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Abstract We formulate and study a general epidemic model allowing for an arbi-
trary distribution of susceptibility in the population. We derive the final-size equation
which determines the attack rate of the epidemic, somewhat generalizing previous
work. Our main aim is to use this equation to investigate how properties of the suscep-
tibility distribution affect the attack rate. Defining an ordering among susceptibility
distributions in terms of their Laplace transforms, we show that a susceptibility distri-
bution dominates another in this ordering if and only if the corresponding attack rates
are ordered for every value of the reproductive number R0. This result is used to prove a
sharp universal upper bound for the attack rate valid for any susceptibility distribution,
in terms of R0 alone, and a sharp lower bound in terms of R0 and the coefficient of
variation of the susceptibility distribution. We apply some of these results to study two
issues of epidemiological interest in a population with heterogeneous susceptibility:
(1) the effect of vaccination of a fraction of the population with a partially effective
vaccine, (2) the effect of an epidemic of a pathogen inducing partial immunity on the
possibility and size of a future epidemic. In the latter case, we prove a surprising ‘50%
law’: if infection by a pathogen induces a partial immunity reducing susceptibility
by less than 50%, then, whatever the value of R0 > 1 before the first epidemic, a
second epidemic will occur, while if susceptibility is reduced by more than 50%, then
a second epidemic will only occur if R0 is larger than a certain critical value greater
than 1.
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238 G. Katriel

1 Introduction

In the basic formulations of infectious disease dynamics, individuals are described as
either susceptible or immune to being infected. This, however, is a simplified descrip-
tion, since individuals vary in their degree of susceptibility, that is in their probability
of being infected under identical conditions, due to genetic factors and to previous
encounters with antigenically similar pathogens (Bellamy 2004; Craig and Scherf
2003; Frank 2002). It is therefore important to understand how the heterogeneity of
susceptibility can influence the epidemic dynamics. In this work we study an epidemic
model allowing a general distribution of susceptibility among individuals. We explore
how properties of this distribution determine the size of the epidemic generated by the
model.

Several authors have previously formulated and studied epidemiological models
with heterogenous susceptibility, either in terms of a finite number of different sus-
ceptibility classes (Andersson and Britton 1998; Ball 1985; Bonzi et al. 2010; Gart
1972; Hyman and Li 2005; Rodrigues et al. 2009; Scalia-Tomba 1986) or as a contin-
uous distribution of susceptibility (Coutinho et al. 1999; Diekmann and Heesterbeek
2000; Dwyer et al. 1997, 2000; Novozhilov 2008). Below, as we describe our results,
we will mention some of the results obtained in these works, and their relations with
the present investigation.

In Sect. 2 we describe the general epidemic model with heterogeneous susceptibil-
ity. In this model, the distribution of susceptibility in the population is described by a
probability measure μ on the positive real axis. Another general aspect of the model
is that it allows an arbitrary generation-time distribution.

In Sect. 3 we derive the final-size equation corresponding to the model, an alge-
braic equation whose solution is the attack rate of the epidemic, that is the fraction
of the population infected throughout the epidemic. The nonlinearity in this equation
is given by the Laplace transform of the susceptibility distribution. In the case of the
basic SIR model (exponentially distributed generation-time) an equivalent equation
was already derived by Ball (1985) for a finite number of susceptibility classes, and
by Novozhilov (2008) for general susceptibility distributions, using a general formal-
ism for studying heterogeneous populations developed by Karev (2005). The final-size
equation can also be derived from general results of Diekmann and Heesterbeek (2000)
(see Chap. 6). We note that the fact that the final-size equation that we derive is iden-
tical with that previously derived for the case of exponentially distributed generation
time is not surprising, in view of known general results which show that the total size
of epidemics is independent of the generation-time distribution (Lefévre and Picard
1995). Our derivation of the final-size equation is therefore only a slight generaliza-
tion of previous results, and the main concern of this paper is to employ this final-size
formula in order to derive some general results on the relations between properties of
the susceptibility distribution and the attack rate.

In Sect. 4 we define a partial order among susceptibility distributions μ, μ̃, closely
related to the Laplace order (Shaked and Shanthikumar 2007), and prove that one dis-
tribution dominates another with respect to this partial order if and only if the attack
rate corresponding to this distribution is equal to or larger than that corresponding to
the other distribution, for any value of the reproduction number R0. We also show
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The size of epidemics in populations with heterogeneous susceptibility 239

that a susceptibility distribution with larger coefficient of variation will have smaller
attack rate when R0 is sufficiently close to 1, but not in general.

In Sects. 5,6 we use the result of Sect. 4 to derive universal upper and lower bounds
for the attack rates, that is bounds depending only on basic quantitative characteristics
of the susceptibility distribution, and not on its detailed form. In Sect. 5 we show that
for any given reproductive number R0, the largest attack rate is obtained for the case
of homogeneous susceptibility. In the case of the basic SIR model with a finite number
of susceptibility classes, this upper bound can already be found in Ball (1985). We
also show, using a result of Shaked and Shanthikumar (2007) that if the susceptibility
distribution has a monotonically decreasing density, a stronger bound can be obtained.

In Sect. 6 we first show that a lower bound on the attack rate in terms of the R0 alone
does not exist, or in other words that for a given R0, one can find susceptibility dis-
tributions with arbitrarily small attack rates. We then show that a lower bound can be
found in terms of R0 and the coefficient of variation of the susceptibility distribution.
Taken together, our upper and lower bounds say that the attack rate Z corresponding
to an arbitrary susceptibility distribution μ satisfies

Z∗

1 + c2
μ

≤ Z ≤ Z∗,

where Z∗ is the attack rate corresponding to the case of homogeneous susceptibility
with the same reproductive number, and cμ is the coefficient of variation of μ. These
bounds are both sharp in the sense that they are attained for appropriate susceptibility
distributions.

Sections 7, 8 contain two applications of some of the previous results to questions
of epidemiological interest. In Sect. 7 we study the effect of vaccination on a popula-
tion with an arbitrary susceptibility distribution. We consider leaky vaccination, which
reduces the susceptibility by a certain factor, and study how this factor, as well as the
percentage of the population vaccinated and the susceptibility distribution before vac-
cination, affect the size of the epidemic and the possibility of preventing an epidemic
by achieving herd immunity.

In Sect. 8 we study recurring epidemics. We assume that a population undergoes
an epidemic which affords those who get infected partial immunity to the pathogen,
which reduces their susceptibility by a certain factor. We then study whether another
epidemic is possible, and what its size will be. A surprising result that we derive here
is what we have called the ‘50% law’, which says that, for any initial susceptibility
distribution, if the reduction in susceptibility after infection is less than 50% then a
second epidemic will always occur, while if it is greater than 50% then a second epi-
demic will only occur if the reproductive number R0 associated with the first epidemic
is higher than a certain critical value.

