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Abstract In this paper, with the assumptions that an infectious disease in a popula-
tion has a fixed latent period and the latent individuals of the population may disperse,
we formulate an SIR model with a simple demographic structure for the popula-
tion living in an n-patch environment (cities, towns, or countries, etc.). The model is
given by a system of delay differential equations with a fixed delay accounting for the
latency and a non-local term caused by the mobility of the individuals during the latent
period. Assuming irreducibility of the travel matrices of the infection related classes,
an expression for the basic reproduction number R0 is derived, and it is shown that
the disease free equilibrium is globally asymptotically stable if R0 < 1, and becomes
unstable if R0 > 1. In the latter case, there is at least one endemic equilibrium and the
disease will be uniformly persistent. When n = 2, two special cases allowing reduc-
ible travel matrices are considered to illustrate joint impact of the disease latency and
population mobility on the disease dynamics. In addition to the existence of the dis-
ease free equilibrium and interior endemic equilibrium, the existence of a boundary
equilibrium and its stability are discussed for these two special cases.

Keywords Infectious disease · SIR model · Latent period · Patch ·
Non-local infection · Dispersal · Basic reproduction number
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1 Introduction

Globalization has made traveling more and more common. Classical deterministic
epidemic models with the assumption that the space is homogeneous are simply not
applicable any more. In order to understand how a disease invades a population, the
population movements and the spatial structure of population habitats can not be
neglected. For example, SARS was first reported in Guangdong Province of China
in November 2002. This emerging disease spread very quickly, due to the travel of
infected persons by airplanes, trains, and buses, to some other regions in the mainland
of China, as well as to Hong Kong, Singapore, Vietnam, Canada and other places. By
the end of June 2003, it had spread to 32 countries and regions, and caused about 800
deaths and more than 8,000 infections (see, Ruan et al. 2006; Wang and Ruan 2004).
Thus, it is important to study how population movements, spatial structure and disease
transmission interact with each other to determine the spread of diseases. One of the
most interesting and important subjects in this field is to obtain a threshold condition
that determines whether an infectious disease will persist or go to extinction. This
threshold condition is usually in terms of the basic reproduction number, R0, which is
the average number of secondary infections caused by a single infectious individual
introduced into a totally susceptible population (Anderson and May 1991; Diekmann
and Heesterbeek 2000). This parameter R0 is a key concept in the study of infectious
diseases because it can provide guidance for the control of diseases.

We choose a spatially discrete environment consisting of n patches. Here, a patch
may represent a city or a town, and population movements between patches may be
justified by the migration and travel among patches. Along this line, the study of the
effects of population dispersal on disease dynamics over a patchy environment has
been extensive. Arino and van den Driessche (2003a,b, 2006) formulated epidemic
models with populations traveling among cities in which the residences of individuals
are maintained. Wang and Zhao (2004, 2005) considered epidemic models of multi-
patches without any record of the residence of individuals. Wang and Zhao (2006)
proposed an epidemic model with population dispersal and infection period. Salmani
and van den Driessche (2006) discussed an SEIRS epidemic model for n patches to
describe the dynamics of an infectious disease in a population in which individuals
travel between patches. Hsieh et al. (2007), Brauer and van den Driessche (2001),
Castillo-Chavez and Yakubu (2001), and Wang and Mulone (2003) are among other
studies of epidemic models for meta-populations.

Based on the calculations of basic reproduction numbers, the aforementioned papers
established the threshold dynamics for the diseases. The models in these papers
captured the essence of SIR (susceptible → infectious → removed ) or SIS (sus-
ceptible → infectious → susceptible) or SEIR ( susceptible → exposed (latent) →
infectious → removed) or SEIRS (susceptible → exposed (latent) → infectious →
removed → susceptible). However, none of them considered both a fixed latent period
and the mobility of the infected individuals during the fixed latent period together. As
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we shall see later, the incorporation of both of these two factors will actually bring
non-local infection terms into the model.

In our previous work (Li and Zou 2009), we generalized the classical Kermack–
McKendrick SIR epidemic model to a 2-patch environment for a disease with latency.
We obtained a system of delay differential equations with a fixed delay accounting
for the latency and non-local terms caused by the mobility of the individuals during
the latent period. We analytically showed that the model preserves some properties
that the classic Kermack–McKendrick SIR epidemic model possesses: disease always
dies out, leaving a certain portion of the susceptible population untouched (called final
sizes). Although we could not determine the two final sizes, we were able to show
that the ratio of the final sizes in the two patches is totally determined by the ratio
of the dispersal rates of the susceptible individuals between the two patches. We also
numerically explored the patterns by which the disease dies out, and found out that the
new model may have very rich patterns for the disease to die out. In particular, it allows
multiple outbreaks of the disease before if goes to extinction, strongly contrasting with
the classic Kermack–McKendrick SIR epidemic model.

Kermack–McKendrick type epidemic models are only suitable for fast diseases,
for which, the demographic structure can be ignored. But for a disease with long
mean infection life time, we can not ignore the demographic structure. In order for
a model to be more realistic for such disease with long infection time, in this pro-
ject, we incorporate a demographic structure by adding recruitment (including births)
and natural deaths. Unlike the previous work (Li and Zou 2009) in which the disease
always dies out, the new model may allow existence of an endemic equilibrium. In
such a situation, the disease free equilibrium may or may not be stable, and the basic
reproduction number is sharply related to the stability of the disease free equilibrium
as well as to the existence of an endemic equilibrium and the persistence of the dis-
ease. The purpose of the present paper is to incorporate a constant latent period for a
general disease and a simple demographic structure into the population over n-patch
environment and investigate the disease dynamics of the model in terms of the basic
reproduction number.

We point out that many diseases have latency (see, e.g., Table 3.1 in Anderson and
May 1991), and the length of the latent period differs from disease to disease; even for
the same disease, it differs from individual to individual. Therefore, a more realistic
way to incorporate latency into a model is by considering a general distribution func-
tion for the length of the latent period, as was done in van den Driessche et al. (2007).
But this would increase difficulty for analyzing resulting model. Our choice of a fixed
latent period can be considered as an approximation of the mean latent period, and
this would be appropriate for those diseases whose latent periods vary only relatively
slightly. For example, poliomyelitis has a latent period of 1–3 days (comparing to its
much longer infectious period of 14–20 days), whooping cough has a latent period of
21–23 days (comparing to its infectious period of 7–10 days), and hepatitis B has a
latent period of 13–17 days (comparing to its infectious period of 19–22 days) (see,
e.g., Table 3.1 in Anderson and May 1991).

The rest of the paper is organized as follows. In the next section, we present the
model formulation for an n-patch environment. Section 3 is devoted to proving the
well-posedness of the model obtained in Sect. 2. Sections 4 and 5 deal with the situa-

123



648 J. Li, X. Zou

tion when all dispersal rate matrices for the infected classes (latent and infectious) are
irreducible, in which the stability analysis of the disease free equilibrium, the exis-
tence of endemic equilibrium and uniformly persistence of the disease are given. In
Sect. 6, we are concerned with the situation when the irreducibility of the infection
related dispersal matrices may not hold. We only consider two special cases for n = 2,
and the lower dimension enable us to obtain more detailed results on the joint impact
of the latency and the mobility of the infected individuals. Section 7 summarizes the
main results of the paper, discusses the dependence of the basic reproduction number
on some model parameters, and poses an open problem on the stability of the endemic
equilibrium.

2 Model formulation

Consider a population that lives in n patches (e.g., cities). Let Si (t), Ii (t), Ri (t) be
the sub-populations of the susceptible, infectious and removed classes on patch i, i =
1, . . . , n at time t , respectively. These patches are connected in the sense that individ-
uals can move (migrate or travel) between these patches. Assume that an infectious
disease with a fixed latent period denoted by τ , is brought into the population. Due
to this latency and the mobility of the individuals during the latent period, the rate at
which patch i gains new infectious individuals at time t depends on the new infections
infected τ time units ago not only in patch i but also in other patches. To determine
this dependence, we use the concept of the infection age, denoted by a. Let li (t, a)
be the density (with respect to the infection age a) of individuals at time t in patch
i (i = 1, . . . , n) with infection age a. Similar to the equation governing the growth
of a population with natural age structure (see Metz and Diekmann 1986), the densi-
ties li (t, a), i = 1, . . . , n are described by the following system of first-order partial
differential equations:

∂li (t, a)

∂t
+ ∂li (t, a)

∂a
= −(di + d̃i (a))li (t, a)+

n∑

j=1

Di j (a)l j (t, a)−
n∑

j=1

D ji (a)li (t, a). (2.1)

Here Di j (a)l j (t, a) corresponds to the dispersal of the infected individuals at the
infection age a from patch j to patch i ; constant di > 0 denotes the natural death rate
in patch i which is independent of the infection age and the disease status; and d̃i (a)
represents the rate at which the infected individuals in patch i are removed (via deaths
due to the disease and/or other possible means such as isolation or quarantine and
recovery with permanent immunity by treatments). In addition, we have assumed that
there is no delay in the dispersal between patches and there is no loss during migration
from patch j to patch i , that is, all of those who leave patch j for patch i arrive at
patch i safely.

By the meaning of li (t, a), it is obvious that at a given time t , the total number of
infectious individuals in patch i is given by

Ii (t) =
∞∫

τ

li (t, a)da. (2.2)
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Dynamics of an epidemic model with non-local infections 649

Obviously, li (t, 0) corresponds to new infections in patch i which come from con-
tacts between infectious and susceptible individuals. Mass action infection mechanism
leads to

li (t, 0) = λi Ii (t)Si (t), (2.3)

where λi is the infection rate (effective contact rate or transmission rate) in patch i .
For convenience of showing the main idea to build up the new model, we further

assume that

d̃i (a) =
{

d̃l
i (a) = δi , for 0 ≤ a ≤ τ and i = 1, . . . , n,

d̃ I
i (a) = γi + µi , for a > τ and i = 1, . . . , n,

(2.4)

and

Di j (a) =
{

Dl
i j (a) = Dl

i j , for 0 ≤ a ≤ τ and i, j = 1, . . . , n, i �= j,

DI
i j (a) = DI

i j , for a > τ and i, j = 1, . . . , n, i �= j,
(2.5)

where d̃l
i (a) is assumed be a constant δi , and denotes the removal rate of latent indi-

viduals due to possible means such as quarantine in patch i , i = 1, . . . , n, and d̃ I
i (a)

represents the removal rate of infectious individuals in patch i , i = 1, . . . , n, and is
assumed be the summation of γi accounting for the recovery with permanent immu-
nity and possible isolation, and µi standing for the disease mortality rate of infectious
individuals in patch i , i = 1, . . . , n. For simplicity of notation, we let σi = γi + µi ,
i = 1, . . . , n, in the sequel. Meanwhile, Dl

i j (a) and DI
i j (a) represent the dispersal of

latent and infectious individuals respectively from patch j to patch i , and are assumed
to be independent of the infection age.

The fact that the removal rates (di + d̃i (a)), i = 1, . . . , n, are bounded away from
zero for all a ≥ 0, ensures that

li (t,∞) = 0. (2.6)

This condition is biologically realistic and can be mathematically verified by solving
(using the method of characteristics) (2.1) and (2.3) with any given biologically rea-
sonable initial distribution (e.g., li (0, a) ≥ 0, i = 1, 2, . . . , n). Now, integrating (2.1)
with respect to a from τ to ∞ and making use of (2.6) leads to

d Ii (t)

dt
= −

∞∫

τ

∂li (t, a)

∂a
da −

∞∫

τ

(di + d̃l
i (a))li (t, a)da

+
∞∫

τ

n∑

j=1

Di j (a)l j (t, a)da −
∞∫

τ

n∑

j=1

D ji (a)li (t, a)da

= li (t, τ )− (di + σi )Ii (t)+
n∑

j=1

DI
i j I j (t)−

n∑

j=1

DI
ji Ii (t), i, j = 1, . . . , n.

(2.7)
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We adopt the simplest demographic structure of the population under consideration,
in which we assume that there is a constant recruitment of susceptible individuals
denoted by Ki in patch i, i = 1, . . . , n, and constant natural death rate for each class
denoted still by di and assume that the disease does not transmit vertically. With these
assumptions, the disease dynamics can be described by the following equations:

d Si (t)

dt
= Ki − di Si (t)+

n∑

j=1

DS
i j S j (t)−

n∑

j=1

DS
ji Si (t)− λi Ii (t)Si (t),

d Ii (t)

dt
= −(di + σi )Ii (t)+

n∑

j=1

DI
i j I j (t)−

n∑

j=1

DI
ji Ii (t)+ li (t, τ ), (2.8)

d Ri (t)

dt
= −di Ri (t)+ δi

τ∫

0

li (t, a)da + γi Ii (t)+
n∑

j=1

DR
i j R j (t)−

n∑

j=1

DR
ji Ri (t),

where DS
i j ≥ 0 is the rate at which susceptible individuals migrate from patch j to

patch i , i �= j , and DR
i j ≥ 0 is the rate at which removed individuals migrate from

patch j to patch i , i �= j . With these assumptions, we know that DS
ii ≡ 0, Dl

ii ≡ 0,
DI

ii ≡ 0 and DR
ii ≡ 0, for i = 1, . . . , n. Note that the equations for the removed class

Ri , i = 1, . . . , n are decoupled from the equations for Si and Ii , i = 1, . . . , n. Thus
we only need to consider the 2n equations for Si and Ii , i = 1, . . . , n in (2.8).

