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Abstract In this paper, we extend the theoretical treatment of the Moran model of
genetic drift with recombination and mutation, which was previously introduced by us
for the case of two loci, to the case of n loci. Recombination, when considered in the
Wright–Fisher model, makes it considerably less tractable. In the works of Griffiths,
Hudson and Kaplan and their colleagues important properties were established using
the coalescent approach. Other more recent approaches form a body of work to which
we would like to contribute. The specific framework used in our paper allows finding
close-form relationships, which however are limited to a set of distributions, which
jointly characterize allelic states at a number of loci at the same or different chromo-
some(s) but which do not jointly characterize allelic states at a single locus on two or
more chromosomes. However, the system is sufficiently rich to allow computing, albeit
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456 A. Bobrowski et al.

in general numerically, all possible multipoint linkage disequilibria under recombi-
nation, mutation and drift. We explore the algorithms enabling construction of the
transition probability matrices of the Markov chain describing the process. We find
that asymptotically the effects of recombination become indistinguishable, at least as
characterized by the set of distributions we consider, from the effects of mutation and
drift. Mathematically, the results are based on the foundations of the theory of semi-
groups of operators. This approach allows generalization to any Markov-type mutation
model. Based on these fundamental results, we explore the rates of convergence to
the limit distribution, using Dobrushin’s coefficient and spectral gap.

Keywords Recombination · Moran model · Markov chain · Mutation · Genetic drift

Mathematics Subject Classification (2000) 92D25 · 60J05 · 60J35

1 Introduction

The Wright–Fisher model (Ewens 2004) provides an established simplified descrip-
tion of the dynamics of populations of individuals endowed with genomes, under
the action of genetic drift, mutation, selection and recombination, including various
demographic scenarios such as bottlenecks, expansions and migrations. Even in the
simplified framework, the number of possible scenarios is enormous and many of
them pose almost intractable difficulties. The essential reason of these complications
is that the Wright–Fisher model is a Markov chain with an enormous state space.
For example, if there are 2N genomes involved, each of them with K variants, the
dimension of the chain is equal to K 2N , which is unmanageable even for modest
2N and K values. These difficulties gave rise to a large number of approximate or
asymptotic mathematical techniques, usually assuming large population size N . Of
these techniques, the best developed are diffusion approximations in forward time and
coalescent processes in reverse time.

Recombination, when considered as one of the genetic forces active in the Wright–
Fisher model, makes it considerably less tractable. In the framework of coalescence,
there exist effective computational techniques to trace the ancestry of a sample, when
recombination is considered. In the works of Griffiths such as Griffiths (1981) and
other authors, important properties were established, such as the distribution of the
size of the ancestral graph in the coalescent with recombination. The important result
concerning the correlation of the times to the most recent common ancestors of two
recombining loci, has been found by Hudson (1983), based on results obtained by
Griffiths (1981). Last but not least, in forward time, it is now possible to efficiently
simulate the Wright–Fisher model with recombination (Kimmel and Peng 2005) even
for large-scale problems.

There has been recently at least three monographs, which thoroughly explain recom-
bination, mostly in the context of the coalescent in reverse time. These are Durret
(2002), Hein et al. (2006) and Wakeley (2008). These monographs also have large
reference lists. From the large quantity of recently published papers, we may idiosyn-
cratically quote Barton et al. (2004) and Baake and Herms (2008).
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Asymptotic behavior of a Moran model 457

However, there are some aspects of population genetics under recombination that
are still to be clarified. One of them is the question of identifiability, i.e., if the popu-
lation can reach a stage at which it is indistinguishable from the population evolving
solely under drift and mutation. In this paper we approach and solve this problem
using a mathematical relative of the Wright–Fisher model, known as the Moran model
(Ewens 2004). Our approach is mostly forward-time.

The simplest version of our model, which assumes only two recombining loci
per haploid individual (genome), has been previously published in Bobrowski and
Kimmel (2003) and Kimmel and Polańska (1999). Therefore, we depart here from the
next least complicated case, i.e., that of three loci, before proceeding to the general
case of n loci. We derive semigroups of operators describing the evolution of the dis-
tributions characterizing the recombinant status of all loci in each of the individuals
in the sample. This leads to a characterization of the limit distributions of the process.

2 The case of three loci

We start with the description of our model in the case of three loci, where more explicit
formulas are available; for the case of two loci see Bobrowski and Kimmel (2003).

2.1 Mathematical notations

Throughout the paper A is a countable set of allele types: typically it is Z or one of
its subsets. l1 stands for the space of absolutely summable sequences (ξi )i∈A, with
the norm ‖(ξi )i∈A‖ = ∑

i∈A |ξi |. The elements e j = (δi j )i∈A, j ∈ A, where δi j

is the Kronecker delta, form a basis of l1; any (ξi )i∈A ∈ l1 may be represented as
(ξi )i∈A = ∑

i∈A ξi ei . Vector (ξi )i∈A ∈ l1 is said to be a distribution iff ξi ≥ 0, i ∈ A,

and
∑

i∈A ξi = 1. Mn where n is an integer, is the space of absolutely summable
n-dimensional matrices m = (μi1,...,in )i1,...,in∈A with the norm

∑
i1,...,in∈A |μi1,...,in |.

A matrix m ∈ Mn is termed a distribution iff its entries are non-negative and add up
to 1. Distributions in Mn are distributions of n-tuples of A-valued random variables.

