.1. The second equality
in the definition of J comes from (3.3). 	


If system (3.1) has a steady state, we may rewrite (3.20) as follows. Let (c∗, v∗, φ∗)
be the steady state of (3.1). Note that πw = 0 at steady state, and that qk = −μ∗

k where
μ∗

k is the evaluation of the chemical potential at steady state. Using this, and the fact
that c satisfies the electroneutrality constraint (3.1b), we find, after some calculation:

Ĝ(c, v) ≡ G̃(c, v) − G̃(c∗, v∗)

= v

N∑

k=1

(
ck

(
ln

(
ck

c∗
k

)
− 1

)
+ c∗

k

)
+ A

(
ln

(
v∗

v

)
− 1 + v

v∗

)
. (3.21)

The quantity Ĝ can be interpreted as being the total free energy of the system relative
to the steady state. Since G̃ and Ĝ differ only by a constant, we may replace G̃ with
Ĝ in (3.20):

dĜ

dt
= −J = −〈μ̂, Lμ̂〉RN − ζπ2

w,

μ̂ = (μ̂1, . . . , μ̂N )T , μ̂k = ln

(
ck

c∗
k

)
+ zk(φ − φ∗),

(3.22)

where we used qk = −μ∗
k to rewrite J . Thus, if the system has a steady state,

Lemma 3.2 says that the free energy relative to the steady state is always decreas-
ing at a rate that is controlled by μ̂, the vector of chemical potential relative to the
steady state. We shall find both G̃ and Ĝ useful depending on context.

In studying stability, it is sometimes convenient to use a new set of variables a =
(a1, . . . , aN )T = vc, v and φ rather than c, v and φ. Rewriting (3.1) in the new
variables, a satisfies the differential equations:

da
dt

= −L(μ+ q). (3.23)

We now state a result on the function G̃. Note that, although the solutions (c, v)

of (3.1) is defined only for (c, v) ∈ R
N+1+ , the function G̃(c, v) is well-defined on
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R+
N × R+ where R+ is the set of non-negative real numbers (overline of a set will

henceforth denote its closure). The same comment applies for G̃ viewed as a function
of (a, v) and for Ĝ.

Lemma 3.3 1. Consider the function G̃ defined in (3.19) and view this as a function

of (a, v) ∈ R+
N × R+ where a = vc. The Hessian of G̃ is positive definite at

each point in R
N+1+ and G̃ is thus a convex function.

2. Suppose condition (3.5) is satisfied. View G̃ as a function of (c, v) ∈ R+
N × R+

and let the unique steady state of (3.1) be given by (c∗, v∗). Then, (c∗, v∗) is the
unique minimizer of G̃ restricted to S , where S is given in (3.18).

Proof Let HG denote the (N + 1) × (N + 1) Hessian matrix of G̃(a, v). The Hessian
matrix is well-defined for (a, v) ∈ R

N+1+ . For any vector x = (x1, . . . , xN , xv) ∈
R

N+1 we have:

〈x, HGx〉RN+1 =
N∑

k=1

(
1√
ak

xk −
√

ak

v
xv

)2

+ A

v2 x2
v , (3.24)

The Hessian matrix HG is thus positive definite at every point in (a, v) ∈ R
N+1+ , and

G̃ is thus a convex function.
To prove the second item, we first rephrase the assertion in terms of (a, v). We

must show that (a∗, v∗) = (v∗c∗, v∗) is the unique minimizer of G̃(a, v), (a, v) ∈
R+

N × R+ when restricted to the hyperplane:

N∑

k=1

zkak + A = 0 (3.25)

where a = (a1, . . . , aN )T .
We seek stationary points of G̃ restricted to the hyperplane (3.25). Consider:

G̃λ = G̃ + λ

(
N∑

k=1

zkak + A

)

(3.26)

where λ is the Lagrange multiplier. The condition for a stationary point is given by:

∂G̃λ

∂ak
= ln

(
ak/v

ce
k

)
+ zkλ + qk = 0,

∂G̃λ

∂v
= πw = 0.

(3.27)

If we identify λ with φ, the membrane potential, the above condition is nothing other
than the condition for steady state of system (3.1). Since condition (3.5) is satisfied, by
Proposition 3.1, the above system has a unique solution and (a, v, λ) = (a∗, v∗, φ∗)
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where φ∗ is the value of φ at the unique steady state of (3.1). Since G̃ is a convex func-

tion on R+
N × R+, its restriction to the hyperplane (3.25) is also a convex function.

Thus, this stationary point is the unique minimizer. 	

We may now state our first stability result.

Proposition 3.4 Suppose condition (3.5) is satisfied. Then, the unique steady state of
(3.1) is asymptotically stable. Moreover, the decay to the steady state is exponential,
and the linearized operator around the steady state is diagonalizable with real and
negative eigenvalues.

The linearized operator above refers to the linearization when (3.1) is seen as an
ODE system on the N -dimensional submanifold defined by the electroneutrality con-
straint (3.1b). We note that asymptotic stability is in fact an immediate consequence
of Lemma 3.3 by a Lyapunov stability argument. Thus, if we are only interested in
asymptotic stability, there is no need to study the linearization. A Lyapunov stabil-
ity argument will be used to study the global behavior of solutions in the proof of
Theorem 3.5.

Proof of Proposition 3.4 It suffices to prove this claim by studying the dynamics of
(3.1) in the variables (a, v) instead of (c, v). Since condition (3.5) is satisfied, there
is a unique steady state by Proposition 3.1. To study the linearization around this
steady state we must change variables to remove the implicit constraint (3.1b) (or
equivalently, (3.25)) and obtain an N -dimensional ODE system.

From (3.3), we have:

da
dt

= −L̂∇aG̃, (3.28)

where ∇aG̃ is the gradient of G̃(a, v) with respect to a while keeping v fixed. Let us
examine the matrix L̂ . Take a vector w ∈ R

N . By (3.3), we have:

〈
w, L̂w

〉
RN = 〈w, Lw〉RN −

(〈w, Lz〉RN

)2

〈z, Lz〉RN
. (3.29)

Since L is symmetric positive definite, the above quantity is non-negative by the Cau-
chy-Schwarz inequality and is equal to 0 if and only if w is a constant multiple of z.
Thus, L̂ is a symmetric positive semi-definite matrix whose eigenspace corresponding
to the eigenvalue 0 is spanned by z. The restriction of L̂ to the orthogonal complement
of this eigenspace is thus positive definite.

Consider a change of coordinates from a to an orthonormal coordinate system b
satisfying:

b = (b1, . . . , bN )T , bN = 1

|z| 〈z, a〉RN . (3.30)

The N -th coordinate axis is thus parallel to z. Note that the electroneutrality constraint
(3.25) can be written as bN = constant. Let b = Ua, where U is the orthogonal coordi-
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nate transformation matrix. In the b coordinate system, L̂ transforms to L̂b = U L̂U−1.
Given the above properties of L̂, L̂b has the form:

L̂b =
(

L̂⊥
b 0N−1

0T
N−1 0

)
, (3.31)

where L̂⊥
b is a positive definite matrix and 0N−1 is the zero column vector of length

N − 1. Rewriting (3.28) in terms of b, we have:

db
dt

= −L̂b∇bG̃ (3.32)

where ∇bG̃ is the gradient of G̃ (keeping v fixed) seen as a function of b. From (3.31),
we see that bN remains constant. Let b̂ = (b1, . . . , bN−1)

T . We have:

db̂
dt

= −L̂⊥
b ∇b̂ G̃ (3.33)

where ∇b̂ is the gradient of G̃ with respect to b̂ while keeping bN and v fixed. We
have thus reduced the system (3.1) to (3.33) and to (3.1c) which can be written as:

dv

dt
= −ζ

∂G̃

∂v
. (3.34)

Letting u = (b1, . . . , bN−1, v)T , we may write our system as follows:

du
dt

= −Lu∇uG̃, Lu =
(

L̂⊥
b 0N−1

0T
N−1 ζ

)
, (3.35)

where ∇u is the gradient of G̃ with respect to u while keeping bN fixed. We have thus
obtained the requisite N -dimensional ODE system in the variables u; the electroneu-
trality constraint bN = constant only appears as a parameter of the system.

Let Hu be the Hessian of G̃ with respect to u. Given Lemma 3.3, Hu is symmetric
positive definite. Indeed, the quadratic form defined by Hu is just the restriction of HG

(defined in Lemma 3.3) to the subspace of R
N+1 orthogonal to (zT , 0)T . The linearized

operator of (3.35) around steady state is thus given by −Lu H∗
u where H∗

u is the evalu-
ation of Hu at the steady state. Note that Lu H∗

u is similar to (H∗
u )1/2 Lu(H∗

u )1/2 where
(H∗

u )1/2 is the positive square root of H∗
u , which exists thanks to positive definiteness

of H∗
u . Since (H∗

u )1/2Lu(H∗
u )1/2 is a symmetric matrix and since Lu is symmetric

positive definite, so is (H∗
u )1/2Lu(H∗

u )1/2. Thus, −Lu H∗
u is diagonalizable with real

negative eigenvalues. The steady state is asymptotically stable and the approach to
steady state is exponential. 	