Obviously, li (t, τ ) is the rate at which patch i gains infectious individuals, which
can be determined below in terms of S j (t) and I j (t) for all j = 1, . . . , n.

For fixed ξ ≥ 0, let

V ξ
i (t) = li (t, t − ξ), for ξ ≤ t ≤ ξ + τ and i = 1, . . . , n.

Then for 1 ≤ i �= j ≤ n,

d

dt
V ξ

i (t) = ∂

∂t
li (t, a)|a=t−ξ + ∂

∂a
li (t, a)|a=t−ξ

= −
(

di + d̃i (t − ξ)
)

li (t, t − ξ)+
n∑

j=1

Di j (t − ξ)l j (t, t − ξ)

−
n∑

j=1

D ji (t − ξ)li (t, t − ξ)

= −
(

di + d̃li (t−ξ)
)

V ξ
i (t)+

n∑

j=1

Dl
i j (t−ξ)V ξ

j (t)−
n∑

j=1

Dl
ji (t−ξ)V ξ

i (t)

= − (di + δi ) V ξ
i (t)+

n∑

j=1

Dl
i j V ξ

j (t)−
n∑

j=1

Dl
ji V ξ

i (t). (2.9)
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Dynamics of an epidemic model with non-local infections 651

Denote Vξ (t) =
(

V ξ
1 (t), · · · , V ξ

n (t)
)T

, where T represents the transpose of a vector.

Then Vξ (t) satisfies

d

dt
Vξ (t) = BVξ (t), (2.10)

where

B =

⎡

⎢⎢⎢⎢⎣

−(d1 + δ1)− ∑n
j=1 Dl

j1 Dl
12 . . . Dl

1n

Dl
21 −(d2 + δ2)− ∑n

j=1 Dl
j2 . . . Dl

2n
...

...
. . .

...

Dl
n1 Dl

n2 · · · −(dn + δn)− ∑n
j=1 Dl

jn

⎤

⎥⎥⎥⎥⎦
.

Integrating (2.10) with respect to t from ξ to t , we have

Vξ (t) = exp(B(t − ξ))
(

V ξ
1 (ξ), . . . , V ξ

n (ξ)

)T
, ξ ≤ t ≤ ξ + τ. (2.11)

By using the definition of V ξ
i (t) and (2.3),

Vξ (t) = exp(B(t − ξ))
(

l1(ξ, 0), . . . , ln(ξ, 0)
)T
, ξ ≤ t ≤ ξ + τ,

= exp(B(t − ξ))
(
λ1 I1(ξ)S1(ξ), . . . , λn In(ξ)Sn(ξ)

)T
. (2.12)

For t ≥ τ (hence t − τ ≥ 0), letting l(t, τ ) = (l1(t, τ ), . . . , ln(t, τ ))T , we obtain

l(t, τ ) = Vt−τ (t)
= exp(Bτ) (λ1 I1(t − τ)S1(t − τ), . . . , λn In(t − τ)Sn(t − τ))T . (2.13)

Denoting [bi j (τ )]n×n := exp(Bτ), it follows that

li (t, τ ) =
n∑

j=1

bi j (τ )λ j I j (t − τ)S j (t − τ). (2.14)

Substituting li (t, τ ) back into the Ii equations in (2.8) and taking out the first 2n
equations for Si , and Ii , i = 1, . . . , n, results in the following new model:

d

dt
Si (t) = Ki − di Si (t)+

n∑

j=1

DS
i j S j (t)−

n∑

j=1

DS
ji Si (t)− λi Ii (t)Si (t),

d

dt
Ii (t) = −(di + σi )Ii (t)+

n∑

j=1

DI
i j I j (t)−

n∑

j=1

DI
ji Ii (t) (2.15)

+
n∑

j=1

bi j (τ )λ j I j (t − τ)S j (t − τ), for i = 1, . . . , n, and t ≥ τ.

123



652 J. Li, X. Zou

Fig. 1 Flow chart for 2-patch environment

For t < τ , there is no infected individual entering infectious class, and the dynam-
ics of S and I classes are governed by the following system of ordinary differential
equations:

d

dt
Si (t) = Ki − di Si (t)+

n∑

j=1

DS
i j S j (t)−

n∑

j=1

DS
ji Si (t)− λi Ii (t)Si (t),

d

dt
Ii (t) = −(di + σi )Ii (t)+

n∑

j=1

DI
i j I j (t)

−
n∑

j=1

DI
ji Ii (t) for i = 1, . . . , n, t ∈ [0, τ ]. (2.16)

The last term on the right side of the Ii equation in (2.15) accounts for non-local
infections, reflecting how the infections infected τ time units ago in all patches con-
tribute to the growth of the infectious population in patch i . As is clearly from the
structure of the matrix B and the expression (2.14), such an effect of non-local infec-
tions is caused by the mobility of the individuals in the latent period. To help understand
this effect, let us consider a simpler case: n = 2. The two-patch version of the model
is demonstrated by the flow chart in Fig. 1.

In this two-patch case, if we further assume d1 = d2 = d, and δ1 = δ2 = δ, then

B =
[−(d + δ)− Dl

21 Dl
12

Dl
21 −(d + δ)− Dl

12

]

=
[−(d + δ) 0

0 −(d + δ)

]
+

[−Dl
21 Dl

12

Dl
21 −Dl

12

]
,

and we can obtain [bi j (τ )] = exp(Bτ) explicitly as

b11(τ ) = e−(d+δ)τ (1 − α1(τ )) , b12(τ ) = e−(d+δ)τ α2(τ ),

b22(τ ) = e−(d+δ)τ (1 − α2(τ )) , b21(τ ) = e−(d+δ)τ α1(τ ),
(2.17)
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where

αi (τ ) = Dl
ji

Dl
ji + Dl

i j

(
1 − e−(Dl

ji +Dl
i j )τ

)
, for 1 ≤ i �= j ≤ 2. (2.18)

Hence the model becomes

d S1(t)

dt
= K1 − d1S1(t)− DS

21S1(t)+ DS
12S2(t)− λ1 I1(t)S1(t),

d S2(t)

dt
= K2 − d2S2(t)− DS

12S2(t)+ DS
21S1(t)− λ2 I2(t)S2(t),

d I1(t)

dt
= −(d + σ1)I1(t)− DI

21 I1(t)+ DI
12 I2(t) (2.19)

+ e−(d+δ)τ (1 − α1(τ )) λ1 I1(t − τ)S1(t − τ)

+ e−(d+δ)τ α2(τ )λ2 I2(t − τ)S2(t − τ),

d I2(t)

dt
= −(d + σ2)I2(t)− DI

12 I2(t)+ DI
21 I1(t)

+ e−(d+δ)τ α1(τ )λ1 I1(t − τ)S1(t − τ)

+ e−(d+δ)τ (1 − α2(τ )) λ2 I2(t − τ)S2(t − τ).

From this simpler version of the model, it is seen that the dispersion of the indi-
viduals in latent period plays a different role from that of the susceptible and infec-
tious individuals. The explanation for those instantaneous terms in (2.19) are quite
straightforward, and we now explain those delayed terms in the model. The proba-
bility that an individual infected in patch 1 can survive the latent period is e−(d+δ)τ .
Due to the mobility during the latent period between the two patches, τ time units
later, a survived infected individual infected in patch 1, may be in patch 1 with
probability (1 − α1(τ )) or in patch 2 with probability α1(τ ). This explains the term
e−(d+δ)τ (1 − α1(τ )) λ1 I1(t − τ)S1(t − τ) in the I1 equation and the term
e−(d+δ)(τ )α1(τ )λ1 I1(t −τ)S1(t −τ) in the I2 equation. The terms e−(d+δ)τ (1−α2(τ ))

λ2 I2(t −τ)S2(t −τ) in I2 equation and the term e−(d+δ)τ α2(τ )λ2 I2(t −τ)S2(t −τ) in
I1 equation are explained similarly. Alternatively, we may explain these terms in light
of fractions as below: among the individuals infected in the first patch τ time units
ago, a fraction e−(d+δ)τ can survive the latent period, a fraction (1 − α1(τ )) of which
is now still in patch 1 while a fraction α1(τ ) of which has now moved to patch 2.

For (2.15) with general n, the elements bi j (τ ) can be explained in a similar way
(probabilities or fractions) and hence, one should expect the relation 0 ≤ bi j (τ ) ≤ 1,
and this relation will be used later in proving the well-posedness of the new model.
Although for the general case, we are unable to find the precise expressions for bi j (τ ),
we are able to prove the above expectation by a comparison argument and properties
of nonnegative matrices.
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Lemma 2.1 Let

d = min
1≤i≤n

di , δ = min
1≤i≤n

δi and d̄ = max
1≤i≤n

di , δ̄ = max
1≤i≤n

δi .

Then,

e−(d̄+δ̄)τ ≤
n∑

i=1

bi j (τ ) ≤ e−(d+δ)τ , for j = 1, . . . , n. (2.20)

Proof Choose a constant K > 0 sufficiently large such that

K > max

⎧
⎨

⎩(d1 + δ1)τ +
n∑

j=1

Dl
j1τ, . . . , (dn + δn)τ +

n∑

j=1

Dl
jnτ

⎫
⎬

⎭ .

Write Bτ as Bτ = −K E + K E + D0 + Dl , where E is the n × n identity matrix and

D0 :=

⎡

⎢⎢⎢⎣

−(d1 + δ1)τ 0 · · · 0
0 −(d2 + δ2)τ · · · 0
...

...
. . .

...

0 0 · · · −(dn + δn)τ

⎤

⎥⎥⎥⎦ ,

Dl :=

⎡

⎢⎢⎢⎢⎢⎢⎣

−∑n
j=1 Dl

j1τ Dl
12τ . . . Dl

1nτ

Dl
21τ −∑n

j=1 Dl
j2τ . . . Dl2nτ

...
...

. . .
...

Dl
n1τ Dln2τ · · · −∑n

j=1 Dl
jnτ

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Note that a scalar matrix is communicative with any n×n matrix. Let D = −(d+δ)τE.
Then both K E + D0 + Dl and K E + D + Dl are nonnegative matrices and

K E + D0 + Dl ≤ K E + D + Dl .

Thus,

exp(Bτ) = exp(−K E + K E + D0 + Dl)

= exp(−K E) exp(K E + D0 + Dl)

≤ exp(−K E) exp(K E + D + Dl)

= exp(Dl) exp(D). (2.21)

Let V = (1, . . . , 1). It is easy to verify that V Dl = 0, and hence V exp(Dl) = V E.
Therefore,

V exp(Bτ) ≤ V exp(Dl) exp(D) = V exp(D), (2.22)
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leading to the right side inequalities in (2.20). The left side inequalities in (2.20) can
be similarly proved, and the proof of the lemma is completed. �	

3 Well-posedness

Our new model consists of two parts: a system of ODEs (2.16) for t ∈ [0, τ ] and a
system of DDEs (2.15) for t ≥ τ . For biological reasons, the following non-negative
initial value conditions should be posed for the model:

Si (0) ≥ 0, and Ii (0) ≥ 0, for i = 1, . . . , n. (3.1)

In order for the model to be biologically well-posed, we need to make sure that the
model (2.16)–(2.15) with (3.1) has a unique solution which remains non-negative and
bounded. The following theorem confirms this.

Theorem 3.1 The initial value problem (2.16)–(2.15)–(3.1) has a unique solution
which exists globally (i.e., for all t ≥ 0), remains non-negative and is bounded.

Proof The standard theory of ODEs ensures that the initial value problem (2.16)–
(3.1) has a unique solution (S0

1 (t), . . . , S0
n (t), I 0

1 (t), . . . , I 0
n (t))which exists globally,

remains non-negative and is bounded. Consider the restriction of this solution on [0, τ ]
and denote its components by

φi (θ) = S0
i (θ), and ψi (θ) = I 0

i (θ), for i = 1, . . . , n, and θ ∈ [0, τ ].

Then, φi (θ) and ψi (θ) are continuous and non-negative functions on [0, τ ]. By the
fundamental theory of delay differential equations (see, e.g., Hale and Verduyn Lunel
(1993)), we know that the DDE system (2.15) with the initial conditions

Si (θ) = φi (θ) and Ii (θ) = ψi (θ), for i = 1, . . . , n, (3.2)

has a unique solution (S(t, φ, ψ), I (t, φ, ψ)), which is well-defined on its maximal
interval of existence [τ, tmax(φ,ψ)), where

(S(t, φ, ψ), I (t, φ, ψ)) := (S1(t, φ, ψ), . . . , Sn(t, φ, ψ),

I1(t, φ, ψ), . . . , In(t, φ, ψ)),

(φ,ψ) := (φ1(θ), . . . , φn(θ), ψ1(θ), . . . , ψn(θ)).