Mn may be viewed as a tensor product of n copies of l1 : Mn = (l1)n⊗; the
tensor product of (ξi, j )i∈A ∈ l1, j = 1, . . . , n, is (ξi1,1ξi2,2 · · · ξin ,n)i1,...,in∈A. More
specifically, Mn is isometrically isomorphic to the completion of the algebraic tensor
product with respect to the projective norm (Defant and Floret 1993; Ryan 2002).

If Ai , i = 1, . . . , n are bounded linear operators in l1, then their tensor
product is an operator in Mn defined as A1 ⊗ · · · ⊗ An(μi1,...,in )i1,...,in∈A =∑

i1,...,in∈A μi1,...,in A1ei1 ⊗ A2ei2 ⊗ · · · ⊗ Anein . We have, ‖A1 ⊗ · · · ⊗ An‖ =
∏n

i=1 ‖Ai‖.
A family of operators {S(t), t ≥ 0} in a Banach space X is said to be a strongly

continuous semigroup (Engel and Nagel 2000) iff S(t)S(s) = S(t + s), S(0) is the
identity operator, and limt→0 S(t)x = x (strongly, i.e., in the X-space norm), for all
x ∈ X. A strongly continuous semigroup in l1 is termed a Markov semigroup iff all
S(t) map distributions into distributions; in particular we must have ‖S(t)‖ = 1. If
{Si (t), t ≥ 0}, i = 1, . . . , n are strongly continuous semigroups of Markov operators
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in l1, then {S1(t) ⊗ · · · ⊗ Sn(t), t ≥ 0} is a strongly continuous Markov semigroup in
Mn . This semigroup is called the tensor product of {Si (t), t ≥ 0}, i = 1, . . . , n.

The Cartesian product Mm
n of m copies of Mn provides a way of gathering infor-

mation on distributions of m n-tuples of A-valued variables. This space may be seen
as a direct sum of its m subspaces, with the j th of them being the subspace of
m-tuples (mi )i=1,...,m where all but m j are zero. On the other hand, all these sub-
spaces may be identified with Mn, and so we may see Mm

n as a direct sum of
m copies of Mn . The norm in this space is ‖(mi )i=1,...,m‖ = ∑m

i=1 ‖mi‖Mn . We
say that x ∈ Mm

n is a distribution iff it is a convex combination of m distribu-
tions in Mn . A Markov operator in Mm

n is an operator mapping distributions into
distributions. If {Ti (t), t ≥ 0}, i = 1, . . . , m are Markov semigroups in Mn, then
{⊕m

i=1 Ti (t), t ≥ 0}, defined as
⊕m

i=1 Ti (t)(
∑c

i=1 mi ) = ∑m
i=1 Ti (t)mi is a Markov

semigroup in Mm
n . The domain of the infinitesimal generator G of this semigroup is

the Cartesian product of the domains of the generators Gi of {Ti (t), t ≥ 0} and we
have G(mi )i=1,...,m = (Gi mi )i=1,...,m for (mi )i=1,...,m in this domain.

2.2 The model

Consider a population of 2N individuals. Each individual is represented as a triple
of A-valued random variables (where A is the set of allelic types, see Sect. 2.1)
describing three loci on a chromosome in linear order; the i th individual being a
triple (Xi , Yi , Zi ), i = 1, . . . , 2N . We assume that these triples are exchangeable,
that each of them evolves in time as a triple of independent, non-explosive Markov
chains, independent of the other ones, but with the same transition probabilities; this
models mutation at three loci of a chromosome in each individual. The process of
mutation at the first locus in each individual is described by means of a strongly
continuous semigroup {SX (t), t ≥ 0} of Markov operators in l1. This means that if
x ∈ l1 is the distribution of allele types at time 0 then SX (t)x is the distribution of
allele types at time t. The process of mutation on the second locus is governed by
a semigroup {SY (t), t ≥ 0}, and the process of mutation on the third locus is gov-
erned by a semigroup {SZ (t), t ≥ 0}. The tensor product semigroup {S(t), t ≥ 0},
S(t) = SX (t) ⊗ SY (t) ⊗ SZ (t), describes evolution of distributions at three loci,
provided mutations at these loci occur independently.

We also incorporate recombination and genetic drift in the model by assuming that
each individual’s life-length is an exponential random variable with parameter λ/2
and that at the moment of an individual’s death, the triple by which it is represented
is replaced by another triple in the following manner. With probability 1 − r, where
r = r1 + r2 with r1, r2 ∈ [0, 1] such that r ∈ (0, 1], are given parameters, one of
the triples (X j , Y j , Z j ), j = 1, . . . , 2N is drawn at random to replace the deceased
one. With probability r1 the X -variable is drawn at random first and the par (Y, Z)

next, independently of the result of the first draw (this models recombination after the
first locus). With probability r2, the pair (X, Y ) is drawn first and the variable Z next,
independently of the first draw (this models recombination after the second locus). As
a consequence, a new triple becomes one of the already existing triples (including the
one just deceased) (X j , Y j , Z j ), each of them with probability (1−r) 1

2N +r 1
(2N )2 , or
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one of the two types of “mixed ones”: either (X j , Yk, Yk), j �= k each with probability
r1

1
(2N )2 or (X j , Y j , Zk), j �= k each with probability r2

1
(2N )2 .

If the triples (Xi , Yi , Zi ) are exchangeable, then, because of the sampling scheme,
it is obvious that so are the newly formed triples immediately after an individual’s
death. This fact follows from Lemma 1 in Bobrowski and Kimmel (2003) if we note
that either the pair (X, Y ) or the pair (Y, Z) can be treated as a single compound locus.
Therefore, exchangeability is preserved in the model.

