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Abstract G-protein coupled receptors (GPCRs) form a crucial component of app-
roximately 80% of hormone pathways. In this paper, the most popular mechanism
for activation of GPCRs—the shuttling mechanism—is modelled mathematically. An
asymptotic analysis of this model clarifies the dynamics of the system in the absence
of drug, in particular which reactions dominate during the different timescales. Equi-
librium analysis of the model demonstrates the model’s ability to predict constitutive
receptor activity.
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1 Introduction

1.1 Motivation

Since multicellular organisms first appeared on the earth, an essential factor in their
success has been the effectiveness of communication between their component cells.
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Complex internal machinery is needed for the cells to coordinate their behaviour,
allowing each individual cell to recognise its position and importance to the body as
a whole: for example, having neighbouring cells control the rate of cell division is
an important “social control”. The breakdown of such a control can lead to cancer,
probably killing the organism (Alberts et al. 1994).

One specific type of intercellular communication involves the use of G-protein
coupled receptors (GPCRs). It has been estimated that as much as 5% of the human
genome codes for these receptors and approximately 80% of all known hormones, neu-
rotransmitters and neuromodulators act through them. In addition, it is believed that
between 45 and 60% of all pharmaceuticals used today act through GPCRs (Riccobene
et al. 1999; Woolf et al. 2001).

Examples of GPCR systems include the β1-adrenoreceptor that adrenaline binds
to, regulating heart contractility, and the opioid receptor, in the brain and spinal
cord, to which opiates (such as morphine) can bind to suppress pain. Drugs called
β-blockers have been developed which have been proven to be effective means of
alleviating medical conditions such as hypertension and congestive heart failure, by
antagonising the effects of endogenous hormones (Adams et al. 1998; Fitzgerald
et al. 1999; Woolf et al. 2001). Thus, better understanding of the mechanisms of
G-protein activation should lead to increased efficiency of existing treatments and
could be instrumental in provoking developments that could lead to new drugs to
combat currently uncurable diseases (Fitzgerald et al. 1999; Kenakin 1997).

1.2 Background

The GPCR signalling pathway is initiated by a ligand. Many different substances can
act as ligands, including light, lipids, proteins, peptides, biogenic amines, nucleotides,
drugs (Fitzgerald et al. 1999) and, most specifically, hormones. The ligand interacts
with a responsive cell through a number of receptors on the cell’s surface. Although
there are many different GPCRs, the specific type of receptor in which we are inter-
ested, they all have the same basic structure. They consist of a single protein strand
that passes through the lipid bilayer (which forms the cell surface) seven times. The
extracellular part of the GPCR has a domain that accepts a specific ligand (see Fig. 1).
The GPCR undergoes a conformational change on binding (expressed by K P ), open-
ing a binding site inside the cell. This allows the GPCR to bind to the next player
in the G-protein signalling game, the G-protein itself (expressed by KG), this being
a heterotrimeric (composed of three distinct parts) GTP-binding (binds to guanosine
triphosphate) protein. The three parts are designated the α, β and γ components (see
Fig. 2), each being encoded by a distinct gene. The G-protein α sub-units are divided
into four main classes termed Gs, Gi, Gq and G12, depending on their function (Watson
and Arkinstall 1994). Each class stimulates/inhibits different internal enzymes.

The α subsection of the G-protein in Fig. 2 is bound to a molecule of guanine diphos-
phate (GDP). This is its “inactive” state. The heterotrimeric G-protein can interact with
the ligand-bound receptor, forming a temporary complex. This triggers the dissocia-
tion of GDP from the G-protein, forming a transient “empty” state. From this state,
either another molecule of GDP will bind (returning the G-protein to its inactive state)
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Fig. 1 Schematic of ligand binding to a GPCR. The top of the picture represents the extracellular region,
the bottom the intracellular

Fig. 2 Schematic of an inactive
heterotrimeric G-protein

α
β
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or guanosine triphosphate (GTP) will bind, triggering a further conformational change
(expressed by Kact ) that causes the G-protein not only to dissociate from the GPCR
but also to split up into Gα and Gβγ units (the β and γ subunits forming a tight com-
plex). These proceed to regulate effector activities. The G-protein is deactivated when
the Gα-GTP subunit is hydrolysed back to Gα-GDP (expressed by Kgtp), which sub-
sequently reassociates with Gβγ (expressed by K B) to produce the inactive G-protein
(see Fig. 3 for a schematic of this process) (Alberts et al. 1994; Watson and Arkinstall
1994). The Gα-GTP subunit binds to effector enzymes (such as adenylyl cyclase) to
continue the signalling pathway, however in this paper we will consider the concentra-
tion of the Gα-GTP subunit to be the measurable reponse. This mechanism, whereby
the Gα-GTP subunit shuttles between its associated receptor and its target enzyme, is
known as the shuttling mechanism (Shea et al. 2000) and is the most popular theory as
to how a GPCR activates its associated effector enzyme. For example, the α subunit
from the Gs-protein shuttles between the β2-adrenergic receptor and adenylyl cyclase.

However, Fig. 3 is a simplification of the G-protein activation process, since
G-proteins are also able to bind to a GPCR before a ligand has bound. This is called
pre-coupling and the amount of pre-coupling depends on both the receptor and the
G-protein. In this paper, the equilibrium constant KG is the parameter that determines
the amount of pre-coupling. Approximately 50% of the N-formyl peptide receptors in
neutrophils and 30% of the α2-adrenergic receptors in platelet membranes are thought
to be pre-coupled (Shea et al. 2000). These pre-coupled complexes are not active, but
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Fig. 3 G-protein activation (right)/deactivation (left) cycle: the shuttling mechanism

they are extremely susceptible to ligand binding, expressed below by the parameter ν.
Upon ligand binding, the G-protein is activated (Lidow et al. 2001), as above.

A further complication is that receptors are not typically exclusive (i.e. they can
be activated by more than one kind of ligand) and they can bind to more than one
type of G-protein. It has been proposed that receptors may have more than one con-
formational state (Kenakin 1997; Leff et al. 1997). The basis of the theory is that the
receptor has one inactive state, which is less willing to bind (i.e. has lower affinity),
and multiple active states, each of which involves preferential binding to a differ-
ent G-protein. To adopt some widely used terminology (Kenakin 1997), let R be the
inactive receptor state of the β-adrenergic receptor, which is activated by adrenaline.
Let R∗ be the active form that binds to Gs-proteins and R∗∗ the one that binds to
Gi-proteins. The receptors can spontaneously change conformation between the three
states and, in the absence of ligand, the receptors are distributed between the three
states in equilibrium.
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Constitutive receptor activity occurs when a noticeable response occurs in the
absence of ligand. The most likely reason for this to happen is by receptor over-
expression.

1.3 Previous work

There has been much experimental research conducted on GPCRs (see Alberts et al.
1994; Kenakin 1993, 1997; Watson and Arkinstall 1994, for example) which has led
to the understanding outlined above. Only rather recently have attempts been made
to model these systems mathematically, to test whether theoretical ideas about these
processes can match up to experimental data.