Firstly, we show the non-negativity of the solution for t ∈ [τ, tmax(φ,ψ)). For this
purpose, let us rewrite the system (2.15) as follows:

d

dt
S(t) = K + D(t)S(t), (3.3)

d

dt
I(t) = CI(t)+ A(t)I(t − τ), t ≥ τ, (3.4)
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where S(t)=(S1(t), . . . , Sn(t))T , I(t)= (I1(t), . . . , In(t))T and K � (K1, . . . , Kn)
T

and

D(t) =

⎡

⎢⎢⎢⎢⎢⎣

−g1(t) DS
12 . . . DS

1n

DS
21 −g2(t) . . . DS

2n

...
...

. . .
...

DS
n1 DS

n2 · · · −gn(t)

⎤

⎥⎥⎥⎥⎥⎦
, C =

⎡

⎢⎢⎢⎢⎢⎣

−h1 DI
12 · · · DI

1n

DI
21 −h2 · · · DI

2n

...
...

. . .
...

DI
n1 DI

n2 · · · −hn

⎤

⎥⎥⎥⎥⎥⎦
,

A(t) =

⎡

⎢⎢⎢⎢⎢⎣

b11(τ )λ1S1(t − τ) b12(τ )λ2S2(t − τ) · · · b1n(τ )λn Sn(t − τ)

b21(τ )λ1S1(t − τ) b22(τ )λ2S2(t − τ) · · · b2n(τ )λn Sn(t − τ)

...
...

. . .
...

bn1(τ )λ1S1(t − τ) bn2(τ )λ2S2(t − τ) · · · bnn(τ )λn Sn(t − τ)

⎤

⎥⎥⎥⎥⎥⎦
,

with gi (t) = di +∑n
j=1 DS

ji +λi Ii (t), and hi = di +σi +∑n
j=1 DI

ji , for i = 1, . . . , n.
Noting that the off-diagonal elements of matrix D(t) are non-negative, we conclude
that the entries of the matrix exp(

∫ t
τ

D(ξ)dξ) are all nonnegative. Indeed, let G(t) =
max{d1 +∑n

j=1 DS
j1 + λ1 I1(t)+ 1, . . . , dn +∑n

j=1 DS
jn + λn In(t)+ 1} and rewrite

D(t) as

D(t) =

⎡

⎢⎢⎢⎢⎢⎣

−G(t) 0 · · · 0

0 −G(t) · · · 0

...
...

. . .
...

0 0 · · · −G(t)

⎤

⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎣

G(t)− g1(t) DS
12 · · · DS

1n

DS
21 G(t)− g2(t) · · · DS

2n

...
...

. . .
...

DS
n1 DS

n2 · · · G(t)− gn(t)

⎤

⎥⎥⎥⎥⎥⎦

� −G(t)E + D̄(t).

Then all entries of D̄(t) are nonnegative, and hence, so are the entries of e
∫ t
τ D̄(ξ)dξ . It

is obvious that

e
∫ t
τ (−G(ξ)E)dξ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

e
∫ t
τ −G(ξ)dξ 0 · · · 0

0 e
∫ t
τ −G(ξ)dξ · · · 0

...
...

. . .
...

0 0 · · · e
∫ t
τ −G(ξ)dξ

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.
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Noting that the scalar matrix −G(t)E commutes with any n × n matrix (hence with
D̄(t)), we have

e
∫ t
τ D(ξ)dξ = e

∫ t
τ −G(ξ)Edξ e

∫ t
τ D̄(ξ)dξ ,

implying that all entries of e
∫ t
τ D(ξ)dξ are nonnegative. Now from (3.3), we have

S(t) = e
∫ t
τ D(ξ)dξS(τ )+

t∫

τ

Ke
∫ t−s
τ D(ξ)dξds ≥ 0, for t ∈ [τ, tmax(φ,ψ)). (3.5)

Similarly, for any t ≥ τ , all entries of exp(Ct) are nonnegative. Moreover, by
the non-negativity of S(t) established above, we know that all entries of A(t) are all
non-negative. Now, (3.4) leads to

I(t) = eCt I(τ )+
t∫

τ

eC(t−s)A(s)I(s − τ)ds, for t ≥ τ, (3.6)

implying I(t) ≥ 0 for t ∈ [τ, 2τ ] from the initial condition Ii (θ) ≥ 0 for θ ∈ [0, τ ]
and i = 1, . . . , n. This and (3.6) ensure I(t) ≥ 0 for t ∈ [2τ, 3τ ]. By induction, we
then conclude that I(t) ≥ 0 for t ∈ [τ, tmax(φ,ψ)).

Now, we show that Si (t) and Ii (t) are bounded for t ∈ [τ, tmax(φ,ψ)) and i =
1, . . . , n. Let N (t) = S1(t − τ)+· · ·+ Sn(t − τ)+ I1(t)+· · ·+ In(t). By Lemma 2.1
and non-negativity of Si (t) and Ii (t), we have

d

dt
N (t) = (K1 + · · · + Kn)− d1S1(t − τ)− · · · − dn Sn(t − τ)

−λ1 I1(t − τ)S1(t − τ)− · · · − λn In(t − τ)Sn(t − τ)

−(d1 + σ1)I1(t)− · · · − (dn + σn)In(t)

+
n∑

i=1

n∑

j=1

bi j (τ )λ j I j (t − τ)S j (t − τ)

≤ (K1 + · · · + Kn)− d1S1(t − τ)− · · · − dn Sn(t − τ)

−(d1 + σ1)I1(t)− · · · − (dn + σn)In(t)

≤ (K1 + · · · + Kn)− min{d1, . . . , dn}N (t). (3.7)

This implies that N (t) is bounded, and so are Si (t) and Ii (t) for i = 1, . . . , n and
t ∈ [τ, tmax(φ,ψ)). By the theory of continuation of solutions (see, e.g., Hale and
Verduyn Lunel 1993), we conclude that tmax(φ,ψ) = ∞, which means the solution
(S(t, φ, ψ), I (t, φ, ψ)) exists globally. This together with the results on S0

i (t) and
I 0
i (t) on t ∈ [0, τ ) implies that all of the above results actually hold for all t ≥ 0. This

completes the proof of Theorem 3.1. �	
Remark 3.2 From the proof of this theorem, we see that the S-components of the solu-
tion to (2.15) with (3.1) actually remain positive. If we further assume ψi (0) > 0 for
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i = 1, . . . , n, then the I - components of the solution also remain positive. Moreover,
from (3.6), one concludes that if either the matrix [bi j (τ )] or the matrix exp(C) is
irreducible, then ψ(0) > 0 (i.e., ψi (0) > 0 for at least one i ∈ {1, . . . , n} ) also guar-
antees that all I -components of the solution are positive. Note that the irreducibility
of [bi j (τ )] is implied by that of [Dl

i j ], and the irreducibility of exp(C) is implied by

that of [DI
i j ]. The biological meaning of this is that once inoculated in one patch, the

disease will spread to all other patches, due to the mobility of the infectious or latent
individuals.

Remark 3.3 Although the new model consists of two systems, (2.16) only plays a role
of generating the necessary initial functions on [0, τ ] for (2.15). The long term behav-
ior of the solution to (2.16)–(2.15)–(3.1) is indeed determined by (2.15). Therefore in
the rest of this paper, we only consider (2.15) since we are only interested in the the
long term disease dynamics.

4 Disease free equilibrium and its stability

In this section, we assume that the travel rate matrices [DS
i j ], [Dl

i j ] and [DI
i j ] are

irreducible. As usual, we start by investigating disease free equilibrium. A disease
free equilibrium (DFE) is a steady state solution of the system (2.15) with all infec-
tious variables being zeros. A DFE for the model (2.15) is thus given by E (0) =
(S(0)1 , . . . , S(0)n , 0, . . . , 0) with S(0) = (S(0)1 , . . . , S(0)n )T satisfying the linear system
MS(0) = K, where

M =

⎡

⎢⎢⎢⎢⎢⎣

d1 + ∑n
j=1 DS

j1 −DS
12 . . . −DS

1n

−DS
21 d2 + ∑n

j=1 DS
j2 . . . −DS

2n

...
...

. . .
...

−DS
n1 −DS

n2 · · · dn + ∑n
j=1 DS

jn

⎤

⎥⎥⎥⎥⎥⎦
.

Note that matrix M is irreducible, has positive column sums and negative off-diago-
nal entries. Thus M is a non-singular M-Matrix (Berman and Plemmons 1979, page
141) with M−1 > 0, and therefore, the linear system has a unique solution given by
S(0) = M−1K > 0. This shows the existence of a unique disease free equilibrium E (0).

In order to discuss the stability of E (0), we introduce the following matrices:

F �

⎡

⎢⎢⎢⎢⎢⎢⎣

b11(τ )λ1S(0)1 b12(τ )λ2S(0)2 · · · b1n(τ )λn S(0)n

b21(τ )λ1S(0)1 b22(τ )λ2S(0)2 · · · b2n(τ )λn S(0)n

...
...

. . .
...

bn1(τ )λ1S(0)1 bn2(τ )λ2S(0)2 · · · bnn(τ )λn S(0)n

⎤

⎥⎥⎥⎥⎥⎥⎦
,
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and

V �

⎡

⎢⎢⎢⎢⎢⎢⎣

d1 + σ1 + ∑n
j=1 DI

j1 −DI
12 · · · −DI

1n

−DI
21 d2 + σ2 + ∑n

j=1 DI
j2 · · · −DI

2n

...
...

. . .
...

−DI
n1 −DI

n2 · · · dn + σn + ∑n
j=1 DI

jn

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Note that F is a non-negative matrix, V is irreducible, and has positive column sums
and non-positive off-diagonal entries. Thus V is a non-singular M-Matrix (Berman and
Plemmons 1979, page 141) with V−1 > 0. Hence, FV−1 is a positive matrix, and
its spectral radius ρ(FV−1) is a simple eigenvalue of FV−1, corresponding to which
there is a positive eigenvector. The following theorem shows that the disease dies out
if ρ(FV−1) < 1.

Theorem 4.1 Ifρ(FV−1) < 1, the disease free equilibriumE (0) � (S(0)1 , . . . , S(0)n , 0,
. . . , 0) is globally asymptotically stable. If ρ(FV−1) > 1, the disease free equilibrium
E (0) becomes unstable.

Proof Firstly, we need to show that the disease free equilibriumE (0) � (S(0)1 , . . . , S(0)n ,

0, . . . , 0) is locally asymptotically stable (unstable) under the condition ρ(FV−1) < 1
(> 1). To this end, we consider the linearization of (2.15) at E (0):

d Si (t)

dt
= −di Si (t)+

n∑

j=1

DS
i j S j (t)−

n∑

j=1

DS
ji Si (t)− λi S(0)i Ii (t),

d Ii (t)

dt
= −(di + σi )Ii (t)+

n∑

j=1

DI
i j I j (t)−

n∑

j=1

DI
ji Ii (t) (4.1)

+
n∑

j=1

bi j (τ )λ j S(0)j I j (t − τ),

which can be rewritten as the following matrix form,

d

dt

[
S(t)

I(t)

]
=

[
−M N

0 −V

][
S(t)

I(t)

]
+

[
0 0

0 F

][
S(t − τ)

I(t − τ)

]
(4.2)

where, S(t) and I(t) are defined in the proof of Theorem 3.1, matrices M, F and V
are given above, and

N =

⎡

⎢⎢⎢⎢⎢⎢⎣

λ1S(0)1 0 · · · 0

0 λ2S(0)2 · · · 0

...
...

. . .
...

0 0 · · · λn S(0)n

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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The characteristic equation of (4.2) is given by

det

[
zE + M −N

0 zE + V − Fe−zτ ,

]
= 0 (4.3)

where E is n × n identity matrix. The equation (4.3) is equivalent to

|zE + M| · |zE + V − Fe−zτ | = 0. (4.4)

Let

1(z) = |zE + M|, 2(z, τ ) = |zE + V − Fe−zτ |.