By rewriting (3.1) as (3.35), we see that the system is a gradient flow on the hyper-
plane defined by the electroneutrality constraint where the metric is given by L−1

u .
This led us to the conclusion that the linearization is diagonalizable with real negative
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eigenvalues. Note that we made essential use of the symmetry of the matrix L , which
came from the Onsager reciprocity principle (see (2.27)). The gradient structure of
our system combined with the convexity of G̃ has another interesting consequence as
we shall see in Lemma 3.6.

3.2 Global behavior

We now state the main result of this Section.

Theorem 3.5 Suppose condition (3.5) is satisfied. Then, (3.1) has a unique steady
state and it is globally asymptotically stable. The linearization around steady state is
diagonalizable with real negative eigenvalues.

Existence of the unique steady state was proved in Proposition 3.1. Asymptotic
stability and the property of the linearized operator was proved in Proposition 3.4. We
have thus only to prove that all solutions with initial value in S (see (3.18)) converge
to the steady state as t → ∞. Implicit in this assertion is that these solutions are
global (defined for all positive time). Once this is established, we use the fact that Ĝ
is a Lyapunov function to obtain the desired result.

To prove that all solutions are global, we must rule out two possibilities. The first is
that the solution may grow unbounded in finite time. To show that this is not possible,
we make use of the function Ĝ. The second possibility is that one or more of the
concentrations ck or the cell volume v may come arbitrarily close to 0 in finite time.
To show that this cannot happen, we examine the free energy dissipation function J
defined in (3.20).

Lemma 3.6 View J defined in (3.20) as a function of (c, v) ∈ R
N+:

J (c, v) = Jc(c) + ζ(πw(c, v))2, Jc(c) = 〈γ + q, L̂(γ + q)
〉
RN . (3.36)

1. Consider any solution (c(t), v(t)) of system (3.1). We have:

d

dt
J (c(t), v(t)) = −2

v

N∑

k=1

(
ρk√
ck

− ζπw
√

ck

)2

− 2A

v2 (ζπw)2,

ρ = (ρ1, . . . , ρN )T = L̂(γ + q).

(3.37)

The function J is thus a Lyapunov function in the sense that it is monotone non-
increasing.

2. The function Jc(c) defined in (3.36) tends to +∞ as c approaches any point on
∂R

N+ where ∂· denotes the boundary of a set.

That J is a Lyapunov function can be seen as follows. View J as a function of u
introduced in the proof of Proposition 3.4. First, note that:

dG̃

dt
= −

〈
∇uG̃,

du
dt

〉

RN
= − 〈∇uG̃, Lu∇uG̃

〉
RN = −J (3.38)
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where we used (3.35) in the second equality. We thus have:

d J

dt
= 2

〈
Lu∇uG̃,

d

dt

(∇uG̃
)〉

RN
= 2

〈
Lu∇uG̃, Hu

du
dt

〉

RN

= −2
〈
Lu∇uG̃, Hu Lu∇uG̃

〉
RN (3.39)

where Hu is the Hessian matrix of G̃ with respect to u. We used (3.35) in the last
equality. As we saw in the proof of Proposition 3.4, Hu is positive definite. Therefore,
J is monotone non-increasing. We see that the Lyapunov property of J is a general
consequence of the fact our system, in suitable variables, is a gradient flow of the
convex energy function G̃.

Proof of Lemma 3.6 We saw above that d J/dt is non-positive, but we have not
obtained the right hand expression in (3.37). This is most easily done by direct cal-
culation. We turn to the second claim. Take any point cb ∈ ∂R

N+ and assume without
loss of generality that the first 1 ≤ l ≤ N components of cb are 0:

cb = (0, . . . , 0︸ ︷︷ ︸
l

, cb
l+1, . . . , cb

N ). (3.40)

Decompose the vector γ + q in the following fashion.

γ + q = −(γ 1 + γ 2),

γ 1 = −(γ1 + q1, . . . , γl + ql , 0, . . . , 0︸ ︷︷ ︸
N−l

)T , (3.41)

γ 2 = −(0, . . . , 0︸ ︷︷ ︸
l

, γl+1 + ql+1, . . . , γN + qN )T .

Now, consider a sequence of points cn ∈ R
N+ , n = 1, 2, . . . such that cn → cb as

n → ∞. Given that:

γk + qk = ln

(
ck

ce
k

)
+ qk, k = 1, . . . , N , (3.42)

each of the first l non-zero components of γ 1 goes to +∞ as cn → cb whereas γ 2
remains bounded as cn → cb. Now, take an arbitrary vector

w = (w1, . . . , wN ) ∈ R
N , |w| = 1, wk ≥ 0, k = 1, . . . , N . (3.43)

Recall from (3.29) and the subsequent discussion that
〈
w, L̂w

〉
RN is positive if w is not

parallel to z. The vectors w and z are indeed not parallel since z must have at least one
component that is negative (there is at least one ionic species with negative valence).
Therefore,

min
wk≥0,k=1,...,N ,|w|=1

〈
w, L̂w

〉
RN ≡ Kw > 0 (3.44)
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given that the set satisfying wk ≥ 0, k = 1, . . . , N , |w| = 1 is compact. Therefore,
for any vector u whose components are non-negative, we have:

〈
u, L̂u

〉
RN ≥ Kw |u|2 . (3.45)

Now, let us take the limit of Jc(c) as cn → cb. If cn is sufficiently close to cb, the first
l components of γ 1 as defined in (3.41) are positive. Therefore, we have:

Jc(cn) ≥ 〈γ 1 + γ 2, L̂(γ 1 + γ 2)
〉
RN

≥ (Kw

∣
∣γ 1

∣
∣− 2

∣
∣L̂γ 2

∣
∣)
∣
∣γ 1

∣
∣+ 〈γ 2, L̂γ 2

〉
RN (3.46)

where we used (3.45) and the Cauchy–Schwarz inequality. Since
∣
∣γ 1

∣
∣ → +∞ and

γ 2 remains bounded as cn → cb, Jc(cn) tends to +∞. 	


Proof of Theorem 3.5 Take an arbitrary initial value (c0, v0) ∈ S where S was defined
in (3.18). We first show that the solution to (3.1) starting from (c0, v0) is defined for
all t > 0.

View Ĝ of (3.21) as a function of (c, v). Consider the set:

AM = {(c, v) ∈ S|Ĝ(c, v) < M}, (3.47)

where we choose M so that M > Ĝ(c0, v0). Given (3.22), the solution stays within
AM so long as the solution is defined. We first show that the set AM is bounded and
that it is bounded away from the hyperplane v = 0.

Any element in AM satisfies:

N∑

k=1

(
ck

(
ln

(
ck

c∗
k

)
− 1

)
+ c∗

k

)
< − A

v

(
ln

(
v∗

v

)
− 1

)
− A

v∗ + M

v
. (3.48)

It is easily seen that the left hand side of the above is greater than or equal to 0.
Therefore the right hand side must be greater than 0, from which we obtain:

A

(
ln

(
v∗

v

)
− 1 + v

v∗

)
< M. (3.49)

Therefore, v must satisfy 0 < v− < v < v+ < ∞ for some constants v+ and v−. Let
M be the supremum of the right hand side of (3.48) over v− < v < v+. This M is
clearly finite. Thus,

N∑

k=1

(
ck

(
ln

(
ck

c∗
k

)
− 1

)
+ c∗

k

)
≤ M . (3.50)
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We thus see that ck must be bounded above by a constant c+ that depends only on M .
Therefore, we have:

0 < v− < v < v+, ck < c+, k = 1, . . . , N . (3.51)

Let (c(t), v(t)) be the solution to (3.1) with initial data (c0, v0). Since the solu-
tion stays within AM , we know that the solution satisfies the bound (3.51). We now
show that the concentrations ck(t) are bounded away from 0. Recall from (3.37) of
Lemma 3.6 that the function J is a non-increasing function in time. Thus, J (c(t), v(t))
≤ J (c0, v0) = MJ . Since Jc(c) ≤ J (c, v), we have Jc(c(t)) ≤ MJ . By the second
item in Lemma 3.6, the set:

{c = (c1, . . . , cN ) ∈ R
N+|Jc(c) ≤ MJ , ck < c+, k = 1, . . . N } (3.52)

must be bounded away from ∂R
N+ . Therefore, we have:

0 < c− < ck(t) < c+, k = 1, . . . , N , (3.53)

where c− is a constant that depends only on M and MJ . This, together with (3.51),
implies that the solution (c(t), v(t)) lies in a compact subset K of S. This shows that
the solution must be defined for all time.