De Lean et al. (1980) proposed one of the first models, the ternary complex model
(TCM), in which both the G-protein and the ligand can interact with the receptor
to form complexes. Nauroschat and an der Heiden (1996) extended this model by
incorporating additional reactions to reflect second messenger production. Since then,
receptors have been found to exist in differing conformations, the extended ternary
complex model (eTCM) being formulated to reflect this discovery Kenakin (2001).
Riccobene et al. (1999) and Adams et al. (1998) each used a variant of the eTCM
and included desensitisation of the receptors. Woolf et al. (2001) used a variant of
the eTCM with two different ligands to model membrane assays, which are used
to measure the signal generated by a biological reporter. They also investigate the
activated eTCM, which includes steps involving the activation of the G-protein by
exchanging GDP for GTP and the dissociation of the α and βγ subunits. It has been
proposed that G-proteins can bind to inactive receptors: the relevant model is called
the cubic ternary complex model (CTC), which is more thermodynamically complete
than the TCM as it includes all the possible combinations of receptor and G-protein.
Shea et al. (2000) introduced the activated CTC to study the dynamics of the G-protein
activation process and were the first group to analyse any model dynamically. For a
useful general review of all these models see Kenakin (2002).

Others have formulated similar models. Clément et al. (2001) considered the recep-
tor/G-protein system as a single species which can be activated by a hormone. This
active complex in turn activates adenylate cyclase to produce cAMP. Kukkonen et al.
(2001) compare three models, namely: (1) the shuttling model, in which a ligand-
activated receptor activates G-proteins, which freely diffuse away; (2) the complex-
ing model, in which the activated G-protein remains bound to the receptor whilst
interacting with the relevant enzyme; and (3) the pre-coupled model, in which the
G-protein remains bound to the receptor even in the absence of ligand. Krakauer et al.
(2002) also formulate an intracellular model utilising a G-protein pathway, where
they (for mathematical simplicity) consider the G-protein to be part of a ‘black box’
mechanism in modelling the dynamics of the gonadotropic releasing hormone sys-
tem. As noted above, receptors can bind to more than one type of G-protein; models
with more than two active conformations have been formulated to reflect this, such as
Chen et al. (2003) and Leff et al. (1997). Kinzer-Ursem and Linderman (2007) have
recently investigated further the cubic ternary complex activation model.

The model we now outline is for a GPCR system which involves reactions with
biological molecules that are present in sufficiently large numbers that deterministic
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ordinary differential equation models should provide valuable insight. It is clearly
desirable that detailed mathematical analysis be done on this system, as better under-
standing of the processes involved is necessary for efficient drug design and delivery.

1.4 Current work

In this paper, we present a model for drug-free G-protein activation that is thermo-
dynamically sound, including reversible reactions in the G-protein cycle which have
previously been treated as irreversible. We focus on constitutive receptor activity as a
useful measure, and highlight the effects of various parameters on responses. Consti-
tutive receptor activation is where the receptors alone, without the presence of ligand,
can cause the G-proteins to become activated. This is done by over-expressing the
receptor, i.e. by increasing the concentration of the receptor with respect to the con-
centration of the G-protein. Both the detailed background above, and the analysis
which follows (which is designed to clarify the dynamics of the model via artificial
initial data) is pursued in large part to provide a framework for investigating the much
more important (and more complex) case of ligand binding. Further, the methods and
analysis presented here are suggested as an approach for studying a number of fur-
ther problems, including single ligand binding, competitive ligands binding, multiple
receptor states and downstream signalling.

2 Model formulation

2.1 Equilibrium considerations

2.1.1 Model assumptions

As our initial model, a receptor with one active state (R∗) and one inactive state (R)
is chosen. All combinations of receptor (R or R∗), ligand (A) and G-protein (G) are
allowed, other than the combination AG which is not included since the agonist cannot
bind directly to the G-protein. This gives a total of eight different receptor states (see
Fig. 4 for the eight states and the possible ‘bimolecular’ transitions between them).
This model is called the cubic ternary complex model and, was analysed in equilib-
rium in Kenakin (2001). The model involves three equilibrium constants (K A, KG ,
K P ) and three thermodynamic constants (ζ, µ, ν). Rather than restrict our analysis
to equilibrium states, in this paper, we present a study of the dynamics of G-protein
activation, with no drug present. As such, we focus on the top face of the cube. A
full discussion of the equilibrium and kinetic parameters appearing in the model is
presented in Woodroffe et al. (2009); here, we include only those which do not involve
ligand-bound receptors.

2.1.2 The equilibrium and thermodynamic constants

The equilibrium constants are defined as the ratio of the concentrations of the relevant
species at equilibrium. KG has units of M−1 and K P is dimensionless. The relevant
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Fig. 4 The eight basic receptor
states

mass action expressions are

R + G
KG� RG, KG = [RG]

[R][G] , (1)

R
K P� R∗, K P = [R∗]

[R] , (2)

where here the [ ]’s denote equilibrium concentrations, with units of M.
The values of the thermodynamic constants characterise the role played by the dif-

ferent species involved in the equilibrium. The constant µ relates to the effects of the
G-protein (rather than ligand) being bound; it appears, in particular, in the reactions

R + G
KG� RG, R∗ + G

µKG� R∗G, (3)

R
K P� R∗, RG

µK P� R∗G. (4)

Increasing µ has the effect of making the G-proteins prefer to bind to R∗ over R. It
also sways the equilibrium of the receptor-G-protein complex towards R∗G.

We can relate the equilibrium concentrations of all the species, in terms of the ther-
modynamic constants, the equilibrium constants and the equilibrium concentrations
of R, R∗ and G, as follows

[RG] = KG [R][G], [R∗] = K P [R], (5)

[R∗G] = µKG [R∗][G] = µK P [RG] = µKG K P [R][G]. (6)

These expressions encompass the various routes by which multi-step reactions can be
achieved, which lead to a number of detailed balance constraints that relate the equi-
librium constants. So far, only the interactions between the receptor and G-protein
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have been addressed. In the next subsection, the activation of the receptor-G-protein
complex will be considered.

2.2 Time dependent behaviour

2.2.1 Activation and deactivation rate constants

The active receptors bound to G-proteins (R∗G) are the ones that allow the exchange
of the G-protein’s GDP for GTP, thus activating it. The bound complexes can then
dissociate into their Gα−GTP (henceforth to be denoted α†), Gβγ (βγ ) and R∗ com-
ponents. Exchange and dissociation are taken to occur as a single step, with one rate
constant ka+ [we note that exchange is expected to be slow compared to dissociation
Shea et al. (2000)]. It will be assumed in this paper that this view of the dominant
mechanism, known as the shuttling model, is biologically accurate. The complexing
model, as considered by Kukkonen et al. (2001), whereby the α subunit remains bound
to the receptor and thence forms a complex with the effector enzyme could be analysed
in a similar fashion.

Rate constants are now introduced for all the reversible reactions, bearing in mind
the relationships between the equilibrium constants given above, and also for the
hydrolysis of the GTP on the α† back into GDP (by GTPase activity) and the recom-
bination of Gα−GDP (α) and βγ . The relevant rate constants (shown in Fig. 5) are
related to the equilibrium ones by

KG = k+
k−

, K P = kp

kq
, (7)

ζ = ζ+
ζ−

, µ = µ+
µ−

, ν = ν+
ν−

. (8)

The constants can be identified by their subscripts, where

p the forward transition from R to R∗
q the reverse transition from R∗ back to R
+ the process of binding the G-protein
− the dissociation of the G-protein
b+ the reassociation of G from its inactive subunits
g+ the hydrolysis of α†

a+ the activation of the G-protein complex and its dissociation into subunits

2.2.2 Parameter values

A literature survey has been conducted to find possible values for the constants in the
model, Shea et al. (2000) and Riccobene et al. (1999) giving the most complete infor-
mation, with Adams et al. (1998), Leff et al. (1997), Woolf et al. (2001) and Lemon
et al. (2003) providing other values. To convert from (cell)−1 to M−1 the value is
multiplied by Avogadro’s number (6.022 × 1023) and divided by the number of cells

123



Drug free GPCR activation 321

per litre [5 × 109 in the experimental set ups of Riccobene et al. (1999), Shea et al.
(2000)]. A table of values is given in the Appendix.