2.3 Relations between partial distributions of the population immediately before
and immediately after an individual’s death

Let (Xa, Ya, Za) and (X̃a, Ỹa, Z̃a), a = 1, . . . , 2N be the triples representing individ-
uals in the population immediately before and immediately after an individual’s death.
By exchangeability of (Xa, Ya, Za), a ∈ 1, . . . , 2N , the distribution of (Xa, Ya, Zb)

where a �= b does not depend on the choice of a and b; we will denote it by D112.

The same is true of the distributions of (Xa, Ya, Za), (Xa, Yb, Za), (Xa, Yb, Zb) and
(Xa, Yb, Zc) where a, b and c are distinct numbers; we denote these distributions
by D111, D121, D122 and D123, respectively. The corresponding Ds with tilde denote
distributions in the population immediately after an individual’s death.

As we shall see shortly, all D̃s are convex combinations of Ds, so that there exists
a transition matrix � of a Markov chain such that

D̃ = �D, (1)

where D̃ and D are the (column-)vectors with coordinates D̃111, D̃112, D̃121, D̃122,

D̃123 and D111, D112, D121, D122, D123, respectively (note the lexicographic order).
We will write � as a convex combination

� = (1 − r)�0 + r1�1 + r2�2 (2)

of three transition matrices, corresponding to the cases of no recombination, and of
recombination after the first and after the second locus, respectively.

To this end, we note that if there was no recombination, none of D112, D121 and
D122 has changed unless i = 1, j = 2 or i = 2, j = 1. In this last case D̃112 =
D̃121 = D̃122 = D111. Hence,

�0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
2

(2N )2 1 − 2
(2N )2 0 0 0

2
(2N )2 0 1 − 2

(2N )2 0 0
2

(2N )2 0 0 1 − 2
(2N )2 0

0 2
(2N )2

2
(2N )2

2
(2N )2 1 − 6

(2N )2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3)

where the form of the last row is justified as follows. If i = 1, j = 2, then
(X̃1, Ỹ2, Z̃3) = (X2, Y2, Z3) and so D̃123 = D112; similarly we show that this equality
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Table 1 Calculation of �1

i �= 1, 2 i = 1, i = 1, i = 1, i = 1, i = 2, i = 2,

j �= 2, j = 2, j = 2, j �= 2, k �= 1 k = 1
k �= 2 k �= 2 k = 2 k = 2

D̃112 D112 D112, j = k D121 D111 D122 D112 D111

D123, j �= k

D̃121 D121 D121, j = k D112 D111 D122 D121 D111

D123, j �= k

D̃122 D122 D122 D111 D111 D122 D122 D111

If i = 1 and recombination took place after the first locus, (X̃1, Ỹ1, Z̃1) = (X j , Yk , Zk ) and so

(X̃1, Ỹ2, Z̃1) = (X j , Y2, Zk ). Considering all possible cases for j and k we obtain four entries in the
middle row of table. The remaining entries in the table are obtained similarly

is true when i = 2 and j = 1. Analogously, D̃123 = D122 if either i = 2, j = 3
or i = 3, j = 2, and D̃123 = D121 if either i = 3, j = 1 or i = 1, j = 3. In the
remaining cases D̃123 = D123.

To find the three rows in the middle of �1 we consider recombination between the
first two loci, by listing the possible cases in Table 1. This gives �1 in the form:
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − 2N−1
(2N )2 0 0 2N−1

(2N )2 0

2N+1
(2N )3

2N−2
2N + 2N−1

(2N )3 + 2N−1
(2N )2

2N−1
(2N )3

2N−1
(2N )3

(2N−1)(2N−2)

(2N )3

2N+1
(2N )3

2N−1
(2N )3

2N−2
2N + 2N−1

(2N )3 + 2N−1
(2N )2

2N−1
(2N )3

(2N−1)(2N−2)

(2N )3

2
(2N )2 0 0 1 − 2

(2N )2 0

0 2
(2N )2

2
(2N )2

2
(2N )2 1 − 6

(2N )2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

Obtaining the first row here is straightforward, and the last row is obtained by noting
that: (a) for i = 1, D̃123 = D112 provided j = 2, D̃123 = D121 provided j = 3, and
D̃123 = D123 in the remaining cases, (b) for i = 2, D̃123 = D112 provided k = 1,
D̃123 = D122 provided k = 3, and D̃123 = D123 in the remaining cases, (c) for i = 3,
D̃123 = D121 provided k = 1, D̃123 = D122 provided k = 2, and D̃123 = D123 in the
remaining cases, and (d) for i ≥ 4, D̃123 = D123.

To cover the case of recombination after the second locus we note that our model is
symmetric with respect to numbering loci. More specifically, if the loci were numbered
from the last one to the first, the distributions D111, D112, D121, D122, D123 would
have become D111, D122, D121, D112, D123, which amounts to transposition of D112
and D122. Since such a numbering transposes recombination loci, the matrix �2 may
be obtained from �1 by interchanging columns 2 and 4 and, next, interchanging rows
2 and 4.

