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Abstract Cytotoxic T-lymphocyte (CTL) escape mutation is associated with
long-term behaviors of human immunodeficiency virus type 1 (HIV-1). Recent stud-
ies indicate heterogeneous behaviors of reversible and conservative mutants while the
selection pressure changes. The purpose of this study is to optimize the selection pres-
sure to minimize the long-term virus load. The results can be used to assist in delivery of
highly loaded cognate peptide-pulsed dendritic cells (DC) into lymph nodes that could
change the selection pressure. This mechanism may be employed for controlled drug
delivery. A mathematical model is proposed in this paper to describe the evolutionary
dynamics involving viruses and T cells. We formulate the optimization problem into
the framework of evolutionary game theory, and solve for the optimal control of the
selection pressure as a neighborhood invader strategy. The strategy dynamics can be
obtained to evolve the immune system to the best controlled state. The study may
shed light on optimal design of HIV-1 therapy based on optimization of adaptive CTL
immune response.

Keywords HIV · Evolutionary game theory · Fitness · Selection pressure ·
Optimization

Mathematics Subject Classification (2000) 91A22 · 92D25 · 93C15

1 Introduction

Within-patient HIV (human immunodeficiency virus) evolution shows viral muta-
tional escape from cytotoxic T-lymphocyte (CTL) recognition. Epitope-specific CTL
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response plays a critical role in the control of HIV. Recent studies indicate that there
are two types of CTL escape mutation, one is reversible, and the other is conservative
(Leslie et al. 2004; Picado et al. 2006). The mutations are driven by strong selection
pressure. The main difference between the two types of the CTL escape mutations
is that, while the selection pressure disappears or is weakened, the reversible mutant
will revert to a wild type virus, while the conservative one will be maintained. The
reversible mutation usually carries a significant cost to viral replicative capacity, while
the conservative one occurs at little or no cost to the virus. The cost here is associated
with different degrees of constraint on viral replication. In our previous work (Wu et al.
2010), a mathematical model has been proposed to describe the population dynamics.
The model shows different behavior of reversible and conservative mutants, which
agrees well with the experimental observations (Leslie et al. 2004). In the prior model,
the extent to selection pressure measurement will determine the degree to which escape
mutations revert or are maintained. It is interesting to note that the virus load is not
simply reversely proportional to the selection pressure. There is an optimal selection
pressure under which the virus can be most effectively controlled (Wu et al. 2010).

In this paper, we propose an optimal control approach to minimize the steady virus
load. The goal is to develop an optimal drug delivery strategy for HIV treatment. We
formulate it as an optimization problem in the framework of evolutionary game theory,
and thus solve for optimal control of selection pressure by evaluation of neighborhood
invader strategy (NIS) (Apaloo et al. 2009). In the formulation, the selection pressure
is regarded as a drug delivery strategy that can be controlled by delivering cognate
peptide-pulsed dendritic cells (DCs) into lymph nodes. The fitness generating function,
G function, is chosen to be the object function of the optimal control. By employing
the strategy dynamics, an arbitrary given initial selection pressure will evolve to NIS,
and the immune system will evolve to the optimal state. Thus, we can maximize the
effectiveness of adaptive CTL immune response by controlling the selection pressure,
which can be achieved by DC based therapy (Bousso and Robey 2003; Henrickson
et al. 2008). Our previous work also demonstrated that the CTL immune response
could be enhanced by recruitment of cognate antigen-pulsed DCs (Wu et al. 2010).

2 Model formulation

To describe the evolutionary dynamics of HIV virus and human leukocyte antigen
(HLA) restricted CTL response, and understand the DCs based adaptive immuno-
therapy, we proposed a controlled population model as shown in (1), where Vi are
free infectious virions in the extracellular environment, V1 is the population of wild
type virus with TW10 epitope, V2 is the mutant with only T242N mutation, V3 is
the mutant with only G248A mutation and V4 is the mutant with both T242N and
G248A mutations, T1 represents the population of uninfected helper T cells, T2 is the
helper T cells infected by HIV virus, and T3 is the HLA restricted CTLs. Due to high
possibility of coinfection and direct cell to cell virus transmission (Jung et al. 2002;
Dang et al. 2004; Levy et al. 2004; Chen et al. 2005; Wodarz and Levy 2009; Jolly and
Sattentau 2004; Sattentau 2008), multiple virions may coexist in one cell. Thus, we
treat the helper T cells infected by all types of virus population Vi as one population
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Evolutionary game theoretic strategy 497