2.2.3 Mathematical feasibility

The model includes rate constants which relate to the equilibrium constants in Eq. (7),
and thermodynamic constants. It is necessary to break down the thermodynamic con-
stants into forward and reverse components (denoted by + or −) to reflect separately
their influence on each of the forward and reverse reaction rates. The θ ’s indicate the
possibility that the thermodynamic constant effects may be proportionately greater in
different reactions.

The cubic ternary complex activation model (TCAM) includes three irreversible
reactions, it being assumed in Shea et al. (2000) that kb− = kg− = ka− = 0.
While these assumptions may be reasonable, the reverse reactions are included here
to give the model detailed balance. Figure 5 provides a schematic of all the rel-
evant reactions. The system is not closed, since many reactions are governed by
external processes, such as the hydrolysis of the GTP on the α† being governed by
GTPase (which is generated by processes other than those in the model, included
here within the value of kg+), or the exchange of GTP and GDP since the GTP is
formed elsewhere, implying in particular that the full system does not exhibit detailed
balance, i.e. each individual reaction need not be in equilibrium when the entire
system is.

We now define three more ‘equilibrium’ constants. For the reasons just noted, the
associated equilibrium relations are not in fact satisfied at equilibrium, but they will
be used in nondimensionalising the model. Indeed, since detailed balance of the sys-
tem is negated by the move from the ternary complex model to the ternary complex
activation model, the relations in Eqs. (1) and (2) do not hold at equilibrium either.
These constants are

Kact = ka+
ka−

, Kgtp = kg+
kg−

, K B = kb+
kb−

, (9)

Fig. 5 The drug-free section of the cubic ternary complex activation model
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and are derived from the relations

[R∗G] Kact� [α†] + [βγ ] + [R], [α†] Kgtp
� [α], [α] + [βγ ] K B� [G]. (10)

2.3 Dimensional differential equations

With the above assumptions and definitions, and using the law of mass action (as
outlined in Murray (1993), for example) the model takes the form of a eighth-order
system of ordinary differential equations as follows:

d[R]
dt

= kq [R∗] + k−[RG] − (kp + k+[G])[R], (11)

d[R∗]
dt

= kp[R] + (
µ−θµk− + ka+

) [R∗G]
− (kq + θµµ+k+[G] + ka−[α†][βγ ])[R∗], (12)

d[G]
dt

= k−[RG] + θµµ−k−[R∗G] + kb+[α][βγ ]
− (

k+([R] + θµµ+[R∗]) +kb−) [G], (13)

d[RG]
dt

= k+[R][G] + µ−kq [R∗G] − (k− + µ+kp)[RG], (14)

d[R∗G]
dt

= µ+kp[RG] + θµµ+k+[R∗][G] + ka−[α†][βγ ][R∗]
− (

µ−(kq + θµk−) + ka+
) [R∗G], (15)

d[α]
dt

= kg+[α†] + kb−[G] − kb+[α][βγ ] − kg−[α], (16)

d[α†]
dt

= ka+[R∗G] + kg−[α] − (
kg+ + ka−[R∗][βγ ]) [α†], (17)

d[βγ ]
dt

= ka+[R∗G] + kb−[G] − kb+[α][βγ ] − ka−[R∗][α†][βγ ]. (18)

Here [•] denotes the concentration of species •. The quantities, RTOT , the total num-
ber of receptors, and GTOT , the total number of G-proteins are conserved. Moreover,
the number of βγ subunits is the same as the number of α and α† subunits, because
each G splits into one α (or α†) and one βγ , so if equality holds at t = 0 it does so
for all t . Thus we have

RTOT = [R] + [R∗] + [RG] + [R∗G], (19)

GTOT = [G] + [RG] + [R∗G] + [α†] + [α], (20)

[βγ ] = [α†] + [α], (21)

with RTOT and GTOT constant.
The key differences between the current model and that of Shea et al. (2000) is that

all the reactions here are reversible and the thermodynamic parameter set is complete.
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This paper looks at the dynamics of the model in great detail, whereas Shea et al.
(2000) only consider the time-course for a couple of cases, choosing instead to run
the dynamic model to equilibrium in the majority of their study. The initial conditions
adopted here are R(0) = RTOT and G(0) = GTOT with everything else set to zero,
representing a sudden introduction of G-protein at t = 0, with negligible numbers of
activated receptors being present initially. These initial conditions should allow us to
investigate which reactions will be influential over which timescales. We now explore
the dynamics of the model for these simple initial data.

3 Numerical solutions

3.1 Numerical method

The system has been studied numerically by two different methods in order to check
consistency and accuracy. The first method uses a NAG routine (D02EJF), which
implements a backward difference approach, and the second MATLAB’s ode15s
solver. The parameter values are those given in the Appendix. Figure 6a,b illustrate
how R, G and α evolve to their equilibrium values; these will be used to rescale
the variables in the next section, since approximate rescalings for the other spe-
cies can be expressed in terms of these three using the equilibrium relations (5)
and (6). As well as showing how the numerical equilibrium values were found,
these figures indicate some interesting dynamical behaviour that will be investigated
later.

With the parameter set in the Appendix the equilibrium values (denoted by a sub-
script e) in M are

R∗
e = 1.98 × 10−13, Re = 1.98 × 10−10, Ge = 1.52 × 10−10, (22)

RGe = 2.12 × 10−10, R∗Ge = 4.33 × 10−13, αe = 4.1 × 10−11, (23)

α†
e = 4.4 × 10−12, βγe = 4.5 × 10−11. (24)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

1.5

2

2.5

3

3.5

4

(a) (b)4.5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 6 Numerical results for a R, G and b α. Note that here, and in subsequent dimensional plots, the con-
centration of the species has been rescaled for viewing convenience from O(10−10) to O(1) by multiplying
by 1010
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Fig. 7 Equilibrium values of a α†, and b βγ against µ and kg+, the other parameter values here and
henceforth being those given in the Appendix

3.2 GTPase action and receptor activation

Here we modify the value of µ to model the effect of the receptor being more or less
keen to become activated when bound to a G-protein. We also change the value of kg+,
representing an increase in GTPase activity, mimicking the effect of GAP proteins,
the action of GTPase (and GAP proteins) being to convert α† back to α. Results are
shown in Fig. 7a, with the output α† increasing with µ to an upper limit. This follows
intuition, as increasing µ should increase the propensity of RG to become activated,
forming R∗G and thus increasing the concentration α†. Hence we can say that, at
least for sufficiently small GTPase action, increasing µ enhances constitutive receptor
activation. The dependence on kg+ is equally unsurprising: when kg+ is increased,
representing an increase of GTPase action, the response in α† decreases to zero.

Figure 7b demonstrates similar behaviour for βγ , though its lowest value is not
zero (as for α†), but about 5 × 10−11M. This is because the βγ is formed from either
the dissociation of the G-protein or from the dissociation of R∗G, the former being
independent of µ or kg+. It can be seen that as µ increases, the proportion of free βγ

increases, since not so much of it is contained in the dominant RG complex. Increasing
GTPase action (i.e. kg+) has the expected effect of reducing βγ , since the latter binds
more rapidly to α to reform the G-protein.