We now show that the solution (c(t), v(t)) converges to the steady state (c∗, v∗).
Take an arbitrary ε > 0 and let Bε ⊂ R

N+1 be the open ball of radius ε centered at
(c∗, v∗). We must show that (c(t), v(t)) ∈ Bε after finite time. Observe that we can
make δ > 0 sufficiently small so that Aδ ⊂ Bε (Aδ is defined by replacing M with δ

in (3.47)). This is clear since, by Lemma 3.3, (c∗, v∗) is the unique minimizer of Ĝ
over S .

Take δ so small that Aδ ∈ Bε . If M ≤ δ,AM ⊂ Aδ ⊂ Bε . Since the solution is
contained in AM , there is nothing to prove. Assume M > δ. We would like to show
that the solution is contained in Aδ ⊂ Bε after finite time. We prove this by contra-
diction. Suppose the solution never enters Aδ . Recall that the solution (c(t), v(t)) was
contained in a compact set K ⊂ S. The function J (c, v) is clearly positive on K\Aδ ,
since (c∗, v∗) ∈ Aδ is the only point at which J = 0. Since K\Aδ is a compact set,
J > K J > 0 on K\Aδ where K J is a positive constant. By (3.20) of Lemma 3.2 (or
equivalently, (3.22)), we see that:

Ĝ(c(t), v(t)) < M − K J t. (3.54)

This implies that the solution will be in the set Aδ for t > (M −δ)/K J , a contradiction.
	


Theorem 3.5 shows that system (3.1) has the following remarkable robustness prop-
erty. Suppose the pump rates p and the extracellular concentrations ce are perturbed
within the bounds of condition (3.5). Then, the cell will approach the new global
steady state.
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The next theorem shows that when the condition (3.5) is not met, the cell volume
v(t) → ∞ as t → ∞. There is thus a dichotomy in the behavior of system (3.1)
depending on whether the condition (3.5) is satisfied.

Theorem 3.7 Suppose condition (3.5) is not satisfied so that fmin(q, ce, z) ≥ 0. Take
any solution (c(t), v(t)) to (3.1).

1. Suppose fmin(q, ce, z) > 0. Then,

lim
t→∞ v(t) = ∞. (3.55)

2. Suppose fmin(q, ce, z) = 0. Let φmin be as in Proposition 3.1. Then,

lim
t→∞ ck(t) = ce

k exp(−qk − zkφmin), k = 1, . . . N ,

lim
t→∞ v(t) = ∞.

(3.56)

Proof We shall work with the variables c and w = 1/v. In these variables, (3.1) can
be written as:

dc
dt

= w(−L̂(γ + q) + ζπwc), (3.57a)

0 =
N∑

k=1

zkck + z Aw =
N∑

k=1

zkce
k, (3.57b)

dw

dt
= w2ζπw. (3.57c)

The solutions are defined on the set:

T =
{

(c, w) ∈ R
N+1+

∣∣∣∣∣

N∑

k=1

zkck + z Aw = 0

}

. (3.58)

Note that T is just the set S of (3.18) written in the (c, w) coordinates. Take any initial
data (c0, w0) ∈ T and let (c(t), w(t)) be the solution to (3.57) starting from this point.
Showing that v(t) → ∞ is equivalent to showing that w(t) → 0. We divide the proof
into several steps.

Step 1 View G̃ defined in (3.20) as a function of (c, w). Consider the set:

AM =
{

(c, w) ∈ R
N+1+

∣∣
∣∣∣

N∑

k=1

zkck + z Aw = 0, G̃(c, w) < M

}

. (3.59)

This is the same set as (3.47) except that we use the function G̃(c, w) instead of
Ĝ(c, v). We prove that AM is a bounded set.
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For any point in AM , we have:

N∑

k=1

(
ck

(
ln

(
ck

ce
k

)
− 1 + qk

)
+ ce

k

)
< Mw − Aw (ln(Aw) − 1) . (3.60)

Since the left hand side is bounded from below, there is some positive constant m,
independent of M , such that:

− m < Mw − Aw(ln(Aw) − 1). (3.61)

Let:

g(w) = −m

w
+ A(ln(Aw) − 1). (3.62)

The function g(w) is a monotone increasing function in w such that g(w) → −∞ as
w → 0 and g(w) → ∞ as w → ∞. Let w+(M) = g−1(M). Given (3.61), we have:

0 < w < w+(M) for any (c, w) ∈ AM . (3.63)

Since w is bounded between 0 and w+(M), we see from (3.60) that ck must also be
bounded in AM :

0 < ck < c+(M), k = 1, . . . , N for any (c, w) ∈ AM . (3.64)

Step 2 We prove that the solution (c(t), w(t)) is defined for all positive time. Choose
M = M0 so that M0 > G̃(c0, w0). Suppose that the solution exists only up to
t < T0, T0 < ∞. Since G̃ is monotone non-increasing, we have (c(t), w(t)) ∈
AM0 , t < T0. Since AM0 is bounded by (3.63) and (3.64), there is a sequence of
times t1 < t2 · · · → T0 such that x(tn) = (c(tn), w(tn)) → xb = (cb, wb) ∈ ∂AM0

as n → ∞. The limit point xb cannot be in R
N+1+ since, if so, the solution can be

continued beyond time T0. We also see that ck, k = 1, . . . , N must stay away from 0
by an argument using Lemma 3.6 similarly to the proof of Theorem 3.5. This implies
that cb ∈ R

N+ and wb = 0. By (3.1c), we have:

d

dt

(
1

w

)
= ζ

(
N∑

k=1

(
ck − ce

k

)+ Aw

)

. (3.65)

Since the right hand side of the above is bounded in AM0 by (3.63) and (3.64), 1/w(t)
remains finite in finite time. Thus, w(tn) → 0 is impossible as tn → T0 < ∞. We
have a contradiction.

Step 3 Let O be the orbit:

O = {(c(t), w(t)) ∈ T , t ≥ 0}. (3.66)
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We would like to see whether

J = inf
(c,w)∈O

J (c, w) (3.67)

is positive. Recall that J = 0 in T if and only if the point (c, w) is a steady state
of (3.1). Given our assumption that (3.5) is not satisfied, by Proposition 3.1, a steady
state does not exist. Therefore, J > 0 in O ⊂ T . Thus, if J = 0, since O is a
bounded set, there is a sequence of points xn ∈ O, n = 1, 2, . . . that approaches a
point x∞ = (c∞, w∞) ∈ T such that J (xn) → 0 as n → ∞. The limit point x∞ can-
not be in T ∈ R

N+1+ since J > 0 there. Since c(t) stays away from ∂R
N+ , c∞ /∈ ∂R

N+ .
Thus, c∞ ∈ R

N+ and w∞ = 0. Since the function J is continuous up to points
(c, w) = (c∞, 0), c∞ ∈ R

N+ , we examine the positivity of J on the set:

R = {x = (c, w) ∈ ∂T |c ∈ R
N+ , w = 0}. (3.68)

On R, J can be written as:

J (c, w = 0) = Jc(c) + ζ(π0
w(c))2, π0

w(c) =
N∑

k=1

(
ce

k − ck
)
. (3.69)

We see that J = 0 if and only if Jc(c) = 0 and π0
w = 0. It is easily seen that Jc(c) = 0

in R if and only if c = c∗ where c∗ is given by:

c∗ = (c∗
1, . . . , c∗

N )T , c∗
k ≡ ce

k exp(−qk − zkφmin), k = 1, . . . N , (3.70)

where φmin is as defined in the statement of Proposition 3.1. Let us evaluate π0
w at this

point. Substituting (3.70) into (3.69) and recalling the definition of fmin in (3.5),

π0
w(c∗) = − fmin(q, ce, z). (3.71)

Therefore, we have:

J > 0 if fmin > 0. (3.72)

When fmin = 0, we have the following. Let Bη be the open ball of radius η > 0
centered at (c∗, 0). Then,

J η ≡ inf
(c,w)∈O\Bη

J (c, w) > 0. (3.73)

Step 4 We prove our claim when fmin > 0. Given that (c(t), w(t)) ∈ O, by
Lemma 3.2 we have:

G̃(c(t), w(t)) < M0 − J t. (3.74)
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By (3.63), we have:

0 < w(t) < w+(M0 − J t). (3.75)

Note that J > 0 by (3.72). Since w+(M) → 0 as M → −∞, we see from (3.75) that
w(t) → 0 as t → ∞. This proves (3.55).

Step 5 In the rest of the proof, we study the fmin = 0 case. As an initial step, we prove
the following. For any η > 0, there is a time tη ≥ 0 such that the point (c(tη), w(tη))
is in Bη. We prove this by contradiction. Suppose otherwise. Then, there is an η > 0
such that Bη ∩ O is empty.

