
J. Math. Biol. (2011) 63:691–734
DOI 10.1007/s00285-010-0386-0 Mathematical Biology

Epidemic growth rate and household reproduction
number in communities of households, schools
and workplaces

Lorenzo Pellis · Neil M. Ferguson ·
Christophe Fraser

Received: 11 May 2010 / Revised: 3 November 2010 / Published online: 1 December 2010
© Springer-Verlag 2010

Abstract In this paper we present a novel and coherent modelling framework for the
characterisation of the real-time growth rate in SIR models of epidemic spread in pop-
ulations with social structures of increasing complexity. Known results about homo-
geneous mixing and multitype models are included in the framework, which is then
extended to models with households and models with households and schools/work-
places. Efficient methods for the exact computation of the real-time growth rate are
presented for the standard SIR model with constant infection and recovery rates
(Markovian case). Approximate methods are described for a large class of models
with time-varying infection rates (non-Markovian case). The quality of the approxi-
mation is assessed via comparison with results from individual-based stochastic sim-
ulations. The methodology is then applied to the case of influenza in models with
households and schools/workplaces, to provide an estimate of a household-to-house-
hold reproduction number and thus asses the effort required to prevent an outbreak
by targeting control policies at the level of households. The results highlight the risk
of underestimating such effort when the additional presence of schools/workplaces is
neglected. Our framework increases the applicability of models of epidemic spread in
socially structured population by linking earlier theoretical results, mainly focused on
time-independent key epidemiological parameters (e.g. reproduction numbers, critical
vaccination coverage, epidemic final size) to new results on the epidemic dynamics.
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1 Introduction

Compartmental models based on systems of ordinary differential equations (ODEs)
are by far the most common mathematical tools that epidemiologists use to address
questions of direct practical relevance (Hethcote 2000). Their power relies on the
possibility to be easily enriched by numerous features of interest (Hethcote 2000),
on the solid mathematical and numerical theory of differential equations and on the
availability of user-friendly numerical integration packages. However, such models
rely on some unrealistic assumptions, the most fundamental of which is arguably that
of random mixing (Edmunds et al. 1997; Bansal et al. 2007).

In an attempt to relax such an assumption, two main parallel streams have
been evolving: the development of complex individual-based stochastic simulations
(Ferguson et al. 2006; Riley 2007) and the development of models of intermediate com-
plexity, where the effects of simple forms of heterogeneous mixing can be investigated
in an analytical or semi-analytical framework. Some of these models (for example, the
age-structured and the metapopulation ones; see Anderson and May 1991; Xia et al.
2004; Colizza et al. 2007), have been used in practical contexts. Others, like network
models and models with an explicit social structure (e.g. households or households
and workplaces) remain predominantly the focus of the most theoretically-oriented
part of the epidemic modelling community (Albert and Barabási 2002; Newman 2003;
Ball et al. 1997; Ball and Neal 2002; Pellis et al. 2009). The main reason for their
limited use in providing quantitative answer to direct practical issues is that they are
mathematically challenging and, at the same time, over-simplistic in their descrip-
tion of reality (Wu et al. 2006). In addition, fewer results are available about them in
comparison to the standard ODE-based approach.

The present paper focuses on models in which the population is socially structured
into households or households and workplaces/schools. The main aim is to enrich such
theoretical models with new results to make them more useful for practical purposes.

The types of socially structured models considered here are generically referred to
as models with two levels of mixing (Ball et al. 1997; Ball and Neal 2002), because
a local homogeneous mixing in small environments (e.g. the household) is superim-
posed to a background homogeneous mixing in the population at large. When only
one small environment is present, the models are usually referred to as households
models (Ball and Neal 2002) and have been studied extensively in the last 15 years
[starting from Becker and Dietz (1995) and the milestone of Ball et al. (1997), although
preceded by an isolated pioneering work of Bartoszyński (1972)]. When two types of
small environments are considered, the models usually assume that each individual
belongs to both groups: for this reason, they have been referred to as overlapping
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Real-time growth rate for structured populations 693

groups models (Ball and Neal 2002) or households–workplaces models (Pellis et al.
2009).

Because of the small number of individuals in each local environment, models with
two levels of mixing have found fertile soil in the stochastic epidemic modelling theory
and have been mostly studied in the framework of the so-called standard stochastic
SIR model (Ball 1986; Andersson and Britton 2000, pp. 11–12), hereafter denoted as
sSIR model.

However, with the exception of the Markovian case of an exponentially distributed
duration of infection (Andersson and Britton 2000, pp. 34–36, 46–48) limited results
concerning the epidemic dynamics are available for the sSIR model. The main reason
is that the model itself is not designed to focus on the dynamics of infection spread.
Most results are based on the possibility to embed a branching process approxima-
tion into the early stages of an epidemic and this approach neglects all information
about the system dynamics (Andersson and Britton 2000, pp. 17, 64; Pellis et al.
2008). Nevertheless, it has proved to be extremely rewarding in terms of characteris-
ing threshold parameters, probability of epidemic extinction and critical vaccination
coverage. Furthermore, important results concerning the final size distribution in the
event of a large outbreak have also been obtained (Ball and Neal 2002). Such results
heavily rely on some particular properties of the sSIR model, which allow also the final
size to be independent of the details of the real-time dynamics of the epidemic process.
Such somewhat surprising observation is motivated by an argument first proposed by
Ludwig (1975) (see also Pellis et al. 2008). However, the power of this approach, i.e.
the investigation of results that are independent of the times at which events occur, is
in itself also a limitation, as the epidemic dynamics are often of great practical interest
in themselves. They convey information about the time available to react to the spread
and therefore of the effectiveness of all the control policies occurring in real-time and
the impact of delays in their implementation.

The simplest piece of information concerning the epidemic dynamics is the real-
time growth rate. Furthermore, it is often one of the first pieces of information readily
available from data, both in the case of retrospective studies and of real-time obser-
vation of emerging outbreaks (Riley et al. 2003; Fraser et al. 2009). For this reason,
the present paper focuses mostly on results concerning the real-time growth rate that
characterises the initial exponentially growing phase of an epidemic. In the authors’
opinion, the fact that the sSIR model is not formulated for dealing with the epidemic
dynamics (the infectivity profile of an infective is kept unrealistic on purpose, to facili-
tate mathematical tractability, see Sect. 2.1) is probably the main reason for its limited
use in practical contexts. Conversely, the deterministic time-since-infection model-
ling approach introduced by Kermack and McKendrick (1927) has been very useful in
terms of characterising the real-time growth rate (Diekmann and Heesterbeek 2000;
Fraser 2007; Roberts and Heesterbeek 2007; Wallinga and Lipsitch 2007).

Because in this paper we investigate the real-time growth rate for models where
individuals mix in small groups, we need to combine the two approaches in order to
retain both a stochastic modelling nature and realistic model dynamics. With this pur-
pose, we use a stochastic model structure that has already appeared in previous studies
(Fraser 2007; Goldstein et al. 2009). Earlier results (Fraser 2007; Ross et al. 2010;
Goldstein et al. 2009) are reformulated into a novel and more coherent framework.
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Section 2 briefly recapitulates the main assumptions of the two modelling
approaches, offers a unified terminology and introduces some notation: the focus
of Sects. 2.1, 2.2 and 2.3 are, respectively, the assumptions about the person-to-person
infectious contact process, the social structure and possible model extensions. Section 3
offers a general framework for characterising the real-time growth rate, for models
with no social structure, for the households model and for the households–workplaces
model. For the same three models, Sect. 4 discusses the Markovian case of constant
recovery rate and Sect. 5 discusses approximate results for the non-Markovian case.
Finally, the methodology is applied in Sect. 6 and discussed in Sect. 7.

2 Basic modelling ingredients and terminology

2.1 Person-to-person infectious contact process

Throughout the paper, we refer as infectious contact to any contact which results in an
infection whenever the first individual is infectious and the second is susceptible and
we use the term disease history to indicate the rules according to which an individual
makes infectious contacts with other individuals. The disease history is the result of
a superposition of different processes (within-, between-host and in the environment;
see Grassly and Fraser 2008), which are in general difficult to measure and disentangle
from each other. For this reason, the form of the disease history is usually decided prag-
matically by the modeller among some classical forms that make the model amenable
to mathematical analysis.

Because real infections depend both on the disease history and the availability
of susceptibles, they are difficult to deal with mathematically when local saturation
effects due to individuals mixing in small groups are considered. Infectious contacts,
instead, are independent of the state (susceptible or not) of the contacted individuals.
Therefore, the models considered in the remainder of the paper will use as fundamental
quantities the infectious contact reproduction numbers C , defined as average numbers
of infectious contacts: in general the usual reproduction numbers, here denoted with
the letter R, are smaller than the C’s, but the two concepts coincide when saturation
effects are absent, because each infectious contact results in a real infection.

The sSIR model (Andersson and Britton 2000, pp. 11–12), assumes a random dis-
ease history: upon infection, individuals experience infectious periods that are indepen-
dently and identically distributed according to a random variable I , with an arbitrary
distribution (we assume finite mean and variance). During the infectious period, each
infective makes infectious contacts with each other selected individual according to
a homogeneous Poisson process with constant rate λ. If the infectious contact occurs
with a susceptible individual, he or she becomes infected. After the infectious period,
the individual is immune to further infection. The Poisson processes are independent
of each other and of the infectious periods. We refer to λ as the one-to-one infection
rate.

A completely different modelling approach is the time-since-infection one orig-
inally introduced by Kermack and McKendrick (1927). Although formulated in a
deterministic framework in Diekmann and Heesterbeek (2000), given the scope of
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this study, we consider here the analogous stochastic formulation (as done also in
Fraser 2007; Goldstein et al. 2009) and we refer to it throughout the paper as the
time-varying-infectivity model, hereafter denoted as TVI model. It assumes a non-
random disease history, in the sense that all individuals (or all individuals of the same
type, if a multitype model is considered) have the same deterministic behaviour after
infection (extensions to random disease histories are deferred to Sect. 2.3). Upon
infection, an individual is assumed to make infectious contacts with other randomly
selected individuals according to a Poisson process with time-varying infection rate
described by a non-negative function (or, more generally, a distribution) β(τ), identi-
cal for each infective, where τ represents the time elapsed since the infection of the
individual (β(τ) = 0, for τ < 0). The infectivity profile β(τ) is often factorised as
β(τ) = Cω(τ), where C = ∫ +∞

0 β(τ)dτ represents the individual’s total infectivity
(assumed to be finite) and ω(τ) represents the distribution of times since infection
at which an infective makes infectious contacts with other individuals. We refer to
it as the infectious contact time distribution or, as in Goldstein et al. (2009), as the
infectious contact interval distribution.

Note that the TVI model is parameterised in terms of a one-to-all infection rate β.
Comparison between the models in a population of size n can be achieve by relating β

and λ (whether they are constant or time-dependent) as β = (n − 1)λ. Because recent
empirical evidence (Cauchemez et al. 2004, 2009) rejects the density-dependent con-
tact rate hypothesis even in small groups like households, we make the assumption
that a frequency-dependent contact rate occurs in every mixing group throughout the
paper. Therefore, it is convenient to parameterise both models in terms of the one-to-
all contact rates β, so that, for increasing group sizes, the one-to-one rate λ changes,
but β and therefore the average number C of infectious contacts an individual makes
remain constant.

Finally, note that both models paradigms satisfy the following assumption:

(A.1) The infectious behaviour of an individual is independent of the time of infection
and the identity of the infector.