Note that for matrix M = [Mi j ]n×n ,

∑

j �=i

| − M ji | =
n∑

j=1

DS
ji < di +

n∑

j=1

DS
ji =

∣∣∣∣∣∣
−di −

n∑

j=1

DS
ji

∣∣∣∣∣∣
= | − Mii |. (4.5)

By Gershgorin circle theorem (see, e.g., Golub and Van Loan 1996) we know that
each eigenvalue of −M lies in the union of circles

|z + Mii | ≤
∑

j �=i

| − M ji |, i = 1, . . . , n. (4.6)

This together with (4.5) implies that the real part of each eigenvalue of −M is negative.
Next, we show that the real part of each root of 2(z, τ ) = 0 is negative. For this

purpose, we notice that the I equations of the linearization (4.1) is decoupled from the
S equations and 2(z, τ ) = 0 is the characteristic equation of the I equations. Write
the I -equations as

d

dt
I(t) = −VI(t)+ FI(t − τ). (4.7)

Note that F and −V are quasi-positive and irreducible matrices. Thus, a cooperative
and irreducible system of ordinary differential equations can be associated with the
system (4.7) by simply setting τ = 0 in (4.7). This leads to the system

d

dt
I(t) = (F − V)I(t). (4.8)

By using the stability criteria for the cooperative and irreducible systems (see
Theorem 5.1 and Corollary 5.2 in Smith 1995), we know that the linear stability of the
trivial equilibrium for system (4.7) is equivalent to that for system (4.8). Therefore,

max{Re(z) : 2(z, τ ) = 0} < 0 (> 0) if and only if s(F − V) < 0 (> 0).
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Here, s(F − V) is the stability modulus of F − V defined as the maximal real part
of all eigenvalues of the matrix F − V . However, by using the proof of Theorem 2 in
van den Driessche and Watmough (2002), we know that s(F − V) < 0 (> 0) if and
only if ρ(FV −1) < 1 (> 1). Thus, we have shown that if ρ(FV −1) < 1, then the
real parts of all the roots of 2(z, τ ) = 0 are negative; if ρ(FV −1) > 1, then there
is a root of 2(z, τ ) = 0 that has positive real part, concluding the local stability or
instability of E (0) for (2.15).

To complete the proof of the theorem, it remains to prove the global attractivity of
E (0) for (2.15) under the condition ρ(FV −1) < 1. From the S-equations in system
(2.15) and the non-negativity of the solutions to the system (2.15) with (3.1), we have

d

dt
Si (t) = Ki − di Si (t)+

n∑

j=1

DS
i j S j (t)−

n∑

j=1

DS
ji Si (t)− λi Ii (t)Si (t),

≤ Ki − di Si (t)+
n∑

j=1

DS
i j S j (t)−

n∑

j=1

DS
ji Si (t). (4.9)

This suggests the following comparison system for the S-equations of (2.15):

dui (t)

dt
= Ki − di ui (t)+

n∑

j=1

DS
i j u j (t)−

n∑

j=1

DS
ji ui (t). (4.10)

We have seen from the above arguments in this session (results on matrix -M) that
System (4.10) admits a unique positive equilibrium (S(0)1 , . . . , S(0)n ) which is globally
asymptotically stable (in a linear system, local stability is equivalent to global stabil-
ity). By the comparison theorem for cooperative systems (see, e.g., Smith 1995; Smith
and Waltman 1995), it follows that

S∞
i � lim sup

t→∞
Si (t) ≤ lim

t→∞ ui (t) = S(0)i , for i = 1, . . . , n. (4.11)

Thus, for any constant ε > 0, there is a large enough T such that Si (t) ≤ S(0)i + ε, all
t ≥ T .

Set

Fε �

⎡

⎢⎢⎢⎢⎢⎢⎣

b11(τ )λ1(S
(0)
1 + ε) b12(τ )λ2(S

(0)
2 + ε) · · · b1n(τ )λn(S

(0)
n + ε)

b21(τ )λ1(S
(0)
1 + ε) b22(τ )λ2(S

(0)
2 + ε) · · · b2n(τ )λn(S

(0)
n + ε)

...
...

. . .
...

bn1(τ )λ1(S
(0)
1 + ε) bn2(τ )λ2(S

(0)
2 + ε) · · · bnn(τ )λn(S

(0)
n + ε)

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Since the spectral radius of FεV−1 is continuous in ε, we can restrict ε > 0 small
enough such that ρ(FεV−1) < 1. For t ≥ T , we construct the following comparison
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linear system for the I equations in (2.15):

d

dt
Ii (t) = −(di + σi )Ii (t)+

n∑

j=1

DI
i j I j (t)−

n∑

j=1

DI
ji Ii (t)

+
n∑

j=1

bi j (τ )λ j I j (t − τ)(S(0)j + ε), for i = 1, . . . , n, (4.12)

i.e.

dI(t)
dt

= −VI(t)+ FεI(t − τ). (4.13)

By the same argument as that for the stability of (4.7), we know that the trivial solution
this system is globally asymptotically stable, implying that all solutions of the linear
system (4.12) tend to the trivial solution as t → ∞. By the comparison theory for
monotone dynamical systems of delayed type, we conclude that all I components of
the solution to (2.15) with (3.1) also tend to zeros as t → ∞. This in return implies
that the S equation in (2.15) has (4.10) as its limiting system, which has the dynam-
ics of global convergence to (S(0)1 , . . . , S(0)n ). Finally by the theory of asymptotically
autonomous systems (see, e.g., Castillo-Chaves and Thieme 1995; Mischaikow et al.
1995), we conclude that the S component of the solution to (2.15) with (3.1) also
converges to (S(0)1 , . . . , S(0)n ). This confirms the global attractivity of E (0) for (2.15)
under the condition ρ(FV −1) < 1, and hence completes the proof. �	

5 Disease persistence and endemic equilibrium

In Sect. 4, under the assumption that the travel rate matrices [DS
i j ], [Dl

i j ] and [DI
i j ]

are irreducible, we have shown that ρ(FV −1) = 1 is the critical value that distin-
guishes the stability and instability of the DFE. One naturally wonders what happens
if ρ(FV −1) > 1. In this section, we still assume the irreducibility of all travel rate
matrices, and show that if ρ(FV −1) > 1, the disease will persist in all patches. This
conclusion together with a well-known result for persistent systems actually implies
the existence of an endemic equilibrium for the model (2.15).

For the convenience of stating and proving the main results, we first introduce
some notations. Let C := C([−τ, 0],Rn) denote the set of all continuous functions
from [−τ, 0] to R

n . As is customary, C+ := ([−τ, 0],Rn+) denote the subset of C
consisting of all non-negative functions. By Theorem 3.1 and Remark 3.2, for any
(φ,ψ) ∈ C+ × C+ with ψ(0) > 0, there is a unique solution to (2.15), denoted by

(S(t, φ, ψ), I (t, φ, ψ)) = (S1(t, φ, ψ), . . . , Sn(t, φ, ψ),

I1(t, φ, ψ), . . . , In(t, φ, ψ)),

whose components are all positive and bounded for t > 0.
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Theorem 5.1 Assume that ρ(FV(−1)) > 1. Then there is an ε̄ > 0 such that for every
(φ,ψ) ∈ C+×C+ withψ(0) > 0, the solution (S(t), I (t)) = (S(t, φ, ψ), I (t, φ, ψ))
of (2.15) satisfies

lim inf
t→∞ Ii (t, φ, ψ) ≥ ε̄, i = 1, 2, . . . , n.

Moreover, the model (2.15) admits at least one (componentwise) positive equilibrium.

Proof Define X := {(φ,ψ) ∈ C+ × C+}, X0 := {(φ,ψ) ∈ X : ψi (0) > 0, i =
1, 2, . . . , n} and ∂X0 = X\X0. It then suffices to show that (2.15) is uniformly per-
sistent with respect to (X0, ∂X0).

Let �(t) : X → X be the solution semiflow of (2.15), that is, �(t)(φ,ψ) =
(St (φ,ψ), It (φ,ψ)). By Theorem 3.1 and Remark 3.2, X and X0 are positively
invariant for �(t). Clearly, ∂X0 = {(φ,ψ) ∈ X : ψi (0) = 0for at least one i ∈
{1, 2, . . . , n}} and it is relatively closed in X . Furthermore, system (2.15) is point
dissipative in R

n+ since nonnegative solutions of (2.15) are ultimately bounded (see
Theorem 3.1).

Define�∂ = {(φ,ψ) ∈ X : (St (φ,ψ), It (φ,ψ)) ∈ ∂X0, ∀t ≥ 0}. We now show
that

�∂ = {(φ,ψ) ∈ ∂X0 : I (t, φ, ψ) = 0, ∀t ≥ 0}. (5.1)

Assume (φ,ψ) ∈ �∂ . It suffices to show that I (t, φ, ψ) = 0, ∀t ≥ 0. For the sake of
contradiction, assume that there is an i0, 1 ≤ i0 ≤ n, and a t0 ≥ 0 such that Ii0(t0) > 0.
We partition {1, 2, . . . , n} into two sets Z1 and Z2 such that

Ii (t0, φ, ψ) = 0, ∀i ∈ Z1; Ii (t0, φ, ψ) > 0, ∀i ∈ Z2.

Obviously Z1 is non-empty due to the definition of �∂ . Z2 is also non-empty since
Ii0(t0, φ, ψ) > 0. For any j ∈ Z1, by irreducibility of the matrix [bi j (τ )], there is an
i1 ∈ Z2 such that b ji1 > 0. This leads to

d

dt
I j (t, φ, ψ)|t=t0 = −(d j + σ j )I j (t0, φ, ψ)+

n∑

i=1

DI
ji Ii (t0, φ, ψ)

−
n∑

i=1

DI
i j I j (t0, φ, ψ)

+
n∑

i=1

b ji (τ )λi Ii (t0 − τ, φ,ψ)Si (t0 − τ, φ,ψ)

≥ b ji1(τ )Ii1(t0, φ, ψ) > 0. (5.2)

It follows that there is an ε0 > 0 such that I j (t, φ, ψ) > 0 for j ∈ Z1 and t0 <
t < t0 + ε0. Clearly, we can restrict ε0 > 0 small enough such that Ii (t, φ, ψ) > 0
for i ∈ Z2 for t0 < t < t0 + ε0. This means that (St (φ,ψ), It (φ,ψ)) �∈ ∂X0 for
t0 < t < t0+ε0, which contradicts the assumption that (φ,ψ) ∈ �∂ . This proves (5.1).
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Choose ξ > 0 small enough such that ρ(FξV−1) > 1 where

Fξ �

⎡

⎢⎢⎢⎢⎢⎢⎣

b11(τ )λ1S(0)1 − ξλ1 b12(τ )λ2S(0)2 · · · b1n(τ )λn S(0)n

b21(τ )λ1S(0)1 b22(τ )λ2S(0)2 − ξλ2 · · · b2n(τ )λn S(0)n

...
...

. . .
...

bn1(τ )λ1S(0)1 bn2(τ )λ2S(0)2 · · · bnn(τ )λn S(0)n − ξλn

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Let us consider the following linear system

d

dt
Si (t)= Ki − di Si (t)+

n∑

j=1

DS
i j S j (t)−

n∑

j=1

DS
ji Si (t)− λi ε̄Si (t)

= Ki −
⎛

⎝di +
n∑

j=1

DS
ji + λi ε̄

⎞

⎠ Si (t)+
n∑

j=1

DS
i j S j (t), i = 1, . . . , n. (5.3)

which is a perturbation of (4.10). Restrict ε̄ > 0 small enough such that (5.3), just
as (4.10), has a unique positive equilibrium (S(0)1 (ε̄), . . . , S(0)n (ε̄)) which is globally

asymptotically stable. By the implicit function theorem, it follows that (S(0)1 (ε̄), . . . ,

S(0)n (ε̄)) is continuous in ε̄. Thus, we can further restrict ε̄ small enough such that
(S(0)1 (ε̄), . . . , S(0)n (ε̄)) > (S(0)1 − ξ, . . . , S(0)n − ξ).

Next for the solution (S(t, φ, ψ), I (t, φ, ψ)) of (2.15) through (φ,ψ), we claim
that

lim sup
t→∞

max
i

{Ii (t, φ, ψ)} > ε̄, for all (φ,ψ) ∈ X0. (5.4)

Otherwise, there is a T1 > 0 such that 0 < Ii (t, φ, ψ) ≤ ε̄, i = 1, . . . , n, for all
t ≥ T1. Then for t ≥ T1, we have

d

dt
Si (t) ≥ Ki − di Si (t)+

n∑

j=1

DS
i j S j (t)−

n∑

j=1

DS
ji Si (t)− λi ε̄Si (t)

= Ki −
⎛

⎝di +
n∑

j=1

DS
ji + λi ε̄

⎞

⎠ Si (t)+
n∑

j=1

DS
i j S j (t), i = 1, . . . , n.

(5.5)

Since the equilibrium (S(0)1 (ε̄), . . . , S(0)n (ε̄)) of (5.3) is globally asymptotically stable
and S(0)(ε̄) > S(0) − ξ , there is a T2 such that S(t) > S(0) − ξ for t ≥ T1 + T2.
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Consequently, for t ≥ T1 + T2,

d

dt
Ii (t) ≥ −(di + σi )Ii (t)+

n∑

j=1

DI
i j I j (t)−

n∑

j=1

DI
ji Ii (t)

+
n∑

j=1

bi j (τ )λ j I j (t − τ)(S(0)j − ξ), i = 1, . . . , n. (5.6)

By the same arguments as that for the stability and instability of the ODE (4.8) and
the DDE (4.7) in Sect. 4, we know that the assumption ρ(FξV−1) > 1 implies that
the trivial solution of the linear system

d

dt
I(t) = −VI(t)+ Fξ I(t − τ) (5.7)

is unstable. This together with (5.6) and the comparison theorem implies that there is
at least one i ∈ {1, . . . , n} such that Ii (t) → ∞ as t → ∞, a contradiction to the
boundedness of solutions. Therefore (5.4) holds.