We first show that G̃ is bounded from below in O by a constant Mη. Suppose
otherwise. Then, there is a sequence of points xn = (cn, wn) ∈ O, n = 1, 2, . . .

converging to x∞ = (c∞, w∞) ∈ O such that G̃(cn, wn) → −∞. Since G̃(c, w) is a

continuous function for c ∈ R+
N
, w > 0, the only possibility is that w∞ = 0. Write

G̃ as:

G̃(c, w) = 1

w
ρ(c) + A(ln(Aw) − 1),

ρ(c) =
N∑

k=1

(
ck

(
ln

(
ck

ce
k

)
− 1 + qk

)
+ ce

k

)
.

(3.76)

It suffices to show that ρ(c∞) > 0. If this is true, we see from (3.76) that G̃(cn, wn) →
∞, contradicting our assumption that G̃(cn, wn) → −∞. It is easily seen by a cal-
culation identical to the proof of Lemma 3.3 that the unique minimizer of ρ(c) under
the constraint

N∑

k=1

zkck = 0. (3.77)

is c = c∗, at which point ρ(c∗) = 0. Given that (c∞, 0) /∈ Bη, we see that c∞ �= c∗,
and thus ρ(c∞) > 0.

By Lemma 3.2 and using (3.73), we have:

G̃(c(t), w(t)) ≤ M0 − J ηt (3.78)

so long as (c(t), w(t)) /∈ Bη. Note that J η > 0 by (3.73). Thus, if t > (M0 − Mη)/J η,

then G̃ < Mη, which contradicts our result that G̃ must be greater than Mη on O.
Step 6 We would like to show that there is a positive number η > 0 such that any

solution with initial data in Bη ∩ T will converge to (c∗, 0) as t → ∞. If this is true,
we can combine this with the result of Step 5 to immediately conclude that that all
solutions of (3.57) converge to (c, w) = (c∗, 0) as t → ∞. This would prove (3.56).

The vector field defined by the right hand sides of (3.57a) and (3.57c) is degen-
erate at w = 0. Rescaling the vector field by a positive scalar factor does not alter
the solution orbits, so we shall study the behavior of an appropriately rescaled system
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(Chicone 1999; Benson et al. 2010). Rescale (3.57a) and (3.57c) by a factor of 1/w.
This removes the degeneracy at w = 0:

dc
dτ

= −L̂(γ + q) + ζπwc, (3.79a)

dw

dτ
= wζπw. (3.79b)

We have taken the time parameter to be τ to distinguish the solutions of this system
with those of (3.57). We consider (3.79) on the set:

T ′ =
{

(c, w) ∈ R
N+ × R+|

N∑

k=1

zkck + z Aw = 0

}

. (3.80)

The difference between T and T ′ is whether or not w is allowed to be equal to 0.
If we can show that any solution to (3.79) with initial data in Bη ∩ T converges

to (c∗, 0) as τ → ∞, the same is true for (3.57) as t → ∞. This can be seen as
follows. Let (c(t), w(t)) be the solution to (3.57) with initial data (c0, w0) ∈ Bη ∩ T
and (̃c(τ ), w̃(τ )) be the solution to (3.79) with the same initial conditions. Define the
function ξ(t) with:

t =
ξ(t)∫

0

1

w̃(τ )
dτ. (3.81)

This function is well-defined since w̃(τ ) > 0. This positivity is a simple consequence
of the backward uniqueness of solutions. The expressions c̃(ξ(t)) and w̃(ξ(t)) satisfy
(3.57), and thus, by uniqueness of solutions:

(c(t), w(t)) = (̃c(ξ(t)), w̃(ξ(t))). (3.82)

By (3.81) and the fact that w̃(τ ) → 0 as τ → ∞, we see that ξ → ∞ whenever
t → ∞. Therefore,

lim
t→∞(c(t), w(t)) = lim

τ→∞(̃c(τ ), w̃(τ )). (3.83)

Step 7 We now show that any solution of (3.79) with initial conditions in Bη ∩ T ′
converges to (c∗, 0) if η is taken small enough. This will conclude the proof.

Let c(τ ), w(τ) be a solution to (3.79). Then, by Lemma 3.6, we have:

d

dτ
J (c, w) = −2

N∑

k=1

(
ρk√
ck

− ζπw
√

ck

)2

− 2Aw(ζπw)2 ≡ �(c, w). (3.84)

Since we have removed one factor of w in (3.79) compared with (3.57), one factor of
w is removed accordingly from the right hand side of (3.37).
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First, we take r > 0 small enough so that J > 0 and � > 0 for Br ∩ T ′\{(c∗, 0)}.
By (3.73), this is possible for J . Consider �. If w > 0, the condition � = 0 if and
only if ρk = πw = 0. This is equivalent to the condition for (3.57) to have a steady
state in T . By Proposition 3.1, such a point does not exist if fmin = 0. When w = 0,
�(c, 0) = 0 if and only if:

L̂(γ + q) − ζπ0
wc = 0, (3.85)

N∑

k=1

zkck = 0, (3.86)

where π0
w was given in (3.69). It is clear that the point c = c∗ satisfies the above. We

show that c = c∗ is the only point that satisfies both (3.85) and (3.86) in a neighbor-
hood of c = c∗ in R

N . We use the implicit function theorem. Compute the Jacobian
matrix of the left hand side with respect to c and evaluate this at c∗:

B∗
kl = L̂kl

1

c∗
l

+ ζc∗
k . (3.87)

Here, B∗
kl is the kl entry of the N × N Jacobian matrix B∗. The rank of B∗ is the same

as the rank of B̃∗ whose kl entry is given by:

B̃∗
kl = L̂kl + ζc∗

k c∗
l . (3.88)

Since L̂ is symmetric positive semidefinite with rank N − 1 (see proof of Proposi-
tion 3.4) and ζ > 0, B̃∗, and thus B∗ is at least rank N − 1. It is easily checked that
zc = (z1c∗

1, . . . , zN c∗
N )T is an eigenvector of B∗ with 0 eigenvalue. Therefore, all the

points that satisfy (3.85) near c = c∗ lie on a one-dimensional manifold in R
N that is

tangent to zc at c = c∗. Since 〈z, zc〉RN �= 0, the only common point between this one
dimensional manifold and the hyperplane (3.86) is c = c∗.

Define the set:

Dδ = {(c, v) ∈ Br ∩ T ′|J (c, v) < δ}. (3.89)

Take δ = δ0 small enough so that Dδ0 ⊂ Br . It is clear by (3.84) that any solution
in Dδ0 stays within this set. Choose η small enough so that Bη ∩ T ′ ⊂ Dδ0 . This is
clearly possible since J is a non-negative continuous function on Br ∩ T ′ which is 0
only at (c, w) = (c∗, 0). Take any ε < η. We may choose a δ1 > 0 so that Dδ1 ⊂ Bε .
Given that � > 0 on Dδ0\Dδ1 , any solution in Bη ⊂ Dδ0 will be in Bε ⊃ Dδ1 in finite
time. 	


In the case of fmin > 0, we do not have a statement on the limiting value of c(t)
as t → ∞. The limit point (c, w) = (c∗, 0) may well exist and the limiting value
c∗ should satisfy (3.85). This follows simply by setting the right hand side of (3.79)
to 0. If there is only one such point, it should be possible to show, with the aid of the
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Lyapunov function J , that this is the single limit point to which all solutions converge.
This uniqueness, however, is not clear.

Even though v(t) → ∞ as t → ∞ regardless of whether fmin > 0 or fmin = 0,
the rate at which v(t) grows is different. When fmin > 0, we see, by combining (3.65)
and (3.75) and the definition of w+(M) that v(t) grows at most linearly with time
and faster than any power tα, α < 1. When fmin = 0, we expect the growth of cell
volume to scale like t1/2, as can be seen by taking the special case p = 0 with initial
conditions c = ce.

3.3 Epithelial models

We briefly consider a simple epithelial model. Suppose we have a single layer of
epithelial cells which separate the serosal and mucosal sides. The concentrations of
electrolytes in the serosal and mucosal solutions are assumed constant. Let these
concentrations be denoted cs

k and cm
k , respectively. The voltages in the mucosal and

serosal sides are also fixed at φs and φm. We can write down the following model for
electrolyte and water balance for an epithelial cell in this layer:

d(vc)
dt

= −Lmμ
m − Lsμ

s − pm − ps, (3.90a)

dv

dt
= −ζmπm

w − ζsπ
s
w, (3.90b)

N∑

k=1

zkck + z A

v
=

N∑

k=1

zkcm
k =

N∑

k=1

zkcs
k = 0. (3.90c)

The definition of the cellular variables c and v are the same as before. In the above,
Lm,s are symmetric positive semi-definite matrices and pm,s are the vector of active
currents residing on the mucosal and serosal membrane, respectively, which we assume
constant. The chemical potentials μm,s = (μ

m,s
1 , . . . , μ

m,s
N )T are given by:

μ
m,s
k = ln

(
ck

cm,s
k

)
+ zk(φ − φm,s), (3.91)

where φ is the electrostatic potential inside the cell. The osmotic pressure π
m,s
w is

given by:

πm,s
w =

N∑

k=1

cm,s
k −

(
N∑

k=1

ck + A

v

)

(3.92)

and the hydraulic permeabilities ζm,s are non-negative constants.
The above problem is in fact mathematically identical to system (3.1). Let:

ζ = ζm + ζs, L = Lm + Ls, (3.93)
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and suppose that ζ > 0 and L is symmetric positive definite. Define:

ce
k = ζ−1 (ζmcm

k + ζsc
s
k

)
,

p = pm + ps − Lmβ
m − Lmβ

s,

βm,s = (β
m,s
1 , . . . , β

m,s
N )T , β

m,s
k = ln

(
cm,s

k

ce
k

)
+ zkφ

m,s.