2.4 Evolution of D in time

Distributions D111, D112, D121, D122 and D123 form a complete system in that their
evolution in time depends merely on their initial conditions, the matrix � and the
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Asymptotic behavior of a Moran model 461

semigroup {S(t), t ≥ 0} in M3. For, if we let G be the generator of {S(t), t ≥ 0} and G
be the generator of the Cartesian product {S(t), t ≥ 0} of five copies of {S(t), t ≥ 0} in
M5

3, then writing D(t) for the (column-) vector of D111(t), D112(t), D121(t), D122(t)
and D123(t) we have

dD(t)

dt
= GD(t) + λN�D(t) − λN D(t), t ≥ 0 (5)

provided that D(0), the initial state of the distributions belongs to D(G), i.e., if all of its
coordinates belong to D(G). In other words, D(t) = T (t)D(0) where the semigroup
{T (t), t ≥ 0} is generated by G + λN� − λN . The proof of these facts is analogous
to that given in Bobrowski and Kimmel (2003) where the case of two loci is treated.

The result is intuitively clear: in the absence of genetic drift, where the members of
the population evolve without influencing one another, the behavior of D is governed
by (5) with λ = 0; in this case (5) is an uncoupled system of five independent equations
(λ = 0 gives infinite life-time of an individual; see also (9) later on). The process of
birth-death events is then treated as a perturbation of the uncoupled system; and these
events occur at an exponential rate λN (since there are 2N individuals, each of them
having independent exponentially distributed life-lengths with parameter λ/2).

If the transition matrix � = (θi j ) where i, j are in {1, . . . , κ}, where κ is a natural
number, is ergodic, we define � as a κ × κ matrix with all rows equal to a stationary
distribution of the matrix �.

Lemma 1 For the model with three loci the transition matrix � is ergodic.

Proof For a transition matrix 	 = (φi j ) where i, j are, say, in {1, . . . , κ}, where κ is
a natural number, we define the Dobrushin’s ergodicity coefficient α as

α = α(	) = min
1≤i, j≤κ

κ∑

k=1

min(φik, φ jk) = 1 − 1

2
max

1≤i, j≤κ

κ∑

k=1

|φi,k − φ j,k |, (6)

see Iosifescu (1980, Sections 1.11.3–1.11.5). This coefficient provides an efficient
way of studying asymptotic behavior of 	 in that if α(	) > 0 then the matrix 	 is
ergodic and there exists a probability vector (πi )i=1,...,κ such that

‖	n − �‖ ≤ (1 − α(	))n , (7)

where ‖·‖ denotes the maximum of all absolute values of entries of a matrix (Iosifescu
1980, Section 4.1.3).

To estimate the Dobrushin’s coefficient of � we note that β = 2 − 2α (which
is the maximum appearing in (6)) is a convex function of 	, and so α is concave.
Therefore, α(�) ≥ (1−r)α(�0)+r1α(�1)+r2α(�2). Since, for �0 this maximum
is attained for i = 1 and j = 5, and equals 2, α(�0) = 0. Similarly, the maximum
for �1 is attained simultaneously for (i, j) = (1, 2), (1, 3), (1, 5), (2, 4), (3, 4) and
(4, 5) (provided 2N ≥ 3), and equals 2 − 1

N 2 . Hence, α(�1) = 2
(2N )2 . Finally, since

interchanging rows and columns does not influence the value of α, α(�2) = α(�1).

Hence, α(�) ≥ rα(�1) ≥ 2r
(2N )2 > 0.
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The ergodicity of the transition matrix � leads to the following theorem:

Theorem 1 For the model with three loci:

lim
t→∞ ‖T (t) − S(t)�‖ = 0, (8)

and the speed of convergence is exponential.

Proof The semigroup generated by G acts on a vector m = (mi )i=1,...,5 of five ele-
ments of M3 as follows:

S(t)m = (S(t)mi )i=1,...,5. (9)

This implies that S(t) commutes with � and so we have T (t) = S(t)e−λNt eλNt�

(cf. Theorem 3 in Griego and Hersh 1971). On the other hand, by (7) and �n = �,
n ≥ 2, we have ‖eλNt� − eλNt�‖ ≤ ∑∞

n=1
(λNt)n‖�n−�‖

n! ≤ ∑∞
n=1

(λNt)n(1−α(�))n

n! ≤
eλNt (1−α). Thus, ‖e−λNt eλNt� − e−λNt eλNt�‖ ≤ e−λNtα(�). Using eλNt� = I +
�(eλNt − 1), we get

‖T (t) − S(t)�‖ ≤ ‖e−λNt eλNt� − �‖
≤ ‖e−λNt eλNt� − e−λNt eλNt�‖ + ‖e−λNt eλNt� − �‖
≤ e−λNtα(�) + e−λNt ≤ e− λr

2N t + e−λNt , (10)

as desired.

The most interesting practical consequence of Theorem 1 is that for large t , the dis-
tribution D111(t) in the model with drift and recombination is asymptotically the same
as that in the model without drift and recombination provided the initial condition in
the latter is the appropriate convex combination involving the stationary distribution
of the matrix �:

D111(t) ∼ S(t)(π1 D111(0) + π2 D112(0) + π3 D121(0) + π4 D122(0) + π5 D123(0)).

In other words, recombination influences the model merely through this stationary
distribution, and this is regardless of the way mutations are modeled.

