
J. Math. Biol. (2012) 64:69–85
DOI 10.1007/s00285-011-0405-9 Mathematical Biology

Budgeted Nature Reserve Selection with diversity
feature loss and arbitrary split systems

Magnus Bordewich · Charles Semple

Received: 4 August 2010 / Revised: 17 January 2011 / Published online: 8 February 2011
© Springer-Verlag 2011

Abstract Arising in the context of biodiversity conservation, the Budgeted Nature
Reserve Selection (BNRS) problem is to select, subject to budgetary constraints, a set
of regions to conserve so that the phylogenetic diversity (PD) of the set of species con-
tained within those regions is maximized. Here PD is measured across either a single
rooted tree or a single unrooted tree. Nevertheless, in both settings, this problem is
NP-hard. However, it was recently shown that, for each setting, there is a polynomial-
time (1 − 1

e )-approximation algorithm for it and that this algorithm is tight. In the
first part of the paper, we consider two extensions of BNRS. In the rooted setting we
additionally allow for the disappearance of features, for varying survival probabili-
ties across species, and for PD to be measured across multiple trees. In the unrooted
setting, we extend to arbitrary split systems. We show that, despite these additional
allowances, there remains a polynomial-time (1 − 1

e )-approximation algorithm for
each extension. In the second part of the paper, we resolve a complexity problem on
computing PD across an arbitrary split system left open by Spillner et al.
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1 Introduction

In conservation biology, measures such as phylogenetic diversity (PD) are used to
quantify the biological diversity of a collection of species. These measures are used
to select which species should be conserved and, in this regard, individual species are
often the focus of attention. However, as pointed out by Rodrigues et al. (2005), this
is not necessarily the best way to conserve diversity:

Although conservation action is frequently targeted toward single species, the
most effective way of preserving overall species diversity is by conserving viable
populations in their natural habitats, often by designating networks of protected
areas.

Motivated by this quote and applications of using PD across areas to make assess-
ments in conservation planning (Moritz and Faith 1998; Rodrigues and Gaston 2002;
Smith et al. 2000), Bordewich and Semple (2008) considered a natural computational
problem in the context of conserving whole habitats instead of individual species. In
this paper, we consider two extensions of this problem.

Dating back to Faith (1992), PD has emerged as a leading measure in quantifying
the biodiversity of a collection of species. This measure is based on the evolutionary
distance among the species in the collection. A formal definition of PD is given in the
next section but, for the purposes of the introduction, let T be either a rooted or unroot-
ed phylogenetic tree whose leaf set X represents a set of species and whose edges have
real-valued lengths (weights). The PD score of a subset Y of X is the sum of the weights
of the edges of the minimal subtree of T connecting the species in Y . If T is rooted, the
minimal subtree additionally includes the root. In its most straightforward application
to conservation, the task is to find a subset of X of a given size k which maximizes
the PD score among all subsets of X of size k. It is now well-known that a greedy
algorithm solves this task exactly (Faith 1992; Pardi and Goldman 2005; Steel 2005).

The problem considered in Bordewich and Semple (2008) is the following: in addi-
tion to T , we have a collection R of regions or areas containing species in X . Each
region in R has an associated cost of preservation. Given a fixed budget B, the task
is to find a subset of regions in R to be preserved which maximizes the PD score
of the species contained within at least one preserved region while keeping within
budget. This problem is called the Budgeted Nature Reserve Selection (BNRS) and
generalizes the analogous unit cost problems described in Moulton et al. (2007); Pardi
and Goldman (2007); Rodrigues and Gaston (2002), and Rodrigues et al. (2005). The
applications to conservation planning mentioned above are BNRS with unit costs.

Regardless of the setting (whether T is rooted or unrooted), it follows from a
result in Moulton et al. (2007) that BNRS is NP-hard. Nevertheless, it is shown in
Bordewich and Semple (2008) that, for each setting, there is a polynomial-time (1− 1

e )-
approximation algorithm for it and that this algorithm is tight. In this paper, we con-
sider, for each setting, an extension of BNRS. Formal details are given in the next
section, but the extensions include the following:
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(i) It is unrealistic to expect that because a species is not contained in at least one
of the selected regions for preservation, its probability of survival is zero, or
that its probability of survival is one if it is contained in one of the selected
regions. The extension in the rooted setting additionally allows for arbitrary
survival probabilities with the probability of survival of a species increasing if
it is contained in a region selected for preservation. This particular extension of
BNRS has been previously described as the Nature Reserve Problem by Pardi
and Goldman (2007).

(ii) In many instances, evolutionary relationships cannot be accurately represented
by a single tree. In the rooted setting, the relationships may be better represented
by a collection of gene-trees (each representing the tree-like evolution of a gene
or group of genes) rather than a single species tree. In the unrooted setting,
relationships may be better represented by an arbitrary network rather than a
tree. We extend BNRS by replacing T with a collection of weighted trees in the
rooted setting and with a so-called split network in the unrooted setting.

(iii) The standard usage of PD assumes that elements of biodiversity, ‘features’, arise
uniformly across a phylogeny and persist to be present in all descendant species.
A recent extension (Bordewich et al. 2008) proposes a model in which PD may
be measured which includes the gradual disappearance of features over time, so
that the features of an ancestral species may not all survive to be present in all
descendants of that species. This model only makes sense in the rooted setting,
and we extend BNRS to cover this model in this setting.