(3.94)

Then, the triple (c, v, φ) satisfies (3.90) if and only if it satisfies (3.1) with ζ, L , ce =
(ce

1, . . . , ce
N )T and p prescribed as in (3.93) and (3.94). We thus have the following

result.

Theorem 3.8 Consider system (3.90). Suppose Lm +Ls is symmetric positive definite
and ζm + ζs > 0. Define fmin as in (3.5) in which q = (q1, . . . , qN ) = L−1p and
ce

k, L and p are prescribed as in (3.93) and (3.94). If fmin < 0, the conclusions of
Theorem 3.5 hold. If fmin ≥ 0, the conclusions of Theorem 3.7 hold.

Note that this epithelial model also enjoys the robustness property described after
the end of the proof of Theorem 3.5. We may argue that this is advantageous for an
epithelial cell, which must withstand large changes in extracellular ionic concentra-
tions.

4 Results in the general case

In the previous section, we assumed that the passive transmembrane ionic flux jk is
linear in μ. In this section, we establish results that are valid when we only assume
conditions (2.24), (2.26) and (2.27) for jk and jw. In particular, this will apply to the
case when the Goldman equation (2.3) is used for jk . We also relax the assumption
that the pump rates pk be constant. We consider the system:

d

dt
(vc) = −j(φ,μ) − αp(φ,μ), (4.1a)

0 =
N∑

k=1

zkck + z
A

v
=

N∑

k=1

zkce
k, (4.1b)

dv

dt
= − jw(πw). (4.1c)

The extracellular ionic concentrations ce
k, k = 1, . . . , N and the amount of imperme-

able organic solute A are positive. We assume that j, p and jw are C1 functions of their
arguments. The only difference between this and system (2.11) is that we replaced p
(or pk) in (2.11a) with αp (or αpk) where α is a pump strength parameter. We shall
find it useful to vary this parameter in the statements to follow.
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4.1 Solvability

We first discuss what we mean by a solution to the initial value problem for (4.1).
Consider the two constraints (4.1b) and (the dimensionless form of) (2.8), which we
reproduce here for convenience:

Q(c, v) ≡
N∑

k=1

zkck + z A

v
= 0, (4.2)

I (c, φ, α) ≡
N∑

k=1

zk( jk(c, φ) + αpk(c, φ)) = 〈z, j + αp〉RN = 0. (4.3)

Define the following set:

�α = {y = (c, v, φ) ∈ R
N+ × R+ × R | Q(c, v) = Iα(c, φ) = 0}. (4.4)

We shall often omit the dependence of I and � on α.

Definition 4.1 Let y0 = (c0, v0, φ0) ∈ � where c0 = (c0
1, . . . , c0

N )T . Let c(t) =
(c1(t), . . . , cN (t))T , v(t), t ≥ 0 be C1 functions and φ(t), t ≥ 0 be a continuous
function of t . The function y(t) = (c(t), v(t), φ(t)) is a solution to (4.1) with initial
values y0 if it satisfies (4.1) and y(0) = y0. The solution may or may not be defined
for all positive time.

Since we are solving a differential algebraic system, we must specify initial condi-
tions that satisfy the constraints. Note that we require φ(t) to be a continuous function
of t .

We have the following on the solvability of (4.1).

Lemma 4.2 Let y0 = (c0, v0, φ0) ∈ � and suppose ∂ I/∂φ �= 0 at this point. Let
Br ⊂ R

N+2 be the open ball of radius r centered at y0. Then, there is a K > 0 such
that BK has the following property.

1. The set BK ∩� is an N-dimensional submanifold of R
N+2. There is a C1 function

� such that any point y ∈ BK ∩ � can be written as y = (c, v,�(c)).
2. Take any point y1 = (c1, v1, φ1) ∈ BK ∩ �. There is a unique solution y(t) =

(c(t), v(t), φ(t)) to (4.1) with initial values y1 for short times. For short times,
φ(t) = �(c(t)), and thus φ(t) is a C1 function.

Proof of Lemma 4.2 The first item is a straightforward consequence of the implicit
function theorem. For the second item, substitute φ = �(c) into (4.1). Solve this
ODE with initial values (c1, v1) and let c(t) and v(t) be the resulting solution. It is
clear that (c(t), v(t),�(c(t))) is a solution to (4.1) with initial values (c1, v1, φ1) for
short times. This solution is the unique solution, since φ(t) must be continuous and
thus, must remain within BK for short times. 	


The same statement clearly holds if we replace BK with a neighborhood of y0. Note
that, when z �= 0, any point in BK ∩� can be written as (c, V (c),�(c)) where V (c) is
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found by solving Q(c, v) = 0 for v. Thus, when z �= 0, c serves as a local coordinate
system on BK ∩ �.

Given the structure conditions on jk we have the following solvability result.

Proposition 4.3 Suppose jk satisfies (2.24) and (2.27). Let

Cr = {y = (c, v, φ) ∈ R
N+2 | ∣∣c − ce

∣
∣ < r, |φ| < r}, (4.5)

where |·| for a vector in R
N denotes its Euclidean norm. There are positive constants

Kα and K with the following properties.

1. Take any |α| < Kα . The set CK ∩ �α is an (unbounded) N-dimensional subman-
ifold of R

N+2 such that any y ∈ CK ∩ �α can be written as y = (c, v,�(c, α))

where �(c, α) is a C1 function of c and α.
2. System (4.1) with initial values y0 = (c0, v0, φ0) ∈ CK ∩�α has a unique solution

y(t) = (c(t), v(t), φ(t)) for short times. For short times, φ(t) = �(c(t), α).

Proof To construct the function �(c, α), we use the implicit function theorem around
c = ce, φ = 0, α = 0 on I . Note that:

I (φ = 0, c = ce, α = 0) = 〈z, j(φ = 0,μ = 0)〉RN = 0 (4.6)

where we used the definition ofμ in the first equality and (2.24) in the second equality.
Take the derivative of I with respect to φ:

∂ I

∂φ
=
〈
z,

∂j
∂φ

+ ∂j
∂μ

z
〉

RN
+ α

∂p

∂φ
. (4.7)

In the above, j is viewed as a function of φ and μ whereas p is viewed as a function
of φ and c. We have used the definition of μ to obtain the second term in the above.
We see that

∂ I

∂φ
(φ = 0, c = ce, α = 0) =

〈
z,

∂j
∂μ

z
〉

RN
> 0. (4.8)

where we used (2.25). Positivity follows from (2.27). With (4.6) and (4.8), we can use
the implicit function theorem to obtain a C1 function � satisfying

I (�(c, α), c, α) = 0, �(ce, 0) = 0, (4.9)

in a neighborhood of c = ce, α = 0. The rest of the proof is the same as that of
Lemma 4.2. 	


4.2 Existence of steady states and asymptotic stability

A point y = (c, v, φ) ∈ � is a steady state of (4.1) if the right hand side of (4.1a) and
(4.1c) is 0 at that point. We have the following result on the existence of steady states.
This should be seen as a generalization of condition (1.3).
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Proposition 4.4 Suppose jk and jw satisfy (2.24), (2.26) and (2.27). Then, (4.1) has
a steady state with v > 0 for all sufficiently small α > 0 so long as the following
condition is met:

〈

ce,

(
∂j
∂μ

)−1

p

〉

RN

∣∣
∣∣∣
φ=0,μ=0

> 0, (4.10)

where (∂j/∂μ)−1 is the inverse of the Jacobian matrix ∂j/∂μ.

The idea behind this result is the following. System (4.1) possesses an obvious
“steady state” when α = 0: c = ce, φ = 0 and v = ∞. If α is positive but small, we
expect this steady state to persist. In order for v to be positive as α is perturbed, we
need condition (4.10).

Proof of Proposition 4.4 Let w = 1/v. Set the right hand side of (4.1) equal to 0. We
have:

jk(φ,μ) + αpk(φ,μ) = 0, k = 1, . . . , N ,

N∑

k=1

zkck + z Aw = 0, (4.11)

jw(πw) = 0.