T2 and T3 is the collection of CTLs directed to arbitrary Vi . The differential equations
to describe the controlled population model are as follows

V̇1 = Nd2T2 − dV1 − (k1 + k2 − k1k2)Nd2T2 + k3r2 Nd2T2 (1a)

V̇2 = r2 Nd2T2 − dV2 + k1(1 − k2)Nd2T2 − k3r2 Nd2T2 (1b)

V̇3 = r3 Nd2T2 − dV3 + k2(1 − k1)Nd2T2 + k3r4 Nd2T2 (1c)

V̇4 = r4 Nd2T2 − dV4 + k1k2 Nd2T2 − k3r4 Nd2T2 (1d)

Ṫ1 = s1 + rT1 − r1T1(V1 + r2V2 + r3V3 + r4V4) − d1T1 (1e)

Ṫ2 = r1T1(V1 + r2V2 + r3V3 + r4V4) − d2T2 − (k + u)kmaxT2T3 (1f)

Ṫ3 = s2 + c1(k + u)T3(V1 + c2V2 + c3V3 + c4V4) − d3T3 (1g)

where

k1 = (k + u)n

k2 = a(k + u)n

k3 = 1 − (k + u)n

N = N0

1 + r2 + r3 + r4

In the above equations, u is the control term for the adaptive immunity, which can
be achieved by adaptive immunotherapy, such as injecting highly loaded cognate
peptide-pulsed DCs into lymph nodes.

The normalized parameter k ∈ [0, 1] is a quantification of the selection pressure,
which is a representation of the strength of cell-mediated immunity and related to the
CTLs’ capability to recognize specific epitopes. Specifically, k = 1 corresponds to
the maximum pressure, while k = 0 represents that epitopes will not be recognized
by the CTLs at all. Only those CD8+ T cells that bind to the peptide HLA com-
plex with enough affinity will be primed and become CTLs. Recent studies indicated
that CTL activation would not occur below an antigen dose threshold (Bousso and
Robey 2003; Henrickson et al. 2008). Thus k is proportionally dependent on the affin-
ity of TCR/peptide HLA binding and the dose of HLA class I alleles HLA-B57 and
HLA-B5801.

After infection of the helper T cells, reverse transcription occurs during which the
wild type virus can mutate with a probability of k1 at Gag residue 242 from Thr to Asn,
while TW10 can also mutate with a probability of k2 at residue 248 from Gly to Ala.
Thus, the probability with which wild type epitope TW10 mutate to mutant T242N at
each proliferation cycle is k1(1 − k2), and the probability for mutation from TW10 to
T248A is k2(1 − k1). Both mutation T242N and G248A occur with probability k1k2.
Since the viral escape mutation is driven by selection pressure, the mutation rate should
be dependent on selection pressure, though the relationships may vary in various situ-
ations. We assume that the mutation rate is linearly proportional to selection pressure
(n = 1). The coefficient is normalized to 1 for T242N mutant, and the scale factor for
G248A mutant is defined as a. The value of a can be estimated from experiment data
(Leslie et al. 2004), which is approximately 0.5 based on experimental observations.

123



498 Y. Wu et al.

It is believed that the virus may restore viral fitness to some degree by reversion at
the residue, which has a profound effect on viral fitness (Richman et al. 2003). A care-
fully designed experiment predicts that the mutant T242N undergoes reversion after
transmission to HLA B57/5801-negative recipients, while the other G248A maintains
stability (Leslie et al. 2004). Thus, we hypothesize that the probability of substitution
of Asn by Thr at residue 242 is inversely proportional to the selection pressure. As a
result, the probability can be assumed as k3 = 1 − (k + u)n .

Equation (1a) describes the evolution of wild type virus (TW10). When infected
helper T cell T2 bursts due to intracellular virus growth, the V1 population is increased.
There are on average N = N0/(1+r2+r3+r4) free virion released to the extracellular
environment by each dead T2 cell, so the growth rate is Nd2T2. The probability with
which wild type virus convert to mutants at each proliferation cycle is k1 + k2 − k1k2,
while the mutant T242N will revert to wild type with probability k3 at each cycle.
The natural decay term −dV1 accounts for loss of viral infectivity, viral death, and/or
clearance from the body.