Note that (S(0)1 , . . . , S(0)n ) is globally asymptotically stable in R
n+\{0} for sys-

tem (4.10). By the afore-mentioned claim, it then follows that E (0) is an isolated
invariant set in X , and W s(E (0)) ∩ X0 = ∅. Clearly, every orbit in �∂ converges to
E (0), and E (0) is the only invariant set in �∂ . By Theorem 4.6 in Thieme (1993) and
Theorem 4.3 and Remark 4.3 in Hirsch et al. (2001) for a stronger repelling prop-
erty of ∂X0, we conclude that system (2.15) is indeed uniformly persistent with
respect to (X0, ∂X0). Moreover, by Theorem 2.4 in Zhao (1995), system (2.15) has
an equilibrium (S∗

1 , . . . , S∗
n , I ∗

1 , . . . , I ∗
n ) ∈ X0, implying that (S∗

1 , . . . , S∗
n ) ∈ R

n+ and
(I ∗

1 , . . . , I ∗
n ) ∈ int(Rn+). We further claim that (S∗

1 , . . . , S∗
n ) ∈ R

n+\{0}. Suppose that
(S∗

1 , . . . , S∗
n ) = 0. By the I -equations in (2.15), we then obtain

0 = −(di + σi )I
∗
i +

n∑

j=1

DI
i j I ∗

j −
n∑

j=1

DI
ji I ∗

i , for i = 1, . . . , n, (5.8)

and hence

0 = −
n∑

i=1

(di + σi )I
∗
i . (5.9)

Therefore, I ∗
i = 0, for i = 1, . . . , n, a contradiction. By the S-equation in (2.15) and

the irreducibility of the cooperative matrix [DS
i j ], it follows that S∗ = S(t, S∗, I ∗) ∈

int(Rn+) with S∗ := (S∗
1 , . . . , S∗

n ) and I ∗ := (I ∗
1 , . . . , I ∗

n ), for ∀t > 0. Then (S∗, I ∗)
is a componentwise positive equilibrium of system (2.15). �	
Remark 5.2 From the main results in Sects. 4 and 5, we see that if the travel rate matri-
ces for the three classes are irreducible, then ρ(FV−1) = 1 plays a threshold role in
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determining whether the disease will die out or persist. In the case of τ = 0, by the
next generation matrix argument (see, Diekmann et al. 1990; van den Driessche and
Watmough 2002), one knows that ρ(FV−1) gives the basic reproduction number for
the reduced ODE model, accounting for “the average number of secondary infectious
individuals produced by a single infectious individual introduced into a host popu-
lation where everyone is susceptible” (see e.g., Anderson and May 1991; Diekmann
et al. 1990; van den Driessche and Watmough 2002). Note that ρ(FV−1) depends on τ
continuously. By a continuity argument and the above established threshold property
(Theorems 4.1 and 5.1), together with the biological meaning of the basic reproduction
number, we claim that the quantity ρ(FV−1) is the basic reproduction number for the
new model (2.15), denoted by R0.

6 Allowing reducible travel rate matrices—two-patch case

The results in Sects. 4 and 5 are obtained under the assumption that the travel rate matri-
ces are all irreducible. In reality, these assumptions may not be satisfied. For example,
when an infectious disease is reported in one or more cities, the health authorities
in some or all cities may implement a ban against travel by the infected individuals.
Such a measure may make some travel rate matrices reducible. In this section, we deal
with cases allowing reducible rate matrices. The high dimension of model (2.15) with
general n increases the difficulty in obtaining more information on the dynamics of
the model. In order to show the main idea to obtain the dynamics of the model, which
might be obscured by the complicated computation for the higher dimensional case,
we simply focus on the case n = 2. We shall see that this minimum dimension choice
for patchy environment enables us to do some more detailed calculations and rigorous
analysis, by which some new phenomena can be revealed.

When n = 2, the model (2.15) becomes

d S1(t)

dt
= K1 − d1S1(t)− DS

21S1(t)+ DS
12S2(t)− λ1 I1(t)S1(t),

d S2(t)

dt
= K2 − d2S2(t)− DS

12S2(t)+ DS
21S1(t)− λ2 I2(t)S2(t),

d I1(t)

dt
= −(d1 + σ1)I1(t)− DI

21 I1(t)+ DI
12 I2(t) (6.1)

+ b11(τ )λ1 I1(t − τ)S1(t − τ)+ b12(τ )λ2 I2(t − τ)S2(t − τ),

d I2(t)

dt
= −(d2 + σ2)I2(t)− DI

12 I2(t)+ DI
21 I1(t)

+ b21(τ )λ1 I1(t − τ)S1(t − τ)+ b22(τ )λ2 I2(t − τ)S2(t − τ).

The linear system MS(0) = K for determining the disease free equilibrium is simpli-
fied to

[
d1 + DS

21 −DS
12

−DS
21 d2 + DS

12

][
S(0)1

S(0)2

]
=

[
K1

K2

]
, (6.2)
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which yields the disease free equilibrium E (0) = (S(0)1 , S(0)2 , 0, 0) with

S(0)1 = DS
12 K2 + DS

12 K1 + d2 K1

d1d2 + d1 DS
12 + d2 DS

21

, and S(0)2 = DS
21 K1 + DS

21 K2 + d1 K2

d1d2 + d1 DS
12 + d2 DS

21

, (6.3)

regardless of the irreducibility of the matrix [DS
i j ] (hence, of matrix M). Moreover,

for this simple case, the corresponding matrices F and V reduce to

F =
[

b11(τ )λ1S(0)1 b12(τ )λ2S(0)2

b21(τ )λ1S(0)1 b22(τ )λ2S(0)2

]
, V =

[
d1 + σ1 + DI

21 −DI
12

−DI
21 d2 + σ2 + DI

12

]
,

by which one can compute ρ(FV−1) to obtain the following formula:

ρ(FV−1) = P + √P2 − 4Q
2det(V) , (6.4)

where

P = b11(τ )λ1S(0)1 (d2 + σ2 + DI
12)+ b12(τ )λ2S(0)2 DI

21

+ b21(τ )λ1S(0)1 DI
12 + b22(τ )λ2S(0)2 (d1 + σ1 + DI

21),

Q = det(V)λ1λ2S(0)1 S(0)2 [b11(τ )b22(τ )− b12(τ )b21(τ )].

For the convenience of comparison later, we first consider the case when the two
patches are fully disconnected by setting all dispersal rates to zero, implying that

b11(τ ) = e−(d1+δ1)τ =: ε1, b12(τ ) = 0, b21(τ ) = 0, b22(τ ) = e−(d2+δ2)τ =: ε2.

(6.5)

Thus, (6.1) is decoupled to

d S1(t)

dt
= K1 − d1S1(t)− λ1 I1(t)S1(t),

d I1(t)

dt
= −(d1 + σ1)I1(t)+ ε1λ1 I1(t − τ)S1(t − τ),

(6.6)

for patch 1, and

d S2(t)

dt
= K2 − d2S2(t)− λ2 I2(t)S2(t),

d I2(t)

dt
= −(d2 + σ2)I2(t)+ ε2λ2 I2(t − τ)S2(t − τ).

(6.7)

123



668 J. Li, X. Zou

for patch 2. By the results in the recent work of van den Driessche et al. (2007),
the disease dynamics in each patch in such a disconnected case is described by the
corresponding basic reproduction number

R(0)
i0 � Ki

di

εiλi

di + σi
< 1, i = 1, 2,

as summarized below.

Theorem 6.1 If R(0)
i0 < 1, then the disease dies out in Patch i(i = 1, 2) in the

sense that the disease free equilibrium (
Ki
di
, 0) is globally asymptotically stable; if

R(0)
i0 > 1, then the disease will persist in the population in the sense that the disease

free equilibrium is unstable and there is a unique endemic equilibrium

(S∗
i , I ∗

i ) =
(

di + σi

εiλi
,

Kiεiλi − di (di + σi )

λi (di + σi )

)
,

which is asymptotically stable.

In the rest of this section, we explore the impact of dispersals between the two
patches on the disease dynamics of (6.1) in cases allowing reducible travel rate matri-
ces. For simplicity, we only consider two simpler scenarios that make the two patches
connected: (i) Only susceptible individuals disperse; (ii) The dispersals of infected
individuals are unidirectional.

6.1 Sub-case 1: Only susceptible individuals travel

In this subsection, we assume that only susceptible individuals in the two patches
travel. Such an assumption may account for the situation when all exposed and infec-
tious individuals are prohibited (e.g., by health authorities) from traveling. This implies
that DS

12 and DS
21 are positive, but Dl

12 = Dl
21 = DI

12 = DI
21 = 0. Accordingly, one

can compute to obtain the following:

B =
[−(d1 + δ1) 0

0 −(d2 + δ2)

]
, and [bi j (τ )] = exp(Bτ) =

[
ε1 0

0 ε2

]
,

where εi , i = 1, 2 are defined in (6.5). In such a case, the model (6.1) reduces to

d S1(t)

dt
= K1 − d1S1(t)− DS

21S1(t)+ DS
12S2(t)− λ1 I1(t)S1(t),

d S2(t)

dt
= K2 − d2S2(t)− DS

12S2(t)+ DS
21S1(t)− λ2 I2(t)S2(t),

d I1(t)

dt
= −(d1 + σ1)I1(t)+ ε1λ1 I1(t − τ)S1(t − τ),

d I2(t)

dt
= −(d2 + σ2)I2(t)+ ε2λ2 I2(t − τ)S2(t − τ).

(6.8)
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We have seen that the DFE E (0) still exists and is given by (6.3), but its stabil-
ity/instability can not be concluded from Theorem 4.1 as the irreducibility of [Dl

i j ]
and [DI

i j ] does not hold. Linearizing (6.8) at E (0) leads to

d S1(t)

dt
= −(d1 + DS

21)S1(t)+ DS
12S2(t)− λ1S(0)1 I1(t),

d S2(t)

dt
= −(d2 + DS

12)S2(t)+ DS
21S1(t)− λ2S(0)2 I2(t),

d I1(t)

dt
= −(d1 + σ1)I1(t)+ ε1λ1S(0)1 I1(t − τ),

d I2(t)

dt
= −(d2 + σ2)I2(t)+ ε2λ2S(0)2 I2(t − τ).

(6.9)

The characteristic equation of (6.9) is given by

Q1(z)Q2(z)Q3(z) = 0, (6.10)

where

Q1(z) = z + (d1 + σ1)− ε1λ1S(0)1 e−zτ ,

Q2(z) = z + (d2 + σ2)− ε2λ2S(0)2 e−zτ ,

Q3(z) = z2 + (d1 + d2 + D12 + D21)z + (d1d2 + d1 DS
21 + d2 DS

21).

It is obvious that all roots of Q3(z) have negative real parts. By the results on Hayes
equation (see the Appendix in Hale and Verduyn Lunel 1993), one knows that for
j = 1, 2, all roots of Q j (z) = 0 have negative real parts if and only if

R j0 �
ε jλ j S(0)j

d j + σ j
< 1. (6.11)

Therefore, the DFE E (0) is asymptotically stable if max{R10,R20} < 1 and it is unsta-
ble if max{R10,R20} > 1. In the latter case, we expect other equilibrium or equilibria,
which will be explored below.