This fundamental assumption implies that, even if random, the behaviour of an individ-
ual upon infection can be drawn before the epidemic starts. In particular, we exclude
correlations between the behaviour of an infector and the behaviour of the infectee.
This is the case of many, but not all, models appearing in the literature (an example
of model that violates this assumption is the so-called “infector-dependent-severity
model”: see e.g. Kendall and Saunders 1983; Svensson and Scalia-Tomba 2001; Ball
and Britton 2007). This assumption has some limitations (see, for example, Pellis
et al. 2008) and is discussed further in Appendix A because we heavily rely on it for
decomposing the infectivity profile of households in terms of the infectivity profile of
individuals.

2.2 Social structure

Because we are interested in studying the real-time growth rate, we consider the limit
of an infinite and fully susceptible population and we focus on the early phase of the
epidemic, i.e. the time window when an already established epidemic is characterised
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by an exponential growth in the number of cases. Therefore, it is implicitly assumed
that R0 > 1 and the epidemic has not gone extinct by random chance. A formal
argument requires considering the asymptotic behaviour of a sequence of epidemics
in populations of size N → +∞. This approach allows a well defined distinction
between small and large epidemic: denoting by Z the final number of individuals
infected during an epidemic, we define the epidemic as small if z = Z/N → 0 as
N → +∞, i.e. if the epidemic went extinct after only a finite number of cases was
infected. If a positive fraction z of the population is infected, the epidemic will be
called large.

As a notational convention, throughout the paper we refer to an unstructured popu-
lation using variables with no subscript and we denote the basic reproduction number
as R0. In the presence of structure, we use small case subscripts to refer to quantities
involved in processes at the individual level (in the community or within households
or workplaces). Capitalised subscripts refer instead to quantities involved in processes
at the scale of local structures (households or workplaces).

In the households model with TVI disease history, an individual makes infectious
contacts with other individuals (one-to-all) in the same household according to a Pois-
son process with a time-varying infection rate βh(τ ), where τ represents the time
elapsed since the infection of the individual. We define as Ch = ∫ +∞

0 βh(τ )dτ the
within-household infectious contact reproduction number, i.e. the average number of
household infectious contacts, and we to factorise βh(τ ) as βh(τ ) = Chωh(τ ) where
ωh(τ ) is the within-household infectious contact time distribution, i.e. the distribu-
tion, normalised such that

∫ +∞
0 ωh(τ )dτ = 1, of the times at which an infective

makes infectious contacts towards other households members. In addition, the same
individual makes infectious contacts with other randomly selected individuals in the
population (one-to-all) according to a Poisson process with rate βg(τ ) (the subscript
g stands for global). Again, we factorise βg(τ ) as βg(τ ) = Cgωg(τ ), where Cg is the
global infectious contact reproduction number and the global infectious contact time
distribution ωg(τ ) satisfies

∫ +∞
0 ωg(τ )dτ = 1.

Note that, unlike most other similar studies (Fraser 2007; Goldstein et al. 2009),
the present methodology allows for the infectious contact interval distribution to be
different in the household and outside. Such a feature may be of interest if one wants
to model the fact that infected individuals are likely to mix freely outside their house-
holds until they start feeling sick, at which point they tend to spend most of their time
at home, thus posing the other households members at a higher risk of getting infected.

As the population size N tends to infinity (while keeping fixed the household size
distribution) and during the early phase of the epidemic, it is well established (e.g.
see Ball et al. 1997; Ball and Neal 2002; Andersson and Britton 2000; Fraser 2007;
Goldstein et al. 2009) that all global infectious contacts result in global infections and
start new household epidemics, which develop independently of one another through
household infections only. Because all global infectious contacts result in an infec-
tion, the global reproduction number Rg will be used instead of Cg . The distribution
ωg(τ ) now represents what is usually referred to in the literature as the generation
time distribution. In this context, we define as susceptible a household with all suscep-
tible members, infected a household with at least one infective member and immune
a households in which the household epidemic has finished. (Note that once the early
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phase is over, then the infection can be reintroduced again in what we call here immune
households.) Since all infectives in a household can infect other individuals via global
infectious contacts, and each of these belongs almost surely to a different household,
the process can be interpreted as a household infecting other households. A reproduc-
tion number for households is usually referred to as R∗ and satisfies the usual threshold
condition: large epidemics can occur only if R∗ > 1. With the exception of the primary
case in a household, we refer to all other cases infected in a household epidemic as
secondary cases, even if they have not been infected directly by the primary case. In
this perspective, all secondary cases are thought of as deriving from the primary case,
and no secondary case is seen as responsible for other infections in the household.
Denoting by μH the average number of secondary cases of an epidemic in the house-
hold of a randomly selected individual, we have the Wald’s identity for epidemics (see
Ball 1986; Andersson and Britton 2000, p. 15; Pellis et al. 2009):

R∗ = Rg(1 + μH ).

The households–workplaces model is a natural extension to the households model.
In addition to households and global infectious contacts, the workplace one-to-all
infectious contact rate is denoted by βw(τ) = Cwωw(τ), where ωw has integral 1.
We refer to both households and workplace infectious contacts as local infectious
contacts, as opposed to global ones.

Following Pellis et al. (2009) we assume that:

(A.2) The network connecting households and workplaces is a bipartite random
network.

In other words, we assume for simplicity that individuals choose their workplace
at random. Note that this is usually not the case in realistic populations, for exam-
ple because siblings are more likely attend the same school. Under this simplifying
assumption, however, as the population size N → +∞, finite loops in this network
appear with vanishing probability. Therefore, a chain of epidemics via local infections
only infects new local environments (households, workplaces, households again and
so on) in a “tree-like” process. Ball and Neal (2008) refer to the set of individuals
infected in this chain of only local infections as a clump. A slightly different perspec-
tive appears in Pellis et al. (2009) and is the one briefly summarised here (see the
original paper for details): households are seen as infecting other households globally
(G), i.e. via global infections, or locally (L), i.e. through workplace epidemics. The
model so obtained is a two-type model for households, with a next generation matrix
K H = (Ri j ), i, j ∈ {G, L}, where Ri j represents the average number of households
infected via mode i by a household that was itself infected via mode j . In addition to
Rg and μH as defined before, denote by μW the average number of initial susceptibles
who are finally infected in a workplace epidemic (workplace secondary cases, in our
terminology). Then we have: RGG = RGL = Rg(1 + μH ), RLG = μW (1 + μH )

(the primary case in the household epidemic is infected through a global infectious
contact and can trigger an epidemic also in his or her workplace) and RL L = μW μH

(the primary case in the household was infected in a workplaces epidemic and is con-
sidered a secondary case in that epidemic, so is not interpreted as infecting anyone
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else back in the workplace). A household reproduction number RH is then defined as
the dominant eigenvalue of K H :

RH = ρ(K H ) = ρ

(
RL L RLG

RGL RGG

)

, (1)

where ρ(·) is the spectral radius of the square matrix ·. The reproduction number RH

satisfies the usual threshold condition around 1.

2.3 Model extensions

Whatever the social structure assumed, a possible extension of the TVI model is
obtained when a random TVI disease history is considered, as explained here. We
refer to it as the random TVI model. In this case, we assume that all individuals have
the same susceptibility and a random infectivity profile B(τ ) drawn, independently
for each infective, from a suitable set B with probability distribution denoted by the
measure ζ (i.e.

∫
B dζ(B) = 1). (B(τ ) could be, for example, the outcome of a within-

host random process modelling the competition between the pathogen and the host’s
immune system.) We denote by

β(τ) =
∫

B

B(τ )dζ(B)

the average infectivity profile of an individual.
This extension of the TVI model allows the inclusion of the sSIR model in this

formalism. The classical example is given by the Markovian SIR model. In this case,
B(τ ) = β �[0,I ](τ ), where β represents the constant one-to-all infection rate, �[l1,l2]
represents the Heaviside function, defined as

�[l1,l2](x) =
{

1 when l1 ≤ x ≤ l2,
0 otherwise,

and the length of the infectious period I is drawn from an exponential distribution
with parameter ν. In this case, B = {B(τ ) = BI (τ ) = β �[0,I ](τ ), I ∈ R

+} and
dζ(BI ) = νe−ν I dI .

Characterising the real-time growth rate for random TVI model is straightforward
when there is no social structure. However, in the presence of local saturation effects,
exact results seem to be possible only in the particular case of Markovian processes, i.e.
in the analytical framework of continuous-time Markov chains (CTMCs). In Sect. 4,
only the simplest possible Markovian process, with no latent period and a single
infectious stage, is discussed. CTMCs with multiple stages of infection, leading to
a 
-distributed duration of infection, have been included in households models, for
example, in Ross et al. (2010).

In the case of non-Markovian processes, approximate but explicit results can be
obtained if we introduce a further assumption:
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(A.3) The random total infectivity and the random infectious contact time distri-
bution within each infective (in every environment) are independent of each
other.

This assumption is rather strong and is needed to separate the random process describ-
ing how many infectious contacts an infective makes and the process describing the
times when they are made. In other words, similarly to before, this assumption allows
the factorisation of the average infectivity profiles as βg(τ ) = Rgωg(τ ), βh(τ ) =
Chωh(τ ) and βw(τ) = Cwωw(τ) in the community, household and workplace respec-
tively. Here, Rg, Ch and Cw represent the average numbers of infections contacts made
in each environment and the ω’s, normalised to have integral 1, represent the (point-
wise) averages of the infectious contact time distributions. Note that Assumption (A.3)
is required only to make further analytical progress in the non-Markovian case. The
general theory of Sect. 3 does not invoke it. In fact, the general theory applies also
to the Markovian case discussed in Sect. 4, where this assumption is not met since
individuals with longer infectious periods have a larger total infectivity. A particular
case (considered, for example, in Fraser et al. 2009) when this assumption is satisfied
is when, in each environment, ω is the same for every individual, but the total infectiv-
ity is allowed to vary between individuals. Some examples of computations involving
the random TVI disease history under Assumption (A.3) can be found at the end of
Appendix E.

The second possible model extension is towards multitype models. This requires
distinguishing households and workplaces according to their composition, i.e. accord-
ing to how many members of each type they have. Because such a generalisation is
straightforward but cumbersome, for the sake of simplicity, throughout the paper we
assume individuals of a single type only.

However, we consider the case of households and workplaces of different sizes.
For this reason, we still need to recall how to compute the real-time growth rate for a
multitype model with no social structure, as this model applies directly to the interac-
tion of local structures of variable size, observed at the level of households.

3 Computation of the real-time growth rate

3.1 Models with no local saturation

Consider the model with non-random TVI disease history in a large, single-
type, homogeneously mixing population. Following Diekmann and Heesterbeek
(2000, p. 103), the real-time growth rate r , conditional on a large epidemic taking
place, is given by the implicit solution of the Lotka–Euler equation

+∞∫

0

β(τ)e−rτ dτ = 1, (2)
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where the left-hand side is the Laplace transform of β calculated in r, Lβ(r). The solu-
tion of (2) exists and is unique, because Lβ(r) is a monotonically decreasing function
of r , with limr→+∞ Lβ(r) = 0 and Lβ(0) = R0 > 1.

The result can be readily extended to the case of a single-type model with random
disease history, thanks to the fact that the Laplace transform L B is linear in B. The
equation for the real-time growth rate r is:

1 =
∫

B

⎛

⎝
+∞∫

0

B(τ )e−rτ dτ

⎞

⎠ dζ(B)

=
+∞∫

0

β(τ)e−rτ dτ,

where β(τ)=∫
B B(τ )dζ(B) represents the average infectivity profile of an individual.

(We assume all the regularity conditions needed for the integral exchange and the exis-
tence of an average profile β.)