In Eq. (1b), the V2 population increases at a rate of r2 Nd2T2, where r2 is the ratio
of the fitness of V2 to that of V1. Since the mutation at Gag residue 242 is associated
with a significant fitness cost to the virus, we choose r2 = 0.1. The V2 population
also arises due to CTL escape mutation from wild type at a rate k1(1 − k2)Nd2T2 and
decreases due to reverse mutation to wild type at a rate of −k3r2 Nd2T2.

The V3 population increases at r3 times the rate of V1. Since G248A arises at little
or no effect on viral fitness (Forshey et al. 2002; Picado et al. 2006), the parameter
r3that represents the ratio of the fitness of V3 to the fitness of V1 is chosen to be 0.7.
The mutation Gly to Ala at residue 248 occurs with the probability k2(1 − k1) at each
proliferation cycle.

Equation (1d) describes similar growth and decay rate of V4 population as that of
V2 and V3. Since V4 comes from double-point mutations of wild type V1, the conver-
sion probability is k1k2 due to positive selection. In the absence of selection pressure,
T242N will revert while G248A is stable. Thus, a rate term k3r4 Nd2T2 is subtracted
from V4 population and added to V3.

Equation (1e) models the population dynamics of uninfected helper T cells. Unin-
fected helper T cells T1 can arise from precursors at a constant rate s1, and also grow
from proliferation at a rate rT1. The term r1T1(V1 + r2V2 + r3V3 + r4V4) models
the rate at which free virus infects a helper T cell. Here r1 is the infectivity of wild
type virus V1, describes the ability of wild type virus to enter, survive and multiply in
C D4+ T cells, and r2, r3, and r4 are ratios of the infectivity of the mutants V2, V3, and
V4 to r1, respectively, provided that the strength of infectivity is linearly proportional
to the fitness (Goodenow et al. 2003). Here we assumed that after entry into host T
cells, wild type virus and mutants have the same proliferation rates, so the virus fitness
is linearly proportional to the entry efficiency. Wild type virus V1 infects T1 cells with
a rate constant r1 and causes them to become productively infected cells T2, thus the
mass action type of term r1T1V1 is subtracted from Eq. (1e) and added to Eq. (1f).
Similarly, mutants Vi (i = 2, 3, 4) infect T1 cells with rate constants r1ri (i = 2, 3, 4).
The last term −d1T1 is the death rate.

In Eq. (1f), infected helper T cell T2 increases when members of the T1 population
infected by virus. The T2 population allows virus to grow (uninhibited) inside them.
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But after exceeding their carrying capacity for the virus, they burst and release their
intracellular virus into the extracellular environment (Perelson and De Boer 1993; Day
et al. 2009). In addition, an infected helper T cell may die via apoptosis or necrosis
(Plymale et al. 1999), then a small percentage of intracellular virus are released. We
integrated these considerations into a single decay rate −d2T2 and assume that there
are on average N0 free virus released to the extracellular environment by each dead
T2 cell. Infected helper T cells are also killed by epitope-specific CTLs T3. Since the
strength of cell-mediated immunity represents the selection pressure, we formulated
it as a mass action type of term (k + u)kmaxT2T3, where k ∈ [0, 1] is the normalized
parameter for selection pressure, and kmax is the maximum cytotoxic killing rate, i.e.
infected cells T2 are killed at a per capita rate of kmaxT3 when k = 1.

In Eq. (1g), epitope-specific CTLs T3 are inducted from precursor at a constant
rate s2.T3 may also be activated into proliferation and differentiation cycle, when
they contact with the cognate peptide and HLA class I on antigen presenting cells
(APC). Though T3 is the group of CTLs directed to all kinds of epitopes, including
wild type V1 and mutants Vi (i = 2, 3, 4), we can express the escape mechanism by
introducing the recognition parameter ci (i = 2, 3, 4). c1 is the rate at which a T3 cell
will proliferate due to recognition of a wild type TW10 epitope, and ci (i = 2, 3, 4)

are the ratio of rates due to mutants Vi (i = 2, 3, 4) to c1, respectively. Since the
selection pressure k is proportional to the affinity of TCR/peptide HLA binding and
the dose of HLA-B57 and HLA-B5801, which are determinants for CTL priming,
the proliferation rate should also proportional to k. Thus, we can define the rate term
c1(k + u)T3(V1 + c2V2 + c3V3 + c4V4). The decay rate −d3T3 is added to account
for the limited life-span.