Example 1 An explicit form of π may be found using Mathematica 5.2 but the for-
mula is long and non-informative. However, if in (4) we disregard starting from the
second and the third row of the matrix all the terms of (N−2) order, which for large
populations are insignificant, and assume r1 = r2, the formula simplifies and yields,
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Asymptotic behavior of a Moran model 463

π1 = a2 s(3s − 5) − 3a(2 − 3s + s2)

(as − a − s)(6a2 + 5as − 9a2s + s2 − 4as2 + 3a2s2)
,

π2 = as(a − 1)[3a(s − 1) − 2s]
(as − s − 2a)(as − a − s)(3as − 3a − s)

,

π3 = as2(a − 1)

3a3(s − 2)(s − 1)2 − s3 + as2(5s − 6) + a2s(18s − 7s2 − 11)
,

π4 = as(a − 1)[3a(s − 1) − 2s]
(as − a − s)(6a2 + 5as − 9a2s + s2 − 4as2 + 3a2s2)

,

π5 = (a − 1)s2(3a − 1)

as(5 − 4s) + s2 + 3a2(2 − 3s + s2)
,

where s = r
2 , and a = 1

2N . In particular, if 1
2N � s, then (π1, π2, π3, π4, π5) ≈

(0, 0, 0, 0, 1) while if 2Ns → c, then (π1, π2, π3, π4, π5) is approximately equal to
1

(c+1)(c+2)(c+3)
(5c + 6, c(3 + 2c), c2, c(3 + 2c), c(c + 1)).

3 The general case

3.1 The model

In the general model there are n loci, and hence n − 1 possible recombination sites.
The population is composed of 2N individuals represented by n-tuples of A-valued
(see Sect. 2.1) random variables (Xa,b)b=1,...,n, a = 1, . . . , 2N , a being the individ-
ual number and b being the locus number. In between death/recombination events
each locus in each individual evolves independently with mutation on the bth locus
described by a Markov semigroup {Sb(t), t ≥ 0}. The time to such an event is expo-
nential with parameter λN . At the moment of death three numbers i, j and k are chosen
with replacement from 1, . . . , 2N , and then

– with the probability 1 − r (no recombination), the whole n-tuple (Xi,l)l=1,...,n is
replaced by the n-tuple (X j,l)l=1,...,n

– for m = 1, . . . , n − 1, with the probability rm (recombination after locus m),
the Xi,l , l = 1, . . . , m are replaced by the X j,l , l = 1, . . . , m, and the Xi,l , l =
m + 1, . . . , n are replaced by Xk,l , l = m + 1, . . . , n.

Above, the positive numbers rm, m = 1, . . . , n − 1 are such that
∑n−1

m=1 rm = r ∈
(0, 1]. Arguing as in Sect. 2.2 we see that such a procedure does not lead out of the
class of exchangeable n-tuples.

3.2 The matrix �

The distributions involved in the model are labeled as Di1,...,in where the multi-indexes
(i1, . . . , in) satisfy the following properties:

1. i1 is 1,
2. iα ≤ max(i1, . . . , iα−1) + 1, α ≥ 2;
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such multi-indexes will be called regular. There are �n regular multi-indexes, where
�n is the Bell number, the number of ways to partition a set of n elements into subsets
Graham et al. (1994). For every partition we have a natural order of its elements (sub-
sets) where the first subset is the one containing the element 1 and the kth is the one
containing the smallest number not included in the previous k − 1 subsets (provided
such number exists). To such naturally ordered partition we assign the regular multi-
index by labelling elements of the kth subset with label k, and this map is injective.
On the other hand, given a regular multi-index, we obtain a partition by collecting
all numbers with the same index into one subset. Such assignment of a partition is
injective, since the multi-index agrees with the labeling obtained from the natural
order.

We arrange all the distributions Di1,...,in in the lexical order, thus forming vector
D. Similarly, we form the vector D̃ of the distributions D̃i1,...,in , and consider the way
a coalescence/recombination event influences it. Suppose the recombination occurred
after the sth locus, we are interested in D̃i1,...,in and we know that the i th individual died
to be replaced partly by the j th and partly by the kth individual. Then, D̃i1,...,in equals
D j1,..., jn where the multi-index ( j1, . . . , jn) is formed as follows. First, all occurrences
of i at up to and including the sth place in (i1, . . . , in) are replaced by j , and all the
remaining occurrences are replaced by k. Then, the newly formed multi-index is trans-
formed into a regular multi-index as follows. First, we change all occurrences of i1 to
1, if the first condition of regularity is not yet met. Next, we look for the first place,
say iα , where the second requirement is not met. If there is no such place, we are done.
Otherwise, we replace iα and all its occurrences by the smallest integer larger than all
iβ preceding iα , and we continue this procedure until the multi-index is regular.

As a result, D̃i1,...,in is a convex combination of all possible D j1,..., jn ’s; each choice
of i, j and k leading from D̃i1,...,in to D j1,..., jn adds the term 1

(2N )3 D j1,..., jn to this
combination (all choices of i, j and k are equally likely). All coefficients of this com-
bination are, themselves, linear combinations of 1, a, a2 and a3 where a = (2N )−1.

Hence, there exists a �n × �n matrix � such that

D̃ = �D.

Since �n is a fast growing sequence ([Graham et al. 1994, p. 693], e.g., �4 =
15,�5 = 52, and �9 = 21147), finding an explicit form of � by hand is not advis-
able. However, we have the following fundamental lemma.

Lemma 2 For any number of loci the transition matrix � is ergodic.