As an example, recall that, in the case of the Markovian SIR model, B(τ ) =
β �[0,I ](τ ) and dζ(BI ) = νe−ν I dI . Using the fact that �[0,I ](τ ) = �[τ,+∞)(I ), we
have

β(τ) =
+∞∫

0

β �[0,I ](τ )νe−ν I dI

=
+∞∫

τ

β νe−ν I dI

= β e−ντ .

Solving Eq. (2) for r gives the usual r = β − ν.
When a random susceptibility is considered in addition to the random infectiv-

ity, care needs to be taken in how the average infectivity of an individual is defined,
because more susceptible individuals are more likely to be infected. If susceptibil-
ity and infectivity of a single individual are represented by the random quantities A
(a scalar) and B(τ ) (a distribution), respectively, then the average infectivity profile
at each time τ is given by the weighted average β(τ) = E[AB(τ )] (weighted to cor-
rectly overrepresent more susceptible individuals). This is in general different from
the product of the averages when the two random quantities are correlated.

When a multitype model is considered, with susceptibility and disease history
assumed to be non-random for each type, it is necessary to define the operator (see
Diekmann and Heesterbeek 2000, p. 103)

Kr =
⎛

⎝
+∞∫

0

βi j (τ )e−rτ dτ

⎞

⎠ = (
Lβi j (r)

)
,
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where L denotes the Laplace transform applied to its subscript and βi j (τ ) represents
the average infectivity profile from a single infective of type j towards all individuals
of type i , which takes into account, as well as the particular mixing patterns, also the
infectivity of type j , the susceptibility of type i , and the proportion of individuals of
type i in the population. Conditioned on Kr being irreducible, the real-time growth
rate r is therefore obtained as the solution of the implicit equation

ρ(Kr ) = 1, (3)

where, the left-hand side ρ(·) is the dominant eigenvalue of the matrix ·. The solution
exists and is unique because ρ(Kr ) is monotonic in r with limr→+∞ Kr = 0 and
ρ(K0) = R0 > 1 (see Diekmann and Heesterbeek 2000, p. 104).

A particularly simple case, where the distributions βi j can be factorised in the prod-
uct of the two separate contributions of the type j of the infector and the type i of the
infectee, is usually referred to as separable mixing (Diekmann and Heesterbeek 2000,
p. 80). This is the case, for example, when βi j (τ ) = hi ai b j (τ ), where hi is the fraction
of individuals of type i, ai is their susceptibility and b j (τ ) is the infectivity profile of
an infective of type j . The product αi = ai hi will also be referred to as the suscepti-
bility-availability of individuals of type i . In this case, similarly to the case of a single
type model with random susceptibility and infectivity, the infectivity profile of an aver-
age individual is the result of a weighted average of the infectivity bi (τ ) of different
types i , with weights proportional to susceptibility-availability αi of each type.

The analysis becomes more complex when randomness is superimposed on the
multitype structure (multitype randomised model: see Neal 2006). However, at least
in the case of separable mixing, it is still sufficient to average across the distribu-
tion of disease histories for each type j , with weights given by the distribution of
susceptibilities, to recover the same condition above. If separable mixing cannot be
assumed for the multitype model, then the analysis is even more complex. It is still
reasonable to expect that the system can reduce to that of a multitype model, by aver-
aging across each type, although a formal proof would be needed. A particular case
of this type concerning the model with households and workplaces is considered in
Appendix C.

3.2 Households model

Consider a households model with random TVI disease history where (A.1) holds, and
assume initially that all households of the same size nH . When a household is infected,
a stochastic epidemic (driven only by households infections) spreads through it.
Let U ∈ U be a parameter vector that fully describes the household epidemic and
let ζ be the measure over U associated with the probability density of occurrence of
each possible household epidemic. Even if the disease history of individuals were non-
random, the disease history of a household is random and is denoted by BU

H (τH ), where
τH represents the time since the infection of the household. However, using the same
arguments as before (see also Fraser 2007), the real-time growth rate for households,
rH , is determined by the average household infectivity βH (τH ) = ∫

U BU
H (τH )dζ(U )

as the solution of
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LβH (rH ) = 1, (4)

where L denotes the Laplace transform of its subscript.
It is proved in Appendix A that the average household infectivity profile can be

decomposed in

βH (τH ) = βg(τH ) + βg ∗ γH (τH ), (5)

where βg is the average global infectivity profile, ∗ denotes the convolution opera-
tion and γH represents the average rate at which new infected cases appear in the
household, with

+∞∫

0

γH (τH )dτH = μH .

The first term refers to the global infections generated by the household primary case,
while the second is the contribution to global infections given by all the secondary
cases.

Note that the real-time growth rate rH refers to households, while one is usually
interested in the rate at which the number of infected cases grows. However, we have
the following.

Theorem 1 Let r be the real-time growth rate for the exponential growth of the num-
ber of infected individuals and let rH be the real-time growth rate for the exponential
growth of the number of infected households. Then r = rH .

A formal proof of this results is reported in Appendix B, but an intuitive argument
for it could be the following: if H(t) is the prevalence of households at time t , then
the number of infected individuals Y (t) is roughly given by (1 + μH )H(t), and if
H(t) ∝ er t , then Y (t) shares the same growth rate.

In the case of households of different sizes, the model can be seen as a multitype ran-
domised model with separable mixing, where the size of each household determines
its type. In fact, if hn represents the fraction of households of size n, a household of
size n has probability πn = nhn

/∑
n nhn of being infected and, after infection, exerts

a random time-varying infectivity β
Un
H (τH ) with average, say, β

(n)
H (τH ). The overall

real-time growth rate is given again by Eq. (4), where now βH (τH ) = ∑
n πnβ

(n)
H (τH ).

The distribution πn is often referred to as the size-biased distribution (e.g. Ball et al.
1997).

3.3 Households–workplaces model

Theorem 1 suggests that, during the exponentially growing phase, the real-time growth
rate of all structures (with finite average size) is the same. Therefore, it is sufficient to
calculate the easiest one to obtain: we focus on the one for households.
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As a side remark, note that when clumps (see Ball and Neal 2002 or Sect. 2.2) have
finite average size, the same real-time growth rate can also be thought of as referring
to clumps. However, the usefulness of this interpretation is limited, given that the time
a clump requires to form can in general be comparable to that of the entire epidemic.
Therefore, in realistic settings, any exponentially growing phase could be too short to
observe enough clumps to motivate a deterministic approximation.

Assume, for the time being that all households have the same size nH and all work-
places have size nW . Distinguishing households according to how their primary case
was infected (i.e. globally, or locally through a workplace), we obtain a two-type ran-
domised model. In addition to τH and γH (τH ) as defined for the households model,
denote by τW the time since the infection of a workplace and by γW (τW ) the average
rate at which new cases appear in a workplace epidemic, with

+∞∫

0

γW (τW )dτW = μW .

The average rate at which a household infected locally infects another household
locally is given by βL L(τH ) = γW ∗ γH (τH ) (recall that the primary case is not
counted actively when the local structure is infected locally; see Sect. 2.2 or Pellis
et al. 2009). Analogously the average rate at which a household infected globally
infects other households locally is given by βLG(τH ) = γW (τH ) + γW ∗ γH (τH ).
The other two cases are: βGG(τH ) = βGL = βg(τH ) + βg ∗ γH (τH ).

The real-time growth rate r is obtained by imposing that the operator

Kr =
(∫ +∞

0 βL L(τH )e−rτH dτH
∫ +∞

0 βLG(τH )e−rτH dτH
∫ +∞

0 βGL(τH )e−rτH dτH
∫ +∞

0 βGG(τH )e−rτH dτH

)

(6)

has dominant eigenvalue equal to 1. Because we are observing a large epidemic,

ρ (K0) = ρ

(
RL L RLG

RGG RGG

)

= RH > 1.

Since limr→+∞ ρ(Kr ) = 0 and ρ(Kr ) is a monotonic function of r , the equation

ρ(Kr ) = 1 (7)

admits a unique solution.
When households and workplaces have variable sizes, the computation of r reduces

again to that of a two-type model, although a formal argument for it requires a more
cumbersome notation and is reported in Appendix C. The key points is that the size of
one structure is independent of the size of the other because of the bipartite random
network assumption (see Sect. 2.2).
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(a) (b)

Fig. 1 a Graphical representation of all possible states for an SIR epidemic in a population of size n = 3.
States are also labelled sequentially with index k = 1, . . . , 10, showing how κ3 is defined. b All possible
transitions and their rate of occurrence

4 Exact results for the Markovian case

4.1 Exact epidemic dynamics in a small population

Consider the CTMC describing an epidemic in a small population of size n and assume
that individuals are all identical, that the total population is constant and that an indi-
vidual can be susceptible (X ), infected (Y ) or recovered (Z ). The state space � of the
system is given by all the pairs (X, Y ) where X ≥ 0, Y ≥ 0 and X + Y ≤ n: then
Z = n − X − Y .

Figure 1 offers a schematic representation for n = 3 and all the possible transi-
tions, where λ = β/(n −1) is the one-to-one infectious contact rate and ν the constant
recovery rate.

The generator matrix Q can be written explicitly once we specify a map κn that
associates the pair (i, j) to a single index k, such that the state ωk ∈ � represents the
epidemic state (X, Y ) = (i, j) (an example is given in Fig. 1). The element qhk of
the generator matrix represents the rate of progression from state ωh to ωk , i.e. form
state (ih, jh) = κ−1

n (h) to state (ik, jk) = κ−1
n (k). The corresponding element phk(t)

of P(t) = et Q represents the probability that the system is in state (ik, jk) if it was in
state (ih, jh)t units of time ago or, equivalently, that the system is in state (ik, jk) at
time t if it started from state (ih, jh).

Another quantity of interest is the matrix

M(t) =
t∫

0

eσ Qdσ, (8)

where the integral is taken componentwise. Each element mhk(t) of M(t) represents
the average time spent in state k by time t if the system started from state h. Because
the state space � includes some absorbing states, then the average time spent in those
states by time t will diverge as t → +∞.
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4.2 Households model

Different disease histories in different environments can be modelled using different
recovery rates. However, because of the artificiality of such an assumption, we refrain
from doing so and denote the unique recovery rate with ν. Instead, we distinguish
between the within-households one-to-all infectious contact rate βh and the global
infectious contact rate βg .

When the infectivity profile of a household of size nH is considered, it is convenient
to include among the possible states of the household only those ones where there is
at least one infective. We therefore consider the state space �H of the transient states
only. We define Q H as Q H = � − �, where � is the generator matrix of the CMTC
on the transient states only (computed from the rates λh = βh/(nH − 1) and ν) and �

is a diagonal “death” matrix (“death” in the sense of ending the household infectious
life), with diagonal elements given by νik, k = 1, . . . |�H | = nH (nH + 1)/2. From
Q H it is then possible to obtain the matrix P H (τH ) = eτH Q H giving the probability
that the system is in each states at time τH after having started from each possible state
and, in turn, the matrix M H (τH ) = ∫ τH

0 P(σ )dσ . Because the absorbing states are
excluded from the computation, it is also informative to consider the limit of M H (τH ),
as τH → +∞. It is possible to prove (see Diekmann and Heesterbeek 2000, pp. 105–
106) that the fact that the integral in M H (τH ) converges as τH → +∞ is equivalent
to Q H being invertible and that

M H := lim
τH →+∞ M H (τH ) = −Q H

−1.

Each element m H
hk of M H therefore describes the average time spent in state k if the

household epidemic started from state h, throughout the entire household epidemic.
(A formal proof of Q H being invertible requires noting that Q H is strictly diagonally
dominant with negative diagonal elements and invoking Gershgorin’s circle theorem
to conclude that the spectral bound of Q H (i.e. the sup{Re(ϑ) : ϑ is an eigenvalue of
Q H }) is negative.)