3 Formulation as an optimal control problem

Let x = [V1 V2 V3 V4 T1 T2 T3]T, then system (1) can be converted as a nonlinear
control problem

ẋ = f (x, k, u) (2)

where x is the state vector, and each component indicates the population of species; u is
the control variable, which is used to adjust the selection pressure. So a positive control
will increase the selection pressure, while a negative one will make a down-regulation.

The major goal of HIV therapy is to suppress the virus growth and keep the virus
under control for as long as possible. Long-term viral load is the major measure-
ment criterion for the evaluation of effect of the therapy. Thus, we consider an object
function as the total virus load

J (k, u) =
4∑

i=1

xi (k, u) (3)

where xi (i = 1, . . . , 4) are the concentration of wild type HIV and the various mutants.
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Based on the above discussion, the problem can be turned into as an optimal control
problem. For a given initial selection pressure k ∈ �,� = {n ∈ R|0 ≤ n ≤ 1}, we
will find an optimal control uopt that minimize the object function in the steady state.

Jopt(k) ≡ min
u∈�

J (k, u), � = {
n ∈ R|0 ≤ n + k ≤ 1

}
(4)

subject to

f (x, k, u) = 0 (5)

To obtain an optimal solution, we put the formulation into the framework of evolu-
tionary game theory, which will facilitate the calculation to find the optimal control.

4 Evolutionary game theoretical analysis

Under the framework of evolutionary game theory, system (2) can be expressed as

ẋ = G(x, k, u)x (6)

where G(x, k, u) = diag(Gi (x, k, u)), i = 1, . . . , 7, is the G function that is usually
defined as the per capita growth rate, describing the capability of a species to survive.
A species can be dominant if and only if it can maximize the G function of itself and
minimize that of the other species. Here u is treated as a control strategy. To minimize
the steady virus load, the optimal strategy must be chosen to be a neighborhood invader
strategy (NIS), which is a strategy that can invade any population with a nearby strat-
egy value, and results in a minimum principle (Apaloo et al. 2009). Thus, the solution
of the optimal control problem is now equivalent to finding the NIS.

NIS minimum principle A strategy u∗ ∈ � is said to be a neighborhood invader
strategy for the equilibrium x∗

i if, when the species maintains at steady state xi = x∗
i ,

for any perturbation to the strategy δu �= 0 in a close neighborhood of u∗, N (u∗),

Gi (k, u∗ + δu, x∗
i , x j ) > 0 (7)

In other words, u∗ is an NIS for x∗
i if and only if u∗ is the unique solution to the

minimization problem

min
δu∈N (u∗)

Gi (k, u∗ + δu, x∗
i , x j )|i �= j = Gi (k, u∗, x∗

i , x∗
j )|i �= j = 0 (8)

where x∗
j ( j �= i) are steady states of the other species with strategy u = u∗.

As a key concept in the evolutionary game theory, the NIS landscape is a plot of
the per capita growth rate, Gi (k, u, x), as a function of a focal individual’s strategy. A
strategy is a NIS if individuals with this strategy are always better than others with-
out using this strategy, and thus can invade (Traulsen et al. 2006). Thus, to minimize
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the HIV-1 population, all other species must adopt the same NIS as the HIV-1 does,
otherwise the HIV-1 will invade. The conditions for a strategy u to possess the ability
of invasion and satisfy the NIS minimum principle include (Apaloo et al. 2009)

G(k, u, x∗)|u=u∗ = 0 (9)

x∗ > 0 (10)

Re(λi ) < 0 (11)
dGi (k, u, x∗)

du

∣∣∣∣
u=u∗

= 0 (12)

d2Gi (k, u, x∗
i , x j )

du2

∣∣∣∣∣
u=u∗

> 0 (13)

where λi are the eigenvalues of the Jacobian matrix evaluated at the steady state
x = x∗, u = u∗. Conditions (9)–(11) ensure that x∗ is an ecologically stable equilib-
rium (ESE) point with respect to the population dynamics, which may be determined
in terms of k∗ from Eq. (9). Equations (12) and (13) represent the first-order and
second-order conditions for Gi to take on a minimum with respect to u at u = u∗,
respectively. Equation (12) can be used to solve for u∗ as a function of x∗.