Despite the additional freedom which comes with such inclusions, there remains (for
each extension) a polynomial-time (1 − 1

e )-approximation algorithm for solving it.
That is, a polynomial-time algorithm that returns a feasible solution whose associated
score is at least (1− 1

e ) (approx. 0.63) times the optimal score. The next section for-
mally describes the two extensions and the main results of the paper—including the
solution of a related problem left open by Spillner et al. (2008).

2 Main results

Throughout the paper, X denotes a finite set and represents, for example, a collection
of species. A phylogenetic X -tree T is an unrooted tree with no degree-two vertices
and whose leaf set is X . A rooted phylogenetic X -tree is a rooted tree with no degree-
two vertices except the root that may have degree two and whose leaf set is X . For
the purposes of this paper, we will assume that all the edges of a rooted and unrooted
phylogenetic tree are assigned non-negative real-valued lengths. To illustrate, Fig. 1
shows an (unrooted) phylogenetic X -tree, where X = {a, b, c, d, e, f, g}.

Let Y be a subset of X . If T is an (unrooted) phylogenetic X -tree, then the phy-
logenetic diversity of Y on T is the sum of the edge lengths of the minimal subtree
of T that connects the elements in Y . If T is a rooted phylogenetic X -tree, then the
phylogenetic diversity of Y on T is the sum of the edge lengths of the minimal subtree
of T that connects the elements in Y and the root of T . For example, referring to
Fig. 1, if Y = {a, b, f }, then P D(Y ) is equal to the sum of the weights of the minimal
subtree (dashed edges) that connects a, b, and f ; in particular, P D(Y ) = 12.
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Fig. 1 A phylogenetic X -tree
with edge lengths, where
X = {a, b, c, d, e, f, g}

Now let T be a rooted or unrooted phylogenetic X -tree and let R be a collection
of regions or areas containing species in X . Each R ∈ R is a subset of X and has
an associated cost c(R) of preservation. Overriding these costs is a fixed budget B,
where we may assume, without loss of generality, that c(R) ≤ B for all R ∈ R. The
BNRS problem is to find a subset R′ of the regions in R which maximizes the PD
score of ∪R∈R′R on T such that

∑
R∈R′ c(R) ≤ B. To illustrate, take T to be the

phylogenetic X -tree shown in Fig. 1 and R to be

{{b}, {c, f }, {c, d}, {a, b}, {a, g}, {e}, {e, g}}.

Set c as the cost function on R defined by c({b}) = 4, c({c, f }) = 8, c({c, d}) =
6, c({a, b}) = 10, c({a, g}) = 4, c({e}) = 4, and c({e, g}) = 5, and set B = 24.
A feasible solution of this instance is {{c, d}, {a, b}} as c({c, d})+c({a, b}) = 6+10 =
16. The PD score of {{c, d}, {a, b}} is P D({c, d}∪ {a, b}) = 15. However, an optimal
solution is

{{b}, {c, f }, {c, d}, {e, g}},

where

c({b})+ c({c, f })+ c({c, d})+ c({e, g}) = 4+ 8+ 6+ 5 = 23

and

P D ({b} ∪ {c, f } ∪ {c, d} ∪ {e, g}) = 21.

For both the rooted and unrooted settings, it is established in Bordewich and Semple
(2008) that there is a polynomial-time (1 − 1

e )-approximation algorithm for BNRS
but, for any δ > 0, BNRS cannot be approximated with an approximation ratio of
(1− 1

e + δ) unless P=NP.
We next describe the two extensions of BNRS and the associated results.

2.1 Extension of BNRS in the rooted setting

In the rooted setting we incorporate all three extensions described in Sect. 1. The first
is to allow varying probabilities of survival. Each taxa x ∈ X has some probability
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a(x, R) of surviving in reserve R without conservation efforts. This probability is
boosted to b(x, R) ≥ a(x, R) if R is selected for conservation. If x is not present in
R, then a(x, R) = b(x, R) = 0. For a set of selected reserves R′ ⊆ R, we denote
by pR′(x) the probability that x survives in at least one reserve, where survival in
each reserve R is independent and has probability a(x, R) if R �∈ R′ and b(x, R) if
R ∈ R′.

The second extension is measure PD in relation not to a single tree, but to a set
of weighted trees for the same set of species, each arising, for example, from the
analysis of a different gene or section of genome. Thus we extend T to a collection
P = {T1, T2, . . . , Tk} of rooted phylogenetic X -trees, where each T j ∈ P is assigned
a non-negative real-valued weight w(T j ). Then the phylogenetic diversity of X on P
is the weighted sum of the PD measured against each tree.

The third extension is to use a model of biodiversity which allows disappearing
features when calculating PD. Let T be a rooted phylogenetic X -tree. Under PD, one
assumes that features arise during evolution at a constant rate—for two points u and v

on T with u an ancestor of v, the distance from u to v is proportional to the number of
new features that arose along the evolutionary path from u to v. Rescaling we assume
that for every unit of distance a new feature arises. Furthermore, any feature arising at
a point u on T is present at all points descendant from u.