3.3 Receptor overexpression

Now we change the total number of receptors and G-proteins to model constitutive
receptor activity. Figure 8 illustrates how the response changes with increasing RTOT .

If the total concentration of receptors is similar to the total concentration of G-protein
(log10 (RTOT /GTOT ) ≈ 1), then we see a basal level of response of about α† =
4 × 10−12M. Increasing the relative concentration of RTOT tenfold increases the
response by a factor of approximately two. If the G-protein is usually present in
amounts corresponding to approximately ten times that of receptor, as some literature
suggests (Woolf et al. 2001), then the response is significantly lower and a (possi-
bly biologically unfeasible) hundredfold increase in receptor concentration from that
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Fig. 8 Graph for [α†] (solid) and [βγ ] (dashed) plotted against log10 (RTOT /GTOT ) with constant
GTOT = 4.15 × 10−10 M to demonstrate constitutive receptor activation for a kb− = 0.0144; b kb− =
0.000144
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Fig. 9 Graphs with a [RG] plotted against log10 (RTOT /GTOT ) with constant GTOT = 4.15×10−10 M
to demonstrate the reversal of constitutive receptor activation as RTOT gets large; b [α†] plotted against
log10 (RTOT /GTOT ) for ka− = 1018 M−2s−1 (dotted) and ka− = 0 (dashed) to show the reverse acti-
vation reaction causes signal killing at high receptor levels

level would be required to increase the response by a factor of approximately ten. This
receptor overexpression clearly demonstrates constitutive receptor activity. It can be
seen from the model (particularly, the first term in the right hand side of Eq. (14)) that
as the concentration of receptor increases, more G-protein can become bound, and so
more can become activated and dissociate from the receptors. How this constitutive
activity is affected by inverse agonists is of particular interest, and this is explored in
Woodroffe et al. (2009).

A surprise comes at even higher concentrations of receptor, namely where the
concentration is approximately 104 times that of the G-protein. This may not be a
physiologically realistic situation, but it is interesting mathematically. When the level
of receptors gets very large, so many are available to bind to the G-proteins that the
latter in effect become trapped in complexes, i.e. as soon as they become activated and
dissociate, they are snapped up again by another receptor. This can be seen in Fig. 9a,
where the concentration of RG tends to GTOT . In fact, this result can be explained by
looking at the reaction
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[R∗G] ka+�
ka−

[R∗] + [α†] + [βγ ], (25)

wherein ka− is small in view of the ‘near-irreversibility’ of the reaction. Usually, its
effect is negligible, with the majority of the α† being converted to α through GTPase
action with a very small amount combining with βγ and R∗ to reform R∗G. However,
if the concentration of receptor rises to a very high level, the reverse step in the above
reaction can become dominant, with any free α† quickly bound to receptor. This is
demonstrated in Fig. 9b, where the dashed line corresponding to ka− = 0 exhibits a
plateau. This illustrates how violating detailed balance in the system of equations by
assuming some reactions to be irreversible leads to erroneous qualitative behaviour.
While there appears to be little difference for log10(RTOT /GTOT ) < 1, which corre-
sponds to experimental data summarised in Table 1, taking ka− = 0 is not sufficient
to capture the mopping-up effect of high receptor concentration.

It is instructive to note that constitutive receptor activity is not exhibited by the
βγ subunits for kb− > 0.005 (Fig. 8a); for these values, the maximal free βγ

response comes at negligible receptor numbers. In the absence of receptor, approxi-
mately 7% of the G-protein is dissociated due to the relatively high value of kb−. As
RTOT increases to become comparable to GTOT , the βγ concentration (βγ response)
starts decreasing as the available G-protein gets taken up by the receptors, decreas-
ing the proportion dissociated. Then, as the increase in receptor concentration pro-
duces a greater α† response, a plateau is seen in the regime of greatest α† response;
the second effect then comes in to play at about RTOT /GTOT = 104 when the
receptors aggressively take up the G-proteins. For lower values of kb−, constitutive
receptor activation can be seen in [βγ ] (Fig. 8b) as, without receptor, only about
0.023 × 10−10M (0.5% of the total G-protein) is dissociated. In Fig. 10, we show
the effect of receptor overexpression on α† and βγ responses over a range of values
of kb−. Increasing receptor concentration leads to an increased α† response for all
kb−, up to a maximum occurring when RTOT /GTOT ≈ 100. In Fig. 10c , we clearly
see that for kb− < 0.005, the maximal βγ response occurs at the same receptor
level.
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Fig. 10 Constitutive receptor activity demonstrated in α† and βγ responses. a α† response; b βγ response;
c regions of (RTOT , kb−) space where receptor overexpression leads to increased response for α† only,
both α† and βγ , and neither α† nor βγ

123



Drug free GPCR activation 327

Fig. 11 Graph to show how
precoupling of receptors and
G-protein increases with k+
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3.4 Pre-coupling

In this section we investigate how the equilibrium constant KG affects the pre-coupling
of receptors and G-proteins in the absence of drug. The result is shown in Fig. 11.
It is not surprising that as k+ increases (and, hence, KG increases) the proportion of
precoupled receptor increases; the result does, however, have significant implications
when ligand is included, as we shall discuss elsewhere.

4 Asymptotic analysis

4.1 Non-dimensionalisation

4.1.1 Rescaling

To non-dimensionalise the system of Eqs. (11)–(18), we rescale with the equilibrium
values for R, G, and α derived numerically in Eqs. (22) and (24) and with the other
equilibrium values satisfying the relations

Kact = [α†][βγ ][R∗]
[R∗G] , Kgtp = [α]

[α†] , K B = [G]
[α][βγ ] , (26)

and Eqs. (5) and (6). We thus set

r = [R]
Re

, r∗ = [R∗]
Re K P

, g = [G]
Ge

, p = [RG]
KG ReGe

, (27)

p∗ = [R∗G]
µKG K P ReGe

, x = [α]
αe

, x† = Kgtp[α†]
αe

, z = K Bαe[βγ ]
Ge

. (28)

This notation was adopted because r corresponds to receptor, p to pre-coupled recep-
tor; x and z represent α and βγ respectively. The ∗’s represents activation and the
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† represents GTP binding. We note that other scalings may be used, but those chosen
here are sensible, given that we have already found the equilibrium values numerically.

4.1.2 Non-dimensional differential equations

To form a system of non-dimensional ordinary differential equations, we introduce
t̃ = kq t , i.e. we scale time on the basis of the reaction R � R∗, which we anticipate
will be one of the fastest, giving the system

dr

dt̃
= K P (r∗ − r) + k̃+(p − rg) (29)

dr∗

dt̃
= r − r∗ + θµµ+k̃+(p∗ − gr∗) + k̃+

k̃−
(µk̃a+ p∗ − k̃a−r∗x†z), (30)

dg

dt̃
= ρ1k̃+

(
p − gr + µ+K P (p∗ − gr∗)