Since the one-to-all rate of global infections when the system is in state k is given by
βgik , the total global infectivity of the household can be easily computed by summing
across all states:

R∗ =
|�H |∑

k=1

βgik(−Q−1
H )1k,

where the row index 1 is fixed because the state k = 1, corresponding to (X, Y ) =
(n − 1, 1), is the one from which a household starts when infected from outside.

A similar approach can be used when the real-time growth rate r is studied. The
infectious profile of the household at time τH after its infection is given by

βH (τH ) =
∑

k

βgik P H
1k (τH ) =

∑

k

βgik(e
Q H τH )1k .
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The real-time growth rate r is such that LβH (r) = 1, where now

LβH (r) =
+∞∫

0

βH (τH ) e−rτH dτH

=
∑

k

βgik

+∞∫

0

(
eQ H τH

)

1k
e−rτH dτH

=
∑

k

βgik

+∞∫

0

(
eQ H τH e−r JτH

)

1k
dτH

=
∑

k

βgik

(
−(Q H − r J )−1

)

1k
,

where J represents the identity matrix and it has been used for e−r Jτ the fact that for
the exponential of a diagonal matrix with diagonal elements δi is a diagonal matrix
with diagonal elements eδi , i = 1, . . . , |�H |.

An iterative method can now be used to solve Eq. (4) for r (the solution exists and
is unique). Each step requires only that a matrix is inverted, instead of the inefficient
computation of integrals and matrix exponentials.

4.3 Households–workplaces model

Extending the methodology to the model with households and workplaces requires
not only the rate of global infections, but also the rates γH and γW at which new cases
appear in households and workplaces. For this reason, consider again a single small
population and focus on the rate at which a new case occurs. The rate at time t at
which the system reaches state (ik, jk) because of an infection event is given by

λ(ik + 1)( jk − 1)pκn(ik+1, jk−1)(t),

where pκn(ik+1, jk−1)(t) represents the probability that at time t there is one susceptible
more and one infective less than what required and this quantity is multiplied by the
rate of occurrence of an infection.

Extend the notation of the previous section in the natural way, defining τW , λw, QW ,

PW and MW , respectively, as the time since the infection of the workplace, the one-
to-one within-workplace infectious contact rate, the (defective) generator matrix for
the transient states in the workplace epidemic, the probability of being and the average
time spent in each state of the workplace epidemic, having started from each possible
state. Then, γH is constructed as

γH (τH ) =
∑

k

λhskik pH
1k(τH ),

and an analogous definition holds for γW .
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Each element of the operator Kr defined in (6) needs to be computed. The elements
containing βGG and βGL do not need particular attention as their construction is the
same as in the case of the households model. The term containing βL L is elaborated
as

+∞∫

0

βL L (τH ) e−rτH dτH =
+∞∫

0

γH ∗ γW (τH ) e−rτH dτH

=
⎡

⎣
+∞∫

0

γH (τH ) e−rτH dτH

⎤

⎦

⎡

⎣
+∞∫

0

γW (τW ) e−rτW dτW

⎤

⎦

=
⎡

⎣
+∞∫

0

⎛

⎝
∑

h

λhshih P H
1h (τH )

⎞

⎠ e−rτH dτH

⎤

⎦

⎡

⎣
+∞∫

0

⎛

⎝
∑

k

λwskik PW
1k (τW )

⎞

⎠ e−rτW dτW

⎤

⎦

=
⎡

⎢
⎣
∑

h

λhshih

⎛

⎝
+∞∫

0

e(Q H −r J )τH dτH

⎞

⎠

1h

⎤

⎥
⎦

⎡

⎢
⎣
∑

k

λwskik

⎛

⎝
+∞∫

0

e(QW −r J )τW dτW

⎞

⎠

1k

⎤

⎥
⎦

=
⎡

⎣
∑

h

λhshih
(
(r J − Q H )−1

)

1h

⎤

⎦

⎡

⎣
∑

k

λwskik
(
(r J − QW )−1

)

1k

⎤

⎦ .

The second line follows from the first because of Laplace transform properties.
The term containing βGL simply needs the additional contribution of another work-

place epidemic (see Sec. 2.2 or Pellis et al. 2009):

+∞∫

0

βLG(τH )e−rτH dτH =
[

1 +
∑

h

λhshih

(
(r J − Q H )−1

)

1h

]

×
[
∑

k

λwskik

(
(r J − QW )−1

)

1k

]

.

Finally, the implicit Eq. (7) is solved iteratively for r .
This numerical technique is exact and efficient. However, we refrain from present-

ing computations performed with it. We proceed instead in describing an approximate
technique for the computation of r for the TVI model, which is then used for numerical
results and for the application presented in Sect. 6. The reason for this choice is two-
fold: first, because the technique described above is exact, while the methods for the
TVI model requires numerical tests to asses the quality of the approximation; second,
because the natural assumption that in the TVI model the infectivity starts from zero
and gradually builds up as time-since-infection progresses leads to usually lower and
more realistic values of r with respect to the sSIR model, for which an individual is
infectious immediately after infection. Of course, more realistic growth rates would
be obtained also with the sSIR model, if a latent period were added.
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5 Approximate dynamics for the non-Markovian case

5.1 Approximate epidemic dynamics in a small population

The exact dynamics obtained in the previous section are limited to the Markovian
case. However, for models characterised by a non-random time-varying infectivity
profile, an approximate method for dealing with the otherwise intractable dynamics
has been originally proposed by Fraser (2007) for the households model. The method
is embedded in the present formalism and extended to the model with households
and workplaces and to a random disease history, conditional on Assumption (A.3)
being satisfied. Note that, because the Markovian model violates Assumption (A.3),
the following method is not a generalisation of that presented in Sect. 4, but rather
complements it. For the sake of simplicity and in order to facilitate the comparison
with Fraser (2007), the method will be here exposed for a non-random TVI disease
history. A few comments about its extension to the random case are reported at the
end of this section and some computations with the extended model are performed at
the end of Appendix E.

Because in a small population repeated infectious contacts occur towards the same
individual and only the first one results in an infection, the rate at which the second case
is infected should take into account the probability of the initial susceptible avoiding
the infection over time (surviving probability). The idea proposed by Fraser (2007)
is to compute the average number of cases in each generation using the Reed-Frost
model and to assume that each generation infects the cases in the following generation
with time distribution given by ω(τ), thus ignoring the contribution of the surviv-
ing probability, i.e. ignoring the presence of repeated infectious contacts between the
same individuals. Therefore, given that the initial infective constitutes generation 1,
generation 2 contains an average of μ2 cases, which occur at times distributed as
ω(τ), generation 3 contains an average of μ3 cases, which occur at times distributed
as ω[2](τ ) = ω ∗ ω(τ), and so on. Here, ω[i](τ ) represents the i-th autoconvolution
of ω, with ω[1] = ω, and μi represents the average number of cases in generation i ,
computed using the Reed-Frost model. The maximum number of generations is n.

Note that, in addition to ignoring repeated infectious contacts between the same
individuals, the method ignores the fact that generations can overlap, when an indi-
vidual counted in generation i in the Reed-Frost model is actually infected by other
cases belonging to later generations. In the terminology of Ludwig (1975), this means
that the real-time generation of each individual is approximated by his or her rank,
and therefore that real cases tend to occur somewhat earlier than what is described by
the approximation (e.g. see Figure 2 of Fraser 2007).

In summary, the overall average rate γ (τ) at which new cases appear in the
population is approximated by

γmax (τ ) =
n∑

i=2

μiω
[i−1](τ ). (9)

Both elements involved in the approximation, namely neglecting overlapping
generations and repeated infectious contacts between the same individuals, cause the
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approximation to overestimate the time of occurrence of new cases. In order to bracket
the shape of γ (τ) between two analytically tractable approximations, Fraser (2007)
suggested an underestimation obtained by lumping all cases, except from the initial
one, in the second generation. This gives rise to the other approximation:

γmin(τ ) = μω(τ), (10)

where μ = ∑n
i=2 μi represents the average number of initial susceptibles who are

ultimately infected. The rate γmin does not represent a true lower bound approxima-
tion in general, as it still ignores the effect of overlapping generations and repeated
infectious contacts. In fact, in the extreme case of 2 individuals γmin = γmax . Most of
the time, however, the rate γmin underestimates the times of infection of new cases,
thus giving rise to a faster epidemic but with the same final size 1 + μ. As discussed
later on, we consider Eq. (9) as our main approximation, and we use it for the details
in the following sections. A numerical investigation of how close it is to the exact rate
γ (τ) is reported in Appendix E.

Extensions to random total infectivities require computing the μi ’s from a random-
ised version of the Reed-Frost model, instead of the standard one [see for example
Picard and Lefèvre (1990) for efficient computational techniques]. When a random
infectious contact time distribution is considered, the same calculations performed
before hold for ω(τ) defined as the (pointwise) average of the infectious contact
time distributions, thanks to the linearity of the convolution operation. However, as
discussed in Sect. 2.3, if both the total infectivity and the infectious contact time dis-
tribution are random, we require them to be independent of one another within the
same individual (Assumption (A.3)).

5.2 Households model

In the households model, with the notation introduced in Sect. 2.2, the approximate
infectiousness profile of a household of size nH obtained using (9) is

βH (τH ) = βg(τH ) + βg ∗ γH (τH )

≈ Rgωg(τH ) + Rgωg ∗
( nH∑

i=2

μH
i ω

[i−1]
h

)

(τH ). (11)

From Eq. (4), the real-time growth rate r is then approximated by the implicit solution
of

1 = Rg

⎛

⎝
+∞∫

0

ωg(τH ) e−rτH dτH

⎞

⎠ +
nH∑

i=2

μH
i

⎛

⎝
+∞∫

0

ω
[i−1]
h (τH ) e−rτH dτH

⎞

⎠.
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A simplification is obtained by following Fraser (2007) and defining

+∞∫

0

ωg(τ )e−rτ dτ = 1

Sg
,

+∞∫

0

ωh(τ )e−rτ dτ = 1

Sh
.

Here Sg represents the basic reproduction number that would be related to r if the
households structure were ignored. Laplace transform properties imply that

+∞∫

0

ω
[i−1]
h (τH ) e−rτH dτ =

⎛

⎝
+∞∫

0

ωh(τ ) e−rτ dτ

⎞

⎠

i−1

= 1

Si−1
h

.

Therefore, the approximate real-time growth rate for the households model is given
by the equation

Rg

Sg

(

1 +
nH∑

i=2

μH
i

Si−1
h

)

= 1. (12)

In the particular case of ωh = ωg = ω, because μ1 = 1 and ω[1] = ω, then the
approximate household infectivity profile given in Eq. (11) simplifies to

βH (τH ) = Rg

nH∑

i=1

μH
i ω[i](τH )

and Eq. (12) becomes

Rg

nH∑

i=1

μH
i

Si
= 1,

where now S = (
∫ +∞

0 ω(τ)e−rτ dτ)−1.

5.3 Households–workplaces model

Consider the households–workplaces model and assume, for the time being, that all
households and all workplaces have the same sizes nH and nW , respectively. The
real-time growth rate is then obtained by requiring that the operator (6) have dominant
eigenvalue 1.
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With the same construction as before, the following approximations hold:

γH (τH ) ≈
nH∑

i=2

μH
i ω

[i−1]
h (τH )

γW (τW ) ≈
nW∑

j=2

μW
j ω[ j−1]

w (τW ),

where μH
i and μW

j represent the average numbers of cases in generation i in a Reed-
Frost model for a household epidemic and in generation j in a Reed-Frost model for
a workplace epidemic, respectively.