We extend this model so that, in addition to features arising in this way, features
have a constant probability of disappearing on every evolutionary path in T on which
they are present. Mathematically, once a feature is present, it has a constant and
memoryless probability e−λ of surviving in each time step. The disappearance of fea-
tures in the context of PD is considered in Bordewich et al. (2008) and Faith (1994).

For each x ∈ X , let the probability of survival be denoted by p(x). Under this
extended model, the phylogenetic diversity of X on T , denoted P D(λ,T )(X, p), is the
expected number of features present amongst the surviving taxa. That is,

P D(λ,T )(X, p) =
∫

t∈T
P(t → X) dt,

where (t → X) denotes the event that a feature arising at point t on T survives to be
present in a taxa in X which itself survives. For a collection P = {T1, T2, . . . , Tk} of
rooted phylogenetic X -trees, where each T j ∈ P is assigned a non-negative real-val-
ued weight w(T j ), the phylogenetic diversity of X on P , denoted P D(λ,P)(X, p), is

P D(λ,P)(X, p) =
k∑

j=1

w(T j )

∫

t∈T j

P(t → X)dt .

Thus the full extension of BNRS in the rooted setting, called BNRS(λ,P), is the
following:

Problem Budgeted Nature Reserve Selection (BNRS(λ,P))
Instance A collection P of weighted rooted phylogenetic X -trees, a collection R of
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subsets of X , a cost function c on the sets in R, a budget B and, for all (x, R) ∈ X×R,
probabilities a(x, R) and b(x, R), where b(x, R) ≥ a(x, R).
Question Find a subset R′ of R which maximizes P D(λ,P)(X, pR′) such that∑

R∈R′ c(R) ≤ B.

The problem BNRS(λ,P) extends the rooted setting of BNRS. In particular, by set-
ting λ = 0, and a(x, R) = 0 or b(x, R) = 1 for each reserve R in R, and considering
a single rooted phylogenetic tree whose weight is 1. Thus, it follows by Bordewich
and Semple (2008) that there is no δ > 0 such that BNRS(λ,P) can be approximated
with an approximation ratio of (1− 1

e +δ) unless P=NP. However, we show in Sect. 4
that there is a polynomial-time (1− 1

e )-approximation algorithm for BNRS(λ,P).

2.2 Extension of BNRS in the unrooted setting

We begin with some preliminary definitions. A bipartition {A, B} of X , where |A|,
|B| ≥ 1, is a split of X . For simplicity, we write such a bipartition {A, B} as A|B.
A split system � of X is a collection of splits of X . In addition, � is weighted if there
is a map w : �→ R

≥0.
Let � be a weighted split system of X , and let Z be a subset of X . The phylogenetic

diversity of Z on �, denoted P D�(Z), is

P D�(Z) =
∑

A|B∈�;A∩Z ,B∩Z �=∅
w(A|B).

This definition of PD on a split system generalizes the definition of PD on an
(unrooted) phylogenetic tree as follows. Let T be a phylogenetic X -tree. Each edge e
of T induces a unique split A|B of X , where A consists precisely of the subset of X
in which, for all a, a′ ∈ A, the unique path in T from a to a′ avoids traversing e. For
example, in Fig. 1, {a, b, g}|{c, d, e, f } is the split induced by the edge whose length
is 5. An arbitrary collection � of X -splits is compatible if there exists a phylogenetic
X -tree whose collection of X -splits arising in this way equates to �. Let Y be a subset
of X . Assigning, for each edge e of T , the weight of e with the X -split induced by e,
it is easily checked that the PD of Y on the resulting collection of weighted X -splits
induced by the edges of T is equivalent to the PD of Y on T . Furthermore, there
is a canonical one-to-one correspondence between weighted split systems and split
networks analogous to the one-to-one correspondence between weighted compatible
split systems and phylogenetic trees. Under this correspondence, computing PD on a
split network equates to computing PD on the corresponding weighted split system.
For details of split networks and this correspondence, see Bryant and Huson (2006)
and Spillner et al. (2008), respectively.

The extension of BNRS in the unrooted setting, called BNRS� , is the following:

Problem Budgeted Nature Reserve Selection (BNRS�)
Instance A weighted split system � of X , a collection R of subsets of X , a cost func-
tion c on the sets in R, and a budget B.
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Question Find a subset R′ of R, which maximizes the PD score of
⋃

R∈R′ R on �

such that
∑

R∈R′ c(R) ≤ B.

Clearly, BNRS� extends the unrooted setting of BNRS and so, for any δ > 0,

BNRS� cannot be approximated with an approximation ratio of (1 − 1
e + δ) unless

P=NP. However, we show in Sect. 5 that there is a polynomial-time (1− 1
e )-approx-

imation algorithm for BNRS� . We note here that Minh et al. (2010) have recently
presented an alternative approach to BNRS� . They show how to transform the prob-
lem into a binary linear programming (BLP) problem so that the standard techniques,
and software packages, for solving such problems can be used. This enables them to
obtain reasonable running times for exact solutions in some cases, although the worst
case running times for BLP algorithms are not polynomially bounded (and cannot be
unless P=NP).

It may have been observed by the reader that of the three possible extensions
described in Sect. 1, we have only made the extension to multiple trees or net-
works in the unrooted setting. As noted earlier, the extended model of biodiversity
in which features both appear and disappear during evolution inherently requires a
direction to time, and thus a rooted setting. However we could consider extending the
unrooted setting to include varying probabilities of survival. Since this would gen-
eralise the existing problem, we could not hope to find a better approximation than
(1 − 1

e ) in this case. It remains an open problem to determine if such an approx-
imation is possible. The approach we have taken for the other problems discussed
in this paper, i.e. demonstrating submodularity of the core function, does not go
through.