) + ρ1

ρ2
k̃b−(xz − g), (31)

dp

dt̃
= k̃−(gr − p) + µ+K P (p∗ − p), (32)

dp∗

dt̃
= µ−(p − p∗) + θµµ−k̃−(gr∗ − p∗) + k̃a−

µ
r∗x†z − k̃a+ p∗, (33)

dx

dt̃
= k̃g−(x† − x) + k̃b−(g − xz), (34)

dx†

dt̃
= ρ2 K P

k̃+k̃g+
k̃−k̃g−

(
µk̃a+ p∗ − k̃a−r∗x†z

)
+ k̃g+(x − x†), (35)

dz

dt̃
= ρ2 K P

k̃b+k̃+
k̃b−k̃−

(
µk̃a+ p∗ − k̃a−r∗x†z

)
+ k̃b+(g − xz), (36)

where the fourteen independent non-dimensionalised parameters are

k̃+ = k+Ge

kq
, k̃− = k−

kq
, k̃g+ = kg+

kq
, k̃g− = kg−

kq
,

k̃a+ = ka+
kq

, k̃a− = ka−
kq K B Kgtp KG

, k̃b+ = kb+αe

kq
, k̃b− = kb−Ge

αekq
,

K P = kp

kq
, µ+, µ−, θµ,

ρ1 = Re/Ge, ρ2 = Re/αe, (37)

with one dependent parameter, µ = µ+/µ−. The initial conditions are

r(0) = RTOT

Re
= re, g(0) = GTOT

Ge
= ge, (38)

with all the other variables equal to zero.
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Fig. 12 Numerics for r∗ and x
to indicate the three distinct
timescales. Note the logarithmic
scale for time
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4.2 Timescale considerations

Figure 12 demonstrates the existence of widely different timescales. Now analyses
will be carried out on the system to attempt to understand better the numerical results.
As the system is too complicated to solve exactly, asymptotic approximations will be
made over the various timescales.

To analyse the system, the parameters need to be rescaled by their approximate
values, in terms of K P (which seems to in practice to be a key small quantity). The
physiological meaning of K P � 1 is that [R] � [R∗] in equilibrium; on the basis of
the parameter values in the Appendix, we set

K P = 10−3 = ε, k̃+ = 5.48 × 10−6 = λ+ε2, (39)

k̃− = 3 × 10−6 = λ−ε2, ρ1 = 1.3 = O(1), (40)

k̃b− = 0.534 × 10−3 = λb−ε, k̃a+ = 10−3 = λa+ε, (41)

ρ2 = 4.81 = O(1), k̃b+ = 0.495 × 10−3 = λb+ε, (42)

k̃g− = 10−7 = λg−ε5/2, µ+ = 1 = O(1), (43)

k̃a− = 10−9 = λa−ε3, k̃g+ = 10−4 = λg+ε3/2, (44)

θµ = 1 = O(1), µ− = 0.5 = O(1). (45)

All the resulting parameters other than ε will thus be treated as O(1). There is of
course some ambiguity in the choices of scalings with respect to ε but, since we shall
focus for the most part on the leading order problems on each timescale, this is in fact
of little significance.

An asymptotic approach is now used to analyse the nonlinear model. This method
is here useful for several reasons: in particular, the expansion in a small parameter
makes the reduced systems analytically tractable, with sufficient terms to give excel-
lent quantitative accuracy readily being obtained; moreover, the approach sheds light
on the reaction steps which control the evolution over each of the disparate timescales.
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We note that we follow common practice in determining each timescale from the dis-
ordering of the expansion of the previous one.

4.3 Short-time asymptotics: t = O(1)

The timescale t = O(1) typically corresponds in dimensional terms to times of order
10−3 s. The system of ordinary differential equations is then, dropping tildes,

dr

dt
= ε(r∗ − r) + λ+ε2(p − gr), (46)

dr∗

dt
= r − r∗ + θµµ+λ+ε2(p∗ − gr∗) + λ+

λ−
ε(µλa+ p∗ − ε2λa−r∗x†z), (47)

dg

dt
= ρ1λ+ε2(p − gr + µ+ε(p∗ − gr∗)) + ρ1

ρ2
λb−ε(xz − g), (48)

dp

dt
= λ−ε2(gr − p) + µ+ε(p∗ − p), (49)

dp∗

dt
= µ−(p − p∗) + θµµ−λ−ε2(gr∗ − p∗) + λa−

µ
ε3r∗x†z − λa+εp∗, (50)

dx

dt
= λg−ε5/2(x† − x) + λb−ε(g − xz), (51)

dx†

dt
= ρ2ε

λg+λ+
λg−λ−

(µλa+ p∗ − λa−ε2r∗x†z) + λg+ε3/2(x − x†), (52)

dz

dt
= ρ2ε

2 λb+λ+
λb−λ−

(µλa+ p∗ − λa−ε2r∗x†z) + λb+ε(g − xz). (53)

It can be seen from the initial conditions (38) that r and g will be O(1) on this time-
scale and in consequence so will r∗. From the sizes of the terms in (51), (53) we see
that x , z = O(ε) and so on, the full set of appropriate scalings being

p = ε2 p̃, p∗ = ε2 p̃∗, x = ε x̃, x† = ε5/2 x̃†, (54)

z = ε z̃, r = r̃ , r∗ = r̃∗, g = g̃. (55)

These imply that

dr̃

dt
= ε(r̃∗ − r̃) + λ+ε2(ε2 p̃ − g̃r̃), (56)

dr̃∗

dt
= r̃ −r̃∗ + θµµ+λ+ε2(ε2 p̃∗− g̃r̃∗)+ λ+

λ−
ε3(µλa+ p̃∗−λa−ε7/2r̃∗ x̃† z̃), (57)

dg̃

dt
= ρ1λ+ε2(ε2 p̃ − g̃r̃ + µ+ε(ε2 p̃∗ − g̃r̃∗)) + ρ1

ρ2
λb−ε(ε2 x̃ z̃ − g̃), (58)

d p̃

dt
= λ−(g̃r̃ − ε2 p̃) + µ+ε( p̃∗ − p̃), (59)
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d p̃∗

dt
= µ−( p̃ − p̃∗) + θµµ−λ−(g̃r̃∗ − ε2 p̃∗) + λa−

µ
ε9/2r̃∗ x̃† z̃ − λa+ε p̃∗, (60)

dx̃

dt
= λg−ε5/2(ε x̃† − x̃) + λb−(g̃ − ε2 x̃ z̃), (61)

dx̃†

dt
= ρ2ε

1/2 λg+λ+
λg−λ−

(µλa+ p̃∗ − λa−ε7/2r̃∗ x̃† z̃) + λg+(x̃ − ε3/2 x̃†), (62)

dz̃

dt
= ρ2ε

3 λb+λ+
λb−λ−

(µλa+ p̃∗ − λa−ε7/2r̃∗ x̃† z̃) + λb+(g̃ − ε2 x̃ z̃). (63)

Substituting

r̃ = r̃0 + ε1/2r̃1 + εr̃2 + · · · , (64)

etc. into (56)–(63) gives us the leading order equations

dr̃0

dt
= 0,

dr̃∗
0

dt
= r̃0−r̃∗

0 ,
d p̃0

dt
= λ−g̃0r̃0,

d p̃∗
0

dt
= µ−( p̃0 − p̃∗

0 +θµλ−g̃0r̃∗
0 ),

(65)

dg̃0

dt
= 0,

dx̃0

dt
= λb−g̃0,

dx̃†
0

dt
= λg+ x̃0,

dz̃0

dt
= λb+g̃0, (66)

having explicit leading order solutions

r̃0 = re, r̃∗
0 = re(1 − e−t ), x̃†

0 = 1

2
λg+λb−get2, (67)

p̃0 = λ−reget, x̃0 = λb−get, z̃0 = λb+get, (68)

p̃∗
0 =λ−rege

(
θµ − 1

µ−
+ t + θµµ−

1 − µ−
e−t +

(
1

µ−
− θµ

1 − µ−

)
e−µ−t

)
, g̃0 =ge.