The elements of (6) involving only households epidemics and global infectious
contacts are approximated in the same fashion as for the households model. The “LL”
element of Kr is given by:

+∞∫

0

βL L(τH )e−rτH dτH =
+∞∫

0

γW ∗ γH (τH )e−rτH dτH

≈
⎛

⎝
nH∑

i=2

μH
i

+∞∫

0

ω
[i−1]
h (τH )e−rτH dτH

⎞

⎠

⎛

⎝
nW∑

j=2

μW
j

+∞∫

0

ω[ j−1]
w (τW )e−rτW dτW

⎞

⎠ .

Adding to Sg and Sh , as defined for the households model, also

Sw =
⎛

⎝
+∞∫

0

ωw(τ)e−rτ dτ

⎞

⎠

−1

,

the “LL” term simplifies to

+∞∫

0

βL L(τH )e−rτH dτH ≈
( nH∑

i=2

μH
i

Si−1
h

)⎛

⎝
nW∑

j=2

μW
j

S j−1
w

⎞

⎠ .

With similar arguments, and recalling that, when a case infected globally, the epidem-
ics in the household and the workplace start simultaneously and therefore τH = τW ,

+∞∫

0

βLG(τH )e−rτH dτH =
+∞∫

0

(γW (τH ) + γW ∗ γH (τH )) e−rτH dτH

≈
(

1 +
nH∑

i=2

μH
i

Si−1
h

)⎛

⎝
nW∑

j=2

μW
j

S j−1
w

⎞

⎠ ,
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Therefore

Kr ≈ K̃r =

⎛

⎜
⎜
⎜
⎝

( nH∑

i=2

μH
i

Si−1
h

)(
nW∑

j=2

μW
j

S j−1
w

) (

1 +
nH∑

i=2

μH
i

Si−1
h

)(
nW∑

j=2

μW
j

S j−1
w

)

Rg
Sg

(

1 +
nH∑

i=2

μH
i

Si−1
h

)
Rg
Sg

(

1 +
nH∑

i=2

μH
i

Si−1
h

)

⎞

⎟
⎟
⎟
⎠

(13)

from which the approximate value of r can be computed numerically as the solution
of ρ(K̃r ) = 1.

6 Application to influenza

6.1 Derivation of RH from the growth rate

Fraser (2007) inverted the methodology presented above for the household model
in order to derive the value of the household reproduction number R∗ for influenza.
Here we extend those results to the case of the households–workplaces model, with
the purpose of estimating the household reproduction number RH from the real-time
growth rate r . To facilitate quantitative comparison, we maintain consistency with the
parameters in Fraser (2007) concerning households. The lack of information about
workplace size distribution and the limited data about workplace transmission will be
reflected in a range of possible values for RH .

Although this is not a requirement of our method, in order to facilitate comparison
with Fraser (2007) we use the same infectious contact time distribution ω(τ) for all
environments. We assume that r is observed from data and that ω(τ) and the within-
household and within-workplace infectious contact reproduction numbers are known
(together with the household and workplace size distributions): the only unknown
in the matrix Kr defined in (13) is Rg . Requiring that ρ(Kr ) = 1 gives an implicit
condition for Rg , which satisfies the following:

Theorem 2 For K̃r as defined in (13), the solution Rg of the equation ρ(K̃r (Rg)) = 1
exists and is unique. In addition, Rg is strictly positive if and only if

( nH∑

i=2

μH
i

Si−1

)⎛

⎝
nW∑

j=2

μW
j

S j−1

⎞

⎠ < 1. (14)

The proof is reported in Appendix D.
If condition (14) is not satisfied, the solution Rg is negative and therefore not accept-

able. This reflects the fact that not all values of r are compatible with the assumptions
concerning within-household and within-workplace infectivities (and the household
and workplace sizes). In fact, similarly to the fact that r > 0 ⇔ R0 > 1 in a homo-
geneously mixing population (as shown in Diekmann et al. 2010), we have here that
r > 0 ⇔ RH > 1. Assume now that Rg = 0: then RH = μH μW = ρ(K̃0(0)). For
a sufficiently strong infectivity in households and workplaces, RH > 1 even if there

123



Real-time growth rate for structured populations 713

is no global transmission (this is the case when the average clump size is infinite).
Because r > 0 ⇐⇒ RH > 1, in this case ρ(K̃r (0)) = 1 is solved by a positive
value of r , which represents a lower bound under which no value of r can correspond
to a positive value of Rg .

The procedure just described cannot be expressed in a closed formula as nicely as
in Fraser (2007), where the particularly simple expression of R∗ for the households
model allows its direct computation without requiring an intermediate value for Rg ,
which cancels out from the main formula.

Neglecting the effects of repeated infectious contacts between the same individuals
and of overlapping generations results in an overestimation of RH . The underestima-
tion described above, where all non-primary cases in a local epidemic are lumped in
the second generation, allowed Fraser (2007) to bracket the value of R∗ into a small
interval, thus making the method highly predictive. The same approach, however, is
expected to give a worse performance in the case of the household-workplaces model
for two main reasons: first, chaining two local epidemics where all non-primary cases
are lumped in the second generation is worse than doing it only once; second, a work-
place (e.g. a class) can be larger than a household, and thus the average final size
can be much larger too: therefore, placing all cases in the second generation leads
to dramatically different dynamics, much more than what would occur for a smaller
local structure, as it is the case for a household.

However, Fraser (2007) showed that, in the case of influenza, the upper approx-
imation is much closer to the exact value than the lower bound, because influenza
is not particularly infectious. For this reason, and because the lower bound obtained
with this method is excessively low, it is arguably not worth bracketing the solution
between two bounds and accept instead the upper bound as the approximate result.
Although such a decision is not completely satisfying, it must be noted that: (i) more
precise results would still be only indicative, given the lack of information concerning
workplace transmission, and (ii) the large local structures, which are responsible for
an excessively low lower bound, have at the same time the effect of weakening the
saturation effects (repeated infectious contacts between the same infector and infectee
are rare) and therefore making the approximation more accurate.

Finally, although the lack of a lower bound sufficiently close to the upper bound
weakens the predictive power of such an approach, nevertheless the method provides
a range of reasonable values for RH when both households and workplaces are taken
into account. This is invaluable because RH provides information about how much
between-household transmission needs to be blocked in order to stop an epidemic, and
not only there are no estimates of RH in the literature, when households and work-
places are taken into account, but there is even no intuitive range of possible values
for it.

6.2 Numerical results

Any possible application of this method to a practical example is likely to be very
artificial, given the lack of data concerning workplaces. Some data are available about
schools, though, and it is reasonable to assume that classes are larger than workplaces
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(interpreted as small groups, e.g. offices, for which homogeneous mixing can be
assumed) and infectious contact rates between children are larger than between adults.

Possible numerical values of transmission rates for influenza in schools are obtained
from Cauchemez et al. (2008): the authors assume a disease history of type TVI with
the form β(τ) = β f (τ )/n, where f (τ ) is the survival function of the a gamma distri-
bution with mean μ = 3.8 days and a standard deviation of σ = 2.0 days (obtained
from Cauchemez et al. 2004, to which they refer), n is the size of the workplaces
and values of β are estimated in different conditions in Table SI5 and Table SI10 of
Cauchemez et al. (2008) to be 0.22 and 0.28 day−1. Since in Cauchemez et al. (2004)
the average duration of the infectious period is assumed to be of 3.8 days, these values
correspond roughly to Cw = 0.84 and Cw = 1.1, respectively. The disease history
is taken from Fraser (2007) to be of type TVI, where all individuals have the same
infectivity profile characterised by an infectious contact time distribution ω(τ) that
follows a 
(α, δ) distribution with α = 9.39 and δ = 3.29 (mean 2.85 and standard
deviation 0.93). These values are here approximated to α ≈ 9 and δ ≈ 3.16, so that
α is integer and the generation time Tg is fixed to 2.85 days. The size distribution
of households and the within-household infectivity are again taken according to the
influenza data presented in Fraser (2007): the household size distribution is that of the
UK census data (2001) and Ch = 1.35: the average epidemic size in the household of
a randomly selected individual including the primary case (1 + μH ) is then equal to
1.87.

Further assumptions are unavoidably strong:

1. The “workplace” of a child is the class, where homogeneous mixing can be rea-
sonably assumed, and not the entire school.

2. However, estimated transmission rates in schools are assumed for the transmission
in classes.

3. Classes are taken to be of 20 students: although they could be larger, given the
illustrative purpose of this numerical example, we refrain from using too large
groups, for which the computation of the generations of infectives in the Reed-
Frost model can become numerically challenging.

4. Roughly 20% of the population goes to school and the other 80% to workplaces
(according to the UK National Statistics 2005, roughly 10 million individuals in
the UK are less than 16 years old, out of a total population of 50 millions).

5. The same one-to-all transmission rate in schools occurs also in workplaces.
6. A lower bound for the effective workplace size is obtained when nW = 1, i.e.

there is no pure workplace transmission but only school transmission. Note that
in this case, since there is no pure workplace transmission, Rg is expected to be
higher than if nW > 1, since it effectively contains also the transmission that is
likely to occur at work.

7. Another possible value for the workplace size is arbitrarily taken to be nW = 4
(we have in mind small offices).

Figures 2, 3 and 4 show the approximate values of RH as a function of r computed
using a MatLab built-in iterative method (the function fzero). In all figures, the top line
represents the main approximation and the bottom line the less useful lower bound
described before. The crosses represents the output of the stochastic simulation for
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Fig. 2 The household reproduction number RH as a function of the real-time growth rate r , obtained
when 20% of the population (children) go to workplaces of size 20 (school classes) and the remaining 80%
(adults) go to workplaces of size 1. The two lines represent the main approximation described in the text
(top) and the lower bound approximation obtained by lumping all non-primary cases in the second genera-
tion (bottom). The crosses are the result of the individual-based stochastic simulation. The household size
distribution is obtained from the UK census data (2001) and the within households infectivity is given by
Ch = 1.35. In a, Cw = 0.84 and the simulation results are obtained, for increasing r , for values of Rg of
0.4, 0.6, 0.8, 1 and 1.2; in b, Cw = 1.1 and the simulation results are obtained, for increasing r , for values
of Rg of 0.2, 0.4, 0.6, 0.8, 1 and 1.2
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Fig. 3 The household reproduction number RH as a function of the real-time growth rate r , for Cw = 0.84
(a) and Cw = 1.1 (b), obtained when 20% of the population (children) go to workplaces of size 20 (school
classes) and the remaining 80% (adults) go to workplaces of size 4. The two lines represent the main
approximation described in the text (top) and the lower bound approximation (bottom). The crosses are the
result of the individual-based stochastic simulation and are obtained, for increasing r , for values of Rg of
0.2, 0.4, 0.6, 0.8 and 1 in both cases. Note that r cannot decrease below a certain level, given that Rg ≥ 0
(see text)

different values of Rg . The plotted results are computed by running 100 epidemic
realisations in a population of a million individuals (refer to Pellis 2009, PhD thesis,
Section 6.1, for details about the simulation). The numerical estimation of RH from
simulation outputs is not straightforward, and is not a primary concern of this study.
We thus used an ad hoc method based on summing the contribution of all large epi-
demics and computing RH as a time-varying average of the number of households
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Fig. 4 The household reproduction number RH as a function of the real-time growth rate r , for Cw = 1.1,
obtained when all workplaces have size 20 (population of children). The two lines represent the main
approximation described in the text (top) and the lower bound approximation (bottom). The crosses are the
result of the individual-based stochastic simulation and are obtained, for increasing r , for values of Rg of
0.2, 0.4 and 0.6. The household size distribution is obtained from the UK census data (2001) and the within
households infectivity is given by Ch = 1.35 (see text). Note the limited predictive power of the method
due to presence of many large workplaces

infected by a single household. We then recorded its (theoretically constant) value
during the exponentially growing phase, as assessed by visual inspection. No standard
deviation is therefore associated with the point estimates. Though this ad hoc method
could obviously be improved and systematised, close consistency of these estimates
with theoretical expectations suggest that the method is quite accurate. Note that, in
all figures, the main approximation is an upper bound, but it may not always appear
so because of the closeness to the exact result and the limited accuracy in reading the
value of RH during the exponentially growing phase.