This paper deals with the case of epidemics. Several other studies model heteroge-
neous susceptibility when a continuous replenishment of susceptibles due to births or
loss of immunity leads to an endemic equilibrium (Bonzi et al. 2010; Hyman and Li
2005; Reluga et al. 2008; Veliov 2005; White and Medley 1998).

Heterogeneity in susceptibility is only one of various types of heterogeneity that
have been considered in the literature of mathematical epidemiology. In particular,
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240 G. Katriel

in the study of sexually transmitted diseases an important factor is the heterogene-
ity in the number of contacts that different individuals make (Andreasen 2011; May
et al. 1988; Pastor-Satorras and Vespignani 2001). The model describing this situation
and its analysis has some significant similarities with the heterogneous susceptibil-
ity model. However there are also essential differences. For example, while in the
case of a heterogeneous distribution of the number of contacts the reproductive num-
ber is larger than that of the corresponding homogeneous population with the same
mean number of contacts, in the case of heterogeneous susceptibility the reproduc-
tive number is the same for all susceptibility distribution with the same mean. The
reason for the difference between the two cases is that heterogeneous number of
contacts implies that the individuals who have a high number of contacts are both
more susceptible and more infective than others, while in the case considered here
the more susceptible individuals are not more infective than others when they are
infected.

2 The general epidemic model with heterogeneous susceptibility

In this section we formulate an age-of-infection model with heterogeneous suscepti-
bility, which generalizes the general epidemic model for a homogeneous population
(Brauer 2008; Diekmann and Heesterbeek 2000; Rass and Radcliffe 2003). We note
that the advantage of age-of-infection models is that they take account of the fact that
the generation-time distribution is not necessarily exponential, as is assumed by the
simple differential-equation SIR model.

We characterize individuals, with respect to a certain pathogen, by their level of
infectivity λ ≥ 0 and their level of susceptibility σ ≥ 0. We also characterize the
pathogen by the generation-time distribution whose density is P(τ ) ∈ L1[0,∞) with

∞∫

0

P(τ )dτ = 1.

The operational meaning of these concepts is as follows: an infected individual whose
infectivity is λ and whose age-of-infection is τ (that is someone who was infected τ

time-units ago), placed in a population with homogenous susceptibility level σ , will
infect, on the average, λσ P(τ ) individuals per unit time.

The population is characterized by a susceptibility distribution which measures
the fractions of the population with different susceptibility levels. The susceptibility
distribution is given by a Borel probability measure μ with support

� = supp(μ) ⊂ [0,∞),

so that for any interval [σ1, σ2], μ([σ1, σ2]) is the fraction of the population with sus-
ceptibility in this interval, before the beginning of the epidemic. This general formula-
tion allows us to include in the same framework both the case of discrete susceptibility
susceptibility classes, in which case μ is a measure with a discrete support
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The size of epidemics in populations with heterogeneous susceptibility 241

dμ(σ) =
N∑

n=1

pkδ(σ − σk)dσ, pk > 0,

N∑
n=1

pk = 1, (1)

(N might be finite or N = ∞), and the case of continuously-distributed susceptibility
of the form dμ = ρ(σ)dσ , where ρ ∈ L1[0,∞), or mixtures of the two types of
distributions.

For σ ∈ �, S(σ, t) denotes the fraction of the population with susceptibility σ

which remains susceptible (that is, has not been infected yet) at time t . Thus the frac-
tion of the population with susceptibility in the interval [σ1, σ2] at time t is given by∫ σ2
σ1

S(σ, t)dμ(σ). i(σ, t) denotes the incidence rate among individuals with suscep-
tibility σ , that is the fraction of these individuals who are infected per unit time, at
time t . The total incidence rate is given by

i(t) =
∫

�

i(σ, t)dμ(σ). (2)

The age-of-infection model with heterogeneous susceptibility is thus

St (σ, t) = −i(σ, t), σ ∈ � (3)

i(σ, t) = λσ S(σ, t)

∞∫

0

P(τ )i(t − τ)dτ, σ ∈ �. (4)

Equation (3) is an accounting equation which states that the rate of reduction of the
susceptible population with susceptibility level σ is equal to the incidence rate in that
class. Equation (4) calculates this incidence rate by noting that at time t the fraction of
the population whose age-of-infection in the interval [τ −dτ, τ ] is i(t −τ)dτ , so their
contribution to the force of infection λP(τ )i(t − τ)dτ , and this quantity is integrated
over all values of the age-of-infection τ to obtain the total force of infection.

We note that when the population has a homogeneous susceptibility, that is when
dμ(σ) = δ(σ − σ0)dσ , the above model reduces to the standard age-of-infection
model (Brauer 2008; Diekmann and Heesterbeek 2000; Rass and Radcliffe 2003).

Substituting (4) into (2) we have

i(t) = λ

∫

�

σ S(σ, t)dμ(σ) ·
∞∫

0

P(τ )i(t − τ)dτ, (5)

and from (3) and (4) we have

St (σ, t) = −λσ S(σ, t)

∞∫

0

P(τ )i(t − τ)dτ, σ ∈ �. (6)
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Equations (5) to (6) are a more convenient form of the model, since only the total
incidence rate i(t) appears in them.

Calculating the number of cases infected by a single individual with infectivity
λ in a population with susceptibility structure μ (that is ignoring the depletion of
susceptibles), we get the reproductive number

R0 = λ

∫

�

σdμ(σ) ·
∞∫

0

P(τ )dτ = λσ̄μ,

where

σ̄μ =
∫

�

σdμ(σ)

is the mean susceptibility corresponding to μ. It is useful to re-parameterize the model
in terms of R0 instead of λ, re-writing Eqs. (5),(6) as

i(t) = R0
1

σ̄μ

∫

�

σ S(σ, t)dμ(σ) ·
∞∫

0

P(τ )i(t − τ)dτ, (7)

St (σ, t) = −R0
1

σ̄μ

σ S(σ, t)

∞∫

0

P(τ )i(t − τ)dτ, σ ∈ �. (8)

3 Attack rate of an epidemic

We now re-write the model (7)–(8) in another form, from which the final size of the
epidemic generated by the model will easily follow. For this we will need to introduce
an initial condition for the fraction of susceptibles at t = −∞,

S(σ,−∞) = lim
t→−∞ S(σ, t) = 1, σ ∈ �. (9)

We are thus assuming that, in each susceptibility class, all individuals are susceptible
before the epidemic. This represents no loss of generality, since if 0 ∈ � we have
a class of individuals with susceptibility 0, so that the model does take into account
those individuals who are completely immune to infection.