(69)
We find that r̃1 = r̃∗

1 = g̃1 = x̃1 = z̃1 = r̃3 = r̃∗
3 = g̃3 = 0 and construct non-trivial

correction terms in the form

r̃2 = re(e
−t − 1), r̃4 = re(−te−t − e−t − λ+get + 1), (70)

r̃∗
2 = re(te

−t + e−t − 1), r̃∗
4 = re

(
1 −

(
1 − t + t2

2

)
e−t + λ+get

(
e−t − 1

))
,

(71)

g̃2 = −ρ1

ρ2
λb−get, g̃4 = −ρ1λ+reget + ρ2

1

ρ2
2

λ2
b−ge

t2

2
, (72)

x̃2 = −ρ1

ρ2
λ2

b−ge
t2

2
, z̃2 = −ρ1

ρ2
λb−λb+ge

t2

2
. (73)

By comparing x̃0 and x̃2, say, it can be seen that at t = O(ε−1), the expansion
disorders. The reactions operating on this fast timescale to leading order are R � R∗,
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Fig. 13 Numerics (solid line) and short-time asymptotics. ‘− − −’ represents the leading-order solutions,
‘− · −·’ solutions up to O(ε), ‘· · · · · · ’ solutions up to O(ε2). a r ; b close-up of a; c r∗; d close-up of c
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Fig. 14 Numerics (solid line) and short-time asymptotics. ‘− − −’ represents the leading-order solutions,
‘− · −·’ in (b) solutions up to O(ε). a x†; b z

RG � R∗G, G → α + βγ , R + G → RG, α → α† and R∗ + G → R∗G. The
reaction R � R∗ remains in equilibrium throughout all the following timescales. The
kink seen in r in Fig. 13b comes from the very fast conformational change, converting
r into r∗. As can be seen in Figs. 13, 14 and 15, the analysis only works for suffi-
ciently small times t̃ � ε−1, consistent with the remarks above. We have seen that
the behaviour at this timescale is largely governed by the reaction R � R∗, this and

123



Drug free GPCR activation 333

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) (b)

(c) (d)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 15 Numerics (solid line) and short-time asymptotics. ‘− − −’ represents the leading-order solutions,
‘− · −·’ solutions up to O(ε), ‘· · · · · · ’ solutions up to O(ε2). a p; b p∗; c g; d x

RG � R∗G being the only reactions that come to equilibrium. The asymptotics for
x and z do not appear to follow the numerics closely for very long. However, within
the timescale involved they match closely with the numerics.

4.4 Intermediate-time asymptotics: t = O(ε−1)

Setting T = εt in Eqs. (46)–(53), and (in view of (67)–(73)) p = ε p̂, p∗ = ε p̂∗,
x† = ε1/2 x̂†, r = r̂ , r∗ = r̂∗, g = ĝ, x = x̂ and z = ẑ gives

dr̂

dT
= r̂∗ − r̂ + λ+ε(ε p̂ − ĝr̂), (74)

ε
dr̂∗

dT
= r̂ −r̂∗+θµµ+λ+ε2(ε p̂∗ − ĝr̂∗) + λ+

λ−
ε2(µλa+ p̂∗−ε3/2λa−r̂∗ x̂† ẑ), (75)

dĝ

dT
= ρ1λ+ε(ε p̂ − ĝr̂ + µ+ε(ε p̂∗ − ĝr̂∗)) + ρ1

ρ2
λb−(x̂ ẑ − ĝ), (76)

d p̂

dT
= λ−(ĝr̂ − ε p̂) + µ+( p̂∗ − p̂), (77)
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ε
d p̂∗

dT
= µ−( p̂ − p̂∗) + θµµ−λ−ε(ĝr̂∗ − ε p̂∗) + λa−

µ
ε5/2r̂∗ x̂† ẑ − λa+ε p̂∗, (78)

dx̂

dT
= λg−ε3/2(ε x̂† − x̂) + λb−(ĝ − x̂ ẑ), (79)

dx̂†

dT
= ρ2ε

1/2 λg+λ+
λg−λ−

(µλa+ p̂∗ − λa−ε3/2r̂∗ x̂† ẑ) + λg+(x̂ − ε1/2 x̂†), (80)

dẑ

dT
= ρ2ε

2 λb+λ+
λb−λ−

(µλa+ p̂∗ − λa−ε3/2r̂∗ x̂† ẑ) + λb+(ĝ − x̂ ẑ). (81)

Asymptotic analysis (with r̂ = r̂0 + ε1/2r̂1 + εr̂2 +· · · , etc.) reveals the leading order
problem

dr̂0

dT
= r̂∗

0 − r̂0,
dĝ0

dT
= ρ1

ρ2
λb−(x̂0 ẑ0 − ĝ0), r̂0 = r̂∗

0 , (82)

d p̂0

dT
= λ−ĝ0r̂0 + µ+( p̂∗

0 − p̂0),
dx̂0

dT
= λb−(ĝ0 − x̂0 ẑ0), p̂∗

0 = p̂0, (83)

dx̂†
0

dT
= λg+ x̂0,

dẑ0

dT
= λb+(ĝ0 − x̂0 ẑ0). (84)

Hence matching requires that

r̂0 = r̂∗
0 = re. (85)

Linear combinations of (82) and (83), and of (83) and (84), give, again on matching.
that

ĝ0 + ρ1

ρ2
x̂0 = ge, λb+ x̂0 = λb− ẑ0. (86)

Substituting into Eq. (82) leads to the nonlinear equation

dĝ0

dT
= λb+

ρ2

ρ1
(ge − ĝ0)

2 − ρ1

ρ2
λb−ĝ0. (87)

with solution

ĝ0 = 2a1

1 + a2e
2a1λb+ ρ2

ρ1
T

+ ge + ρ2
1λb−

ρ2
2λb+

− a1, (88)

where

a1 = λb−ρ1

λb+ρ2

√
ρ2

1

ρ2
2

+ 4ge
λb+
λb−

, a2 =
2

√
1 + 4ge

λb+ρ2
2

λb−ρ2
1√

1 + 4ge
λb+ρ2

2
λb−ρ2

1
− 1

. (89)
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Fig. 16 Numerics (solid) and leading-order short- (dashed) and intermediate-time (dotted) asymptotics for
a r ; b r∗

Hence, solutions for x̂0 and ẑ0 can be easily calculated from Eq. (86). Further integra-
tion gives

p̂0 = p̂∗
0 = λ−re

⎛

⎝
4a2

1λb+ ρ2
ρ1

a2

(1 + a2)2 − 4a2
1λb+ ρ2

ρ1
e

2a1λb+ ρ2
ρ1

T

1 + a2e
2a1λb+ ρ2

ρ1
T

+
(

ge + ρ2
1λb−

ρ2
2λb+

− a1

)

T

)

, (90)

x̂†
0 = ρ2

ρ1
λg+

(
geT − 1

λ−re
p̂0

)
, r̂1 = r̂∗

1 = 0, (91)

x̂†
1 = ρ2

λg+λ+
λg−λ−

µλa+ p̂∗
0 − λg+ x̂†

0 r̂2 = r̂∗
2 = −λ+

λ−
p̂0 − re, (92)

The reaction that to leading order reaches equilibrium on this timescale is
α + βγ � G, whilst the reactions

α � α†, R + G � RG, R∗ + G � R∗G, (93)

are beginning to take effect. It is interesting to note that the leading order solutions for
x and z correspond to the the peak numerical values in Fig. 18c, d. It can be seen from
Eqs. (85), (91), (92), for r using (90) that the expansion disorders at T = O(ε−1) (i.e.
t̃ = O(ε−2)) (Figs. 16 and 17).