2.3 Maximising PD on a split system

In the second part of the paper, we resolve a problem left open by Spillner et al. (2008).
In particular, consider the following computational problem:

Problem Maximum PD on � (SplitsPD)
Instance A weighted split system � of X , and a positive integer k.
Question Find a subset Z of X of size k that maximizes P D(Z).

If � is compatible, that is, can be realized by a phylogenetic tree, then the (polyno-
mial-time) greedy algorithms in Pardi and Goldman (2005) and Steel (2005) solve
SplitsPD. Indeed, there are polynomial-time algorithms for SplitsPD if � is a
so-called circular split system or, more generally, an affine split system (Minh et al.
2009; Spillner et al. 2008). However, in general SplitsPD is NP-hard (Spillner et al.
2008). Nevertheless, Spillner et al. (2008) observed that a greedy algorithm provides
a polynomial-time (1 − 1

e )-approximation algorithm for SplitsPD, and that there is
some constant α > 0 such that, in general, SplitsPD cannot be approximated with
an approximation ratio of (1 − α) unless P=NP. In the last section of the paper, we
show that in fact (1− 1

e ) is the best possible.
A brief outline of the paper is as follows. The approximation results for the two

extensions of BNRS in Sects. 4 and 5 rely on establishing that the function being opti-
mized (or one closely-related) is a submodular function. The next section describes
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submodular functions and a particular approximation result for such functions. The
hardness result for SplitsPD is given in Sect. 6, the last section.

3 Submodular functions

For a set I, a function f : 2I → R is submodular if, for all subsets I ′, I ′′ ⊆ I,

f (I ′)+ f (I ′′) ≥ f (I ′ ∪ I ′′)+ f (I ′ ∩ I ′′).

Furthermore, such a function is non-decreasing if f (I ′) ≤ f (I ′′) whenever I ′ ⊆ I ′′.
Now suppose that f is a non-negative, non-decreasing, submodular function on 2I

which is computable in polynomial time. Let c be a function on I into the non-negative
integers, and let B be a non-negative integer. Here, view c as a cost function on I and
B as a budget. For a subset I ′ of I, denote

∑
I∈I ′ c(I ) by c(I ′). The problem we are

interested in is to find a subset I ′ of I which maximizes f such that c(I ′) ≤ B, that is,

max
I ′⊆I

{
f (I ′) : c(I ′) ≤ B

}
(1)

Sviridenko (2004) showed that the following greedy algorithm (and its subroutine)
is a (1− 1/e)-approximation algorithm for (1).

ApproxFunction(I, f, c, B)

Find I ′ in {I ′′ : I ′′ ⊆ I, c(I ′′) ≤ B, |I ′′| ≤ 2} that maximizes f
H1 ← I ′
H2 ← ∅
For all I0 ⊆ I, such that |I0| = 3 and c(I0) ≤ B do

U ← I\I0
I ′ ←Greedy(I0, U )

if f (I ′) > f (H2) then H2 ← I ′
If f (H1) > f (H2), then Return H1, otherwise Return H2

Greedy(I0, U )

I ′ ← I0
Repeat

select I ∈ U that maximizes f (I ′∪I )− f (I ′)
c(I )

if c(I ′)+ c(I ) ≤ B then
I ′ ← I ′ ∪ {I }

U ← U\I
Until U = ∅
Return I ′

4 A (1 − 1/e)-approximation algorithm for BNRS(λ,P)

In this section, we show that there is a polynomial-time (1− 1
e )-approximation algo-

rithm for BNRS(λ,P). We begin with two lemmas showing that P D(λ,P)(X, pR′) is a
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non-negative, non-decreasing, submodular function and that it is computable in poly-
nomial time. Throughout the section, we assume that all rooted phylogenetic trees in
P are binary. (A rooted phylogenetic tree is binary if its root has degree two and all
other internal vertices have degree three.) By allowing edges to have length zero, it is
easily checked that no generality is lost by this assumption.

Lemma 4.1 Let P be a collection of weighted rooted phylogenetic X-trees and let R
be a collection of subsets of X. For all (x, R) ∈ X ×R, let a(x, R) and b(x, R) be
probabilities, where b(x, R) ≥ a(x, R). Then the function P D(λ,P) : 2R → R

≥0 is
computable in time O(|P||X | + |X ||R|).

Proof Recall that

P D(λ,P)(X, p) =
k∑

j=1

w(T j )

∫

t∈T j

P(t → X) dt,

where (t → X) denotes the event that a feature arising at point t on T j survives to
be present in a taxa in X which itself survives. We first consider the time to compute
P D(λ,P) for a single unweighted tree T . That is, the time to compute

P D(λ,T )(X, p) =
∫

t∈T
P(t → X) dt .

