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Abstract Urethral catheters often become encrusted with crystals of magnesium
struvite and calcium phosphate. The encrustation can block the catheter, which can
cause urine retention in the bladder and reflux into the kidneys. We develop a math-
ematical model to investigate crystal deposition on the catheter surface, modelling
the bladder as a reservoir of fluid and the urethral catheter as a rigid channel. At a
constant rate, fluid containing crystal particles of unit size enters the reservoir, and
flows from the reservoir through the channel and out of the system. The crystal par-
ticles aggregate, which we model using Becker–Döring coagulation theory, and are
advected through the channel, where they continue to aggregate and are deposited on
the channel’s walls. Inhibitor particles also enter the reservoir, and can bind to the
crystals, preventing further aggregation and deposition. The crystal concentrations
are spatially homogeneous in the reservoir, whereas the channel concentrations vary
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spatially as a result of advection, diffusion and deposition. We investigate the effect
of inhibitor particles on the amount of deposition. For all parameter values, we find
that crystals deposit along the full length of the channel, with maximum deposition
close to the channel’s entrance.

Keywords Urethra · Bladder · Catheter · Encrustation · Blockage · Aggregation ·
Becker–Döring · Deposition · Fluid flow · Mathematical modelling

Mathematics Subject Classification (2000) 92C50

1 Introduction

In the urinary tract, urine is produced by the kidneys, flows down the ureters and
is stored in the bladder (see Fig. 1). The urethra, which connects the bladder to the
external environment, remains closed, except during voiding, when a rise in bladder
pressure causes the urethra to open and the bladder urine to flow through the urethra
and exit the body. Urethral catheters are used to manage incontinence, to relieve urine
retention caused by urethral blockage, and to monitor urinary output in critically ill
patients (Morris and Stickler 2001). These rigid latex tubes sit against the urethral
wall and are secured by a balloon in the bladder. Bladder urine enters the catheter via
an eyelet, and flows through the catheter’s lumen at a constant rate of approximately
0.5–3 ml min−1 (Stickler and Morgan 2006; Morris and Stickler 2001). On exiting the
catheter, the urine is collected in an external reservoir.

Although urethral catheters are widely used, they often become blocked. Catheter
blockage can cause urine to leak around the outside of the catheter, or can cause urine
retention in the bladder and reflux into the kidneys, which can lead to pyelonephritis,
septicaemia, and even endotoxic shock (Morris et al. 1999; Suller 2005; Morris and
Stickler 1998). To avoid these complications, urethral catheters currently need to be
replaced regularly (Morris and Stickler 1998). Reducing catheter blockage therefore
has the potential to improve the efficacy of clinical procedures and patient experience.

Catheter blockage is caused by encrustation on the catheter’s surface. Soon after
insertion, bacteria such as Proteus mirabilis colonise the catheter surface and form
a biofilm consisting of communities of bacterial cells within an exopolysaccharide
matrix (Suller 2005; Stickler and Morgan 2006). Within a few days, the bacteria tra-
verse the length of the catheter, and are present in the bladder urine. The bacteria
produce urease, which catalyses the hydrolysis of urea in the urine, and this reac-
tion produces ammonia, which elevates the pH within the biofilm and in the bulk
urine (Clapham et al. 1990; Suller 2005; Mathur et al. 2006). In the resulting alka-
line environments, crystals of magnesium struvite and calcium phosphate form. In the
bulk urine, the crystals aggregate, and can be deposited on the catheter’s surface and
become trapped in the biofilm (Stickler and Morgan 2006; Suller 2005). The result-
ing catheter surface encrustation can eventually block the catheter’s lumen (Burr and
Nuseibeh 1997; Morris and Stickler 1998; Stickler and Morgan 2006; Suller 2005).

Several studies have investigated methods to reduce the degree of catheter encrus-
tation. Burr and Nuseibeh (1997) studied the urinary output of catheterised patients
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and found less catheter encrustation in patients who maintained a high and uniform
fluid intake. A related in vitro model of the catheterised lower urinary tract showed
that increasing the flux through the catheter by diluting the urine reduced the degree
of catheter encrustation, whereas increasing the flux without diluting the urine did
not affect the degree of encrustation (Stickler and Morgan 2006; Morris and Stickler
2001). As well as maintaining a high fluid intake, patients are also encouraged to
increase the amount of citrate in their diets (Morris and Stickler 2001). Increasing
the citrate concentration of urine (within the physiological range) has been shown to
reduce crystal growth for both magnesium struvite and calcium phosphate (Wang et
al. 1993; Wierzbicki et al. 1997); however, studies on citrate’s influence on catheter
encrustation have produced conflicting results (Stickler and Morgan 2006; Morris and
Stickler 2001).

Current literature suggests that the encrusted layer grows due to two mechanisms:
(i) by crystals forming within the biofilm; and (ii) by crystals forming in the surround-
ing urine, being deposited onto the catheter, and then incorporated into the biofilm.
The relative importance of the two mechanisms remains unclear. A recent mathe-
matical model (J.H. Siggers, J.A.D. Wattis, L.J. Cummings and S.L. Waters, paper
in preparation), focuses on the crystals that develop in the biofilm and assumes that
these crystals form a solid layer next to the catheter surface. Here we focus on the
crystals that aggregate in the bulk urine and deposit on the catheter surface. We ignore
the biofilm except insofar as it leads to crystal aggregation in the bulk urine via an
increase in pH. We use our model to investigate how aggregation and the presence of
inhibitor particles (for example, citrate) affect the amount of deposition. We assume
that crystal particles of unit size (monomers) and inhibitor particles are advected into
the bladder from the ureters at a constant rate. In the bladder, crystals grow by the
addition of monomers, which is appropriate for the slow crystal growth seen exper-
imentally (McLean et al. 1991). We suppose that crystal clusters do not fragment,
and that crystals can be ‘poisoned’ by the inhibitor particles, which prevents further
aggregation and deposition. The crystals and inhibitor particles are advected out of
the bladder through the rigid catheter, where they diffuse and aggregate in the bulk
urine and deposit on the catheter’s surface.