4.5 Long-time asymptotics : t = O(ε−2)

This timescale corresponds in dimensional terms to times of order 103 s. The scalings
are τ = ε2t in Eqs. (46)–(53) with x† = ε−1/2 x̌†, r = ř , r∗ = ř∗, g = ǧ, p = p̌,
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Fig. 17 Numerics (solid) and leading-order short- (dashed) and intermediate-time (dotted) asymptotics
together with (dot-dashed) intermediate-time asymptotics including the first correction terms for a g; b x†
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Fig. 18 Numerics (solid) and leading-order short- (dashed) and intermediate-time (dotted) asymptotics for
a p; b p∗; c x ; d z

p∗ = p̌∗, x = x̌ and z = ž, yielding

ε
dř

dτ
= ř∗ − ř + λ+ε( p̌ − ǧř), (94)

ε2 dř∗

dτ
= ř −ř∗+θµµ+λ+ε2( p̌∗− ǧř∗)) + λ+

λ−
ε(µλa+ p̌∗ − λa−ε3/2ř∗ x̌† ž), (95)
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ε
dǧ

dτ
= ρ1λ+ε( p̌ − ǧř + µ+ε( p̌∗ − ǧř∗)) + ρ1

ρ2
λb−(x̌ ž − ǧ), (96)

ε
d p̌

dτ
= λ−ε(ǧř − p̌ + µ+( p̌∗ − p̌), (97)

ε2 d p̌∗

dτ
= µ−( p̌− p̌∗) + θµµ−λ−ε2(ǧř∗− p̌∗))+ λa−

µ
ε5/2ř∗ x̌† ž − λa+ε p̌∗, (98)

ε
dx̌

dτ
= λg−ε(x̌† − x̌) + λb−(ǧ − x̌ ž), (99)

ε1/2 dx̌†

dτ
= ρ2

λg+λ+
λg−λ−

(µλa+ p̌∗ − λa−ε3/2ř∗ x̌† ž) + λg+(ε1/2 x̌ − x̌†), (100)

ε
dž

dτ
= ρ2ε

λb+λ+
λb−λ−

(µλa+ p̌∗ − λa−ε3/2ř∗ x̌† ž) + λb+(ǧ − x̌ ž), (101)

Combinations of (94), (95) and (97), (98) (associated respectively with total numbers
of unbound receptors and G-protein bound receptors)

dř

dτ
+ε

dř∗

dτ
= λ+

(
p̌− ǧř +θµµ+ε

(
p̌∗− ǧř∗))+ λ+

λ−

(
µλa+ p̌∗ − λa−ε3/2ř∗ x̌† ž

)
,

(102)
d p̌

dτ
+µε

d p̌∗

dτ
= λ−

(
ǧř − p̌+θµµ+ε

(
ǧř∗− p̌∗))+λa−ε3/2ř∗ x̌† ž−λa+µ p̌∗, (103)

Asymptotics again enable a largely explicit description of the behaviour of the
nonlinear system (with ř = ř0 +ε1/2ř1 +εř2 +· · · ). The leading-order problem reads

dř0

dτ
= λ+

(
p̌0 − ǧ0ř0

) + µ
λ+
λ−

λa+ p̌0,

(104)
d p̌0

dτ
= λ−

(
ǧ0ř0 − p̌0

) − µλa+ p̌0,

with

ř0 = ř∗
0 , p̌0 = p̌∗

0, λg+ x̌†
0 = ρ2

λ+
λ−

µλa+ p̌0, ǧ0 = x̌0 ž0. (105)

Correction terms give

dǧ0

dτ
= ρ1λ+( p̌0 − ǧ0ř0) + ρ1

ρ2
λb−(x̌2 ž0 + x̌0 ž2 − ǧ2), (106)

dx̌0

dτ
= λg− x̌†

0 + λb−
(
ǧ2 − x̌2 ž0 − x̌0 ž2

)
, (107)

dž0

dτ
= µρ2

λb+λ+
λb−λ−

λa+ p̌0 + λb+
(
ǧ2 − x̌2 ž0 − x̌0 ž2

)
. (108)
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Combining the equations in (105), and by matching with the intermediate-timescale
results, we get

ř0 + λ+
λ−

p̌0 = re. (109)

Similarly, we have

ǧ0 − ρ1ř0 + ρ1

ρ2

λb−
λb+

ž0 = ge − ρ1re, λb+ x̌0 = λb− ž0, (110)

and hence from (105)

ž0 =
√

λb+
λb−

ǧ0, (111)

where the positive root has been taken to maintain positivity. Thus we can write

p̌0 = λ−
λ+

(re − ř0), (112)

ž0 =
−ρ1

ρ2
+

√(
ρ1
ρ2

)2 − 4λb+
λb−

(
ρ1re − ρ1ř0 − ge

)

2
, (113)

Substituting for p̌0 and ǧ0 in Eq. (105)a we get the (separable) first order nonlinear
equation

dř0

dτ
= (λ− + µλa+)

(
re − ř0

)

−λ+
4

ř0

(

−ρ1

ρ2

√
λb−
λb+

+
√

ρ2
1λb−

ρ2
2λb+

+ 4
(
ρ1ř0 − ρ1re + ge

)
)2

, (114)

where ř0(0) = re, a problem that we solve numerically. The leading-order results,
along with the intermediate-time asymptotics, are shown in Fig. 19. The species all
tend to their equilibrium values, i.e. the remaining reactions

R + G � RG, R∗G � R∗ + α† + βγ, (115)

α � α†, (116)

all equilibrate. The non-monotonicities in Fig. 19f, h are worth considering briefly.
We saw in Sect. 4.3 that α and βγ subunits were initially produced by the dissocia-
tion of G-protein in great quantities causing the levels to overshoot their final values.
On this long time scale the reaction G � α + βγ is in equilibrium and so as the
receptor binds to the G-protein and holds it in the RG complex, the amount of α and
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Fig. 19 Numerics (solid line), and intermediate-(dotted) and long-time (dashed) asymptotics for a r ; b r∗;
c p; d p∗; e g; f x ; g x†; h z
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βγ subunits must decrease proportionally. Thus, we see the peak values drop down to
lower plateaux.

5 Conclusions

The numerical solutions to the model were studied in the absence of drug. It is believed
that drug-free analysis has not been performed in this much detail before, particularly
with regard to the effects of forward and reverse reaction rates in the G-protein cycle
on constitutive activity. The following conclusions were reached:

– The model behaves as expected in line with intuition from experiment (Shea et al.
2000), thus justifying it as a realistic model of the drug-free system.

– The model reflects that increasing the GTPase action (increasing kg+) turns off the
signal, also in line with intuition.

– It has been shown that increasing the propensity of the G-protein to bind to the
activated receptor over the inactive form (modelled here by µ) demonstrates an
increase in response.

– The model was used to demonstrate that constitutive receptor activation for [α†]
and [βγ ] occurs, but is sensitive to parameters. In a future paper, this activation
will be treated with inverse agonists to see if they turn the signal off.

– The percentage of receptors pre-coupled with G-protein increases with increasing
k+.

The model was also analysed asymptotically to give an idea of the dynamic
behaviour:

– All the species move to equilibrium at similar rates ∼ 103 s.
– In the first timescale (about one thousandth of a second), the main reaction is

[R] � [R∗], and so [R] and [R∗] reach equilibrium with each other. The concen-
trations of [R], [G] and [α] do not change much compared to their initial values.
The other species all begin to be produced in small quantities compared to their
equilibrium values. This timescale could be described as receptor activation.