The first step to computing P D(λ,T ) is to compute, for each vertex v of T , the
probability pv that a feature which has survived to that point survives from v to be
present in a surviving leaf. This is done by beginning with the leaves and working up
through T towards its root. If v is a leaf, then v ∈ X and so pv = p(v). For each such
v, we can compute p(v) in time polynomial in |R| via a product of |R| extinction
probabilities. Thus computing for all v ∈ X takes total time polynomial in |X ||R|.
Since this computation is independent of T , it can be reused for each of the other trees
in P . If v is not a leaf, then v has children, w and w′ say, connected by edges with
lengths l and l ′, respectively, and

pv = e−λl pw + e−λl ′ pw′ − e−λ(l+l ′) pw pw′ .

With this in hand, we may now compute the contribution of each edge e = {ue, ve} of
T towards P D(λ,P):

∫

t∈e

P(t → X) dt =
le∫

0

pve e−λx dx = pve

λ
(1− e−λle ),
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where ve is the endvertex of the edge e furthest from the root of T and le is the length
of e. Thus

P D(λ,T ) =
∫

t∈T
P(t → X) dt =

∑

e∈T

pve

λ
(1− e−λle ).

Ignoring the computation of p(v) for each v ∈ X , since T has O(|X |) vertices
and edges, the value pv at all vertices v of T and the contribution of all edges of
T towards P D(λ,T ) can be computed in time O(|X |). Thus, up to the computation
of p(v) for each v ∈ X , the contribution of each tree in P towards P D(λ,P) can be
computed in time O(|X |). It now follows that the full weighted-sum P D(λ,P)(X, p)

can be computed in time O(|P||X | + |X ||R|). 
�
Lemma 4.2 Let P be a collection of weighted rooted phylogenetic X-trees and let R
be a collection of subsets of X. For all (x, R) ∈ X ×R, let a(x, R) and b(x, R) be
probabilities, where b(x, R) ≥ a(x, R). Then the function P D(λ,P) : 2R → R

≥0 is
a non-negative, non-decreasing, submodular function.

Proof Since b(x, R) ≥ a(x, R) for all (x, R) ∈ X ×R, it follows that, for any point
t on a rooted phylogenetic X -tree Tj ∈ P , the probability that a feature arising at t
survives to be present in a surviving taxa is non-decreasing in the set R′ ⊆ R. That
is, if we enlarge R′, then the probability of t surviving cannot decrease. Thus, from
the definition, P D(λ,P) is non-decreasing. Since P D(λ,P) is certainly non-negative,
it remains to show that it is submodular, that is, for any two subsets S, T ⊆ R,

P D(λ,P)(X, pS)+P D(λ,P)(X, pT ) ≥ P D(λ,P)(X, pS∪T )+P D(λ,P)(X, pS∩T ).

(2)

To establish (2), it is sufficient to show, by linearity, that, for any point t on an
arbitrary rooted phylogenetic tree T j ∈ P , the probability of survival of a feature
arising at t is submodular. In turn, by linearity, it is sufficient to show that this holds
when t coincides with a vertex of T j . To this end, for a vertex v of T j and a subset
R′ of R, let pR′(v) denote the probability that a feature arising at v survives to be
present in some taxon which itself survives when the reserves in R′ are selected for
conservation. Thus, to establish (2), it suffices to show that

pS(v)+ pT (v)− pS∪T (v)− pS∩T (v) ≥ 0. (3)

We prove (3) by induction on the maximum number of vertices in a path from v to
one of its descendants in X . For the base case, suppose that v is itself a leaf x . Let R1
denote the set of reserves in S but not in T , let R2 denote the reserves in S ∩ T , let
R3 denote the reserves in T but not in S, and let R4 denote the reserves in R but not
in S ∪ T . For all i ∈ {1, 2, 3, 4}, let bi (respectively, ai ) denote the probability that
x survives in some reserve in Ri when the reserves in Ri are (respectively, are not)
selected for conservation. By the independence of the reserves, it follows that
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pS(x) = 1− (1− b1)(1− b2)(1− a3)(1− a4)

pT (x) = 1− (1− a1)(1− b2)(1− b3)(1− a4)

pS∪T (x) = 1− (1− b1)(1− b2)(1− b3)(1− a4)

pS∩T (x) = 1− (1− a1)(1− b2)(1− a3)(1− a4).

Now

pS(x)+ pT (x)− pS∪T (x)− pS∩T (x) = (1− b2)(1− a4)(b3 − a3)(b1 − a1).

Since b3 − a3, b1 − a1 ≥ 0, it follows that

pS(x)+ pT (x)− pS∪T (x)− pS∩T (x) ≥ 0,

thus establishing the base case.
Now assume that (3) holds for vertices w and w′, where w and w′ are the child

vertices of v. Let l and l ′ be the lengths of the edges {v,w} and {v,w′}, respectively.
Then, for a subset R′ of R,

pR′(v) = e−λl pR′(w)+ e−λl ′ pR′(w
′)− e−λ(l+l ′) pR′(w)pR′(w

′).