We start with looking for possible boundary equilibria, that is, equilibrium of the
from E (1) = (S(1)1 , S(1)2 , I (1)1 , 0) or E (2) = (S(2)1 , S(2)1 , 0, I (2)2 ) with I (1)1 > 0 for the

former or I (2)2 > 0 for the latter. For E (1), we need to solve the algebraical equations

K1 − d1S(1)1 − DS
21S(1)1 + DS

12S(1)2 − λ1 I (1)1 S(1)1 = 0,

K2 − d2S(1)2 − DS
12S(1)2 + DS

21S(1)1 = 0, (6.12)

−(d1 + σ1)I
(1)
1 + ε1λ1 I (1)1 S(1)1 = 0,
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for positive S(1)1 , S(1)2 and I (1)1 which are determined by

S(1)1 = d1 + σ1

λ1ε1
, S(1)2 = 1

d2 + DS
12

(
K2 + DS

21
d1 + σ1

λ1ε1

)
, (6.13)

I (1)1 = ε1

d1 + σ1

[
K1 − (d1 + DS

21)(d1 + σ1)

λ1ε1
+ DS

12

d2 + DS
12

(
K2 + DS

21
d1 + σ1

λ1ε1

)]

= d1d2 + d1 DS
21 + d2 DS

21

λ1(d2 + DS
12)

(R10 − 1). (6.14)

Thus, E (1) exists (I (1)1 > 0) if and only if

R10 = ε1λ1S(0)1

d1 + σ1
> 1. (6.15)

Similarly, for E (2) we have

S(2)1 = 1

d1 + DS
21

(
K1 + DS

12
d2 + σ2

λ2ε2

)
, S(2)2 = d2 + σ2

λ2ε2
, (6.16)

I (2)2 = ε2

d2 + σ2

[
K2 − (d2 + DS

12)(d2 + σ2)

λ2ε2
+ DS

21

d1 + DS
21

(
K1 + DS

12
d2 + σ2

λ2ε2

)]

= d1d2 + d2 DS
12 + d1 DS

12

λ2(d1 + DS
21)

(R20 − 1). (6.17)

Hence, E (2) exists (I (2)2 > 0) if and only if

R20 = ε2λ2S(0)2

d2 + σ2
> 1. (6.18)

Finally, an interior equilibrium is an equilibrium of the form E (∗) = (S∗
1 , S∗

1 , I ∗
1 , I ∗

2 )

with all components positive, which can be determined from the following equations,

K1 − d1S∗
1 − DS

21S∗
1 + DS

12S∗
2 − λ1 I ∗

1 S∗
1 = 0,

K2 − d2S∗
2 − DS

12S∗
2 + DS

21S∗
1 − λ2 I ∗

2 S∗
2 = 0,

−(d1 + σ1)I ∗
1 + ε1λ1 I ∗

1 S∗
1 = 0,

−(d2 + σ2)I ∗
2 + ε2λ2 I ∗

2 S∗
2 = 0.

(6.19)
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Solving these equations for positive components leads to

S∗
1 = d1 + σ1

ε1λ1
, S∗

2 = d2 + σ2

ε2λ2
,

I ∗
1 = ε1

d1 + σ1

[
K1 − (d1 + DS

21)(d1 + σ1)

ε1λ1
+ DS

12(d2 + σ2)

ε2λ2

]
, (6.20)

I ∗
2 = ε2

d2 + σ2

[
K2 − (d2 + DS

12)(d2 + σ2)

ε2λ2
+ DS

21(d1 + σ1)

ε1λ1

]
.

Define

R̂10 = ε1λ1S(2)1

d1 + σ1
, R̂20 = ε2λ2S(1)2

d2 + σ2
. (6.21)

By straightforward calculations we can further express I ∗
1 and I ∗

2 in terms of R̂10 and
R̂20 as the following:

I ∗
1 = ε1[K1λ2ε2 + DS

12(d2 + σ2)]
(d1 + σ1)ε2λ2

(
1 − 1

R̂10

)
(6.22)

I ∗
2 = ε2[K2λ1ε1 + DS

21(d1 + σ1)]
(d2 + σ2)ε1λ1

(
1 − 1

R̂20

)
(6.23)

Thus, the interior equilibrium E (∗) exists if and only if

R̂10 > 1 and R̂20 > 1. (6.24)

The following theorem summarizes the structure of equilibria and addresses stabil-
ity of the DFE and the two boundary equilibria.

Theorem 6.2 Consider the system (6.8).

(i) If max{R10,R20} < 1, then the DFE E (0) is locally asymptotically stable; if
max{R10,R20} > 1, then the DFE E (0) becomes unstable.

(ii) If R10 > 1, then the boundary equilibrium E (1) exists. Moreover, E (1) is asymp-
totically stable if R̂20 < 1, and is unstable if R̂20 > 1.

(iii) If R20 > 1, then the boundary equilibrium E (2) exists. Moreover, E (2) is asymp-
totically stable if R̂10 < 1, and is unstable if R̂10 > 1.

(iv) If R̂10 > 1 and R̂20 > 1, then there is the interior equilibrium E (∗).

Remark 6.3 Direct computations show that

R̂10 < R10 ⇔ 1 < R20, (6.25)

R̂20 < R20 ⇔ 1 < R10. (6.26)
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Moveover, R̂10 < 1 < R10 and R̂20 < 1 < R20 can not hold simultaneously,
implying that the two boundary equilibria, if both exist, can not be simultaneously
stable.

Proof Part (i) and Part (iv) and the existence of the boundary equilibrium in both
Parts (ii) and (iii) have already been obtained above. Thus, we only need to prove the
stability/instability of the boundary equilibria stated in Parts (ii) and (iii).

Assume that R10 > 1. Linearizing (6.8) at the E (1) leads to

d S1(t)

dt
= −(d1 + DS

21 + λ1 I (1)1 )S1(t)+ DS
12S2(t)− λ1S(1)1 I1(t),

d S2(t)

dt
= −(d2 + DS

12)S2(t)+ DS
21S1(t)− λ2S(1)2 I2(t),

d I1(t)

dt
= −(d1 + σ1)I1(t)+ ε1λ1S(1)1 I1(t − τ)+ ε1λ1 I (1)1 S1(t − τ), (6.27)

d I2(t)

dt
= −(d2 + σ2)I2(t)+ ε2λ2S(1)2 I2(t − τ),

from which, one can obtain the characteristic equation given by
∣∣∣∣∣∣∣∣∣∣∣∣

z + d1 + DS
21 + λ1 I (1)1 −DS

12 λ1S(1)1 0

−DS
21 z + d2 + DS

12 0 λ2 S(1)2

ε1λ1 I (1)1 e−zτ 0 z + d1 + σ1 − ε1λ1S(1)1 e−zτ 0

0 0 0 z + d2 + σ2 − ε2λ2 S(1)2 e−zτ

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

The above equation can be written as

3(z, τ )4(z, τ ) = 0, (6.28)

where

3(z, τ ) =

∣∣∣∣∣∣∣∣

z + d1 + DS
21 + λ1 I (1)1 −DS

12 λ1S(1)1

−DS
21 z + d2 + DS

12 0

ε1λ1 I (1)1 e−zτ 0 z + d1 + σ1 − ε1λ1S(1)1 e−zτ

∣∣∣∣∣∣∣∣
,

4(z, τ ) = z + d2 + σ2 − ε2λ2S(1)2 e−zτ .

By the well-known results on Hayes equation (see, e.g., the Appendix in Hale and
Verduyn Lunel 1993), one knows that all roots of 4(z, τ ) = 0 have negative real
parts if and only if R̂20 < 1.

Next, we re-write 3(z, τ ) = 0 as

P(z, τ ) := P3(z)+ P2(z)e
−zτ = 0, (6.29)
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where

P3(z) := z3 + a1z2 + a2z + a3, and P2(z) := a4z2 + a5z + a6,

with

a1 = 2d1 + d2 + σ1 + DS
21 + DS

12 + λ1 I (1)1 ,

a2 = (d1 + λ1 I (1)1 + DS
21)(d2 + DS

12)− DS
21 DS

12

+ (d1 + σ1)(d1 + DS
21 + λ1 I (1)1 + d2 + DS

12),

a3 = (d1 + σ1)[(d1 + λ1 I (1)1 + DS
21)(d2 + DS

12)− DS
21 DS

12],

and

a4 = −ε1λ1S(1)1 ,

a5 = −ε1λ1S(1)1 (d1 + DS
21 + d2 + DS

12),

a6 = −(d1d2 + d1 DS
12 + d2 DS

21)ε1λ1S(1)1 .

Note that S(1)1 and I (1)1 depend on τ , so do a1, a2, a3, a4, a5 and a6.
For τ = 0, let ãi = ai (τ )|τ=0, i = 1, 2, 3, 4, 5, 6, and

P(z, 0) = z3 + ã1z2 + ã2z + ã3 + ã4z2 + ã5z + ã6

= z3 + (ã1 + ã4)z
2 + (ã2 + ã5)z + (ã3 + ã6)

� z3 + C1z2 + C2z + C3, (6.30)

where C1 = ã1 + ã4, C2 = ã2 + ã5, C3 = ã3 + ã6. The Routh–Hurwitz Theorem
(Gantmacher 1959, p194) for the cubic polynomial z3+C1z2+C2z+C3 is applicable.
Let Ĩ (1)1 = I (1)1 (τ )|τ=0, S̃(1)1 = S(1)1 (τ )|τ=0, and note that Ĩ (1)1 , S̃(1)1 > 0, ε1 = ε2 = 1,
and

C1 = ã1 + ã4

= 2d1 + d2 + σ1 + DS
21 + DS

12 + λ1 Ĩ (1)1 − λ1 S̃(1)1

= 2d1 + d2 + σ1 + DS
21 + DS

12 + λ1 Ĩ (1)1 − λ1
(d1 + σ1)

λ1

= d1 + d2 + DS
21 + DS

12 + λ1 Ĩ (1)1 > 0, (6.31)
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and

C1C2 − C3 = (ã1 + ã4)(ã2 + ã5)− (ã3 + ã6)

= [(2d1 + d2 + σ1 + DS
21 + DS

12 + λ1 Ĩ (1)1 )− ε1λ1 S̃(1)1 ][(d1 + λ1 Ĩ (1)1

+DS
21)(d2 + DS

12)− DS
21 DS

12

+(d1 + σ1)(d1 + DS
21 + λ1 Ĩ (1)1 + d2 + DS

12)

−λ1 S̃(1)1 (d1 + DS
21 + d2 + DS

12)] − (d1 + σ1)(d2 + DS
12)λ1 Ĩ (1)1

= (d1 + d2 + DS
21 + DS

12 + λ1 Ĩ (1)1 )[(d1 + λ1 Ĩ (1)1

+DS
21)(d2 + DS

12)− DS
21 DS

12

+(d1 + σ1)(d1 + DS
21 + λ1 Ĩ (1)1 + d2 + DS

12)

−λ1
d1 + σ1

λ1
(d1 + DS

21 + d2 + DS
12)] − (d1 + σ1)(d2 + DS

12)λ1 Ĩ (1)1

= (d1 + d2 + DS
21 + DS

12 + λ1 Ĩ (1)1 )[(d1 + λ1 Ĩ (1)1

+DS
21)(d2 + DS

12)

−DS
21 DS

12 + (d1 + σ1)λ1 Ĩ (1)1 ] − (d1 + σ1)(d2 + DS
12)λ1 Ĩ (1)1

= [(d2 + DS
12)+ (d1 + DS

21 + λ1 Ĩ (1)1 )][(d1 + λ1 Ĩ (1)1 )(d2 + DS
12)

+DS
21(d2 + DS

12)

−DS
21 DS

12 + (d1 + σ1)λ1 Ĩ (1)1 ] − (d1 + σ1)(d2 + DS
12)λ1 Ĩ (1)1

= (d2 + DS
12)(d1 + λ1 Ĩ (1)1 )(d2 + DS

12)+ (d2 + DS
12)D

S
21d2

+(d2 + DS
12)(d1 + σ1)λ1 Ĩ (1)1

+(d1 + DS
21 + λ1 Ĩ (1)1 )[(d1 + λ1 Ĩ (1)1 )(d2 + DS

12)

+DS
21d2 + (d1 + σ1)λ1 Ĩ (1)1 ] − (d1 + σ1)(d2 + DS

12)λ1 Ĩ (1)1

= (d2 + DS
12)(d1 + λ1 Ĩ (1)1 )(d2 + DS

12)+ (d2 + DS
12)D

S
21d2

+(d1 + DS
21 + λ1 Ĩ (1)1 )[(d1 + λ1 Ĩ (1)1 )(d2 + DS

12)+ DS
21d2

+(d1 + σ1)λ1 Ĩ (1)1 ]
> 0. (6.32)

Hence, all zeros of P(z, 0) have negative real parts.
It is clear that all zeros of P(z, τ ) depend on τ continuously (see Busenberg and

Cooke 1993, p 163). Notice also that the assumption (ii) of Beretta and Kuang (2002)
(see p 1146) holds, which ensures that Re(z) < +∞ for any zero of P(z, τ ). There-
fore, as τ increases, a zero of P(z, τ ) can enter the right half of the complex plane
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only by crossing the imaginary axis. Assume that z = iω with ω ≥ 0 is a zero of
P(z, τ ). Then

−iω3 − a1ω
2 + ia2ω + a3 + (−a4ω

2 + ia5ω + a6)e
−iωτ = 0.

Taking the moduli to the above equation yields

| − iω3 − a1ω
2 + ia2ω + a3| = |a4ω

2 − ia5ω − a6|,

which leads to

ω6 + (a2
1 − 2a2 − a2

4)ω
4 + (a2

2 − 2a1a3 + 2a4a6 − a2
5)ω

2 + (a2
3 − a2

6) = 0.