Writing (8) as

[log(S(σ, t)]t = −R0
σ

σ̄μ

∞∫

0

P(τ )i(t − τ)dτ, σ ∈ �, (10)
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and integrating from −∞ to t , using (9), we obtain

S(σ, t) = e
−R0

σ
σ̄μ

∫ t
−∞

∫ ∞
0 P(τ )i(s−τ)dτds

, σ ∈ �. (11)

Substituting (11) into (7) we have

i(t) = R0
1

σ̄μ

∫

�

σe
−R0

σ
σ̄μ

∫ t
−∞

∫ ∞
0 P(τ )i(s−τ)dτds

dμ(σ) ·
∞∫

0

P(τ )i(t − τ)dτ

= − d

dt

∫

�

e
−R0

σ
σ̄μ

∫ t
−∞

∫ ∞
0 P(τ )i(s−τ)dτds

dμ(σ). (12)

We define C(t) to be the cumulative fraction of the population infected up to time t ,
given by

C(t)
.=

t∫

−∞
i(s)ds. (13)

Integrating both sides of (12), taking into account the fact that C(−∞) = 0, we have

C(t) = 1 −
∫

�

e
−R0

σ
σ̄μ

∫ t
−∞

∫ ∞
0 P(τ )i(s−τ)dτds

dμ(σ). (14)

As a simplification of notation, we introduce the function Fμ defined by

Fμ(x)
.=

∫

�

e
− σ

σ̄μ
x
dμ(σ). (15)

Noting also that

t∫

−∞

∞∫

0

P(τ )i(s − τ)dτds =
∞∫

0

P(τ )

t−τ∫

−∞
i(s)dsdτ =

∞∫

0

P(τ )C(t − τ)dτ, (16)

we see that (14) can be written as

C(t) = 1 − Fμ

⎛
⎝R0

∞∫

0

P(τ )C(t − τ)dτ

⎞
⎠ . (17)

We note that

Fμ(x) = L(μ)
( x

σ̄μ

)
, (18)

123



244 G. Katriel

where L(μ) is the Laplace transform of the measure μ, so Fμ is simply a scaling of
the Laplace transform of the susceptibility distribution.

Equation (17) is equivalent to the original model (7), (8). Indeed, given a solution
C(t) of (17), we have i(t) = C ′(t) and using (11) and (16)

S(σ, t) = e
−R0

σ
σ̄μ

∫ ∞
0 P(τ )C(t−τ)dτ

. (19)

We can now derive an equation for the attack rate of the epidemic

Zμ(R0)
.= lim

t→∞ C(t). (20)

Since C(t) is monotonically increasing and bounded from above by 1, this limit exists.
By (20) and the Lebesgue monotone convergence theorem we get

lim
t→∞

∞∫

0

P(τ )C(t − τ)dτ = Zμ(R0)

∞∫

0

P(τ )dτ = Zμ(R0). (21)

Therefore, taking the limit t → ∞ on both sides of (17), we obtain the final size
equation.

Theorem 1 The attack rate Zμ(R0) of (7)–(8) satisfies the equation

Z = 1 − Fμ(R0 Z). (22)

We note that, apart from notation, (22) is identical to the final-size equation obtained
by Novozhilov 2008. Since Fμ(0) = 1, we see that Z = 0 is always a solution of (22),
but we seek a nontrivial solution.

We can write the final-size equation in another way, which is convenient for several
purposes. We define Gμ : [0,∞) → R by

Gμ(x)
.= 1 − Fμ(x)

x
, (23)

(in a moment we will see that Gμ is well-defined also at 0) so that (22) is rewritten as

R0Gμ(R0 Z) = 1. (24)

We shall use the two equivalent forms (22) and (24) of the final-size equation alter-
nately, according to convenience. One advantage of the form (24) is that the trivial
solution Z = 0 of (22) is eliminated.

We can derive another natural representation of the function Gμ. Let us define
�μ : [0,∞) → [0, 1] by

�μ(σ)
.= μ([σ,∞)). (25)
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The size of epidemics in populations with heterogeneous susceptibility 245

Thus �μ(σ) is the fraction of the population whose susceptibility is greater than or
equal to σ at the beginning of the epidemic. �μ is monotonically decreasing, con-
tinuous from the left, and satisfies �μ(0) = 1, limσ→+∞ �μ(σ) = 0. Employing
integration by parts (using the Riemann–Stieltjes integral notation) we have

−
∫

�

e−xσ dμ(σ) =
∞∫

0

e−xσ d�μ(σ) = e−xσ �μ(σ)

∣∣∣σ=∞
σ=0

−
∞∫

0

�μ(σ)d(e−xσ )

= −1 + x

∞∫

0

�μ(σ)e−xσ dσ.

We therefore have

Gμ(x) = 1

σ̄μ

L(�μ)
( x

σ̄μ

)
. (26)

The following properties of the function Gμ will be used repeatedly in what follows:

Lemma 1 (i) Gμ(0) = limx→0+ Gμ(x) = 1.

(ii) G ′
μ(0) = − c2

μ+1
2 , where cμ is the coefficient of variation (c.v.) of the suscepti-

bility distribution, defined as its standard deviation divided by its mean

cμ
.=

√
σ 2

μ − σ̄ 2
μ

σ̄μ

.

(iii) Gμ is decreasing and convex.
(iv) Gμ(x) > 0 for all x ≥ 0 and limx→∞ Gμ(x) = 0.

Proof (i) Since Fμ(0) = 1 we have, from (23),

lim
x→0

Gμ(x) = −F ′
μ(0).

By differentiating (15) one sees that

F ′
μ(0) = − 1

σ̄μ

∫

�

σdμ(σ) = −1, (27)

and the result follows.
(ii) Using L’Hôpital’s rule, we have

lim
x→0

G ′
μ(x) = lim

x→0

Fμ(x) − x F ′
μ(x) − 1

x2 = −1

2
lim
x→0

F ′′
μ(x) = −1

2
F ′′

μ(0).
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The result then follows from the fact that

F ′′
μ(0) = 1

σ̄ 2
μ

∫

�

σ 2dμ(σ) = σ 2
μ

σ̄ 2
μ

= c2
μ + 1. (28)

(iii) follows from (26) and the fact that the Laplace transform of a non-negative
function is decreasing and convex.

(iv) follows from (23) and the fact that 0 < Fμ(x) ≤ 1.

From the above properties of Gμ we immediately have the threshold result

Theorem 2 Equation (24) (hence also (22)) has a solution Z ∈ (0, 1) if and only if
R0 > 1, and this solution is then unique.

We thus see that the threshold condition for the triggering of an epidemic depends
on the susceptibility distribution μ only through the mean susceptibility σ̄μ. As for the
size of the epidemic, we see from (22) that it depends on the susceptibility distribution
through its entire Laplace transform.