The strategy dynamics for minimizing G function can be described by the following
differential equation

u̇ = −σ
dGi (k, u, x∗)

du
(14)

where σ > 0 is the evolutionary ‘speed’ parameter related to the velocity of strat-
egy dynamics, and is influenced by the specific therapy. As the strategy varies with
time, the NIS landscape keeps on changing. The strategy dynamics (14) will allow the
G function to “down valleys” of lower fitness. The evolution of strategy will not stop
until reaching the bottom of the valley, where conditions (12) and (13) are satisfied.
Thus, the equilibrium of (14) is the solution to optimization problem (8).

By using evolutionary game theory, the solution of optimization problem (4) can
be obtained from problem (8) and the object function (3) is replaced by G function.
To minimize the object function (3), the corresponding G function for the total HIV
virus is

Gvirus(k, u, x) = ẋ1 + ẋ2 + ẋ3 + ẋ4

x1 + x2 + x3 + x4
= d2x6 N (1 + r2 + r3 + r4)

x1 + x2 + x3 + x4
− d (15)

Thus, Gvirus is abundance dependent. It is clear from (15) that for a given abundance of
virus, Gvirus is proportional to the density of infected helper T cells x6, which suggests
that the fitness of HIV is determined by x6. This is reasonable since all HIV viruses
arise from infected helper T cells. Once the infected helper T cells are minimized, the
viruses are most effectively controlled. Thus, we consider the object function as the
G function of x6
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G6(k, u, x) = r1x5(x1 + r2x2 + r3x3 + r4x4)

x6
− d2 − (k + u)kmaxx7 (16)

In the evolutionary context, the strategy dynamics will be solved to maximize the G
function and achieve the NIS, which is based on the theory of Darwinian dynamics.
Here the strategy is chosen to be the control u to selection pressure. The control could
be applied by DCs based therapy, i.e., injection of DCs pulsed with HLA-restricted
epitope into lymph nodes, and thus will vary the selection pressure by changing the
overall avidity of the interactions between epitope-specific T cells and cognate anti-
gen-bearing DCs (Bousso and Robey 2003; Henrickson et al. 2008).

The NIS landscape for a given initial selection pressure k can be obtained by the
following two steps:

1. Calculate the steady state x∗ at u by using condition (9), and the G function Gi

at u;
2. Calculate the G function Gi with fixed x∗

i and perturbation of strategy by δu.

Once we have NIS landscape, we can integrate the strategy dynamics Eq. (14) numeri-
cally. The strategy is evolved from initial value u0 = 0; The derivatives in Eq. (14) can
be obtained from the slope of the NIS landscape at u = u0. Then u will be updated to
ut following (14). The NIS landscape keeps on changing with updated ut . The dynam-
ics trends to steady state while the slope of NIS landscape at u = ut approaches zero,
where condition (12) is satisfied. The strategy will then evolve to u∗, the solution of
the optimization problem (8).

5 Results

As reported in Wu et al. (2010), the virus load is not simply reversely related to the
selection pressure. There is an optimal value under which we can suppress the virus to
a lowest level by adaptive CTL immune response. By using evolutionary game theory,
we can get a clear picture to optimize the selection pressure.

5.1 Stability analysis

To ensure that x∗ is an ESE point with respect to the population dynamics, conditions
(9)–(11) must be satisfied. Following Eqs. (9) and (10), the ecological equilibrium can
be determined. Then we evaluate the Jacobian matrix J at the ecological equilibrium.
The seven eigenvalues of J can be determined by solving the characteristic equation
det(J − λI) = 0. The ecological equilibrium is an ESE if and only if all the seven
eigenvalues have negative real parts. By using this criterion, the parameter region for
ESE can be determined numerically. The parameters used in simulation are chosen
from the stable region. The definitions and values are given in Table 1.

Following the procedures outlined in Sect. 4, we can depict the NIS landscape for
initial selection pressure k, and further to calculate the optimal control u∗ by evolution
of the strategy dynamics. The results are shown below.
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Table 1 Variables and parameters

Symbol Interpretation Initial and default values Comments

V1 Free wild-type epitope
TW10 in the
extracellular
environment

100 mm−3 Estimated (Ho et al. 1995)

V2 T242N 0 There were initially no
mutants

V3 G248A 0 There were initially no
mutants

V4 T242N & G248A 0 There were initially no
mutants

T1 Uninfected helper T cells
in plasma

100 mm−3 Estimated (Ho et al. 1995)