Proof The index (1, . . . , 1) is an aperiodic state for �, since the one-step transition
probability from this state to itself is positive. Hence, � being finite, it suffices to
show that all other states communicate with (1, . . . , 1). Let (i1, . . . , in) be an arbi-
trary regular multi-index. Consider a recombination event: let s be the recombination
site number, i be the number of the individual to be replaced, j be the number of the
individual supplying the loci with numbers 1 through s, and k be the number of the
individual supplying the loci with numbers s + 1 through n. Taking s = 1, i = j = 1
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and k = i2 we jump from (1, . . . , 1) to (i1, i2, . . . , i2), i1 being equal to 1 by assump-
tion. After arriving at (i1, i2, . . . , il , . . . , il), l ≥ 2 we choose s = l, i = j = il ,
k = il+1 to jump to (i1, i2, . . . , il , il+1, . . . , il+1). Hence, after at most n − 1 jumps,
we arrive at (i1, . . . , in).

Conversely, starting from (i1, . . . , in), we choose s = n − 1, i = j = in, k = in−1
to jump to (i1, . . . , in−2, in−1, in−1). After arriving at (i1, . . . , in−l−1, in−l , . . . , in−l),
1 ≤ l ≤ n − 2 we choose s = n − l − 1, i = j = in−l and k = in−l−1, to jump
to (i1, . . . , in−l−2, in−l−1, . . . , in−l−1). Hence, after at most n − 1 jumps we arrive at
(i1, . . . , i1) = (1, . . . , 1), proving our claim.

3.3 Evolution of D in time

Using the Markov semigroups {Sb(t), t ≥ 0} in l1, introduced in Sect. 3.1, we define
their tensor product semigroup {S(t), t ≥ 0} in Mn , and denote its generator by G.

Also, let G be the generator of the Cartesian product {S(t), t ≥ 0} of m = m(n) =
�n copies of {S(t), t ≥ 0} in Mm

n . Then, as a function of time, the vector D(t) of
distributions involved in the model satisfies Eq. (5) provided that D(0) belongs to
D(G). Equivalently,

D(t) = T (t)D(0)

for any D(0) ∈ Mm
n where the semigroup {T (t), t ≥ 0} is generated by G +

λN� − λN . Furthermore, T (t) = S(t)e−λNt eλNt�, � commuting with S(t).
Finally, by Lemma 2, there exists a probability vector (πi )i=1,...,�n such that
limt→∞ ‖e−λNt eNt� − �‖ = 0 where � is a �n × �n matrix with all rows equal to
(πi )i=1,...,�n . As a result we obtain the following theorem:

Theorem 2 For any number of loci n ≥ 3:

lim
t→∞ ‖T (t)D(0) − S(t)�D(0)‖ = 0.

As a consequence

D1(t) ∼ S(t)
�n∑

ι=1

πι Dι(0),

where instead of Di1,...,in we write Dι where ι = ι(i1, . . . , in) denotes the position of
Di1,...,in in D; for example ι(1, . . . , 1) = 1 and ι(1, 2, . . . , n) = �n .

3.4 Algorithmic determination of �

Already for n = 4 the � is too large to be manageable by hand. We wrote a com-
puter program that does the job for n ≤ 9 (for n ≥ 10 the size of � makes the task
unmanageable even for a computer). Below, we explain how it works.
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We have

� = (1 − r)�0 +
n∑

s=1

rs�s,

where �0 corresponds to no recombination, and �s describes recombination after
locus s, so the task reduces to calculating the latter matrices. To this end, first, all
possible distribution types are generated and arranged in the lexical order; each distri-
bution is labeled by a regular multi-index (i1, . . . , in) or, equivalently, by its position
ι = ι(i1, . . . , in) in the vector D. We note that the off-diagonal entries in �s are linear
combinations of three numbers: a, a2 and a3 where a = (2N )−1. The probabilities on
the diagonal are equal to 1 plus a linear combination of the type described above, and
may also be described by specifying coefficients of this linear combination. Hence, we
initialize the matrix �s of size �n ×�n with entries being three dimensional vectors,
by assigning zero vectors to all of its entries. The entries are denoted �s[ι̃, ι]. Their
actual values are computed in �n iterations, each iteration leading to one row of the
matrix (ι̃ fixed, ι varies) as follows.

Each of (2N )3 triples (i, j, k), describing the recombination event in which the
deceased i th member of the population was replaced partly by j and partly by k,
leading from D̃ι̃ to Dι, adds the probability (2N )−3 to the �s[ι̃, ι]. However, we do
not need to run the algorithm through all possible triples. To see this, let μ be the
number of distinct characters in the multi-index corresponding to ι̃. Note that if i > μ,
then D̃ι̃ is equal to Dι̃. Next, consider the recombination event described by (i, j, k)

where i ≤ μ, j > μ and j �= k, and assume that it leads from D̃ι̃ to Dι. Then, any
recombination event (i, j ′, k) where j ′ > μ and j ′ �= k also leads from D̃ι̃ to Dι.
The same is true if j and k are interchanged. Also if i ≤ μ, j = k > μ and Dι̃ leads
to Dι, then Dι̃ leads to Dι for all other events (i, j ′, k′) where j ′ = k′ > μ. Hence,
the triples (i, j, k) naturally split into six classes, and the computation of �s may be
performed in the following six steps:

1. (The case where i > μ.) Set �s[ι̃, ι̃] to [−μ, 0, 0]. (There are 2N −μ choices for
i > μ.)

2. (The case where 1 ≤ i, j, k ≤ μ.) Run through all i, j, k ≤ μ to increase �s[ι̃, ι]
by (0, 0, 1) each time Dι̃ leads to Dι.