Therefore

pS(v)+ pT (v)− pS∪T (v)− pS∩T (v)

= e−λl (pS(w)+ pT (w)− pS∪T (w)− pS∩T (w))

+e−λl ′ (pS(w′)+ pT (w′)− pS∪T (w′)− pS∩T (w′)
)

−e−λ(l+l ′) (
pS(w)pS(w′)+ pT (w)pT (w′)− pS∪T (w)pS∪T (w′)

−pS∩T (w)pS∩T (w′)
)

Without loss of generality, we may assume that pS(w) ≥ pT (w). Observing that

pS∪T (w) ≥ pS(w) ≥ pT (w) ≥ pS∩T (w),

set ε, δ ≥ 0 such that pS∪T (w) = pS(w) + ε and pT (w) = pS∩T (w) + δ. By
submodularity at w,

pS(w)+ pT (w)− pS∪T (w)− pS∩T (w) ≥ 0,

and so δ ≥ ε. The rest of the induction proof is broken into two cases: (i) pS(w′) ≥
pT (w′) and (ii) pS(w′) < pT (w′).
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For (i), set ε′, δ′ ≥ 0 such that pS∪T (w′)=pS(w′)+ε′ and pT (w′) = pS∩T (w′)+
δ′. Then

pS(v)+ pT (v)− pS∪T (v)− pS∩T (v)

= e−λl(δ − ε)+ e−λl ′(δ′ − ε′)− e−λ(l+l ′)
(

pS(w)pS(w′)− (pS(w)+ ε)

×(pS(w′)+ ε′)+ (pS∩T (w)+ δ)(pS∩T (w′)+ δ′)− pS∩T (w)pS∩T (w′)
)

= e−λlδ
(

1− e−λl ′ pS∩T (w′)− e−λl ′δ′
)
− e−λlε

(
1− e−λl ′ pS(w′)− e−λl ′ε′

)

+e−λl ′δ′
(

1− e−λl pS∩T (w)
)
− e−λl ′ε′

(
1− e−λl pS(w)

)

= e−λlδ
(

1− e−λl ′ pT (w′)
)
− e−λlε

(
1− e−λl ′ pS∪T (w′)

)

+e−λl ′δ′
(

1− e−λl pS∩T (w)
)
− e−λl ′ε′

(
1− e−λl pS(w)

)
.

Since δ ≥ ε and pT (w′) ≤ pS∪T (w′),

e−λlδ
(

1− e−λl ′ pT (w′)
)
− e−λlε

(
1− e−λl ′ pS∪T (w′)

)
≥ 0. (4)

Furthermore, δ′ ≥ ε′ and pS∩T (w) ≤ pS(w), so

e−λl ′δ′
(

1− e−λl pS∩T (w)
)
− e−λl ′ε′

(
1− e−λl pS(w)

)
≥ 0. (5)

Combining (4) and (5),

pS(v)+ pT (v)− pS∪T (v)− pS∩T (v) ≥ 0,

completing the induction proof for (i).
Consider (ii), where pS(w′) < pT (w′). For this case, set ε′, δ′ ≥ 0 such that

pS∪T (w′) = pT (w′)+ ε′ and pS(w′) = pS∩T (w′)+ δ′. By submodularity at w′,

pS(w′)+ pT (w′)− pS∪T (w′)− pS∩T (w′) ≥ 0,

so δ′ ≥ ε′. Now

pS(v)+ pT (v)− pS∪T (v)− pS∩T (v)

= e−λl(δ − ε)+ e−λl ′(δ′ − ε′)− e−λ(l+l ′)
(

pS(w)(pS∩T (w′)+ δ′)

+(pS∩T (w)+δ)pT (w′)−(pS(w)+ ε)(pT (w′)+ ε′)− pS∩T (w)pS∩T (w′)
)

= e−λlδ
(

1− e−λl ′ pT (w′)
)
− e−λlε

(
1− e−λl ′ pT (w′)− e−λl ′ε′

)

+e−λl ′δ′
(

1− e−λl pS(w)
)
− e−λl ′ε′

(
1− e−λl pS(w)

)
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+e−λ(l+l ′)
(

pS∩T (w)pS∩T (w′)− pS(w)pS∩T (w′)− pS∩T (w)pT (w′)

+pS(w)pT (w′)
)

= e−λlδ
(

1− e−λl ′ pT (w′)
)
− e−λlε

(
1− e−λl ′ pS∪T (w′)

)

+e−λl ′(δ′ − ε′)
(

1− e−λl pS(w)
)

+e−λ(l+l ′)
(
(pS(w)− pS∩T (w)

)(
pT (w′)− pS∩T (w′)

)
.

Since δ ≥ ε and pT (w′) ≤ pS∪T (w′),

e−λlδ
(

1− e−λl ′ pT (w′)
)
− e−λlε

(
1− e−λl ′ pS∪T (w′)

)
≥ 0. (6)

Furthermore, as δ′ ≥ ε′,

e−λl ′(δ′ − ε′)
(

1− e−λl pS(w)
)
≥ 0 (7)

and, as pS(w) ≥ pS∩T (w) and pT (w′) ≥ pS∩T (w′),

e−λ(l+l ′)
(
(pS(w)− pS∩T (w)

) (
pT (w′)− pS∩T (w′)

) ≥ 0. (8)

Combining (6), (7), and (8), we get that

pS(v)+ pT (v)− pS∪T (v)− pS∩T (v) ≥ 0,

completing the induction proof of (ii). Hence P D(λ,P) is submodular, thereby com-
pleting the proof of the lemma. 
�

Consider BNRS(λ,P). Let ApproxBNRS(λ,P) denote the algorithm obtained from
ApproxFunction (see Sect. 3) by replacing I, f, c, and B with R, P D(λ,P), c, and B,
respectively. The first part of the next theorem immediately follows from Lemmas 4.1
and 4.2, and Sviridenko (2004) (see Sect. 3), while the second part follows from the
fact that BNRS is a special case of BNRS(λ,P).