T2 Infected helper T cells in
plasma

0 There were initially no
infected T cells

T3 TW-10 specific CTLs in
plasma

1 mm−3 We set the initial time of
our simulation at which
the TW10-specific
CTLs are just activated
by APC and migrate out
from the lymph nodes,
and then begin to hunt
for the antigen-positive
somatic cells

s1 Rate of supply of helper T
cells from precursors

20 day−1 mm−3 (Perelson and De Boer
1993; Perelson and
Nelson 1999)

s2 Rate of supply of CTLs
from precursors

1 day−1 mm−3 (Janeway et al. 2008)

r Rate of proliferation for
the helper T cell
stimulated by normal
environmental antigens

0.03 day−1 (Perelson and De Boer
1993)

r1 Rate for helper T cells
becoming infected by
wild-type TW10

0.005 mm3 day−1 (variable) Estimated (Perelson and
De Boer 1993)

r2 Ratio of the rate for
helper T cells becoming
infected by T242N to r1

0.1 T242N escape mutation
arises at a cost to viral
replicative capacity
(Leslie et al. 2004)

r3 Ratio of the rate for
helper T cells becoming
infected by G248A to r1

0.7 G248A mutation in B
clade infections occurs
at little or no cost to
viral replicative
capacity (Leslie et al.
2004; Picado et al.
2006)

r4 Ratio of the rate for
helper T cells becoming
infected by
T242N&G248A to r1

0.1 T242N escape mutation
comes at a cost to viral
replicative capacity
(Leslie et al. 2004)
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Table 1 continued

Symbol Interpretation Initial and default values Comments

N0 Virus burst size, average
number of free virus
produced by lysing a helper
T cell

1000 (Merrill 1987; Layne et al.
1989)

d Death rate of virus 2.4 day−1 (Perelson and De Boer 1993)

d1 Death rate of uninfected
helper T cells

0.02 day−1 (Perelson and De Boer 1993)

d2 Death rate of infected helper
T cells

0.24 day−1 (Perelson and De Boer 1993)

d3 Death rate of CTLs 0.03 day−1variable Estimated (Perelson and
De Boer 1993)

c1 Maximum rate of
proliferation for the CTLs
stimulated by TW10

0.0001 mm3 day−1variable Estimated (Luzyanina et al.
2001)

c2 The ratio of proliferation rate
for CTLs stimulated by
TW10 to that stimulated by
T242N mutant

0.01 T242N mutation causes
substantial loss of
recognition (Leslie et al.
2004)

c3 The ratio of proliferation rate
for CTLs stimulated by
TW10 to that stimulated by
G248A mutant

0.2 G248A mutation alone brings
about a partial loss of
recognition of the epitope
(Leslie et al. 2004)

c4 The ratio of proliferation rate
for CTLs stimulated by
TW10 to that stimulated by
T242N&G248A mutant

0.001 The combination of the
T242N and G248A
mutations completely
abrogates recognition at
low peptide concentration
(Leslie et al. 2004)

kmax Maximum rate for TW10 be
killed by CTLs

0.01 mm3 day−1variable Estimated (Wick and Self
2004)

k Coefficient of selection
pressure

0–1 Normalized

u The control to the selection
pressure

k1 The probability of mutation at
T242

kn The probability of mutation is
proportional to the selection
pressure

k2 The probability of mutation at
G248

akn

a The ratio of mutation
probability of residue 248
to that of residue 242

0.5 The mutation probability of
T242 is higher than that of
G248

n 1 In this paper, the mutation
probability is assumed to be
linearly proportional to the
selection pressure

5.2 The NIS landscape

The NIS landscape shows the variation of the G-function with the strategy. While
the strategy dynamics always drive species towards lower points in the landscape, the
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Fig. 1 The NIS landscape for selection pressure k = 0.4. The three circles represent the ESEs, G6(k, u)= 0,
located at u0 = 0, ut = 0.1, and ut = 0.195, respectively. However, only ut = 0.195 satisfies condi-
tion (12) and is NIS. For the rest two ESEs, any positive perturbation of the strategy δu will result in
G6(k, ut + δu) < 0, thus will decrease the x6 steady population. Using strategy dynamics, the ESEs roll
down along the slope, while the valleys keep on shifting over time. The motion will not stop until the ESE
reaches the bottom of the valley, and stay there as NIS. Any perturbation to NIS will result in invading of
virus population