3. (The case where 1 ≤ i, j ≤ μ and k > μ.) Set k = μ + 1 and run through all
i, j ≤ μ to increase �s[ι̃, ι] by (0, 1,−μ) each time Dι̃ leads to Dι. (There are
2N − μ choices for k > μ.)

4. (The case where 1 ≤ i, k ≤ μ and j > μ.) Set j = μ + 1 and run through all
i, k ≤ μ to increase �s[ι̃, ι] by (0, 1,−μ) each time Dι̃ leads to Dι.

5. (The case where 1 ≤ i ≤ μ, and j = k > μ.) Set j = k = μ+1 and run through
all i ≤ μ to increase �s[ι̃, ι] by (0, 1,−μ) each time Dι̃ leads to Dι.

6. (The case where 1 ≤ i ≤ μ, j, k > μ and j �= k.) Set j = μ + 1, k = μ + 2 and
run through all i ≤ μ to increase �s[ι̃, ι] by (1,−2μ − 1, μ(μ + 1)) each time
Dι̃ leads to Dι.
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3.5 Complexity of the algorithm

The memory complexity M(n) is the sum total of the space used by the matrixes used in
the algorithm. The first of these, termed symbolic, is build of � 2

n triples of coefficients
of 4 bytes numbers, and the second, termed the value matrix, is obtained from the first
one by multiplying these coefficients by the consecutive powers of 1

2N (with 1 added
on the main diagonal). Hence, M(n) = M(Symbol Matri x)+ M(V alueMatri x) =
12� 2

n + 8� 2
n = 20� 2

n [Byte], each number in the value matrix using 8 bytes. For
example M(8) = 340 MB and M(9) = 8.5 GB.

In calculating each row of the matrix, we perform n3 iterations (actually, μ3 iter-
ations) and must use n iterations to transform a multi-index involved into its regular
form. Hence, time-complexity of calculating each row is of the order n4. Taking into
account the initialization process, we obtain that time complexity is n4�n + � 2

n .

4 Numerical results

In this section, we explore how the distributions of the model depend on its parameters.
We also use the notion of the spectral gap to understand the rate of convergence of the
solutions of our model to equilibrium. Finally we comment on the linkage disequilibria
produced by the model.

4.1 Stationary distributions

The stationary distribution π is calculated using our program. We iteratively multiply
the transition matrix � by itself until we reach the matrix with each row being almost
equal to any other row of the matrix. The matrix after the kth iteration is equal to �2k

.
Two rows of the matrix are considered equal if all the differences of the values of the
corresponding entries of both rows are lower than the chosen precision (usually equal
to 10−6).

The numerical calculations show that: (1) As r = ∑n−1
i=1 ri increases and 2N is

fixed, the role of π1 in the stationary distribution decreases to 0, while that of π�n

increases to 1 (Fig. 1). (2) With the growth of r, each πi where 1 < i < �n initially
increases to a maximal value, and then decreases to zero. If r1 = r2 = · · · = rn−1,
tuples of the distributions related by symmetry, such as D11122 and D11222, reach the
maximal value at the same time (Fig. 2). This suggests that with the growth of r , the
probability mass tends to concentrate close to π�n ; this intuition is supported in Fig. 3
where the expected number of recombination events E R is shown to grow with r. The
value is calculated as follows: E R = ∑�n

i=1 πiγi , where γi is the number of recombi-
nation events needed to obtain the i th distribution. In this case we assume that after
each locus only one recombination may take place. Then, for each distribution, the
number of recombination events leading to it may be easily calculated as the number
of the consecutive pairs of loci descended from the different individuals. For example,
to obtain the distribution D1223 exactly two recombination events are required (after
the first and after the third locus). However, the role of distributions close to the last
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Fig. 1 Values of the first (π1)
and the last (π�n ) entry of the
stationary distribution for the
model with five loci as a
function of the recombination
rate with constant population
size 2N = 1,000

Fig. 2 Examples of values of
entries of the stationary
distribution as a function of the
recombination rate for constant
population size 2N = 1,000.
Since we assume
r1 = r2 = · · · = rn−1 the
entries for the distributions
related by symmetry (such as
D11123 and D12333) are equal

one in the lexical order may decrease quite slowly (see Fig. 4). Finally, the speed
(based on the number of discrete generations) of reaching the stationary distribution
of � is of the order of the population size (Fig. 5). We assume that the matrix reaches
the stationary distribution when all its entries differ from the corresponding entries of
the previously calculated stationary distribution by less than 10−6.
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Fig. 3 Expected number of
recombination events for the
model with six loci as a function
of the recombination rate with
constant population size
2N = 1,000. For more details
see Sect. 4.1

Fig. 4 An entry D12343 of the
stationary distribution close to
the last distribution in the lexical
order for five loci as a function
of the recombination rate for
constant population size
2N = 1,000

4.2 Spectral gap of the matrix �

Important information about the behavior of our model in time may be obtained by
calculating the spectral gap of the matrix �. In Lemma 2 we have proved that the
iterates of the matrix � asymptotically converge to a unique equilibrium. A higher
value of the spectral gap is indicative of faster convergence. Therefore, if we compute
the spectral gap for populations of chromosomes with different numbers of loci or
different population sizes, the spectral gap provides us with the means to characterize
the influence of these parameters on the rate of convergence.
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Fig. 5 Number of discrete generations required for the transition matrix � to reach, with given precision,
the stationary distribution in each row, as a function of the population size. We assume that the matrix
reaches the stationary distribution when all its entries differ from the corresponding entries of the stationary
distribution by less than 10−6

By definition (Saloff-Coste 1997), the spectral gap of � is equal to the small-
est nonzero eigenvalue of the matrix Q = I − 1

2 (� + �∗), where I is an identity
matrix and �∗ is the transition matrix of the time-reversed process. Each entry of
the matrix �∗

xy is defined as: �∗
xy = �yx

πy
πx

, where π is the stationary distribution of
the matrix �.