Theorem 4.3 ApproxBNRS(λ,P) is a polynomial-time (1− 1
e )-approximation algo-

rithm for BNRS(λ,P). Moreover, for any δ > 0, BNRS(λ,P) cannot be approximated
with an approximation ratio of (1− 1

e + δ) unless P=NP.

5 A (1 − 1/e)-approximation algorithm for BNRS�

Bordewich and Semple (2008) showed that there is a polynomial-time (1 − 1/e)-
approximation algorithm for when BNRS is restricted to compatible split systems. In
this section, we extend this result to arbitrary split systems. We begin by showing that
a certain function is submodular.
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Lemma 5.1 Let � be a weighted split system of X, let Y be a distinguished non-empty
subset of X, and let R be a collection of subsets of X. Then the function P D(Y,�) :
2R → R

≥0 defined, for all subsets R′ of R, by the P D� score of Y ∪⋃
R∈R′ R is a

submodular function.

Proof It suffices to show [see, for example, Nemhauser et al. (1978)] that if R′′ ⊆
R′ ⊆ R and Q ∈ R−R′, then

P D(Y,�)(R′ ∪ {Q})− P D(Y,�)(R′) ≤ P D(Y,�)(R′′ ∪ {Q})− P D(Y,�)(R′′).

Let A|B be an element of � such that w(A|B) contributes a non-zero weighting to
P D(Y,�)(R′ ∪ {Q}) − P D(Y,�)(R′). Then either (Y ∪ ⋃

R∈R′ R) ⊆ A or
(Y ∪ ⋃

R∈R′ R) ⊆ B and there is an element q ∈ Q such that q ∈ B or q ∈ A,
respectively. Since Y is non-empty and R′′ ⊆ R′, it follows that w(A|B) contributes
a non-zero weighting to P D(Y,�)(R′′ ∪{Q})−P D(Y,�)(R′′), and so the lemma holds.


�
Consider BNRS� and let Q be a fixed element in R. Let ApproxBNRS(Q,�)

denote the algorithm obtained from ApproxFunction by replacing I, f, c, and B
with R− Q, P D(Q,�), cQ , and B − c(Q), where cQ is the cost function on the sets
in R − Q defined, for all R ∈ R − Q, by cQ(R) = c(R). The next theorem shows
that the following algorithm is a polynomial-time (1 − 1

e )-approximation algorithm
for BNRS� .

ApproxBNRS�(R, P D�, c, B)

H ← ∅
For all Z ∈ R do

R′ ←ApproxBNRS(Z ,�)

if P D�(R′ ∪ {Z}) > P D�(H) then H ← R′ ∪ {Z}
Return H

Theorem 5.2 ApproxBNRS� is a polynomial-time (1− 1
e )-approximation algorithm

for BNRS� . Moreover, for any δ > 0, BNRS� cannot be approximated with an
approximation ratio of (1− 1

e + δ) unless P=NP.

Proof In essence, we run through each possible choice of set Q and approximate
BNRS� assuming Q is in the solution. We must be right for some Q and hence find a
good approximation. Let Q be a fixed element in R. Then, by Lemma 5.1, the func-
tion P D(Q,�) : 2R−Q → R

≥0 defined, for all subsets R′ of R − Q, by the P D�

score of Q ∪⋃
R∈R′ R is a submodular function. Furthermore, P D(Q,�) is certainly

non-negative, non-decreasing, and computable in polynomial time. It now follows by
Sviridenko (2004) that ApproxBNRS(Q,�) is a polynomial-time (1− 1

e )-approxima-
tion algorithm for BNRS� for when the selected set of reserves includes Q.

Let R∗ be an optimal solution to BNRS� and now let Q be an element of R∗.
Then R∗ is an optimal solution to BNRS� for when the selected set of reserves
includes Q. Let R′ be the subset of R − Q returned by ApproxBNRS(Q,�) applied
to R−Q, P D(Q,�), cQ , and B− c(Q). It now follows that the P D� score of Q∪R′
is at least (1− 1

e ) times the P D� score of R∗, and so the theorem holds. 
�
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6 No better approximation for split systems

In this section, we establish the following theorem, thereby resolving the problem left
open by Spillner et al. (2008) at the end of Sect. 2.

Theorem 6.1 For any δ > 0, SplitsPD cannot be approximated with an approxima-
tion ratio of (1− 1

e + δ) unless P = NP.

The proof of Theorem 6.1 is via a reduction from Max- k- Cover.

Problem Maximum k-coverage (Max- k- Cover)
Instance A finite set D, a collection C of subsets of D, and a positive integer k.
Question Find a subset B = {B1, B2, . . . , Bk} of C of size k that maximizes the size
of the set

B1 ∪ B2 ∪ · · · ∪ Bk .

Feige (1998) showed that no polynomial-time approximation algorithm for
Max- k- Cover can have an approximation ratio better than (1− 1

e ) unless P=NP.

Proof of Theorem 6.1 Let (D, C, k) be an instance of Max- k- Cover. We construct
an instance of SplitsPD as follows. Let X = C ∪ {{ρ}}, where ρ is a distinguished
element not in D and, for each d ∈ D, let σd = Ad |(X − Ad), where

Ad = {C ∈ C : d ∈ C}.