Since Gμ is decreasing , the inverse function G−1
μ is well defined on (0, 1], and by

(24) we have the following explicit representation for Zμ(R0):

Zμ(R0) =
{ 0 R0 ≤ 1

1
R0

G−1
μ ( 1

R0
) R0 > 1

. (29)

In addition to the total attack rate Zμ(R0), it is also of interest to consider, for σ ∈ �,
the attack rate Zμ(R0, σ ) among individuals with susceptibility σ . This is equal to

Zμ(R0, σ ) = 1 − lim
t→∞ S(σ, t),

and using (19) and (21) we get

Zμ(R0, σ ) = 1 − e
−R0 Zμ(R0)

σ
σ̄μ , σ ∈ �. (30)

As expected, the attack rate among more susceptible individuals is higher.
We now apply the above results to some explicit examples of susceptibility distri-

butions.
In the particular case of a homogeneous population, that is when dμ(σ) = δ(σ −

σ̄ )dσ, we have Fμ(x) = e−x , so (22) reduces to

Z = 1 − e−R0 Z , (31)

the familiar final size equation for the basic SIR model, and many of its variants (Ma
and Earn 2006). For future use we shall denote the solution of (31) by Z∗(R0).

More generally, in the case of a finite number of susceptibility classes (1) we have

Fμ(x) =
n∑

k=1

pke
− σk

σ̄μ
x
, σ̄μ =

n∑
k=1

pkσk,
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so the final-size equation is

Z = 1 −
n∑

k=1

pke
− σk

σ̄μ
R0 Z

, (32)

already given by Ball (1985).
As another interesting example, already considered in Novozhilov (2008), is the

case in which the susceptibility of the population is Gamma-distributed, with mean σ̄

and shape parameter κ , that is

dμ(σ) = 1


(κ)

( κ

σ̄

)κ

σ κ−1e− κ
σ̄

σ dσ. (33)

Then

Fμ(x) =
(

1 + 1

κ
x
)−κ

, Gμ(x) = 1

x

[
1 −

(
1 + 1

κ
x
)−κ]

, (34)

and the final size equation is thus

Z = 1 −
(

1 + R0

κ
Z
)−κ

. (35)

In general Gμ cannot be inverted in terms of simple functions, but in the particular

case κ = 1, that is when susceptibility is exponentially distributed dμ = 1
σ̄

e− 1
σ̄

σ dσ,

we have Gμ(x) = 1
x+1 , so G−1

μ (y) = 1
y − 1 and we get a very simple expression for

the attack rate

Zμ(R0) = 1 − 1

R0
. (36)

4 Ordering of susceptibility distributions and attack rates

Application of the final-size formula yields a sufficient criterion for the attack rate
corresponding to one instance of the model (7)–(8), defined by a susceptibility mea-
sure μ and by R0, to be larger than the attack rate corresponding to another instance,
defined by μ̃ and R̃0.

Lemma 2 Let μ, μ̃ be initial susceptibility distributions for the model (7)–(8), let
R0, R̃0 ≥ 0 and assume that

Fμ(R0z) ≤ Fμ̃(R̃0z), ∀z ∈ (0, 1) (37)

Then the corresponding attack rates satisfy Zμ̃(R̃0) ≤ Zμ(R0).

123



248 G. Katriel

Proof By (37) we have, for all z ∈ (0, 1),

Gμ(R0z) = 1 − Fμ(R0z)

R0z
≥ 1 − Fμ̃(R̃0z)

R0z
= R̃0

R0

1 − Fμ̃(R̃0z)

R̃0z
= R̃0

R0
Gμ̃(R̃0z),

Thus, setting z = Zμ(R0) and using the fact that Zμ(R0) satisfies (24),

Gμ̃(R̃0 Zμ(R0)) ≤ R0

R̃0
Gμ(R0 Zμ(R0)) = 1

R̃0
.

Since Gμ̃ is monotonically decreasing (Lemma 1 (iii)) we get, using also the final-size
formula (29) applied to μ̃,

R̃0 Zμ(R0) ≥ G−1
μ̃

( 1

R̃0

)
= R̃0 Zμ̃(R̃0),

so we have Zμ̃(R̃0) ≤ Zμ(R0).

We will now concentrate on the case in which the reproductive numbers of the two
instances of the model are equal, R0 = R̃0, so that we wish to compare the functions
Zμ(R0), Zμ̃(R0). This brings us naturally to the definition of an ordering relation for
probability measures on [0,∞).

Definition 1 Given two probability measures μ, μ̃ on [0,∞), we say that μ dominates
μ̃, denoted μ̃ � μ, if Fμ(x) ≤ Fμ̃(x) for all x ≥ 0.

The relation � is a partial order, so that for many pairs of distributions we have
neither μ̃ � μ nor μ � μ̃. This relation is closely related to the Laplace order (Shaked
and Shanthikumar 2007), which is defined by: μ̃ ≤L μ iff L(μ)(x) ≤ L(μ̃)(x) for
all x ≥ 0. Indeed if two distributions have the same mean, then the above relation
� is equivalent to the Laplace order. We note that the Laplace order has recently
appeared in a quite different epidemiological application (Yan and Feng 2010), where
it is shown that the Laplace order over latent and infectious period distributions can
be used to rank the effectiveness of control measures like quarantine and isolation.

From Lemma 2 we have that if μ̃ � μ, the corresponding attack rates satisfy
Zμ̃(R0) ≤ Zμ(R0), for all values of R0. The following theorem says that the converse
to this statement is also true:

Theorem 3 Let μ, μ̃ be susceptibility distributions. Then the following statements
are equivalent

(i) μ̃ � μ.
(ii) For any value of R0, the attack rates corresponding to μ, μ̃ satisfy Zμ̃(R0) ≤

Zμ(R0).

Proof The implication (i) ⇒ (ii) follows from Lemma 2. To prove (ii) ⇒ (i), we
assume that (i) does not hold, and will prove that (ii) does not hold. Thus, assume that
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there exist some value x∗ > 0 for which

Fμ(x∗) > Fμ̃(x∗). (38)

Defining R0 by

R0 = 1

Gμ(x∗)
,

we have x∗ = G−1
μ ( 1

R0
), so that, using (29)

x∗ = R0 Zμ(R0). (39)

Using (38) we have

Gμ̃(x∗) = 1 − Fμ̃(x∗)
x∗ >

1 − Fμ(x∗)
x∗ = Gμ(x∗) = 1

R0

and since Gμ is decreasing this implies, using also the final-size formula (29) applied
to μ̃,

x∗ < G−1
μ̃

( 1

R0

)
= R0 Zμ̃(R0), (40)

and by (39) and (40) we get Zμ(R0) < Zμ̃(R0), so (ii) does not hold.

Thus, given two susceptibility distributions, if they are ordered, that is either μ̃ � μ

or μ � μ̃, then the attack rate corresponding to one of the distributions is equal to or
larger than that corresponding to the other, for any value of R0. On the other hand, if
the two distributions are not ordered, that is neither μ̃ � μ nor μ � μ̃ holds, then
the above theorem tells us that there will be some values of R0 for which the attack
rate corresponding to μ will be larger, and other values of R0 for which the attack rate
corresponding to μ̃ will be larger.