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

 G
6

(k
,u

)

k=0.8, u0= 0

k=0.8, ut= -0.1

k=0.8, ut= -0.205

Fig. 2 The NIS landscape for selection pressure k = 0.8. The three circles show the ESEs, G6(k, u) = 0,
located at u0 = 0, ut = −0.1, and ut = −0.205, respectively. However, only ut = −0.205 satisfies
condition (12) and is NIS. For the other ESEs, any negative perturbation of the strategy δu will result in
G6(k, ut + δu) < 0, thus will decrease the x6 steady population. So, x6 cannot invade unless the NIS
ut = −0.205 is adopted

landscape will keep on shifting, causing valleys and peaks to appear and disappear in
the landscape until the system reaches an equilibrium. The NIS landscape for initial
selection pressure k = 0.4 and 0.8 are plotted in Figs. 1 and 2, respectively. The val-
leys are steep at first, and then the slope decrease as the strategy u evolves over time.
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Fig. 3 The evolution of optimal strategy dynamics and concomitant virus dynamics with selection pressure
k = 0. The strategy dynamics is very fast with parameter σ = 0.1, and relatively slow with σ = 0.01.
It approaches the optimal value uopt = 0.595 in just 2 days with σ = 0.1. For σ = 0.01, strategy evolves to
NIS in three successive stages: slow increasing during the first 6 days are followed by a second phase of fast
approaching, which makes a transition into a third phase of slow progressing in the neighborhood of NIS.
The effects of therapy are compared in b. The total HIV-1 load can be effectively compressed to less than
1559, while the steady load will exceed 8000 without therapy, suggesting a significant effect. d shows that
the wild-type TW10 virus is sensitive to selection pressure. A high dose and fast therapy will significantly
decrease the wild-type virus load and stimulate the CTL escape mutation

The ESEs, marked as circles in the figures, are rolling down from mountainside to the
bottom of the valley. The ESE will be a NIS equilibrium (x∗, u∗) once it arrives at the
bottom of the valley, where the slope of the curve equals zero. Thus, any perturbation
to the NIS strategy will lead to an increase in viral fitness.

5.3 Dynamics for the optimal strategy

The strategy dynamics (14) are designed to drive arbitrary initial strategy towards the
NIS. The derivative in (14) can be obtained from the slope at corresponding ESE in the
NIS landscape. Thus, the evolutionary ‘speed’ is proportional to the gradient at ESE,
and will slow down in the neighborhood of NIS. Figures 3, 4, 5 and 6 demonstrate the
evolution of optimal strategy dynamics and concomitant virus dynamics with different
strength of selection pressure.

123



Evolutionary game theoretic strategy 507

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (day)

S
tr

at
eg

y 
 u

σ = 0.1

σ = 0.01

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (day)

C
on

ce
nt

ra
tio

n 
of

 H
IV

-1

σ = 0.1
σ = 0.01
no therapy

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

Time (day)

C
on

ce
nt

ra
tio

n 
of

 w
ild

 ty
pe

 T
W

10

σ = 0.1

σ = 0.01

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Time (day)

C
on

ce
nt

ra
tio

n 
of

 m
ut

an
t T

24
2N σ = 0.1

σ = 0.01

a b

c d

Fig. 4 The evolution of optimal strategy dynamics and concomitant virus dynamics with selection pressure
k = 0.3. The strategy dynamics is very fast with parameter σ = 0.1, and relatively slow with σ = 0.01.
It approaches the optimal value uopt = 0.295 in just 2 days with σ = 0.1. Strategy evolves to NIS very fast
in the initial phase and then slows down as the NIS is approached from below. The total HIV-1 load can be
effectively compressed to less than 1559

The optimal strategy is local-state-dependent, that is, the strategy is calculated
locally at parameter profile and equilibrium x∗. Although we calibrate the model with
literature data, the model parameters can easily be changed to patient-specific clinical
parameters as needed. To demonstrate the influence of inter-patient heterogeneity to
optimal strategy, we studied how the optimal strategy dynamics changes when the
parameter profiles are changed. The strategy dynamics (14) is substituted by specific
parameter settings

u̇ = −σ
dGi (k, u, x∗, r ′

i , c′
i )

du
(17)

where r ′
i and c′

i are the current parameter settings.
Figure 7a–h shows the evolution of optimal strategy dynamics with different param-