Letting y = ω2, the above equation becomes

p(y) := y3 + q1 y2 + q2 y + q3 = 0,

where q1 = a2
1 − 2a2 − a2

4 , q2 = a2
2 − 2a1a3 + 2a4a6 − a2

5 , q3 = a2
3 − a2

6 . Detailed
calculations show that

q1 = (a1 − a4)(a1 + a4)− 2a2

= (d1 + DS
21 + λ1 I (1)1 )2 + (d2 + DS

12)
2 + 2DS

21 DS
12 > 0,

q2 = (a2 + a5)(a2 − a5)− 2a1a3 + a4a6

= (d1d2 + d1 DS
12 + d2 DS

21)
2 + (d1d2 + d1 DS

12 + d2 DS
21)λ1 I (1)1 (d2 + DS

12)

+ λ1 I (1)1 (d2 + DS
12)(d1d2 + d1 DS

12 + d2 DS
21)+ (λ1 I (1)1 )2(d2 + DS

12)
2

+ (d1 + σ1)
2(λ1 I (1)1 )2 + 2(d1 + σ1)

2λ1 I (1)1 (d1 + DS
21) > 0,

and

q3 = (a3 + a6)(a3 − a6)

= (d1 + σ1)
2(d2 + DS

12)λ1 I (1)1

[
2(d1d2 + d1 DS

12 + d2 DS
21)+ λ1 I (1)1 (d2 + DS

12)
]

> 0.

This implies that p(y) = 0 has no nonnegative real root. Therefore, for any τ > 0,
there is no root of the form z = iω with ω ≥ 0 for P(z, τ ) = 0, and hence all roots
of P(z, τ ) = 0 have nonnegative real parts for all τ ≥ 0.

Summarizing the above, we have proved that under R10 > 1, the boundary equilib-
rium E (1) is asymptotically stable if R̂20 < 1, and is unstable if R̂20 > 1, completing
the proof of Part (ii).

By a similar and symmetric argument, we can prove Part (iii). The proof of the
theorem is completed. �	
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In the above theorem, we have only proved the local asymptotical stability of the
DFE E (0) when max{R10,R20} < 1. By using the fluctuation lemma (see, e.g., Hirsch
et al. 1985) and a comparison argument, we actually can prove that E (0) is indeed glob-
ally asymptotically stable for this case, as demonstrated below.

Theorem 6.4 If max{R10,R20} < 1, then the disease free equilibrium E (0) is glob-
ally asymptotically stable for (6.8).

Proof We only need to show that every nonnegative solution of (6.8) converges to
E (0). Following the convention, we use the following notations: for a continuous and
bounded function f (t) defined on [0,∞),

f ∞ � lim sup
t→∞

f (t), and f∞ � lim inf
t→∞ f (t).

Now, let (S1(t), S2(t), I1(t), I2(t)) be any non-negative solution of (6.8). Comparison
theorem leads to (see (4.11) in Sect. 4)

0 ≤ S1∞ ≤ S∞
1 ≤ S(0)1 ,

0 ≤ S2∞ ≤ S∞
2 ≤ S(0)2 .

(6.33)

Also, by Theorem 3.1, we know that

0 ≤ I1∞ ≤ I ∞
1 < ∞,

0 ≤ I2∞ ≤ I ∞
2 < ∞.

(6.34)

On the other hand, by the fluctuation lemma (see, e.g., Hirsch et al. 1985), there is a
sequence tn with tn → ∞ as n → ∞ such that

I1(tn) → I ∞
1 and I

′
1(tn) → 0, as n → ∞.

Substituting the sequence tn into the third equation of (6.8), letting n → ∞ and making
use of (6.33), we obtain

(d1 + σ1)I
∞
1 ≤ ε1λ1 I ∞

1 S∞
1 ≤ ε1λ1 I ∞

1 S(0)1 . (6.35)

In a similar way, we can establish

(d2 + σ2)I
∞
2 ≤ ε2λ2 I ∞

2 S∞
2 ≤ ε2λ2 I ∞

2 S(0)2 . (6.36)

Under max{R10,R20} < 1, (6.35)–(6.36) leads to I ∞
i = 0, i = 1, 2. This together

with (6.34) implies limt→∞ Ii (t) = Ii∞ = I ∞
i = 0 for i = 1, 2. Finally, applying the

theory of asymptotically autonomous systems (see, e.g., Castillo-Chaves and Thieme
(1995)) to the first and second equations of (6.8), we conclude that limt→∞ Si (t) =
S(0)i , i = 1, 2. This completes the proof. �	
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Table 1 Stability of equilibria for (6.8). Globally asymptotically stable, locally asymptotically stable and
unstable are denoted by G.A.S., L.A.S., U.S., respectively

Patch 2 Patch 1

R10 < 1 R̂10 < 1 < R10 1 < R̂10 < R10

[R̂20 < R20 ⇔ R10 > 1] [R̂20 < R20 ⇔ R10 > 1]

E(0) ∃ and U.S. E(0) ∃ and U.S.

R20 < 1 E(0) ∃ and G.A.S. E(1) ∃ and L.A.S. E(1) ∃ and L.A.S.

E(2) � E(2) �

E(0) ∃ and U.S. E(0) ∃ and U.S.

R̂20 < 1 < R20 E(1) � Impossible E(1) ∃ and L.A.S.

[R̂10 < R10 ⇔ 1 < R20] E(2) ∃ and L.A.S. E(2) ∃ and U.S.

E(0) ∃ and U.S. E(0) ∃ and U.S. E(0) ∃ and U.S.

1 < R̂20 < R20 E(1) � E(1) ∃ and U.S. E(1) ∃ and U.S.

[R̂10 < R10 ⇔ 1 < R20] E(2) ∃ and L.A.S. E(2) ∃ and L.A.S. E(2) ∃ and U.S.

E(∗) ∃

Based on Theorems 6.2 and 6.4 and Remark 6.3, we can summarize the stability
of equilibria in Table 1.

From Table 1, we see that Ri0 = 1 is the threshold value for the disease to persist
in Patch-i. It is interesting to compare these two values (R10 and R20) with R(0)

10 and

R(0)
20 , the basic reproduction numbers for patch 1 and patch 2 respectively when the

two patches are disconnected. Indeed, it is easily seen that

R10 = λ1ε1

d1 + σ1
· K1

d1
· d2 + DS

12 + K2
K1

DS
12

d2 + DS
12 + d2

d1
DS

21

= R(0)
10 · d2 + DS

12 + K2
K1

DS
12

d2 + DS
12 + d2

d1
DS

21

, (6.37)

and

R20 = λ2ε2

d2 + σ2
· K2

d2
· d1 + DS

21 + K1
K2

DS
21

d1 + DS
21 + d1

d2
DS

12

= R(0)
20 · d1 + DS

21 + K1
K2

DS
21

d1 + DS
21 + d1

d2
DS

12

. (6.38)

It is obvious from the above formulas that R10 and R20 reflect the influence of travel
of susceptible individuals between the two patches, and hence may be called the travel
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modified basic reproduction numbers for patch 1 and patch 2 respectively. The fol-
lowing observations are direct consequences of (6.37)–(6.38) and their verifications
are straightforward and thus, are omitted.

(O1) Assume R(0)
10 < 1 and R(0)

20 < 1. If DS
12 > 0 and DS

21 > 0 satisfy either

DS
12 >

d2(1 − R(0)
10 )+ d2

d1
· DS

21

R(0)
10 · (1 + K2

K1
)− 1

with 1 > R(0)
10 >

K1

K1 + K2
; (6.39)

or

DS
21 <

d1

d2

[(
R(0)

10 − 1
)
(d2 + DS

12)+ R(0)
10 DS

12
K2

K1

]

with 1 > R(0)
10 >

d2 + DS
12

d2 + DS
12 + K2

K1
DS

12

, (6.40)

then R10 > 1 and R20 < 1. By symmetry, the conditions parallel to the above
can lead to R10 < 1 and R20 > 1. Here and in the sequel, we omit such parallel
conditions.

(O2) Assume R(0)
10 > 1 and R(0)

20 > 1. If DS
12 > 0 and DS

21 > 0 satisfy either

DS
12 <

d2(1 − R(0)
10 )+ d2

d1
· DS

21

R(0)
10 · (1 + K2

K1
)− 1

,

with 1 < R(0)
10 < 1 + DS

21

d1
; (6.41)

or

DS
21 >

d1

d2

[(
R(0)

10 − 1
)
(d2 + DS

12)+ R(0)
10 DS

12
K2

K1

]
, (6.42)

then R10 < 1 but R20 > 1.
(O3) Assume R(0)

10 < 1 and R(0)
20 > 1. If DS

12 > 0 and DS
21 > 0 satisfy either

d2(1 − R(0)
10 )+ d2

d1
· DS

21

R(0)
10 · (1 + K2

K1
)− 1

<DS
12<

d2

d1

[(
R(0)

20 −1
)
(d1 + DS

21)+R(0)
20 DS

21
K2

K1

]
,

with 1>R(0)
10 >

K1

K1 + K2
; (6.43)
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or

d1(1 − R(0)
20 )+ d1

d2
· DS

12

R(0)
20 · (1 + K1

K2
)− 1

<DS
21<

d1

d2

[
(R(0)

10 − 1)(d2 + DS
12)+R(0)

10 DS
12

K2

K1

]
,

with 1>R(0)
10 >

d2 + DS
12

d2 + DS
12+ K2

K1
DS

12

and 1<R(0)
20 <1+ DS

12

d2
, (6.44)

then R10 > 1 but R20 > 1.
(O4) Assume R(0)

10 < 1 and R(0)
20 > 1. If DS

12 > 0 and DS
21 > 0 satisfy either

d2

d1

[
(R(0)

20 − 1)(d1 + DS
21)+R(0)

20 DS
21

K2

K1

]
<DS

12<
d2(1 − R(0)

10 )+ d2
d1

· DS
21

R(0)
10 ·

(
1 + K2

K1

)
− 1

,

with 1>R(0)
10 >

K1

K1 + K2
; (6.45)

or

d1

d2

[
(R(0)

10 − 1)(d2 + DS
12)+R(0)

10 DS
12

K2

K1

]
<DS

21<
d1(1 − R(0)

20 )+ d1
d2

· DS
12

R(0)
20 ·

(
1 + K1

K2

)
− 1

,

with 1>R(0)
10 >

d2 + DS
12

d2 + DS
12+ K2

K1
DS

12

and 1<R(0)
20 <1+ DS

12

d2
, (6.46)

then R10 < 1 but R20 < 1.

The biological meanings of (O1)–(O4) can be obtained from Theorem 6.2 or Table 1
in terms of R10 and R20. For example, (O1) implies that travel of the susceptible indi-
viduals can help an otherwise dying out disease persist locally. Roughly speaking,
larger inflow of susceptible individuals is in favor of the persistence of the disease in
the patch. (O2) implies that travel of the susceptible individuals can also help drive
an otherwise globally persistent disease out of one patch. (O3) and (O4) shows that
appropriate travel rates may either cause an otherwise partially persistent disease to
go to extinction, or help it persist globally in both patches.

We note that if R(0)
10 < 1 and R(0)

20 < 1 hold, then it is impossible to have R10 > 1

and R20 > 1 simultaneously; if R(0)
10 > 1 and R(0)

20 > 1 hold, then it is also impossible
to have both R10 < 1 and R20 < 1.

Remark 6.5 From Table 1, we see that max{R10, R20} = 1 is the critical value that
distinguishes persistence (could be local or global) from extinction for the disease.
This shows that the basic reproduction number for the model (6.8) is

R0 = max{R10, R20}. (6.47)
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6.2 Sub-case 2: Travel of infected individuals is unidirectional

In this subsection, we still assume positive DS
12 and DS

21. We consider a scenario
that travel of the infected individuals is unidirectional. Without loss of generality, we
assume that infected individuals can travel from Patch 2 to Patch 1, but can not travel
from Patch 1 to Patch 2. That is, we assume that Dl

21 = DI
21 = 0, but Dl

12 > 0
and DI

12 > 0. If the two patches are two cities, such a situation may occur when
the two cities have different public health systems, or the health officials in the two
cities disagree on the severity of an infectious disease, resulting in one city imple-
menting a ban against arrival of the infected individuals from the other city but not
vice-versa.

In this case, the matrix B is upper triangular, and so is [bi j (τ )] = exp(Bτ), given
by

b11(τ ) = e−(d1+δ1)τ = ε1, b22(τ ) = e−(d2+δ2+Dl
12)τ ,

b12(τ ) =
Dl

12

[
e−(d2+δ2+Dl

12)τ − e−(d1+δ1)τ
]

(d1 + δ1)− (d2 + δ2 + Dl
12)

, b21(τ ) = 0. (6.48)

Thus, the model reduces to

d S1(t)

dt
= K1 − d1S1(t)− DS

21S1(t)+ DS
12S2(t)− λ1 I1(t)S1(t),

d S2(t)

dt
= K2 − d2S2(t)− DS

12S2(t)+ DS
21S1(t)− λ2 I2(t)S2(t),

d I1(t)

dt
= −(d1 + σ1)I1(t)+ DI

12 I2(t)+ b11(τ )λ1 I1(t − τ)S1(t − τ)

+ b12(τ )λ2 I2(t − τ)S2(t − τ),

d I2(t)

dt
= −(d2 + σ2)I2(t)− DI

12 I2(t)+ b22(τ )λ2 I2(t − τ)S2(t − τ).

(6.49)

The DFE E (0) is still given by (6.3). A possible boundary equilibrium of the form
E (1) = (S(1)1 , S(1)2 , I (1)1 , 0) is still given by (6.13) and (6.14). Hence, as is seen in
Subsection 6.1, E (1) exists if and only if R10 > 1 where R10 is defined in Subsec-
tion 6.1. However, since b12(τ ) > 0, a boundary equilibrium of the form E (2) =
(S(2)1 , S(2)2 , 0, I (2)2 ) becomes impossible.