If μ, μ̃ are two susceptibility distributions with μ̃ � μ, we have, since Fμ̃(x) ≥
Fμ(x), Fμ(0) = Fμ̃(0) = 1, F ′

μ(0) = F ′
μ̃
(0) = −1 that F ′′

μ̃
(0) ≥ F ′′

μ(0). By (28) we
get

Lemma 3 If μ̃ � μ then cμ ≤ cμ̃.

Thus, a distribution dominating another has a lower coefficient of variation (c.v.). The
converse is, of course, not true: cμ ≤ cμ̃ does not imply μ̃ � μ, so a lower c.v. of the
susceptibility distribution does not, in general, imply higher attack rate (see example
below), although this can be true for particular families of distributions: in the case of
Gamma-distributed susceptibility (see (33)), we have c2

μ + 1 = F ′′
μ(0) = 1 + κ−1, so

for two members μ, μ̃ of this family, with shape parameters κ, κ̃ , we have cμ ≤ cμ̃

iff κ ≥ κ̃ , which implies that Fμ(x) = (1 + κ−1x)−κ ≤ (1 + κ̃−1x)−κ̃ = Fμ̃(x), so
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μ̃ � μ, and in particular the attack rate corresponding to μ is smaller, a fact already
noted by Novozhilov (2008).

We now show that a weakened form of the converse statement discussed above is
valid, namely ordering of the c.v.’s does imply ordering of the attack rate when the
reproductive number R0 is sufficiently close to the epidemic threshold R0 = 1. This
will follow from

Lemma 4 For any susceptibility distribution μ, as R0 → 1+,

Zμ(R0) = 2

c2
μ + 1

(R0 − 1) + O((R0 − 1)2).

Proof Differentiating (29) we have, for R0 ≥ 1,

Z ′
μ(R0) = − 1

R2
0

G−1
μ

( 1

R0

)
− 1

R3
0

1

G ′
μ(G−1

μ ( 1
R0

))
.

Substituting R0 = 1 and using the fact that Gμ(0) = 1, G ′
μ(0) = − c2

μ+1
2 (lemma 1(i),

(ii)) we obtain

Z ′
μ(1) = − 1

G ′
μ(0)

= 2

c2
μ + 1

,

and the result follows by the Taylor approximation.

Thus, if we have two susceptibility distributions, for R0 sufficiently close to the
threshold 1, the susceptibility distribution with larger c.v. will lead to a smaller attack
rate. As stressed above, this does not hold for general R0.

As a simple explicit example, consider the finitely supported distributions

dμ(σ) = 1

4
δ
(
σ − 1

4

)
+ 3

4
δ(σ − 5), dμ̃(σ ) = 3

4
δ
(
σ − 1

)
+ 1

4
δ(σ − 10). (41)

We have σ̄μ = 61
16 , σ̄μ̃ = 13

4 , so

Fμ(x) = 1

4
e− 4

61 x + 3

4
e− 80

61 x , Fμ̃(x) = 3

4
e− 4

13 x + 1

4
e− 40

13 x .

Since Fμ(0) = Fμ̃(0) = 1, F ′
μ(0) = F ′

μ̃
(0) = −1 (as always) and F ′′

μ(0) = 1.29 <

2.44 = F ′′
μ̃
(0), we have that Fμ(x) < Fμ̃(x) for x sufficiently small. On the other

hand, for x large Fμ̃(x) ≈ 3
4 e− 4

13 x < 1
4 e− 4

61 x ≈ Fμ(x). Thus μ, μ̃ are not ordered
according to the partial order �. Plotting the attack rates corresponding to the two
distributions as functions of R0 (Fig. 1), computed by solving (22) numerically, we
see that for low values of R0 the attack rate corresponding to μ is larger while for
higher values of R0 the attack rate corresponding to μ̃ is larger.
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Fig. 1 Attack rates as a function of R0 for the susceptibility distributions given by (41). Full line corre-
sponds to μ, dashed line to μ̃

5 Universal upper bounds for the attack rate

We now apply Theorem 3 to obtain an upper bound for the attack rate in terms of
R0 alone, valid for any susceptibility distribution μ. The following theorem is a gen-
eralization of the result obtained by Ball 1985 for a finite number of susceptibility
classes.

Theorem 4 For any susceptibility distribution μ, assuming R0 > 1 , the attack rate
Zμ(R0) is bounded from above by

Zμ(R0) ≤ Z∗(R0), (42)

where Z∗(R0) is the attack rate for a homogeneous population, given as the solution
of (31).

Proof Applying Jensen’s inequality with the convex function f (σ ) = e
−x σ

σ̄μ , we
obtain

Fμ(x) =
∫

�

f (σ )dμ(σ) ≥ f

⎛
⎝

∫

�

σdμ(σ)

⎞
⎠ = e

−x 1
σ̄μ

∫
� σdμ(σ) = e−x = Fμ̂(x),

where dμ̂(σ ) = δ(σ − σ̄μ)dσ , so that μ � μ̂, and the result follows from Theorem 3.

Since R0 = λσ̄ , the above theorem implies that, for given infectivity λ, among the
susceptibility distributions with the same mean, the largest attack rate is obtained for
the distribution concentrated at this mean, that is for the distribution with the least
variation. We may thus say that heterogeneity of the susceptibility leads to decrease of
the attack rate, relative to the homogeneous case with the same reproductive number.
However, as we stressed and demonstrated in the previous section, this does not mean
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that susceptibility distributions with more variation, as measured by the coefficient of
variation, necessarily have a lower attack rate.

Since the upper bound given by Theorem 4 is attained for the homogeneous case, it
is sharp and cannot be improved unless we somehow restrict the class of susceptibility
distributions. We now derive a stronger upper bound for the class of susceptibility dis-
tributions which have a monotonically decreasing density, that is dμ = ρ(σ)dσ with
ρ ∈ L1[0,∞) a monotonically decreasing function. This depends on the following
result from Shaked and Shanthikumar (2007), Theorem 3.A.46 (a).

Lemma 5 Let μ be a probability measure on [0,∞) with a monotonically decreasing
density and mean σ̄ . Let μ̃ be the uniform measure on the interval [0, 2σ̄ ]. Then, for
any convex function φ : R → R:

∞∫

0

φ(σ)dμ(σ) ≤
∞∫

0

φ(σ)dμ̃(σ ) = 1

2σ̄

2σ̄∫

0

φ(σ)dσ.

In particular, if we take φ(σ) = e−x σ
σ̄ we conclude that Fμ(x) ≥ Fμ̃(x), so that

μ � μ̃. Noting that

Fμ̃(x) = 1

2σ̄

2σ̄∫

0

e−x σ
σ̄ dσ = 1 − e−2x

2x
,

and applying Theorem 3, we therefore have

Theorem 5 If the susceptibility distribution μ has a monotonically decreasing den-
sity, then for all R0 > 1 we have Zμ(R0) ≤ Zμ̃(R0), where Zμ̃(R0) is the solution of
the equation

Z = 1 − 1

2R0 Z
(1 − e−2R0 Z ).