In Fig. 2a, Cw is taken to be 0.84, while in Fig. 2b, Cw = 1.1. In both cases school
classes have size 20 and workplaces have size 1, i.e. adults transmit only via global
infections. From Fig. 2a, a real time growth rate r = 0.2days−1 for influenza as con-
sidered in Fraser (2007) gives a value of RH = 2.49 and a corresponding value of
Rg = 1.1 out of an R0 of 1.74 (from Fraser 2007; the additional presence of work-
places does not alter R0 significantly: not shown, refer to Pellis 2009, PhD thesis,
Section 6.2.4, for more details), i.e. global infections count for more than 60% of the
total transmission of an infective. From Fig. 2b, the same r = 0.2days−1 leads to
RH = 2.71 and Rg = 0.9 out of the same value of R0 (the same r corresponds to
very similar values of R0 for the TVI disease history; not shown, see Pellis 2009, PhD
thesis, Section 6.2.4, for details), giving a contribution of the global infections to R0
of more than 50%.

Figure 3 reports the same analysis in the case of workplaces of size 4, for the same
values of Cw used before. For r = 0.2 days−1, the values of RH obtained in Fig. 3a,
b are, respectively, RH = 2.60 and RH = 2.86, with corresponding values of Rg
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of 0.71 and 0.54, i.e. of 40% and less than 30% of the same R0 = 1.74. Separating
the transmission out of school in workplace and pure community transmission, apart
from substantially decreasing Rg as expected, associates to the same r larger values
of RH .

As an extreme case and to show how the lower approximation can be become hardly
informative to be useful in the cases of large workplaces, the same analysis as before
is reported in Fig. 4 for Cw = 1.1 and assuming a full population of children, i.e. in
which all individuals have workplaces of size 20 with school-like transmission rates.
For r = 0.2 days−1, a value of RH = 4.1 is obtained, and Rg = 0.35 represents only
20% of the total transmission of an infective.

These numerical results all lead to household reproduction numbers, related to a
real-time growth rate r = 0.2 days−1, broadly ranging from 2.5 to 2.9 for some rea-
sonable choices of workplace sizes, and increasing to 4 for some less realistic cases.
Although quantitative results have to be taken carefully, given the limited knowledge
available about parameter values, they reveal rather small variations in RH estimates
even for substantial changes in the social structure. Note however how these variations
result from different factors compensating for each other, as highlighted by the large
differences in how much transmission occurs in the community and in workplaces for
different assumptions concerning the social structure.

Finally note that, although by not much, the presence of workplaces in addition to
households increases the estimates of RH , thus warning against the risk of neglecting
the complexity of the social structure when models are used to estimate the effort
required to stop an epidemic.

7 Summary and conclusions

We have provided a novel and coherent methodological framework for the charac-
terisation and the computation of the real-time growth rate for epidemic models of
increasing complexity, from various forms of models with no local saturation, to mod-
els with households and workplaces.

In summary, the Lotka–Euler equation

+∞∫

0

β(τ)e−rτ dτ = 1

that provides an implicit condition for the real-time growth rate when a single-type
model with non-random time-varying infectivity profile β(τ) is considered can be
extended to:

1. a random infectivity profile, with average β(τ);
2. a random susceptibility, in addition to a random infectivity: the only difference

is that β(τ) is now a weighted average, where the weights are given by the dis-
tribution of susceptibilities;
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3. a multitype model: in this case, the Lotka–Euler equation generalises into a con-
dition that the dominant eigenvalue of the matrix

Kr =
⎛

⎝
+∞∫

0

βi j (τ )e−rτ dτ

⎞

⎠

has dominant eigenvalue 1;
4. a multitype randomised model, where βi j (τ ) are now the suitable averages of the

infectivity profiles between types i and j .

The assumption of separable mixing substantially simplifies the results.
When small groups are considered, as in the households or the households–work-

places models, local saturation increases dramatically the complexity of the results but,
under Assumption (A.1), the global infectivity profile of a households (and similarly
for workplaces) can be factorised in the form

βH (τ ) = βg(τ ) + βg ∗ γH (τ ),

where β(τ) represents the average infectivity profile of an infective outside the house-
holds and γH (τ ) represents the average rate at which new cases occur in the household
epidemic, i.e. the average rate at which the household cumulative incidence increases.

When both households and workplaces are considered, averaging across all random
disease histories and across all possible households and workplaces epidemics, the
model reduces to a two-type model (where the two types are households infected
through a local workplace infectious contact and a global infectious contact, denoted
by L and G) and therefore r can be obtained imposing that

Kr =
⎛

⎝

∫ +∞
0 βL L(τ )e−rτ dτ

∫ +∞
0 βLG(τ )e−rτ dτ

∫ +∞
0 βGL(τ )e−rτ dτ

∫ +∞
0 βGG(τ )e−rτ dτ

⎞

⎠

has dominant eigenvalue 1.
Numerical computation of the rate γH (τ ) (respectively γW (τ )) can be performed

exactly in the case of Markovian processes, and has been reported here only for the
simplest case of exponentially distributed length of infectious period. However, for
non-Markovian models, a method proposed by Fraser (2007) to approximate the rate
γH (τ ) (resp. γW (τ )) is described. The method is based on approximating the num-
ber of cases in each generation using a Reed-Frost model and approximating their
times of occurrence by autoconvoluting the infectious contact time distribution, which
describes the distribution of times between cases in subsequent generations. Numer-
ical exploration of the quality of the approximation is reported in Appendix E, and
reveals that the approximation improves with decreasing within-household infectivity
and generation time distributions that are more peaked around their average.

Although applied only for an infectious contact time distribution ω(τ) equal for all
environments, the method can incorporate different infectious contact time distribu-
tions in households, workplaces and in the community, so that the infectivity profiles
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in different environments are not proportional to each other. Despite a single infec-
tious contact time distribution may be mathematically more convenient and could be
reasonable in the case of mild infections, it may also be argued that an infected case
is likely to spend more time outside the household at the beginning of the infectious
period and much less later on, when the advent of symptoms typically forces the indi-
vidual to stay at home, thus increasing the within-household infectivity and reducing
the infectivity via the other routes. We have not included this feature in the application
to influenza, both for consistency in the comparison with results from Fraser (2007)
and because, to our knowledge, no such detailed data is available in the literature yet.
However, recent data reveal that the school generation time distribution may be signifi-
cantly shorter than that of other environments (Cauchemez, personal communication)
and we note that this phenomenon has been included in previous studies involving
large-scale individual based simulation (e.g. Ferguson et al. 2005, 2006), by assuming
(even though in a slightly arbitrary way) that sick children are absent from school.

Furthermore, the method can be extended to random disease histories, by substi-
tuting the simple Reed-Frost model with a randomised one. However, in addition
to independence between different individuals (Assumption (A.1)), a rather strong
assumption of independence between the total infectivity and the shape of the infec-
tivity profile within the same individual (Assumption (A.3)) is also required in order
to separate the Reed-Frost model from the time component of a local epidemic as done
here. Further work is needed to relax this assumption.

Even if only in the case of a non-random disease history, the application of the
method to the case of influenza allows the estimation of RH for the model with house-
holds and workplaces. Although results are not reliable from a quantitative point of
view, as they are based on limited reliable data and some rather strong assumptions,
they nevertheless provide some indicative numerical values for the household repro-
duction number RH , ranging from 2.5 to 2.9 for educated guesses of within school
transmission and arguably reasonable workplace and school sizes. A wider but safer
interval of values ranges from RH = 2.26, as estimated in Fraser (2007) for the pure
households model, and RH as high as 4 when the whole population mixes according
to a children-like behaviour.

These values of RH are not particularly high. Apart from being influenced by a
social structure typical of developed countries (e.g. with small average household
size), this is mainly caused by the relatively low infection rates of influenza in com-
parison to those of other infections. The additional fact that even substantial changes in
the social structure lead to such moderate variations of RH may also be characteristic
of influenza and other diseases with similarly low transmission rates. Comparisons
with other infections with medium (e.g. mumps) or high infection rates (e.g. measles,
as done by Fraser 2007) would allow further understanding of the effective impact of
social structure on disease dynamics.

Note also that the estimates obtained here for influenza do not take into account the
form of assortativity in the social structure resulting from the fact that larger households
tend to contain more children and therefore that school classes, which are typically
much larger than offices, are preferentially connected to larger households. Since in the
case of multitype models it is recognised that increasing assortative mixing between
individuals is generally associated to a larger value of R0, an increased assortative
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mixing at the level of local structures may lead to an increase in the epidemic severity.
However, if children living in the same household go to the same school or class, the
infection is reintroduced multiple times in the same local structures thus slowing down
the spread and potentially reducing the final size (in the terminology of Sect. 2.2, the
network linking households and workplaces is not random, and presents many cycles
of length 2). The overall effect of this assortativity is therefore unclear, and further
research should focus on including it in the model by distinguishing between adults
and children.

A final remark refers to how much transmission occurs in different environments.
Fraser (2007) comments about the fact that UK data reveals that roughly a third of the
overall transmission of an average individual occurs in the household. This justifies
part of the a priori assumptions appearing in earlier studies (Ferguson et al. 2006;
Wu et al. 2006) that transmission is equally partitioned between the household, the
workplace and the community. The numerical examples provided here account for
a contribution of global infections to the overall infectivity of an individual ranging
from 20 to 60%, depending on the assumptions concerning workplaces. Note how-
ever that, because of the assumption of homogeneous mixing in each environment,
we interpreted workplaces like offices or classrooms. More sophisticated rules for
the interaction between individuals at work can allow the definition of workplace to
change radically (a department, a school, an entire company or university), thus includ-
ing as workplace transmission more and more occasional “long-range” infections and
reducing substantially the contribution of global transmission. This argument high-
lights the fact that quantifying how much transmission occurs via different routes is
more than a simple matter of parameter values which have not been estimated yet: it is
problematic because of the intrinsic difficulty in defining clearly what a workplace is.

In any case, it is important to note how the method shows that the presence of work-
places in the model results in larger values of RH compared to the simpler household
model (Fraser 2007). Despite this difference being moderate in the case of influenza,
it still highlights the risk of underestimating the effort required to stop the epidemic by
targeting control policies at the level of households when the presence of workplaces
is neglected.
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Appendix A: Factorisation of the global infectivity profile of a group

The computation of the real-time growth rate for socially structured populations heav-
ily relies on a factorisation of the infectivity profile of a group in terms of the internal
dynamics, described by the rate γ of appearance of new cases in the group and the
global infectivity that each infective exerts outside the group. This section is dedicated
to proving such a factorisation.
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It has been noted already that, under suitable conditions, the total infectivity of a
household R∗ can be factorised in the form

R∗ = Rg(1 + μH ),

where Rg represents the average global infectivity of an infected individual and μH

represents the average number of initial susceptibles that are ultimately infected in a
household epidemic started by a single initial case. The result is known as the Wald’s
identity for epidemics (after the general identity appearing in Wald 1947, of which it
is a particular case; see Ball 1986; Andersson and Britton 2000). As highlighted in
Pellis et al. (2008), it basically relies on Assumption (A.1) in the main text, i.e. on
the infectious behaviour of individuals being independent of when they are infected,
if infected, and who infected them (a property often referred to as lack of correlation
between infector and infectee, see Diekmann and Heesterbeek 2000), so that the partic-
ular realisation of their disease history, if infected, can be decided before the epidemic
starts. For a proof of Wald’s identity for epidemics, see Ball (1986) or Andersson and
Britton (2000). It relies on the same assumptions that allow the concept of generations
of real infections to be substituted by Ludwig’s concept of rank (Ludwig 1975; Pellis
et al. 2008).