For the convenience of discussing stability of the equilibria, we define

R′
20 = b22(τ )λ2S(0)2

d2 + σ2 + DI
12

, and R̂′
20 = b22(τ )λ2S(1)2

d2 + σ2 + DI
12

. (6.50)
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Linearizing (6.49) at E (0) = (S(0)1 , S(0)2 , 0, 0) leads to

d S1(t)

dt
= −(d1 + DS

21)S1(t)+ DS
12S2(t)− λ1S(0)1 I1(t),

d S2(t)

dt
= −(d2 + DS

12)S2(t)+ DS
21S1(t)− λ2S(0)2 I2(t),

d I1(t)

dt
= −(d1 + σ1)I1(t)+ DI

12 I2 + b11(τ )λ1S(0)1 I1(t − τ)

+ b12(τ )λ2S(0)2 I2(t − τ),

d I2(t)

dt
= −(d2 + σ2 + DI

12)I2(t)+ b22(τ )λ2S(0)2 I2(t − τ),

(6.51)

the characteristic equation of which is

Q1(z)Q̂2(z)Q3(z) = 0, (6.52)

where Q1(z) and Q3(z) are as in Sect. 6.1, but Q̂2(z) is a modification of Q2(z) by
the following formula:

Q̂2(z) = z + (d2 + σ2 + D12)− b22(τ )λ2S(0)2 e−zτ ,

which is a result of replacing ε2 and d2 + σ2 in Q2(z) in Sect. 6.1 by b22(τ ) and
d2 + σ2 + D12 , respectively. Thus, by a similar argument to that for the stabil-
ity/instability of E (0) in Sect. 6.1, we conclude that E (0) is locally asymptotically
stable if max{R10,R′

20} < 1, and it becomes unstable if max{R10,R′
20} > 1.

Actually, we can also further prove that E (0) is globally asymptotically stable if
max{R10,R′

20} < 1, again by using the fluctuation lemma. In fact, for any non-
negative solution (S1(t), S2(t), I1(t), I2(t)) of (6.49), by argument similar to that in
proof of Theorem 6.4 and from the fourth equation of (6.49), we have

(d2 + σ2 + DI
12)I

∞
2 ≤ b22(τ )λ2 I ∞

2 S∞
2 ≤ b22(τ )λ2 I ∞

2 S(0)2 ,

which results in I ∞
2 = 0 by noting that R′

20 < 1. Thus, limt→∞ I2(t) = I2∞ =
I ∞
2 = 0. Then applying this to the third equation of (6.49), we get

(d1 + σ1)I
∞
1 ≤ b11(τ )λ1 I ∞

1 S∞
1 + b22(τ )λ2 I ∞

2 S∞
2 ≤ b11(τ )λ1 I ∞

1 S(0)1 ,

which implies that I ∞
1 = 0 by using R10 < 1. Therefore, limt→∞ I1(t) = 0. Finally,

applying the theory of asymptotically autonomous systems (see, e.g., Castillo-Chaves
and Thieme (1995)) to the first and second equations of (6.49), we conclude that
limt→∞ Si (t) = S(0)i , i = 1, 2. This gives the globally asymptotically stability of E (0)
for (6.49). Thus we have proved the following

Theorem 6.6 The disease free equilibrium E (0) of (6.49) is globally asymptotically
stable if max{R10,R′

20} < 1; it is unstable if max{R10,R′
20} > 1.
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Next, we investigate what happens when max{R10,R′
20} > 1.

Case 1 R10 > 1. We have seen above that in this case there is the boundary equilib-
rium E (1). The stability of E (1) is described in the following theorem.

Theorem 6.7 Assume that R10 > 1. Then E (1) is locally asymptotically stable if
R̂′

20 < 1; it becomes unstable if R̂′
20 > 1. In the latter case, there is an interior

equilibrium E+ = (S+
1 , S+

2 , I +
1 , I +

2 ) (i.e., with S+
i > 0, I +

i > 0, i = 1, 2).

Proof The linearization of (6.49) at E (1) is

d S1(t)

dt
= −(d1 + DS

21 + λ1 I (1)1 )S1(t)+ DS
12S2(t)− λ1S(1)1 I1(t),

d S2(t)

dt
= −(d2 + DS

12)S2(t)+ DS
21S1(t)− λ2S(1)2 I2(t),

d I1(t)

dt
= −(d1 + σ1)I1(t)+ DI

12 I2 + b11(τ )λ1S(1)1 I1(t − τ) (6.53)

+ b11(τ )λ1 I (1)1 S1(t − τ)+ b12(τ )λ2S(1)2 I2(t − τ),

d I2(t)

dt
= −(d2 + σ2 + DI

12)I2(t)+ b22(τ )λ2S(1)2 I2(t − τ),

whose characteristic equation is given by,

3(z, τ )̃4(z, τ ) = 0, (6.54)

where 3(z, τ ) is the same as that in the Eq. (6.28), but ̃4(z, τ ) is a modification of
4(z, τ ) in (6.28) by the following expression,

̃4(z, τ ) = z + (d2 + σ2 + DI
12)− b22(τ )λ2S(1)2 e−zτ . (6.55)

Since the roots of 3(z, τ ) = 0 always have negative real parts, the stability of E (1)
is determined by the root of ̃4(z, τ ) = 0, for which R̂′

20 = 1 is the critical value:
when R̂′

20 < 1 all roots have negative real parts; when R̂′
20 = 1, z = 0 is a root;

when R̂′
20 > 1 there is a positive real root. This confirms the statements for stabil-

ity and instability of E (1). The above also implies that R̂′
20 = 1 is critical value for

equilibrium bifurcation, meaning that there will be another non-negative equilibrium
when R̂′

20 > 1. Since there is no other boundary equilibrium, this newly bifurcated
equilibrium must be an interior one, completing the proof of the theorem. �	
Case 2 R10 < 1 but R′

20 > 1. Going back to (6.52), we know that in this case,
all roots of Q1(z) = 0 and Q3(z) = 0 have negative real parts. Thus, the stability
of E (0) is totally determined by Q̂2(z) = 0. Note that R′

20 = 1 is a critical value
for Q̂2(z) = 0: when R′

20 < 1, all roots of Q̂2(z) = 0 have negative real parts; at
R′

20 = 1, z = 0 is a root of Q̂2(z) = 0 and all other roots have negative real parts;
when R′

20 > 1, Q̂2(z) = 0 has positive real root. Thus, when R′
20 increases to pass the
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critical value 1, the DFE E (0) looses its stability to another non-negative equilibrium.
Since there is no boundary equilibrium, this newly bifurcated equilibrium must be an
interior one. This analysis leads to the following

Theorem 6.8 Assume R10 < 1 and R′
20 > 1. Then there is an interior equilibrium

for (6.49).

Remark 6.9 From the above theorems, we know that max{R10,R′
20} = 1 is the

threshold value that determines whether or not the disease can persist (either locally
or globally), and hence,

R0 = max{R10,R′
20} (6.56)

defines the basic reproduction number for the model (6.49).

7 Conclusion and discussion

We have derived a new epidemic model to describe the dynamics of disease with a
fixed latency in a n-patch environment. Starting from the classical SIR model with
demographical structure, making use of a system of first-order linear partial differen-
tial equations for the evolution of disease with infection age and time, and tracking the
dispersal of latent individuals, we have obtained a new model in the form of a system
of delay differential equations which, in addition to the linear dispersion terms, con-
tains non-local infection terms. The patches can be communities, cities, regions and
even countries; and the population dispersal among patches can be interpreted as the
movements by which people travel or migrate between patches.

For this new model (2.15), we have justified the well-posedness by proving the
positivity and boundedness of solutions. There are two infection related travel rate
matrices for the model, one for travel of latent individuals and the other for the travel
of infectious individuals, When both of the travel rate matrices are assumed to be
irreducible, we have identified the basic reproduction number R0 for the model with
general n, which are given by the spectral radius of a matrix. We have shown that the
model demonstrates a threshold behavior in the sense that when R0 < 1, the disease
dies out and when R0 > 1, the disease persists globally (i.e., in all patches).

When allowing infection related travel rate matrices to be reducible, the above
results remain unproved for general n. However, we have considered two special
cases in Sect. 6 under n = 2. One important difference is that without irreducibility of
the travel rate matrices, the model may allow boundary equilibrium. For either of these
two cases, we have also identified the basic reproduction number R0, and obtained
similar threshold behavior. But now the persistence of the disease in these two cases
when R0 > 1 can be either in the local sense or in the global sense, in contrast to the
case when the travel rate matrices for the disease related individuals are irreducible.

Note that the formula for the basic reproduction R0 = ρ(FV−1) is identified for
(2.15) with irreducible travel rate matrices for the infected individuals. However, it is
interesting to notice that even in the special cases in Sect. 6.1 and 6.2 where the travel
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rate matrices for latent and infectious individuals are indeed reducible, formal calcu-
lations by this formula also give the respective basic reproduction numbers. Indeed,
for (6.8), simple calculation of (6.4) shows

ρ(FV−1) = P + √P2 − 4Q
2det(V)

= 1

2
(R10 + R20)+ 1

2
|R10 − R20|

= max{R10,R20}, (7.1)

coinciding with (6.47). For (6.49), one can also compute (6.4) to obtain

ρ(FV−1) = P + √P2 − 4Q
2 det(V) = 1

2
(R10 + R′

20)+ 1

2

√
(R10 − R′

20)
2

= 1

2
(R10 + R′

20)+ 1

2
|R10 − R20|

= max{R10,R′
20}, (7.2)

agreeing with (6.56). These facts suggest that, regardless of irreducibility or reduc-
ibility of the travel rate matrices of the infection related individuals, the formula
R0 = ρ(FV−1) is universal. The difference caused by irreducibility or reducibility
seems to lie in that, when R0 > 1, the persistence for the former must be in the global
sense, while the persistence for the latter can be local or global. With the above, we
may explore a bit more about the impact of the travel of the latent individuals. From
(6.4), if the infectious individuals are prevented from migrating/traveling between
both patches, but the susceptible and latent individuals are allowed, that is, DS

21, DS
12,

Dl
21, Dl

12 > 0, but DI
21 = DI

12 = 0, then

ρ(FV−1) = P + √P2 − 4Q
2 det(V)

= 1

2
(R10 + R20)+ 1

2

√

(R10 − R20)2 + 4R10R20
b12(τ )b21(τ )

b11(τ )b22(τ )

>
1

2
(R10 + R20)+ 1

2
|R10 − R20|

= max{R10,R20}, (7.3)

that is,

R0 = ρ(FV−1) > max{R10,R20}. (7.4)

This shows that the mobility of the latent individuals (described by bi j (τ ), i = 1, 2,
causing non-local infections) increases the basic reproduction number, and hence, may
cause an otherwise dying-out disease to persist. However, for (6.49), we know that
R0 = max{R10,R′

20} with R′
20 = R′

20(D
l
12). We notice that both R0 and R′

20 are
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decreasing with respect to Dl
12. In this case, Dl

12 > 0 (the travel rate from Patch 2 to
Patch 1 for the latent individuals) will decrease the basic reproduction number, which
is in contrast to the roles of Dl

12, Dl
21 > 0 on increasing the basic reproduction number

in the above case in which only the infectious individuals are forbidden to travel.
The impact of travel rates of the susceptible individuals has been discussed in

much details for (6.8) in Sect. 6.1, as is summarized in the observations (O1)–(O4).
We now take a look at the impact of the travel of infectious individuals in the model
(6.49). Notice that R′

20 = R′
20(D

I
12) is a decreasing function of DI

12 , so is R0 =
max{R10,R′

20}. For example, when we have R10 < 1 and R′
20 > 1 which gives

R0 > 1, the increase of DI
12 (the unbalanced travel rate from Patch 2 to Patch 1 for

the infectious class) will decrease R′
20 to a value less than 1, which results in R0 < 1.

Therefore, DI
12 indeed plays a role of decreasing the basic reproduction number, which

is similar to the role of travel rate of the latent individuals in this case.
Finally, we point out that in both irreducible (general n) and reducible cases (n = 2),

we are unable to prove the stability of the endemic equilibrium when it exists. This
seems to be a very difficult mathematical problem due to the presence of the latent
delay and the non-local infection terms in the model. We avoid to address it in this
already lengthy paper, and have to leave it as a future project (a very interesting yet
challenging one).
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