In Fig. 2 we plot the upper bound on the attack rate for general susceptibility dis-
tributions, and the upper bound for the case of distributions with a monotonically
decreasing density, which is of course lower.

6 Universal lower bounds for the attack rate

A natural question, in view of Theorem 4, is whether it is possible to find a bound from
below for the attack rate, in terms of R0, independent of the susceptibility distribu-
tion. The answer is negative: for given R0, one can find susceptibility distributions for
which the corresponding attack rate is arbitrarily small. To see this, let us consider a
population divided into two subpopulations: a fraction α has uniform susceptibility σ1,
and the rest are totally immune (susceptibility 0). The mean susceptibility is then given
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Fig. 2 Upper bound for the attack rate as a function of R0 for arbitrary susceptibility distributions (dashed
line) and for susceptibility distributions with a monotonically decreasing density

by ασ1, and we now fix the mean to be a given number σ̄ by setting σ1 = σ̄
α

, so that
the susceptibility distribution is:

dμ̌(σ ) =
[
(1 − α)δ(σ ) + αδ

(
σ − σ̄

α

)]
dσ, (43)

and we have

Fμ̌(x) = 1 − α + αe− 1
α

x .

If we take α → 0, we see that Fμ̌ → 1 uniformly, so that the final size equation (22)
becomes Z = 0. Therefore, by taking α sufficiently small, we can get an attack rate
which is arbitrarily close to 0. Thus the number of infectives, beyond those initially
infected, can be made arbitrarily small for a given R0. The intuitive reason is obvious—
in this example there is a very small population of very highly susceptible population,
with the rest of the population totally immune, so the epidemic can affect only the
small highly susceptible population.

We will now show, however, that a lower bound for the attack rate can be obtained
if we restrict the coefficient of variation cμ of the susceptibility distribution.

Note first that for the specific example (43), using (28) we have

c2
μ̌

+ 1 = F ′′
μ̌
(0) = 1

α
,

so that fixing the coefficient of variation to be cμ̌ = c determines the value of α to be
α = 1

c2+1
, hence μ̌ becomes

dμ̌(σ ) = c2

1 + c2 δ(σ )dσ + 1

1 + c2 δ
(
σ − (1 + c2)σ̄

)
dσ. (44)
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It turns out that the distribution given by (44) is dominated by any distribution μ with
the same coefficient of variation cμ = c. This is the content of the following result
from Shaked and Shanthikumar (2007), see Theorem 5.A.21:

Lemma 6 Let μ be any probability measure on [0,∞), with finite first and second
moments, and let cμ denote its coefficient of variation. Let μ̌ be the probability mea-
sure defined by (44), with σ̄ = σ̄μ and c = cμ. Then L(μ)(x) ≤ L(μ̌)(x) for all
x ≥ 0.

Therefore, with μ, μ̌ as above we have, using (18), that μ̌ 
 μ, so by Theorem 3
we have Zμ̌(R0) ≤ Zμ(R0) for all R0. The final size equation (22) for Zμ̌(R0) is

Ž = (1 + c2)−1[1 − e−(1+c2)R0 Ž ]. (45)

Note that if we set Z ′ = (1 + c2)Ž , then (45) becomes Z ′ = 1 − e−R0 Z ′
, which is the

same as (31). We therefore have Z ′ = Z∗(R0), so

Ž = 1

1 + c2 Z∗(R0).

We have thus obtained

Theorem 6 For any susceptibility distribution μ, the corresponding attack is bounded
from below by

Zμ(R0) ≥ 1

1 + c2
μ

Z∗(R0), (46)

where cμ is the coefficient of variation of μ and Z∗(R0) is the attack rate for a homo-
geneous population, given as the solution of (31).

As cμ → 0, the lower bound (46) approaches the upper bound (42). In other
words, (46) gives quantitative expression to the fact that low heterogeneity leads to an
attack rate which is close to the maximal attack rate possible, which is the attack rate
corresponding to the homogeneous case.

To conclude this discussion, we consider a question that arises naturally at this point.
We have seen that the attack rate can be bounded from above given the reproductive
number alone, while to bound the attack rate from below we also need information on
the c.v. of the susceptibility distribution. Our question is whether, given knowledge of
the c.v., one can improve the upper bound given in terms R0 alone, and get an upper
bound which is smaller. We now show that the answer is negative, that is, given any
values R0 > 1, c > 0 we can find a susceptibility distribution μ with cμ = c, for
which the attack rate Zμ(R0) is as close as we wish to Z∗(R0), the attack rate in the
homogeneous case. To construct such an example, we consider distributions which
are supported on two points

dμ(σ) = αδ(σ − σ1) + (1 − α)δ(σ − σ2)
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We fix the first two moments of μ:

ασ1 + (1 − α)σ2 = σ̄ , ασ 2
1 + (1 − α)σ 2

2 = σ 2.

Solving this pair of equations for α, σ2 we have

α = σ̄ 2 − σ 2

2σ1σ̄ − σ 2
1 − σ 2

, σ2 = σ 2 − σ1σ̄

σ̄ − σ1
,

hence

Fμ(x) = σ̄ 2 − σ 2

2σ1σ̄ − σ 2
1 − σ 2

e− σ1
σ̄

x + 2σ1σ̄ − σ 2
1 − σ̄ 2

2σ1σ̄ − σ 2
1 − σ 2

e
− σ2−σ1 σ̄

σ̄−σ1
1
σ̄

x

Taking the limit σ1 → σ̄ , we get α → 1, σ2 → ∞, and therefore Fμ(x) → e−x

uniformly. Therefore in such a limit the final-size equation (22) becomes arbitrarily
close to the final-size equation for the homogeneous model, so that the solution, which
gives the attack rate, is arbitrarily close to the attack rate of the homogeneous model,
despite the fact that the c.v. of the susceptibility distribution is fixed. Thus knowledge
of the c.v. of the susceptibility distribution does not enable to improve the upper bound
for the attack rate given by Z∗(R0).

7 Vaccination in a population with heterogeneous susceptibility

We now apply some of the previous results to consider the effect of vaccination. We
assume that the susceptibility distribution of the unvaccinated population is μ, and the
reproductive number before vaccination is R0. A vaccine may be completely effec-
tive, in which case any individual who is vaccinated will have susceptibility 0, or
leaky, meaning that it only reduces the susceptibility of those vaccinated by a given
factor 0 < r < 1 (Halloran et al. 2009). If we vaccinate the entire population with
such a leaky vaccine, the susceptibility distribution will be the scaled distribution μr ,
defined by

μr ([a, b]) = μ([r−1a, r−1b]), (47)

that is, the fraction of the population which will have susceptibility in the interval
[a, b] after vaccination is the fraction of the population that had susceptibility in the
interval [r−1a, r−1b] prior to vaccination.