Wald’s identity for epidemics concerns the total global infectivity of a household.
However, for the argument proposed in this chapter, a similar result is needed for the
infection rates at each point in time.

Theorem 3 Consider a household of n individuals that mix homogeneously and con-
sider a stochastic SIR epidemic spreading from a single initial infective. Assume that
infective i makes global infectious contact with any other individual according to a
Poisson process with rate Bg

i (τ ) and within-household infectious contacts accord-
ing to a Poisson process with rate Bh

i (τ ). Assume, for each i , that Bg
i (τ ) and Bh

i (τ )

are independent and identical copies of the random trajectories Bg(τ ) and Bh(τ ),
respectively, and that Bg(τ ) and Bh(τ ) are independent of each other. Finally, denote
by βg(τ ) the (pointwise) average of Bg(τ ) and by γH (τ ) the average rate at which
new household cases occur. Then, at each point in time, the global average infectivity
profile of the entire household βH (τ ) can be factorised as

βH (τ ) = βg(τ ) + βg ∗ γH (τ ),

where ∗ denotes the convolution of functions.

Proof The global contribution of the first individual does not represent a problem and
can be added at the last stage. Therefore, the focus will be on the convolution term,
which will be denoted by the random variable G H (τ ). Now, let U be a random vector,
containing all information describing the outcome of the within-household epidemic.
The interest is then focused, ∀τ , on the average EU [G H (τ )].

First, consider the case where, for every infective, Bg(τ ) and Bh(τ ) are non-random
and equal to βg(τ ) and βh(τ ), respectively. If there are only 2 individuals in the house-
hold, then U = (T2), where T2 represents the random time at which individual 2 is
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infected. Therefore:

ET2 [G H (τ )] =
+∞∫

0

βg(τ − s2) fT2(s2)ds2 = βg ∗ fT2(τ ),

where fT2(s2) is the probability density of individual 2 getting infected at time s2.
If there are 3 individuals, since the two initial susceptibles are indistinguishable,

instead of working with the times T2 and T3 of infection of individuals 2 and 3, it is
convenient to work with the times T(2) and T(3) at which the second and the third cases
occur. Then U = (T(2), T(3)) and, given that the joint density can be expressed as

fU (s(2), s(3)) = fT(3)|T(2)
(s(3)|s(2)) fT(2)

(s(2)),

at each time τ ,

EU [G H (τ )] =
+∞∫

0

+∞∫

0

[
βg(τ − s(2)) + βg(τ − s(3))

]
fU (s(2), s(3))ds(2)ds(3)

=
+∞∫

0

βg(τ − s(2)) fT(2)
(s(2))ds(2)+

+∞∫

0

+∞∫

0

βg(τ − s(3))

× fT(3)|T(2)
(s(3)|s(2)) fT(2)

(s(2))ds(3)ds(2)

=
+∞∫

0

βg(τ − s(2)) fT(2)
(s(2))ds(2) +

+∞∫

0

βg(τ − s(3)) fT(3)
(s(3))ds(3)

=
+∞∫

0

βg(τ − s)
(

fT(2)
(s) + fT(3)

(s)
)

ds

= βg ∗ γH (τ ),

where fT(3)
represents the marginal distribution of the third individual getting infected

during the epidemic, and γH = fT(2)
+ fT(3)

.
The extension to the case of n household members is straightforward, leading to

γH =
n∑

i=2

fT(i) .

Consider now the extension to random infectivity profiles. Let bg
i (τ ) (resp. bh

i (τ ))
be a realisation of the random variable Bg

i (τ ) (resp. Bh
i (τ )), describing the global

(resp. within-household) infectivity profile of individual i and distributed, indepen-
dently for each individual, according to the random trajectory Bg(τ )(Bh(τ )) defined
on a suitable space Bg (Bh) with measure ζg(ζh) and with time-point averages
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βg(τ ) = EBg [Bg(τ )] =
∫

Bg

bg(τ )dζg(bg)

⎛

⎜
⎝βh(τ ) = EBh [Bh(τ )] =

∫

Bh

bh(τ )dζh(bh)

⎞

⎟
⎠ .

Assume, for notational convenience, that the random variable Bg(τ )(Bh(τ )) can be
expressed by a density fBg ( fBh ). This is not necessary in general.

Then, in the case of 2 individuals, U = (Bh
1 , T2, Bg

2 ) (we ignore Bg
1 , as we are not

considering here the global contribution of the first case, and Bh
2 , as the second case

has no other susceptibles to infect). Note that, in the joint distribution

fU

(
bh

1 , s2, bg
2

)
= fBh

1

(
bh

1

)
fT2|Bh

1

(
s2|bh

1

)
fBg

2 |Bh
1 ,T2

(
bg

2 |bh
1 , s2

)
,

the factor fBg
2 |Bh

1 ,T2
(bg

2 |bh
1 , s2) is in fact simply fBg

2
(bg

2 ), because of the key assump-
tion that the individuals’ infectivity profiles can be drawn independently of the time of
their infections and the identity (i.e. of the infectious characteristics) of their infectors.
Therefore, ∀τ ,

EU [G H (τ )] =
+∞∫

0

∫

Bg

∫

Bh

bg
2 (τ − s2) fBh

1 ,T2,Bg
2
(bh

1 , s2, bg
2 )dbh

1 dbg
2 ds2

=
+∞∫

0

∫

Bg

∫

Bh

bg
2 (τ − s2) fBh

1
(bh

1 ) fT2|Bh
1
(s2|bh

1 ) fBg
2
(bg

2 )dbh
1 dbg

2 ds2

=
+∞∫

0

∫

Bg

bg
2 (τ − s2)

⎛

⎜
⎝

∫

Bh

fT2|Bh
1
(s2|bh

1 ) fBh
1
(bh

1 )dbh
1

⎞

⎟
⎠ fBg

2
(bg

2 )dbg
2 ds2

=
+∞∫

0

∫

Bg

bg
2 (τ − s2) fT2(s2) fBg

2
(bg

2 )dbg
2 ds2

=
+∞∫

0

⎛

⎜
⎝

∫

Bg

bg
2 (τ − s2) fBg

2
(bg

2 )dbg
2

⎞

⎟
⎠ fT2(s2)ds2

=
+∞∫

0

βg(τ − s2) fT2(s2)ds2

= βg ∗ γH (τ ).
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Note that, when adding the global contribution of the primary case, we have to rely
on the assumptions of independence between Bg

1 and Bh
1 .

The extension to more than 2 individuals follows the same argument, but is omitted
because of the cumbersome notation. Again,

γH =
n∑

i=2

fT(i) .

It is worth stressing again how such a factorisation is heavily based on the same
assumptions behind Wald’s identity for epidemics and Ludwig’s rank-based construc-
tion (Pellis et al. 2008, 2009). ��

Appendix B: Proof of Theorem 1

Proof For the sake of simplicity, consider again households all of the same size nH .
The result can be readily extended to households of variable sizes. As done in the
main text, we refer to all the non-primary cases as secondary cases, independently of
whether they have been infected directly or indirectly by the primary case, and we use
the factorisation

βH (τH ) = β(τH ) + β ∗ γH (τH ),

where βg(τ ) is the average global infectivity profile of an individual and γH (τH ) the
average rate at which new cases appear in the household. The real-time growth rate
rH for households is given by the implicit solution of

LβH (rH ) = 1.

The real-time growth rate r for individuals is obtained when the two-type model
with primary and secondary cases is considered. In this framework, a primary case
generates other primary cases following βg(τ ) = βg(τH ) (the household is infected
when the primary case is infected) and secondary cases following γH (τH ); a secondary
case generates only primary cases following βg(τ ). For r to be the real-time growth
rate for individuals, the linear operator

Kr =
( ∫ +∞

0 β(τH )e−rτH dτH
∫ +∞

0 β(τ)e−rτ dτ
∫ +∞

0 γH (τH )e−rτH dτH 0

)

(15)

must have dominant eigenvalue 1. A quick look at the characteristic equation (e.g. using
Descartes’ sign rule) reveals that the two eigenvalues have opposite signs. Imposing
1 to be an eigenvalue (which means it can only be the dominant one) implies that

1 −
+∞∫

0

β(τH )e−rτH dτH =
⎛

⎝
+∞∫

0

γH (τH )e−rτH dτH

⎞

⎠

⎛

⎝
+∞∫

0

β(τ)e−rτ dτ

⎞

⎠
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which, by properties of the Laplace transform, can be written as

L[β + (γH ∗ β)](r) = 1. (16)

Since r and rH are both the unique solution of the same equation (unique because the
left-hand side is monotonic in r , with limr→+∞ LβH (r) = 0 and LβH (0) = R∗ > 1:
recall that we are observing a large epidemic), it follows r = rH . ��

Appendix C: Variable household and workplace sizes

Here we extend the results about the real-time growth rate for the households–work-
places model to the case of households and workplaces of variable sizes.

First, the rate at which a household infected either locally or globally infects another
household globally does not involve workplaces and is therefore obtained by the same
argument used for the households model at the end of Sect. 3.2. In the case of βL L and
βGL , the additional presence of a workplace epidemic has to be taken into account.
The notation is the following: π H

nH
and πW

nW
represents respectively the probability that

a randomly selected individual belongs to a household of size nH and a workplace of
size nW ; γ

(nH )
H (τH ) and γ

(nW )
W (τW ) represent respectively the rate of appearance of

new cases in a household of size nH at time τH after the infection of the household
and in a workplace of size nW at time τW after the infection of the workplace.

Consider first the case of βL L . A household of size nH infects a workplace of size
nW at a rate γ

(nH )
H (τH )πW

nW
, because the size of the workplaces where individuals

living in that household work is independent of the size of the household, under the
bipartite random network Assumption (A.2). Then, for the same reason, the workplace
infects households of size n′

H at a rate given by γ
(nW )
W (τW )π H

n′
H

. By considering the

contribution of each possible workplace size, a household of size nH infected locally
infects locally a household of size n′

H at an average rate of

π H
n′

H

(
∑

nW

πW
nW

γ
(nH )
H ∗ γ

(nW )
W (τH )

)

= π H
n′

H
γ

(nH )
H ∗

(
∑

nW

πW
nW

γ
(nW )
W

)

(τH )

= π H
n′

H
γ

(nH )
H ∗ γW (τH ),

where γW = ∑
nW

πW
nW

γ
(nW )
W is the average rate at which secondary cases are infected

in the workplace of a randomly selected individual.
In the case of βLG , consider a household of size nH infected globally. The primary

case is in a workplace of size nW with probability πW
nW

and therefore a household of
size n′

H is infected locally through this primary case at a rate

π H
n′

H

∑

nW

πW
nW

γ
(nW )
W (τW ) = π H

n′
H
γW (τH ),
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where γW is defined as before and τW = τH because the two local structures are
infected at the same time, i.e. the time of the infection through a global contact of the
common primary case.