– The intermediate timescale is of order one second. The main reaction is [G] �
[α] + [βγ ] which leads to the equilibrium for dissociation of the G-protein in
the absence of receptor. This timescale could be described as G-protein dissocia-
tion.

– The last reactions that take place are [R∗G] � [α†] + [βγ ] + [R∗], [R] + [G] �
[RG] and [R∗] + [G] � [R∗G] which bring everything to equilibrium after
about 1,000 s. This timescale could be described as receptor-G-protein equilibra-
tion.

– The activation reaction [R∗G] � [α†] + [βγ ] + [R∗] forms the rate limiting step
in G-protein activation.

– The mathematical analysis confirms the numerical results with an excellent match
and establishes an approach which is equally effective in more general mod-
els.

However, it should be stressed that in our study of the drug-free shuttling mechanism
the following aspects pertain.
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– The initial conditions do not reflect a physiological possibility, but they were cho-
sen to analyse how the system would move to equilibrium in order to determine
which reactions dominate at different timescales.

– Some parameters were estimated since, although the current rate constant data
available is relatively good, it is unfortunately not complete.

This paper builds on the work of Shea et al. (2000) by mathematically analysing a
dynamic model of G-protein activation. It provides a background biology and intro-
duction to the mathematics of G-protein cell signalling. To help confirm the accu-
racy of this model, it would be very useful to perform an experiment on constitu-
tive receptor activation to try to match Figs. 8 and 10. While difficulties may arise
in varying binding and activation rates and measuring α† and βγ levels, varying
receptor concentration should be possible. It is worth emphasizing again that exper-
iments will not be possible to validate the dynamics of the system since any ini-
tial condition we choose is entirely artificial; the discussion of time courses does,
however, give valuable insight into the time scales involved in G-protein activa-
tion.

The complexing model, which allows for the G-protein to remain bound to the recep-
tor after activation, as mentioned by Kukkonen et al. (2001) and Chidiac (1998), was
not analysed here, since insufficient parameter values could be found. The key reactions
that would be operate are: R∗G � R∗α†+βγ , R∗α† � R∗α and R∗α+βγ � R∗G.

This paper provides a solid basis for further exploration of the GPCR model, with
the inclusion of ligand. The asymptotic approach demonstrates the dominant mech-
anisms for each timescale and this will be very useful when considering the more
complex ligand-inclusive system.

Acknowledgments The first author gratefully acknowledges the funding of the BBSRC in the form of a
research studentship, the third and fifth authors that of BBSRC/EPSRC and the fourth that of the Leverhulme
Trust. The third author also acknowledges the funding of the Royal Society and the Wolfson Foundation.

Appendix

Rate constants and concentrations

The parameters were chosen to match those of Shea et al. (2000) where possible, since
it provided the most complete set. In Table 1, the units for for each parameter are as
for the value in the first column unless stated.

The three new parameters for which no information was known (kb−, kg− and ka−)
were estimated with values that would not change the equilibrium values significantly.
(Note, ka− appears to have a high value, but this is because it is the rate constant for a
reaction in which three molecules have to come together, each of which is present in
concentrations of O(10−10 M).)

Equilibrium values

The equilibrium equations are derived by setting the left hand side to zero in equations
(46)–(53),
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0 = r∗ − r + λ+ε(p − gr), (117)

0 = r − r∗+θµµ+λ+ε2(p∗ − gr∗) + λ+
λ−

ε(µλa+ p∗ − ε2λa−r∗x†z), (118)

0 = ρ1λ+ε(p − gr + µ+ε(p∗ − gr∗)) + ρ1

ρ2
λb−(xz − g), (119)

0 = λ−ε(gr − p) + µ+(p∗ − p), (120)

0 = µ−(p − p∗) + θµµ−λ−ε2(gr∗ − p∗) + λa−
µ

ε3r∗x†z − λa+εp∗, (121)

0 = λg−ε3/2(x† − x) + λb−(g − xz), (122)

0 = ρ2
λg+λ+
λg−λ−

(µλa+ p∗ − λa−ε2r∗x†z) + λg+ε1/2(x − x†), (123)

0 = ρ2ε
2 λb+λ+
λb−λ−

(µλa+ p∗ − λa−ε2r∗x†z) + λb+ε(g − xz). (124)

We also know from the analysis in Sect. 4.5 that the equilibrium value of x† is
O(ε−1/2). Therefore, we rescale x† = ε−1/2 x̃† to get

0 = r∗ − r + λ+ε(p − gr), (125)

0 = r − r∗ + θµµ+λ+ε2(p∗ − gr∗) + λ+
λ−

ε(µλa+ p∗ − ε3/2λa−r∗ x̃†z), (126)

0 = ρ1λ+ε(p − gr + µ+ε(p∗ − gr∗)) + ρ1

ρ2
λb−(xz − g), (127)

0 = λ−ε(gr − p) + µ+(p∗ − p), (128)

0 = µ−(p − p∗) + θµµ−λ−ε2(gr∗ − p∗) + λa−
µ

ε5/2r∗ x̃†z − λa+εp∗, (129)

0 = λg−ε(x̃† − ε1/2x) + λb−(g − xz), (130)

0 = ρ2
λg+λ+
λg−λ−

(µλa+ p∗ − λa−ε3/2r∗ x̃†z) + λg+(ε1/2x − x̃†), (131)

0 = ρ2ε
λb+λ+
λb−λ−

(µλa+ p∗ − λa−ε3/2r∗ x̃†z) + λb+(g − xz). (132)

Four leading order algebraic equations are thus

0 = r∗ − r, 0 = xz − g, (133)

0 = p∗ − p, 0 = ρ2
λ+

λg−λ−
µλa+ p∗ − x̃†. (134)

We can derive another relation by summing Eqs. (125) and (126) to get

0 = p − gr + µλa+
λ−

p∗. (135)
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Three more leading order algebraic equations can be derived from the conservation
quantities described in Sect. 2.3. Equations (19)–(21) become

re = r + εr∗ + λ+
λ−

p + µ
λ+
λ−

εp∗, (136)

ge = g + ρ1
λ+
λ−

p + µρ1
λ+
λ−

εp∗ + ε1/2 ρ1λg−
ρ2λg+

x† + ρ1

ρ2
x, (137)

λb−
λb+

z = x + ε1/2 λg−
λg+

x̃†, (138)

and so the leading order algebraic equations are

re = r + λ+
λ−

p, (139)

ge = g + ρ1

ρ2
x + λ+

λ−
ρ1 p, (140)

z = λb+
λb−

x . (141)

Hence, the eight algebraic equations (133)–(135), (139)–(141) for the eight unknowns
can be combined to form a quartic equation in x ,

λ+λ2
b+

λ−λ2
b−

x4 + ρ1λ+λb+
ρ2λ−λb−

x3 + λb+
λb−

(
1 + µλa+

λ−
+ λ+ρ1re

λ−
− λ+ge

λ−

)
x2

+ρ1

ρ2

(
1 + µλa+

λ−

)
x − ge

(
1 + µλa+

λ−

)
= 0. (142)

For the parameter set above the numerical values at equilibrium for these nondi-
mensional variables are

r = 1, r∗ = 1, g = 1, p = 0.6, (143)

p∗ = 0.6, x = 1, x† = 106.5, z = 1.02. (144)
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