More generally, if we have a limited quantity of vaccine, sufficient to vaccinate a
fraction v of the population, the susceptibility distribution after vaccination will be
the mixture of distributions

μr,v = vμr + (1 − v)μ.
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The mean susceptibility after vaccination is

σ̄μr,v = vσ̄μr + (1 − v)σ̄μ = [1 − v(1 − r)]σ̄μ,

where σ̄μ is the mean susceptibility before vaccination, so that the post-vaccination
reproduction number is

Rr,v
0 = λσ̄μr,v = R0[1 − v(1 − r)],

and by Theorem 2, the condition for achieving herd immunity and preventing an
epidemic is Rr,v

0 ≤ 1, that is

v(1 − r) ≥ 1 − 1

R0
. (48)

With � defined by (25), we have, by (47),

�μr,v (σ ) = v�μr (σ ) + (1 − v)�μ(σ) = v�μ(r−1σ) + (1 − v)�μ(σ),

so, using (26),

L(�μr,v )(x) = vrL(�μ)(r x) + (1 − v)L(�μ)(x),

Gμr,v (x) = 1

1 − v(1 − r)

[
vrGμ

( r x

1 − v(1 − r)

)
+ (1 − v)Gμ

( x

1 − v(1 − r)

)]
.

In case that (48) does not hold, so that vaccination is not sufficient for preventing an
epidemic, we thus have

Proposition 1 For any susceptibility distribution μ, assuming the reproduction num-
ber before vaccination is R0 and v(1 − r) < 1 − 1

R0
, the attack rate

Zμ(r, v, R0) = Zμr,v (Rr,v
0 )

after vaccination of a fraction v of the population which reduces susceptibility by a
fraction r is the positive solution of the equation

R0

[
vrGμ(r R0 Z) + (1 − v)Gμ(R0 Z)

]
= 1. (49)

While the threshold condition (48) for preventing an epidemic depends only on the
reproductive number R0 before vaccination and on the product v(1 − r), the depen-
dence of the attack rate on r, v, expressed by (49), is not only through the product
v(1− r), so that different combinations of v, r with the same value of v(1− r), which
thus lead to the same reduction of the reproduction number, can lead to very different
attack rates.
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Fig. 3 Attack rate as a function
of the fraction of population
vaccinated v and reduction in
susceptibility of vaccinated
individuals r , for a population
with exponentially distributed
susceptibility and R0 = 2

We now consider the example in which the susceptibility distribution before vac-
cination is Gamma-distributed, see (33), in which case Gμ is given by (34), so (49) is

Z = 1 − v
(

1 + 1

κ
r R0 Z

)−κ − (1 − v)
(

1 + 1

κ
R0 Z

)−κ

.

In particular, when κ = 1 so that susceptibility is exponentially distributed dμ(σ) =
1
σ̄

e− 1
σ̄

σ dσ , the above equation, after simplification and division by Z to eliminate the
trivial solution, gives a quadratic equation, whose solution in (0, 1) is

Zμ(r, v, R0) = 1

2R0r

[
(R0 − 1)r − 1 +

(
[(R0 − 1)r + 1]2 − 4vR0r(1 − r)

) 1
2
]
.

(50)

The attack rate as a function of r, v, for R0 = 2, is plotted in Fig. 3.

8 Recurring epidemics

In this section we consider the following situation: a population undergoes an epi-
demic with a pathogen that, upon recovery, induces a complete short-term protection
(say for a few months), so that individuals do not get infected more than once during
the epidemic. At a later point in time (perhaps a year later), the pathogen re-enters
the population and a new epidemic occurs. By this time the individuals who had been
infected in the previous epidemic have only a partial protection to being infected,
reducing their susceptibility by a factor r . This can be due either to waning immunity
or to antigenic evolution of the pathogen. The individuals who had not been infected
during the first epidemic are, of course, just as susceptible to the new epidemic as the
were to the previous one. We want to study the degree of protection that the previous
encounter with the pathogen affords the population, and answer questions like:

– What are the conditions on the susceptibility distribution μ, the reproductive num-
ber R0 for the first epidemic, and the reduction of susceptibility r , so that a second
epidemic will be prevented?
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– In case a second epidemic does occur, how does its size depend on the above
factors?

The essential difference between the situation considered here and that of vaccina-
tion studied in the previous section is that in the case of vaccination of a randomly
chosen fraction of the population we vaccinate an equal fraction of people with low
susceptibility and with high susceptibility. In the case of partial immunity afforded by
exposure to the pathogen during the first epidemic, individuals with a higher suscep-
tibility will have been infected at a higher rate so that a larger proportion of them will
have some protection. Let us mention the paper of Bansal and Meyers (2008) which
studies closely related questions under different heterogeneity assumptions.

Let μ be the susceptibility distribution of the population before the first epidemic,
and R0 the reproductive number, so that Zμ(R0) is the attack rate of the first epidemic.
We are going to calculate the susceptibility distribution μ̃ and the reproductive number
R̃0 for the second epidemic.

Since, of the individuals with susceptibility σ , a fraction e
−R0 Zμ(R0)

σ
σ̄μ were not

infected during the first epidemic (see (30)) so that their susceptibility remains the

same, while a fraction 1 − e
−R0 Zμ(R0)

σ
σ̄μ were infected so that their susceptibility is

reduced by a factor of r , we get that the susceptibility distribution following the first
epidemic is given by

μ̃([a, b]) =
b∫

a

e
−R0 Zμ(R0)

σ
σ̄μ dμ(σ) +

r−1b∫

r−1a

(1 − e
−R0 Zμ(R0)

σ
σ̄μ )dμ(σ). (51)

We therefore have

L(�μ̃)(x) =
∞∫

0

e−xσ
[ ∞∫

σ

e
−R0 Zμ(R0) σ ′

σ̄μ dμ(σ ′) +
∞∫

r−1σ

(1 − e
−R0 Zμ(R0) σ ′

σ̄μ )dμ(σ ′)
]
dσ

=
∞∫

0

e
−R0 Zμ(R0) σ ′

σ̄μ

σ ′∫

0

e−xσ dσdμ(σ ′) +
∞∫

0

(1 − e
−R0 Zμ(R0) σ ′

σ̄μ )

rσ ′∫

0

e−xσ dσdμ(σ ′)

= 1

x

∞∫

0

e
−R0 Zμ(R0) σ ′

σ̄μ [1 − e−xσ ′ ]dμ(σ ′) + 1

x

∞∫

0

(1 − e
−R0 Zμ(R0) σ ′

σ̄μ )[1 − e−r xσ ′ ]dμ(σ ′)

= 1

x

[
1 − Fμ

(
σ̄μx + R0 Zμ(R0)

)
− Fμ(r σ̄μx) + Fμ

(
r σ̄μx + R0 Zμ(R0)

)]
, (52)

hence, by (26),

Gμ̃(x) = 1

x

[
1 − Fμ

( σ̄μ

σ̄μ̃

x + R0 Zμ(R0)
)

− Fμ

(
r
σ̄μ

σ̄μ̃

x
)