Any other household case is in a workplace of size n′
W with probability πW

n′
W

and

therefore the rate of infection of households of size n′
H through secondary cases is

given, like before, by

π H
n′

H
γ

(nH )
H ∗

(
∑

nW

πW
nW

γ
(nW )
W

)

(τH ) = π H
n′

H
γ

(nH )
H ∗ γW (τH ).

The total rate obtained by adding the two contributions together is given by

π H
n′

H

(
γW (τH ) + γ

(nH )
H ∗ γW (τH )

)
.

The real-time growth rate r is obtained by imposing a dominant eigenvalue 1 to the
block operator (the index H has been dropped from the time τH )

Kr =
⎛

⎝
π H

n′
H

∫ +∞
0 γ

(nH )
H ∗ γW (τ )e−rτ dτ π H

n′
H

∫ +∞
0

(
γW (τ ) + γ

(nH )
H ∗ γW (τ )

)
e−rτ dτ

π H
n′

H

∫ +∞
0

(
β(τ) + γ

(nH )
H ∗ β(τ)

)
e−rτ dτ π H

n′
H

∫ +∞
0

(
β(τ) + γ

(nH )
H ∗ β(τ)

)
e−rτ dτ

⎞

⎠

Note that each of the four blocks has the same dimension NH × NH , where NH rep-
resents the largest household size considered (assumed to be finite) and consists of a
matrix with rank 1. Therefore, in general, Kr has rank 2. However, thanks to the par-
ticular structure of Kr , the computation of the dominant eigenvalue can be simplified
according to the following result:

Theorem 4 Consider m-dimensional real non-zero column vectors u, v and a, b, c, d
and consider the m × m matrices

A = uaT , B = ubT , C = vcT , D = vdT ,

where T denotes the transposition. Finally consider the 2m × 2m block matrix

M =
(

A B

C D

)

.

Then the matrix M has only 2 non-zero eigenvalues λ1 and λ2, which are the same
eigenvalues of the 2 × 2 matrix

m =
(

aT u bT u

cT v dT v

)

,

whose elements are the eigenvalues of the corresponding matrices A, B, C and D. In
particular, the dominant eigenvalue of M and m is the same.
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Proof The proof proceeds by direct computation, based on the fact that, if λ is an
eigenvalue of m with corresponding eigenvector (x, y)T , x, y ∈ R, then (ux, vy)T is
an eigenvector of M corresponding to the same eigenvalue λ. ��

Theorem 4 implies that Kr can be reduced to the two dimensional case of fixed
household and workplace sizes with

βL L(τH ) =
∑

nH

π H
nH

γ
(nH )
H ∗ γW (τH )

= γH ∗ γW (τH )

βLG(τH ) =
∑

nH

π H
nH

(
γW (τH ) + γ

(nH )
H ∗ γW (τH )

)

=
∑

nH

π H
nH

γW (τH ) +
∑

nH

π H
nH

γ
(nH )
H ∗ γW (τH )

= γW (τH ) + γH ∗ γW (τH ),

where γH = ∑
nH

π H
nH

γ
(nH )
H represents the average rate of occurrence of new cases

in the household of a randomly chosen individual and the last equality holds because∑
nH

π H
nH

= 1.

Appendix D: Proof of Theorem 2

Proof Theorem 2 is based on the following:

Lemma 1 Assume M is a 2-by-2 matrix of the form

M =
(

a b

xc xd

)

, (17)

with d > 0, and assume that det M ≤ 0. Then the dominant eigenvalue of M is an
increasing function of x.

Proof The dominant eigenvalue of M, ρ(M), is given by

ρ(M) = 1

2

[
(a + xd) +

√
(a + xd)2 − 4x det M

]
.

The conditions d > 0 and det M ≤ 0 imply that ρ(M) increases monotonically with x .
��

Then, Theorem 2 follows from the fact that K̃r of Eq. (13) has the same struc-
ture as in Lemma 1, with Rg = x, c = d > 0 and b > a, which implies det M =
ad − bc = c(a − b) < 0. Therefore ρ(K̃r ) = ρ(K̃r (Rg)) is a continuous and
monotonically increasing function of Rg . Given that limx→−∞ ρ(K̃r (x)) = −∞ and
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limx→+∞ ρ(K̃r (x)) = +∞, the solution of ρ(K̃r (Rg)) = 1 exists and is unique.
Furthermore, when Rg = 0,

ρ(K̃r (0)) =
( nH∑

i=2

μH
i

Si−1

)⎛

⎝
nW∑

j=2

μW
j

S j−1

⎞

⎠ ,

and therefore Rg is strictly positive if and only if Condition (14) is satisfied. ��

Appendix E: Numerical investigation

The main ingredient used in dealing with the real-time growth rate when local satura-
tion effects cannot be neglected is the function γ , defined as the average rate at which
a new infection occurs in a small group. It is worth analysing this function in detail.

It follows directly from its definition that, if X (t) denotes the average number
of susceptibles and IC (t) the average cumulative incidence of an SIR epidemic in a
homogeneously mixing population at time t ,

γ (t) = d

dt
IC (t) = − d

dt
X (t). (18)

The first equality states that the rate at which new cases appear is the same rate at
which the cumulative incidence increases, which is a trivial statement (although for-
mal details involve the exchange between the derivative and the integral defining
the average across possible outcomes of the epidemic process). The second equation
follows directly from the fact that the total population is constant.

This characterisation, however, is not particularly enlightening. Therefore it is worth
exploring numerically this complex model component γ , and in particular the analyt-
ical approximation discussed in the main text.

Despite the approximation discussed in Sect. 5.1 does not apply to the sSIR model,
because of the correlation between the infectious contact time distribution of an infec-
tive and the total infectivity (individuals that are infected for longer have higher total
infectivity), the Markovian cases allow the exact dynamics to be expressed analytically.
We therefore “improperly” compare the simplest case with constant recovery rate in
a group of size 2 with what the approximation would lead to, even if we overlook the
fact that one of the assumption at the base of the approximation is not met. In this par-
ticularly simple case, if λ denotes the one-to-one infection rate and ν the recovery rate,
the average number of cases in generation 2 from the randomised Reed-Frost model
is given by λ

/
(λ + ν), i.e. the probability that the second case is infected (competing

hazards). The infectious contact time distribution, instead, is given by ω(τ) = νe−ντ .
Therefore the approximation to the exact rate γ (τ) = λe−(λ+ν)τ would give

γmax (τ ) = λν

λ + ν
e−ντ . (19)
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Fig. 5 Plot of the rate at which the initial susceptible in a group of size n = 2 acquires infection from the
other case. The exact rate γ (τ) (dash-dotted line) is compared with the rate obtained by averaging across
100,000 stochastic simulations (continuous line) and the analytical approximation (dashed line) described
in Eq. (19). The disease history corresponds to the Markovian case (exponentially distributed length of
infectious period) with constant infectivity λ = 1 and recovery rate ν = 1

As it should be, it is easily verified that

+∞∫

0

γ (τ)dτ =
+∞∫

0

γmax (τ )dτ = λ

λ + ν
= μ2 = μ.

Figure 5 shows the approximation γmax , together with the exact rate γ and the
result of the computation of γ (t) = d

dt
IC (t), where IC (t) is obtained by averaging

across 100,000 individual-based stochastic simulations. As expected, the approxima-
tion performs poorly.

When a non-random time-varying infectivity is considered, no exact analytical
result is available and therefore the comparison of the approximate rate γmax is made
with the average of 100,000 individual-based stochastic simulations. Figures 6 and 7
show the analytical approximation and the result of the numerical simulation for
groups of size n = 2, 5 and 10, an average one-to-all total infectivity of C = 1.5 and
a 
(α, δ)-distributed infectious contact time distribution ω(τ), with shape parameter
α = 1 (exponential), 4 and 10 and fixed generation time Tg = α/δ = 1. As can be
seen, the approximation does not appear to improve significantly as the group size
grows, but it improves considerably with increasing α, i.e. when secondary cases of
an infective are more peaked around the generation time Tg .

When C within the group has value 1.5, then each individual on average makes
1.5 infectious contacts with other cases. However, when C decreases, so does the
probability of repeated contacts towards the same individuals. In fact the approxima-
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Fig. 6 Plots of the rate at which new cases occur in a local epidemic started from a single initial case. In
this case, C = 1.5 and the infectious contact time distribution is given by ω(τ) ∼ 
(α, δ) with generation
time Tg = 1. The analytical approximation (dashed line) obtained from Eq. (9) is compared with the
average over 100,000 stochastic simulation (continuous line). The group size changes by rows: from top to
bottom, n = 2, 5 and 10. The shape of the infectivity profile changes by columns: from left to right, α =1
(exponential), 4 and 10. The scale parameter δ changes accordingly

tion dramatically improves as C decreases: the same situations described above are
reported in Figs. 7 for C = 0.75.

Note however that, even when the approximation appears not to be particularly
accurate, as in the case of C = 1.5 above, when the method is used to estimate the
real-time growth rate in a structured model, the average infectious profile of the group
(e.g. a household) is multiplied by e−r t and therefore, for positive r , the discrepancies
between the approximation and the true rate γ (t) that occur for large t are weighted
much less than those occurring for small t . Estimates of real-time growth rates are
therefore more accurate when the infectious contact time distribution is 
-distributed
with shape parameter α > 1, i.e. when the rate of appearance of new cases at the very
start of the local epidemic is negligible and thus the discrepancy between the real and
the approximate rate of appearance of new cases is minimal for small t (as opposed to
the exponentially decaying infectivity obtained for α = 1, see Figs. 6 and 7). Such a
consideration offers an explanation that motivates the predictive power of this method
highlighted in Fraser (2007).
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Fig. 7 Plots of the rate at which new cases occur in a local epidemic started from a single initial case. All
details are the same as in Fig. 6, except that now C = 0.75

Finally, calculations have also been performed using a random TVI disease his-
tory (under Assumption (A.3)). Numerical computation of the average number of
cases in each generation have been performed using the technique described in
Picard and Lefèvre (1990) for computing the probability of observing each possi-
ble epidemic realisation from a randomised Reed-Frost model. Figure 8 reports the
same output as in Fig. 6, but assuming that individuals have an exponentially distrib-
uted total infectivity with mean C = 1.5 and a 
(α, δ)-distributed infectious contact
time distribution ω(τ) with values of α of 1, 4 and 10 and a mean T which is in turn
randomly distributed according to a 
(α′, δ′) distribution, with α′ = 4 and mean value
given by the generation time α′/δ′ = Tg = 1. As a last example, Fig. 9 shows the
rate γH for the same parameter choices as in Fig. 8i, but with the incorrect applica-
tion of the approximation method when either (a) a simple Reed-Frost model is used
instead of the randomised one (the total area under the rate γH is approximately 4.05
instead of the correct value of 2.93) or (b) a 
(α, δ)-distributed infectious contact time
distribution ω(τ) with fixed mean Tg is used, instead of the pointwise average of the
infectious contact time distributions with 
(α′, δ′)-distributed mean T with average
Tg (correct area under γH , but wrong shape).
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Fig. 8 Plots of the rate at which new cases occur in a local epidemic started from a single initial case. All
details are the same as in Fig. 6, except for an exponentially distributed total infectivity of individuals and
a 
-shaped infectivity profile with random mean, as described in the text
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Fig. 9 Incorrect applications of the approximation method to the case of an exponentially distributed total
infectivity of individuals and a 
-shaped infectivity profile with fixed shape parameter α = 10 and random
mean, as described in the text (group size n = 10)
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