Let � be the split system {σd : d ∈ D} ∪ {{ρ}|(X − {ρ})} with weighting w(σd) = 1
for all d ∈ D and w({ρ}|(X − {ρ}) = ω. An appropriate choice for ω will be made
shortly. The triple (X, �, k+1) is our constructed instance of SplitsPD. For simplic-
ity, throughout the proof, we will always assume that the instances of Max- k- Cover
and SplitsPD are (D, C, k) and (X, �, k + 1), respectively.

Let Bk be an optimal solution to Max- k- Cover, and suppose that it covers bk

elements of D. In terms of SplitsPD, consider the PD score of Bk ∪ {{ρ}}. Since {ρ}
is an element of Bk ∪ {{ρ}}, this score is the sum of the size of the cover of Bk and
w({ρ}|(X − {ρ}). That is, the score is bk + ω. We next determine for what values of
ω is Bk ∪ {{ρ}} guaranteed to be an optimal solution for SplitsPD.

Now there is no set Bk+1 ⊆ C of size k+1 which covers more than bk
k+1

k elements
of D. To see this, let Bk+1 be an arbitrary subset of C of size k + 1 that covers bk+1
elements of D. First observe that by considering the marginal contribution of each set
in Bk+1, there is a set in Bk+1 whose removal results in a subset of C of size k that
covers at least bk+1 − bk+1

k+1 elements of D. By the optimality of Bk ,

bk ≥ bk+1 − bk+1
k+1 = bk+1

(
1− 1

k+1

)
= bk+1

(
k

k+1

)
,

and so bk+1 ≤ bk
k+1

k . Since bk
k+1

k = bk + bk
k , it now follows that we can guarantee

Bk ∪{{ρ}} is an optimal solution of SplitsPD if ω >
bk
k . Using this fact, we complete
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the proof by showing that if we can approximate SplitsPD to within a ratio (1− 1
e +δ)

for some δ > 0, then we can approximate Max- k- Cover to within a ratio better than
(1− 1

e ); contradicting Feige (1998).
Suppose that we can approximate SplitsPD to within such a ratio. Since

Max- k- Cover can always be solved in polynomial time for constant size k, we
may assume that k is large enough so that 2

k < δ. By Feige (1998), there is a polyno-
mial-time (1− 1

e )-approximation algorithm for the above instance of Max- k- Cover.
Therefore, we can approximate in polynomial time the optimal value bk with approxi-
mation ratio (1− 1

e ), in particular, as 1− 1
e > 1

2 , we can compute a weight bk
k < ω ≤ 2bk

k
in polynomial time. It now follows that the optimal solution to SplitsPD is given by
the set Bk ∪ {{ρ}} and has value bk + ω ≤ bk + 2bk

k = bk(1+ 2
k ).

Let β be the answer returned by applying our assumed polynomial-time (1− 1
e+δ)-

approximation algorithm to the above instance of SplitsPD. Then β ≥ (1− 1
e+δ)(bk+

ω), and so, as bk + ω ≥ β,

bk ≥ β − ω

≥ (
1− 1

e + δ
)
(bk + ω)− ω

>
(
1− 1

e + δ
) (

bk + bk
k

)
− 2bk

k

> bk
((

1− 1
e + δ

)− 2
k

)

= bk
(
1− 1

e +
(
δ − 2

k

))
.

But, by our choice of k, we have δ − 2
k > 0 and so β − ω gives a (1− 1

e + (δ − 2
k ))-

approximation to Max- k- Cover; a contradiction. This completes the proof of the
theorem. 
�

We end this section with a short remark about the rooted version of SplitsPD.
Calling it rSplitsPD, in this problem the instance is a finite set X ∪{ρ}, a split system
� of X ∪ {ρ}, and a non-negative integer k, and the question is to find a subset Z of
X of size k that maximizes P D(Z ∪ {ρ}).

Using Feige’s tight approximation result for Max- k- Cover, it is straightforward
to show that, for any δ, rSplitsPD cannot be approximated with an approximation
ratio of (1− 1

e+δ) unless P=NP. Briefly, similar to that in the proof of Theorem 6.1, let
(D, C, k) be an instance of Max- k- Cover. We construct an instance of rSplitsPD
by setting X = C and, for each d ∈ D, setting σd = Ad |((X ∪ {ρ})− Ad), where

Ad = {C ∈ C : d ∈ C}.

Now take � to be the split system {σd : d ∈ D} with each split in � having weight 1.
The triple (X ∪ {ρ}, �, k) is our initial instance of rSplitsPD. If W is a subset of X
of size k, then the PD score of W ∪ {ρ} is the size of the cover of W . Thus, as the
reduction from Max- k- Cover to rSplitsPD can be done in time polynomial in the
size of (D, C, k), it follows that if there is a polynomial-time approximation algorithm
for rSplitsPD with ratio (1−α), where α > 0, then there is also such an approxima-
tion algorithm for Max- k- cover. This establishes the desired outcome. The proof
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of Theorem 6.1 is a non-trivial modification of this approach, the difficulty lies in the
fact that, in SplitsPD, ρ may not be in any optimal solution. In the terminology of
this paper, this reduction from Max- k- Cover to rSplitsPD is also shown by Faller
(2010).
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