To calculate the stationary distribution π , we apply the program described in the
previous section. Eigenvalues of the matrix Q are obtained by the computer program
based on the QR algorithm (Golub and Van Loan 1996). The results obtained by us are
intuitively clear; the speed of convergence decreases when the number of loci (Fig. 6)
or population size (Fig. 7) increases.

4.3 Linkage disequilibria

In Bobrowski and Kimmel (2003), which concerned the special case of two loci, it has
been shown that when there were two alleles at each of the loci 1 and 2 and no mutation,
the two-point linkage disequilibrium (in a modified notation) L12 = p11 − p1· p·1 =
Pr[X1 = 1, Y1 = 1] − Pr[X1 = 1] Pr[Y1 = 1] dissolved with time, and for large N ,
it followed the expression

L12(t) ≈ 1

4

[
1

Nr − 1
+ Nr

Nr − 1
exp(−λr t/2)

]

.

This latter expression is consistent with the known behavior of L12 in the absence of
drift (N → ∞). Distributions derived in the current paper allow obtaining dissolution
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Fig. 6 The spectral gap as a function of 2Nr coefficient calculated for the models with different number
of loci and constant population size 2N = 1,000

Fig. 7 The spectral gap for the
model with 5 loci as a function
of 2Nr , for various population
sizes. Notice that the population
size has a significant influence
on the value of the spectral gap.
Increasing the population size
ten times results in decreasing
the value of the spectral gap by
about a hundred times

patterns for the multipoint equilibria in the presence of drift. For example, a three-point
equilibrium has the form of Weir (1966, Equation (3.13))

L123 = p111 − p1··L23 − p·1·L13 − p··1L12 − p1·· p·1· p·1·,

123



472 A. Bobrowski et al.

where

p111 = Pr[X1 = 1, Y1 = 1, Z1 = 1],
p1·· = Pr[X1 = 1],
p·1· = Pr[Y1 = 1],
p··1 = Pr[Z1 = 1],
L12 = p11· − p1·· p·1·,
L13 = p1·1 − p1·· p··1,
L23 = p·11 − p·1· p··1,

are further expressed in the terms of distributions of the type of D111, D11 and D1.
However, the dimensionality of the problem increases considerably. In the case of

two loci, the special case of two alleles at each locus and no mutation, led to a system of
eight ordinary differential equations (ODEs). Indeed, only two types of distributions,
p11 and p12 were present. For each of these, there were 22 possible states at the two
loci: (1, 1), (1, 2), (2, 1), and (2, 2). This leads to 2 × 22 = 8 variables. In the case
of three loci, the special case of two alleles at each locus and no mutation, leads to a
system of 40 ODEs. Indeed, now five types of distributions, p111, p112, p121, p122, and
p123, are present. For each of these, there are 23 possible states at the three loci. This
leads to 5 × 23 = 40 variables. Therefore, an algebraic derivation of the expression
for dissolution of a three-point disequilibrium seems to present difficulties, unless
symbolic software is efficiently used. As for more general multi-point disequilibria,
the task seems very involved.

5 Discussion

In this paper, we extend the theoretical treatment of the Moran model of genetic drift
with recombination and mutation, which was introduced in Bobrowski and Kimmel
(2003) for the case of two loci, to the case of n-loci. The specific framework used
in our paper allows to find close-form relationships, which however are limited to a
set of distributions, which jointly characterize allelic states at a number of loci at the
same or different chromosome(s) but which do not jointly characterize allelic states
at a single locus on two or more chromosomes. As an example, probabilities such as
Pr[X1 = x1, Y1 = y1, Z2 = z2] are included in the system, whereas probabilities
such as Pr[X1 = x1, X2 = x2, Z2 = z2] are not. However, the system is sufficiently
rich to allow computing all possible multipoint linkage disequilibria under recombi-
nation, mutation and drift, as well as their variances and covariances (c.f. Chapter 3
of Weir’s book, Weir 1966).

We explore the algorithms enabling construction of the transition probability matri-
ces of the Markov chain describing the process. We find that asymptotically the effects
of recombination become indistinguishable, at least as characterized by the set of dis-
tributions we consider, from the effects of mutation and drift (Theorems 1 and 2).
Mathematically, the results are based on the theory of semigroups of operators. This
approach allows generalization to any Markov-type mutation model. Based on these
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fundamental results, we explore the rates of convergence to the limit distribution, using
Dobrushin’s coefficient and spectral gaps.

As it can be seen any examples involving application of our model for more than
three loci require serious computations. These specialized applications will be the
subject of future papers.

6 Availability of the computer program

Our program may be downloaded from http://sun.aei.polsl.pl/~twojdyla/genpop/ in
two versions, both working well for n ≤ 8. In the first, a simpler one, by setting
r1, . . . , rn−1 and 2N , one obtains the matrices �i and the stationary distribution
(πi )i=1,...,�n . The second version is a programming library. The website resources
also include a few examples of how to use our program.

Acknowledgments We thank the Referees for their remarks which have improved significantly the final
version of this paper.
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