View the above as an equation for c, φ and w. Note that c = ce, φ = 0, w = 0 is
a solution to the above system if α = 0. To apply the implicit function theorem, we
show that the Jacobian matrix with respect to c, φ,w is invertible at this point. This
is equivalent to showing that the only solution to the following linear equation for
ĉ = (ĉ1, . . . , ĉN ), φ̂ and ŵ is the trivial one.

N∑

l=1

∂ jk
∂μl

∣∣∣∣
φ=0,μ=0

(
ĉl

ce
l

+ zl φ̂

)
= 0, k = 1, . . . , N , (4.12)

N∑

k=1

zk ĉk + z Aŵ = 0, (4.13)

∂ jw
∂πw

∣∣
∣∣
πw=0

(
N∑

k=1

ĉk + Aŵ

)

= 0, (4.14)

where we used (2.24) (and its consequence (2.25)) to obtain (4.12). Equation (4.12)
together with condition (2.27) and (4.14) together with condition (2.26) gives:

ĉk

ce
k

+ zk φ̂ = 0,

N∑

k=1

ĉk + Aŵ = 0 (4.15)
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where the first equation is holds for all k. Using (4.15) to eliminate ŵ and ĉk from
(4.13), we have:

N∑

k=1

(zk − z)zkce
k φ̂ =

N∑

k=1

z2
kce

k φ̂ = 0 (4.16)

where we used (4.1b) in the first equality. Since ce
k is positive and at least one of

zk �= 0, we see that φ̂ = 0. From (4.15), we see that ck = 0 for all k and ŵ = 0 since
A > 0. We can thus invoke the implicit function theorem to conclude that we have
a solution c(α), φ(α) and w(α) to (4.11) when α is close to 0. To ensure that w (or
equivalently, v) is positive for small α > 0, we compute:

dw

dα

∣∣
∣∣
α=0

= A−1

〈

ce,

(
∂j
∂μ

)−1

p

〉

RN

∣∣∣
∣∣
φ=0,μ=0

. (4.17)

Since w = 0 at α = 0, condition (4.10) will ensure that the v is positive for α small
and positive. 	


We may also compute dφ/dα:

dφ

dα

∣∣∣
∣
α=0

=
(

N∑

k=1

z2
kce

k

)−1 〈

(zce − zc),

(
∂j
∂μ

)−1

p

〉

RN

∣∣∣∣
∣
φ=0,μ=0

,

zc = (z1ce
1, . . . , zN ce

N ).

(4.18)

Given (4.10), this shows that the sign of φ is the same as the sign of z if |z| is large
enough. In physiological situations, z is large and negative, and thus we will have a
negative membrane potential.

Condition (4.10) applied to (1.1) yields:

3[Na+]e

gNa
− 2[K+]e

gK
> 0, (4.19)

thus reproducing condition (1.3). It is interesting that we do not have any restriction
on z for this to be true. Given (4.17), the cell volume will be small if (4.10) is large.
Expression (4.19) is indeed large: for a typical cell, [Na+]e � [K+]e and gNa � gK.

We now turn to the question of stability of steady states.

Definition 4.5 Suppose y∗ = (c∗, v∗, φ∗) ∈ � is a steady state of (4.1). Let Br be the
open ball of radius r centered at y∗. The steady state y∗ is stable if the following is true.
For any small enough ε > 0, there exists a δ > 0 with the following property. Choose
any y0 ∈ Bδ ∩ �. Then, the solution(s) y(t) to system (4.1) with initial value y0 is
defined for all positive time and satisfies y(t) ∈ Bε . The steady state is asymptotically
stable if it is stable and all solutions with initial data y0 ∈ � sufficiently close to y∗
approach y∗ as t → ∞.
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Since any solution lies on �, we may replace Bε with Bε ∩ �. The only difference
between the usual definition of stability and the one above is that the initial data must
lie on �. If ∂ I/∂φ �= 0 at y∗ = (c∗, v∗, φ∗) and z �= 0, then, by the remark after
the proof of Lemma 4.2, system (4.1) can locally be written as an ODE for c only.
The above definition of (asymptotic) stability is then equivalent to the (asymptotic)
stability of c∗ for this ODE system.

Let c∗ = (c∗
1, . . . , c∗

N )T, v∗, φ∗ be a steady state of (4.1). Define the following
quantities:

φ̂ = φ − φ∗,

γ̂ = (γ̂1, . . . , γ̂N )T , γ̂k = γk − γ ∗
k = ln

(
ck

c∗
k

)

μ̂ = (μ̂1, . . . , μ̂N )T , μ̂k = μk − μ∗
k ≡ γ̂k + zk φ̂,

π̂w = πw − π∗
w ≡

N∑

k=1

c∗
k + A

v∗ −
(

N∑

k=1

ck + A

v

)

.

(4.20)

If jw satisfies (2.23), jw(πw) = 0 if and only if πw = 0 and thus π∗
w = 0. In this case,

π̂w = πw.
Let Ĝ be free energy with respect to the steady state defined in (3.21). We have the

following analogue of Proposition 2.1 or Lemma 3.2.

Lemma 4.6 Suppose c∗ = (c∗
1, . . . , c∗

N )T , φ∗, v∗ is a steady state of (4.1). Then, we
have:

dĜ

dt
= −

N∑

k=1

μ̂k
(

ĵk + α p̂k
)− π̂w jw (4.21)

where ĵk = jk − j∗k , p̂k = pk − p∗
k and j∗k , p∗

k are the passive and active fluxes
evaluated at the steady state.

Proof Rewrite (4.1a) as follows:

∂(vck)

∂t
= −( jk + αpk) + ( j∗k + αp∗

k

) = −
N∑

k=1

μ̂k
(

ĵk + α p̂k
)
, (4.22)

where we used j∗k + αp∗
k = 0. Note that, j∗w, the water flux at steady state, is equal to

0. Thus ĵw ≡ jw − j∗w = jw. The rest of the proof is the same as Proposition 2.1. 	

If we apply the above lemma to system (3.1), this is nothing other than (3.22). The

next Lemma gives us a sufficient condition for asymptotic stability in terms of Ĝ.

Lemma 4.7 Let y∗ = (c∗, v∗, φ∗), c∗ = (c∗
1, . . . , c∗

N )T be a steady state of (4.1).
Suppose there is neighborhood U ⊂ R

N+2 of y∗ such that U ∩ � is an N-dimen-
sional submanifold in which any point y ∈ U ∩ � can be written as y = (c, v,�(c))
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where � is a C1 function of c. Suppose any solution y(t) = (c(t), v(t), φ(t)) in U (or
equivalently, in U ∩ �) satisfies:

dĜ

dt
≤ −K∗

(
|μ̂|2 + |π̂w|2

)
(4.23)

for some positive constant K∗ > 0. Then the steady state is asymptotically stable and
the approach to the steady state is exponential in time.

Proof As in the proof of Proposition 3.4, we will find it convenient to use the variables
a = (a1, . . . , aN )T = vc, v and φ rather than c, v and φ. We shall continue to use the
symbols U , � to denote the corresponding sets in the new coordinates. View Ĝ as a
function of a and v. Note first that:

Ĝ(a∗, v∗) = 0,

∂Ĝ

∂ak

∣∣∣∣
a=a∗,v=v∗

= (
γk − γ ∗

k

)∣∣
c=c∗ = 0,

∂Ĝ

∂v

∣∣∣∣
a=a∗,v=v∗

= πw|c=c∗,v=v∗ = 0,

(4.24)

where a∗ = (a∗
1 , . . . , a∗

N )T = v∗c∗. By Lemma 3.3, Ĝ is a globally convex function
on (a, v) ∈ R

N+1+ . The point (a, v) = (a∗, v∗) is thus the global minimizer of Ĝ. The
positive definiteness of the Hessian matrix of Ĝ implies that there is a neighborhood
N ⊂ R

N+1 of (a∗, v∗) where

K −1
G

(∣∣a − a∗∣∣2 + ∣∣v − v∗∣∣2
)

≤ Ĝ(a, v) ≤ KG

(∣∣a − a∗∣∣2 + ∣∣v − v∗∣∣2
)

(4.25)

for some positive constant KG .
Now, consider R

N+2 with the coordinates (a, v, φ). Define Q =∑N
k=1 zk(ak −a∗

k ).
This Q is the same as the Q in (4.2) except that it is written in terms of a. We claim
that, in the vicinity of (a∗, v∗, φ∗) in R

N+2, the set of variables (μ̂, π̂w, Q) defines
a coordinate system. It is easily seen that the variables (c, v, φ) defines a coordinate
system. We thus consider the coordinate change from (μ̂, π̂w, Q) to (c, v, φ). The
Jacobian matrix between these two sets of variables at (c, v, φ) = (c∗, v∗, φ∗) is
non-singular. This computation is almost the same as the computation in the proof
of Proposition 4.4, so we omit the details. The claim follows by the implicit function
theorem. There is therefore a neighborhood V ⊂ R