+ Fμ

(
r
σ̄μ

σ̄μ̃

x + R0 Zμ(R0)
)]

. (53)
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Taking the limit x → 0 in (53) and using the fact that Gμ̃(0) = 1 (lemma 1(i)) and
(27), we get

1 = lim
x→0

1

x

[
1 − Fμ

(
σ̄μx + R0 Zμ(R0)

)
− Fμ(r σ̄μx) + Fμ

(
r σ̄μx + R0 Zμ(R0)

)]

= [r − (1 − r)F ′
μ(R0 Zμ(R0))] σ̄μ

σ̄μ̃

,

hence

σ̄μ̃ = [r − (1 − r)F ′
μ(R0 Zμ(R0))]σ̄μ. (54)

The reproductive number for the second epidemic is therefore, assuming the infectivity
λ remains the same,

R̃0 = λσ̄μ̃ = λσ̄μ[r − (1 − r)F ′
μ(R0 Zμ(R0))] = R0[r − (1 − r)F ′

μ(R0 Zμ(R0))].
(55)

The threshold condition for a second epidemic is R̃0 > 1, or, equivalently

r > r0(R0)
.= 1 − 1 − R−1

0

1 + F ′
μ(R0 Zμ(R0))

. (56)

Thus a second epidemic will be prevented if the protection afforded by previous infec-
tion is sufficiently strong, that is if r ≤ r0(R0). Assuming that R0 > 1, i.e. that a first
epidemic occurred, we have r0(R0) < 1, so that there is always a range r ∈ (r0(R0), 1)

of values for which the partial immunity generated by the first epidemic is too weak
to prevent a second epidemic.

The relation r = r0(R0) defines a curve in the (R0, r) plane, such that a second
epidemic occurs when (R0, r) is above this curve. Let us now calculate the curve r =
r0(R0) explicitly for two specific susceptibility distributions. In the case of a homoge-
neous population with susceptibility σ̄ , dμ(σ) = δ(σ − σ̄ )dσ , we have Fμ(x) = e−x ,
so Zμ(R0) = Z∗(R0) given as the solution of (31), so

F ′
μ(R0 Zμ(R0)) = −e−R0 Z∗(R0) = Z∗(R0) − 1

and

r0(R0) = 1 − 1 − R−1
0

Z∗(R0)
.
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Fig. 4 Left. The curves r = r0(R0) for a homogeneous population and for a population with exponentially
distributed susceptibility (dashed). Right. Attack rate for a second epidemic as a function of reproduction
number R0 of the first epidemic and reduction of susceptibility r following infection. The higher surface
corresponds to homogeneous susceptibility, and the lower surface corresponds to exponentially distributed
susceptibility

In the case of a population with exponentially distributed susceptibility dμ =
1
σ̄

e− 1
σ̄

σ dσ , we have Fμ(x) = (1 + x)−1, Zμ(R0) = 1 − 1
R0

(see (36)), and therefore

F ′
μ(R0 Zμ(R0)) = −(1 + R0 Zμ(R0))

−2 = −R−2
0 ,

r0(R0) = 1 − 1 − R−1
0

1 − R−2
0

= 1

R0 + 1
.

The curves r = r0(R0) for the two cases that were calculated above are plotted in
Fig. 4 (left). Recall that the region above each curve is the region for which a second
epidemic will occur for the corresponding susceptibility distribution. An interesting
fact we notice when looking at these two curves is that for both of them r0(1) = 1

2 . It
turns out that this is a general fact:

Theorem 7 For any susceptibility distribution μ the corresponding curve r = r0(R0)

satisfies r0(1) = 1
2 .

The meaning of this result, thinking now of r as fixed and varying R0, is that if
r ≥ 1

2 , that is if immunity following infection reduces susceptibility by less than 50%,
then for any value of R0 > 1 a second epidemic will occur, while if previous infection
reduces susceptibility by more than 50% (r < 1

2 ) then then an epidemic will not occur
if R0 is smaller then a critical value given by r−1

0 (r) (see Fig. 4 left). We call this
surprising result the 50%-law.

Proof By the definition of r0(R0), we need to show that

lim
R0→1+

1 − R−1
0

1 + F ′
μ(R0 Zμ(R0))

= 1

2
. (57)
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Since Zμ(1) = 0, we have F ′
μ(Zμ(1)) = F ′

μ(0) = −1, and we see that both the
numerator and the denominator in (57) vanish when R0 = 1. Therefore to evaluate
the limit we use L’Hôpital’s rule,

lim
R0→1+

1 − R−1
0

1 + F ′
μ(R0 Zμ(R0))

= lim
R0→1+

d
d R0

[1 − R−1
0 ]

d
d R0

[1 + F ′
μ(R0 Zμ(R0))]

= lim
R0→1+

R−2
0

F ′′
μ(R0 Zμ(R0))[Zμ(R0) + R0 Z ′

μ(R0)] = 1

F ′′
μ(0)Z ′

μ(1)
.

We now recall (28), which tells us that F ′′
μ(0) = c2

μ + 1, and Lemma 4, which tells us

that Z ′
μ(1) = 2

c2
μ+1

, so we get (57).

Let us now assume that r > r0(R0), that is R̃0 > 1, so that a second epidemic
occurs, and denote the attack rate of the second epidemic by Z̃ = Zμ̃(R̃0). Com-

puting the final-size equation (24), using (53) and the fact that σ̄μ

σ̄μ̃
= R0

R̃0
, we have

Proposition 2 In case r > r0(R0), the attack rate Z̃ of the second epidemic is given
as the positive solution of

Z̃ = 1 − Fμ

(
R0(Z̃ + Zμ(R0))

)
+ Fμ

(
R0r Z̃

)
− Fμ

(
R0(r Z̃ + Zμ(R0))

)
.

For a homogeneous population we get the equation

Z̃ = 1 − e−R0(Z̃+Z∗(R0)) − e−r R0 Z̃ + e−R0(r Z̃+Z∗(R0)),

and using the fact that Z∗(R0) = 1 − e−R0 Z∗(R0) this can be written as

Z̃ = 1 − (1 − Z∗(R0))e
−R0 Z̃ − Z∗(R0)e

−r R0 Z̃ . (58)

As another example, in the case of an exponential susceptibility distribution we have

Z̃ = 1 − (1 + R0(Zμ(R0) + Z̃))−1 − (1 + R0r Z̃)−1 + (1 + R0(Zμ(R0) + r Z̃))−1,

and using the fact that Zμ(R0) = 1 − 1
R0

we get

Z̃ = 1 − (R0(1 + Z̃))−1 − (1 + R0r Z̃)−1 + (R0(1 + r Z̃))−1, (59)

which can be written as a third order polynomial equation for Z̃ .
In Fig. 4 (right) we plot the attack rate as a function of R0 and r for the two cases

considered above, by solving Eqs. (58) and (59) numerically.
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