eter profiles. There is a concomitant shift of optimal strategy as parameter profiles
change. Obviously the impact of individual parameter to optimal strategy is hetero-
geneous. To better capture the strategy dynamics, one should pay special attention to
those parameters with most significant impact factors.
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Fig. 5 The evolution of optimal strategy dynamics and concomitant virus dynamics with selection pressure
k = 0.8. The strategy dynamics is very fast with parameter σ = 0.1, and relatively slow with σ = 0.01.
It approaches the optimal value uopt = −0.205 in just 2 days with σ = 0.1. The rate of evolution slows
down as the strategy approaching the NIS. Then effect of therapy is not very significant because the initial
selection pressure k = 0.8 supply a good condition for adaptive CTL immune response

The current model demonstrates the heterogeneous dynamics of reversible and
conservative mutants while selection pressure changes over time. By employing the
evolutionary game theory, the strategy dynamics for selection pressure can be deter-
mined. Thus, the selection pressure can be optimized for long-term HIV control. We
anticipate that in conjunction with experimental observations, these results could be
useful in DCs based immunotherapy for HIV treatment.

6 Discussions and conclusions

The escape mutation under selection pressure can protect HIV-1 against being detected
by CTL adaptive immune response. The behaviors of mutants show diverse relation-
ship with the selection pressure. Recent studies indicated that there were two distinct
mutants, one is reversible, and the other is conservative. Although both mutants arise
from the wild type HIV-1 pushed by strong selection pressure, they show different
characteristics in the absence of selection pressure. The reversible mutant reverts to
wild type, while the conservative one maintains. Since the adaptive immune response
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Fig. 6 The evolution of optimal strategy dynamics and concomitant virus dynamics with selection pressure
k = 1. The strategy dynamics is very fast with parameter σ = 0.1 and relatively slow with σ = 0.01. It
approaches the optimal value uopt = −0.405 in just 2 days with σ = 0.1. The total HIV-1 load can be
effectively compressed to less than 1559

exerts a major influence on selection pressure, an optimized adaptive CTLs immune
response can facilitate HIV control.

This paper has proposed a mathematical model to describe the dynamics of wild
type HIV-1 and mutants under adaptive CTLs immune response. The model suggests
that an intermediate strength of the CTLs response can minimize overall virus load.
To quantify the adaptive CTLs immune response that most effectively suppresses the
virus, we further converted the model into an optimal control problem by introducing
a control term to selection pressure. To solve for the optimal control, and to find the
evolutionary strategy to achieve the optimal value, we have formulated the control
problem in the framework of evolutionary game theory. Thus, the object function is
equivalent to the G function, the optimal control corresponds to the NIS and the evolu-
tionary strategy could be the strategy dynamics. By using the NIS minimum principle,
we can obtain the NIS landscape, and then solve for the strategy dynamics. So we
can maximize the effectiveness of adaptive CTLs immune response by controlling the
selection pressure following the strategy dynamics.

The CTLs immune response can be regulated by employing DCs based adaptive
immunotherapy. Since antigen specific CTLs are mostly primed by cognate antigen
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Fig. 7 The variation of optimal strategy dynamics with varying parameter profiles. Parameters c2 and c3
show significant influences on optimal strategy, while the impact of parameters c4 and r4 are trivial
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loaded DCs in lymph nodes (Stoll et al. 2002; Bousso and Robey 2003; Mempel et al.
2004; Skokos 2007; Henrickson et al. 2008), DC-based immune therapy, injection
of inactivated peptide/antigen-pulsed DC vaccines, could be a promising strategy for
regulating cell-mediated immunity. The use of DCs as adjuvant cells has been tested
experimentally and clinically (Lu et al. 2004; Pedersen and Ronchese 2007; Routy
and Nicolette 2010). We previously demonstrated that CTL immune response could
be regulated by modulating the overall avidity of the interactions between antigen-
specific CTLs and cognate antigen-bearing DCs, and could be achieved by adjustment
of the dose of vaccine, or the density of complexes of cognate pMHC per DC (Wu
et al. 2010).

The proposed mathematical model, as well as the evolutionary game theory applied,
provides a tool to understand the evolutionary dynamics of CTL escape mutants and
an effective way to determine the optimal antigen-specific CTL immune strength. This
model, once trained with clinical data and accomplished with parameter fitting, will
facilitate DC based therapy design and enable individualized treatment.
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