N+2 of (a∗, v∗, φ∗) in which the
following inequality holds:

Kμ

(∣∣a − a∗∣∣2 + ∣∣v − v∗∣∣2 + ∣∣φ − φ∗∣∣2
)

≤ |μ̂|2 + |π̂w|2 + |Q|2 (4.26)

where Kμ is a positive constant. Any solution to (4.1) satisfies Q = 0 (see (4.2)).
Thus, we have:
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Kμ

(∣
∣a − a∗∣∣2 + ∣∣v − v∗∣∣2

)
≤ |μ̂|2 + |πw|2 (4.27)

for any solution in V .
Choose a neighborhood M ⊂ R

N+1 of (a∗, v∗) such that (a, v,�(a/v)) ∈ U ∩ V
for all (a, v) ∈ M. Consider the following set:

G = {(a, v) ∈ R
N+1 | Ĝ(a, v) < MG, MG > 0} (4.28)

Since Ĝ(a, v) is a convex function such that G(a∗, v∗) = 0,G is an open neighbor-
hood of (a∗, v∗), and can be made arbitrarily small by making MG small. Take MG so
small that G ⊂ N ∩ M. Consider the following open neighborhood of (a∗, v∗, φ∗):

W = {y = (a, v, φ) ∈ R
N+2 | (a, v) ∈ G, y ∈ U ∩ V}. (4.29)

Any solution in W , by definition, belongs to W ∩ �. For any such solution, we have:

dĜ

dt
≤ −K∗(|μ̂|2 + |π̂w|2)

≤ −K∗Kμ

(∣∣a − a∗∣∣2 + ∣∣v − v∗∣∣2
)

≤ − K∗Kμ

KG
Ĝ (4.30)

where we used (4.23) in the first inequality, (4.27) in the second inequality and (4.25)
in the third inequality. Solving the above differential inequality, we have:

Ĝ ≤ MG exp(−K∗Kμt/KG), t ≥ 0. (4.31)

We thus see that W ∩ � is a positively invariant set, and thus, all solutions starting
from W ∩� are defined for all time. By (4.25), (a(t), v(t)) approaches (a∗, v∗) expo-
nentially in time. Since (W ∩ �) ⊂ (U ∩ �), φ = �(a(t)/v(t)). Since � is a C1

function, φ(t) also approaches φ∗ exponentially in time. 	

We are now ready to state the main result of this section.

Theorem 4.8 Suppose jk and jw satisfy (2.24), (2.27) and (2.26) and jk, pk and ce
k

satisfy (4.10). For all sufficiently small α > 0, the steady states found in Proposition 4.4
are asymptotically stable. The approach to steady state is exponential in time.

In Proposition 3.4, we used the symmetry condition of (2.27) to show that the
eigenvalues of the linearized matrix around steady state are all real. Here, we cannot
prove such a statement. In fact, the proof to follow goes through even if we assume
(2.28) instead of (2.27).

We also point out that, unlike Proposition 3.4 or Theorem 3.5, we can only draw
conclusions when the pump rate is small (α is small). One may wonder whether it
may be possible to generalize Theorem 4.8 to the case when the pump rate is not
necessarily small. For this, one would clearly need a condition stronger than (2.26) or
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(2.27). One natural idea is to require that jk and jw satisfy (2.26) and (2.27) not only
at πw = 0 and μ = 0 but at any arbitrary value of πw and μ:

∂ jw
∂πw

(πw) > 0 for all πw,

∂j
∂μ

(φ,μ) is a positive definite matrix for all φ and μ.

(4.32)

This stronger condition is indeed satisfied by the Goldman equation (2.3) (and trivially
by (2.2)). Let us assume the pump rates αpk are constant. A natural conjecture may
be that if jw and jk satisfy (4.32), any steady state of (4.1) is stable (whether or not
the pump rate is small). This statement is true provided that jk is only a function of
μ and not a function of φ. In the case of (2.2) or (3.1), jk is indeed only a function
of μ. Unfortunately, (2.3) is a function of both μ and φ. The danger when jk depends
on φ independently of μ is that ∂ jk/∂φ may adversely affect the stability properties
imparted by condition (4.32).

When the pump strength is small (α small), ∂ jk/∂φ is small provided α is small
thanks to condition (2.25). This is one of the key observations that we will use in the
proof to follow.

Proof of Theorem 4.8 Let y∗ = (c∗, v∗, φ∗) be the steady state found in Proposi-
tion 4.4. As α > 0 is made small, y∗ ∈ CK ∩ � defined in Proposition 4.3. We shall
henceforth assume that y∗ ∈ CK ∩ �.

By Proposition 4.3, Lemmas 4.6 and 4.7, it is sufficient to show that, for suffi-
ciently small α, there is a neighborhood U ⊂ R

N+2 of (c∗, v∗, φ∗) such that any
y = (c, v, φ) ∈ U ∩ � satisfies the following inequality:

K∗
(
|μ̂|2 + |π̂w|2

)
≤

N∑

k=1

μ̂k
(

ĵk + α p̂k
)+ π̂w jw ≡ J (4.33)

for some K∗ > 0. The neighborhood U may depend on α.
Recall from the proof of Lemma 4.7 that (μ̂, πw, Q) defines a coordinate system

in the vicinity N of (c∗, v∗, φ∗). Note that the point (c∗, v∗, φ∗) is the origin in the
coordinate system (μ̂, πw, Q). Let:

Dr = {(c, v, φ) ∈ N | |μ̂|2 + π̂2
w + Q2 < r2, r > 0} (4.34)

and take r small enough so that Dr ⊂ CK . Define the set:

�Q = {y = (c, v, φ) ∈ R
N+ × R+ × R | Q(c, v) = 0}. (4.35)

Since � ⊂ �Q , it is clearly sufficient if we can find a small enough r > 0 such that
(4.33) holds for any point in Dr ∩ �Q .

We can write φ̂ = φ − φ∗ as a function of μ̂, πw and Q in Dr . In particular,
on Dr ∩ �Q, φ̂ is a function of μ̂ and π̂w only. Call this function φ̂ = ϕ(μ̂, π̂w).
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The function ϕ satisfies:

0 =
N∑

k=1

(zk − z)c∗
k (exp (μ̂k − zkϕ) − 1) − zπ̂w. (4.36)

This equation is obtained by expressing ck and v in terms of μ̂k, π̂w and φ̂ and substi-
tuting this into Q = 0.

Now, take any point w = (μ̂1, π̂1
w, 0) = (μ̂1

1, . . . , μ̂
1
N , π̂1

w, 0) ∈ Dr ∩�Q where we
have expressed the point w using the (μ̂, π̂w, Q) coordinate system. Let us compute
the right hand side of (4.33) at this point.

J (μ̂1, π̂1
w) =

N∑

k=1

μ̂1
k

(
ĵk(ϕ(μ̂1, π̂1

w), μ̂1) + α p̂k(ϕ(μ̂1, π̂1
w), μ̂1)

)
+ π̂1

w jw(π̂1
w)

(4.37)

where we took ĵk, p̂k as functions of φ̂, μ̂ and ĵw as a function of π̂w. For ĵk , we
have:

ĵk(ϕ(μ̂1, π̂1
w), μ̂1) =

1∫

0

d

ds
ĵk
(
ϕ(sμ̂1, sπ̂w), sμ̂1

)
ds

=
N∑

l=1

μ̂1
l

1∫

0

((
∂ ĵk
∂φ̂

∂ϕ

∂μl
+ ∂ ĵk

∂μ̂l

)
(sμ̂1, sπ̂w)

)
ds

+π̂1
w

1∫

0

(
∂ ĵk
∂φ

∂ϕ

∂π̂w
(sμ̂1, sπ̂w)

)
ds. (4.38)

Performing a similar calculation for p̂k and ĵw and substituting this back into (4.37),
we obtain the following expression.

J (ψ) = 〈ψ, Pψ〉RN+1 , ψ = (μ̂1, π̂1
w),

P =
1∫

0

(L + B + C)(sμ̂1, sπ̂1
w)ds,

(4.39)

where L , B and C are (N +1)×(N +1) matrix-valued functions defined on Dr ∩�Q ,
given as follows. Let Lkl , Bkl and Ckl be the kl entries of these matrices.

Lkl =

⎧
⎪⎨

⎪⎩

∂ ĵk/∂μ̂l if 1 ≤ k, l ≤ N ,

∂ ĵw/∂π̂w if k = l = N + 1,

0 otherwise,

(4.40)
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Bkl =

⎧
⎪⎨

⎪⎩

(∂ ĵk/∂φ̂)(∂ϕ/∂μ̂l) if 1 ≤ k, l ≤ N ,

(∂ ĵk/∂φ̂)(∂ϕ/∂π̂w) if 1 ≤ k ≤ N , l = N + 1,

0 otherwise,

(4.41)

Ckl =

⎧
⎪⎨

⎪⎩

α(∂ p̂k/∂μ̂l + (∂ p̂k/∂φ̂)(∂ϕ/∂μ̂l)) if 1 ≤ k, l ≤ N ,

α(∂ p̂k/∂φ̂)(∂ϕ/∂π̂w) if 1 ≤ k ≤ N , l = N + 1,

0 otherwise.

(4.42)

To show that (4.33) is valid in Dr ∩ �Q , it is sufficient to show that L + B + C is
positive definite in Dr ∩ �Q in the sense that:

〈x, (L + B + C)x〉RN+1 ≥ K∗ |x|2 (4.43)

for any x ∈ R
N+1 with a constant K∗ > 0 that does not depend on the point in Dr ∩�Q .

Since L , B and C are continuous functions on Dr ∩�Q and we may take r as small as
we want, all we have to show is that (4.43) holds at the origin, (μ̂, π̂w, Q) = (0, 0, 0),
or equivalently, at the steady state.

Let L∗, B∗ and C∗ be the evaluation of the three matrices at steady state. Since the
steady state is a function of α, L∗, B∗ and C∗ are functions of α. We will show that
(4.43) holds for sufficiently small α > 0.

First, let us examine the behavior of μ∗, π∗
w, φ∗ as a function of α. By Proposi-

tion 4.4, c∗, φ∗ are C1 functions of α that approach ce, 0, respectively, as α → 0.
Therefore,μ∗ is a C1 function of α that approaches 0 as α → 0. It is clear that π∗

w = 0
for any α.

The kl entry of the matrix L∗ is given by:

L∗
kl =

⎧
⎪⎨

⎪⎩

(∂ jk/∂μl)|φ=φ∗,μ=μ∗ if 1 ≤ k, l ≤ N ,

(∂ jw/∂πw)|πw=0 if k = l = N + 1,

0 otherwise.

(4.44)

Since μ∗ → 0 and φ∗ → 0 as α → 0, given (2.27) and (2.26), there is a constant
KL > 0 such that:

〈
x, L∗x

〉
RN+1 ≥ KL |x|2 (4.45)

for sufficiently small α > 0.
To examine B∗ and C∗, let us first compute ∂ϕ/∂μ̂l and ∂ϕ/∂π̂w. This can be

computed by taking the partial derivatives of (4.36):

∂ϕ

∂μ̂l

∣∣∣
∣
μ̂=0,π̂w=0

= (zl − z)c∗
l

(
N∑

k=1

z2
kc∗

k + z2 A

v∗

)−1

,

∂ϕ

∂π̂w

∣∣∣∣
μ̂=0,π̂w=0

= −z

(
N∑

k=1

z2
kc∗

k + z2 A

v∗

)−1

.

(4.46)
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Since c∗
k → ce

k and 1/v∗ → 0 as α → 0, we see that both of the above are bounded
(and in fact has a definite limit) as α → 0.

Let us examine B∗. For 1 ≤ k, l ≤ N , the kl entry of the matrix B∗ is given by:

B∗
kl = (zl − z)c∗

l

(
N∑

k=1

z2
kc∗

k + z2 A

v∗

)−1 (
∂ jk
∂φ

)∣∣∣
∣
φ=φ∗,μ=μ∗

. (4.47)

Recall that ∂ jk/∂φ = 0 at μ = 0 from (2.25). Since φ∗ → 0 and μ∗ → 0 as α → 0,
by (2.24), we see that B∗

kl → 0 as α → 0. Likewise, B∗
kl → 0 as α → 0 when

1 ≤ k ≤ N and l = N + 1.
Now, consider C∗

kl , the kl entries of the matrix C∗. For 1 ≤ k, l ≤ N , we have:

C∗
kl = α

⎛

⎝∂pk

∂μl
+ (zl − z)c∗

l

(
N∑

k=1

z2
kc∗

k + z2 A

v∗

)−1
∂pk

∂φ

⎞

⎠

∣∣∣
∣∣∣
φ=φ∗,μ=μ∗

. (4.48)

Given thatμ∗ → 0, φ∗ → 0 as α → 0, the quantity inside the outer-most parentheses
remains bounded as α → 0. Thus, C∗

kl → 0 as α → 0. The same conclusion holds
for C∗

kl , 1 ≤ k ≤ N , l = N + 1.
Since L∗ satisfies (4.45) from sufficiently small α and B∗ and C∗ both tend to the

zero matrix as α → 0, L∗ + B∗ + C∗ satisfies (4.43) with K∗ = KL/2 for small
enough α. 	


5 Discussion

In this paper, we presented what the author believes is the first analytical result on the
stability of steady states of pump-leak models. In Sect. 3, we studied the case in which
the flux functions are linear in the chemical potential. In the proof of Proposition 3.4,
we saw that the system can be seen as a gradient flow of a convex function. This is
nothing other than the relaxation law postulated in linear non-equilibrium thermody-
namics, dX/dt = −L∇X G, where X is the vector of extensive variable, L is the matrix
of transport coefficients and ∇X G is the gradient of the free energy G with respect to
X (Katzir-Katchalsky and Curran 1965; Kjelstrup and Bedeaux 2008). There are two
interesting points here. The first point is that this gradient flow is restricted to flow
on a submanifold on which electroneutrality holds. The electrostatic potential, as we
discussed in the proof of Lemma 3.3 can then be seen as a Lagrange multiplier of this
gradient flow. The second point is that we can find a suitable modification of the free
energy (G̃ or Ĝ) so that our system is a gradient flow even in the presence of active
currents. We proved the following results. If condition (3.5) is satisfied, there is a
unique steady state that is globally asymptotically stable. If not, the cell volume tends
to infinity as time t → ∞. The system is thus robust to external perturbations in the
following sense. Suppose the cell is subject to a change in extracellular concentration
or pump rate that stays within the bounds of condition (3.5). The cell will eventually
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approach the new global steady state. We saw that the same conclusions hold for a
simple epithelial model, since it could be mapped to the single cell problem.

In Sect. 4, we proved that steady states for pump-leak models are stable so long
as the steady state is not too far away from thermodynamic equilibrium. The “stable
equilibrium state” is the “state” at which all intracellular ionic concentrations ck are
equal to the extracellular concentration ce

k and the cell volume v is infinite. If the
pumps work in the “right direction” (in the sense of Proposition 4.4) v can be made
finite even with a small pump rate. A biophysical interpretation of Theorem 4.8 is that
if the pump rate is sufficiently small, the new steady state of finite volume is still close
enough to thermodynamic equilibrium so that the steady state inherits the stability
properties of the equilibrium state. It is interesting that stability of thermodynamic
equilibrium, which may be considered the “dead” state, confers stability to the “live”
state.

The results of Sect. 4, though applicable to general pump-leak models, only asserts
the existence of at least one asymptotically stable steady state for small pump rates.
To draw analytical conclusions at large pump rates without the linearity assumption
of Sect. 3, it is likely that one would need to look at special characteristics of specific
pump-leak models. Our current study may thus be seen as complementing computa-
tional investigations of stability, in which one is not constrained to small pump rates
(Weinstein 1997). We also point out that, for general pump-leak models, we cannot
rule out the possibility of multiple steady states or of other non-trivial asymptotic
behavior. Indeed, Weinstein (1992) reports an instance in which there are two stable
steady states in a non-electrolyte model of epithelial cell volume control.

Many epithelial models include effects not included in model (2.11) or (3.90).
Of particular importance is the incorporation of acid–base reactions (Weinstein 1983;
Strieter et al. 1990). It is usually assumed that the acid–base reactions are sufficiently
fast so that these reactions are in equilibrium. This gives rise to additional algebraic
constraints, increasing the co-dimension of the differential algebraic system (Wein-
stein 2002, 2004; Weinstein and Sontag 2009). It would be interesting to see whether
the analysis of this paper can be extended to this case. A starting point for an analytical
study of such models will likely be a free energy identity. A potential complication is
that the algebraic constraints of acid-base reactions are not linear in the concentrations.
This may pose difficulties in extending the global results of Sect. 3. The author hopes
to report on such an extension in future work.

Stability of steady states is just a starting point in the study of homeostatic control
in epithelial systems. In Weinstein (2002, 2004) and Weinstein and Sontag (2009), the
authors go beyond stability to study the optimal control of homeostatic parameters by
minimizing a quadratic cost function along a relaxation trajectory. We hope that our
current study will lead to new insights into such problems.

Free energy dissipation identities similar to (2.13) are present in many models of
soft-condensed matter physics (Doi and Edwards 1988; Doi 2009), and can be used
as a guiding principle in formulating models in dissipative systems (Eisenberg et al.
2010; Mori et al. 2011). The present work owes much of its inspiration to this body of
work. We believe that there is much to be gained by a systematic application of these
ideas to the study of physiological systems. We hope that this paper will be a starting
point in this direction.
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