We model crystal aggregation using the pure aggregation form of the Becker–
Döring equations (Becker and Döring 1935), which model reactions occurring between
monomers and clusters. The Becker–Döring model is the basis for classical nucleation
theory, which assumes that interactions between monomers and clusters are the domi-
nant growth mechanism, and ignores cluster-cluster interactions. The Becker–Döring
model is a special case of Smoluchowski coagulation theory (Smoluchowski 1916),
which more generally allows all cluster sizes to aggregate, and clusters to split into
uneven fragments. Coagulation theory has been used extensively to model aggregation
in numerous situations [for a review see Wattis (2006) and references therein]. Of par-
ticular interest here are recent models which combine inhibition with Becker–Döring
kinetics (Bolton and Wattis 2004; Wattis and Coveney 1997). Despite a wide literature
on coagulation theory, little attention has been paid to spatially varying cluster concen-
trations. Smoluchowski coagulation theory with diffusion was formulated by Slemrod
(1990) (among others) and explicit analytical solutions in special cases have been
identified (Herrero and Rodrigo 2005; Simons 1992, 1996); Becker–Döring kinet-
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ics with diffusing particles have also been studied (Laurencot and Wrzosek 1998).
Although coupling coagulation theory with the Navier–Stokes equations is mathe-
matically well-posed (Amann and Weber 2001), only a few models have combined
advection, aggregation and diffusion, notable examples being the work of Guy et al.
(2007), who modelled the formation of a blood clot in a shear flow, and Fozard and
King (2008), who studied cell aggregation in the presence of a chemotactic signal
(which creates an advective motion). As far as we are aware, no previous work has
incorporated either Becker–Döring or Smoluchowski coagulation theory into an advec-
tion-diffusion model where cluster concentrations vary in two spatial dimensions.

In Sect. 2, we present the model, derive the governing equations and discuss the
physiological parameter values appropriate for modelling urethral catheter encrusta-
tion. Based on the available parameter estimates, we focus on a large aggregation rate
and determine how the relative rates at which inhibitor particles and monomers enter
the bladder influence the degree of encrustation, considering the bladder dynamics in
Sect. 3 and the catheter dynamics in Sect. 4. In Sect. 5, we summarise our results and
discuss possible model extensions.

2 Model

As shown in Fig. 1, we consider a two-dimensional model and consider the bladder
to be a reservoir of fluid, which flows through a rigid channel (the catheter) of length
L∗ and width 2Y ∗ (we use asterisks throughout to denote dimensional quantities). We
assume that the reservoir fluid is well-mixed, whereas in the channel, we consider spa-
tial dependence, and use a Cartesian coordinate system (x∗, y∗). To maintain a constant
reservoir volume, fluid enters the reservoir through two channels (which represent the
ureters). Due to this influx, monomers and inhibitor particles enter the reservoir at
rates Q∗

1 and H∗ per unit area respectively. The monomers aggregate to form clusters.

Fig. 1 We model the bladder as reservoir of fluid and the catheterised urethra as a two-dimensional rigid
channel. At a constant rate, urine from the kidneys enters the bladder via the two ureters, and the bladder
urine flows through the urethra and exits the body
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Modelling crystal aggregation and deposition in the catheterised lower urinary tract 813

In the well-mixed reservoir fluid, the spatially homogeneous bulk concentrations of
monomers, clusters of k ≥ 2 particles (k-clusters) and inhibitor particles are denoted
respectively by c∗

b1(t
∗), c∗

bk(t
∗) and h∗

b(t
∗), where t∗ denotes time and bulk concen-

tration refers to the number per unit area. We assume that the bulk concentrations
are sufficiently small that we need only consider binary aggregation. The monomers
and inhibitor particles aggregate with monomers and clusters with rate coefficient A∗,
which has dimensions m2s−1. To maintain analytical tractability, we assume that the
aggregation rate is independent of cluster size and that the clusters do not fragment.
Interactions between monomers and clusters are the dominant crystal growth mech-
anism (McLean et al. 1991), and therefore we suppose that there is no aggregation
between clusters of arbitrary size. We assume that binding with an inhibitor particle
prevents further aggregation; the monomers and clusters are then considered to be
poisoned, and are of no further interest.

The contents of the well-mixed reservoir fluid are advected into the channel at rate
λ∗. In the channel, the bulk concentrations of monomers, k-clusters and inhibitor parti-
cles vary spatially and are denoted by c∗

1(x∗, y∗, t∗), c∗
k (x∗, y∗, t∗) and h∗(x∗, y∗, t∗)

respectively. The monomers, clusters and inhibitor particles are advected by the flow
and diffuse. We suppose that the diffusion coefficient, D∗, is independent of cluster
size; although larger clusters will in reality have a smaller diffusion coefficient, we
assume that the variations in the clusters’ sizes are sufficiently small that differences
in the diffusion coefficients will not qualitatively change the model predictions. We
assume that the aggregation dynamics and rate coefficients in the channel are identical
to those in the reservoir.

At the channel walls, y∗ = 0 and y∗ = 2Y ∗, monomers and clusters are depos-
ited at a rate proportional to their bulk concentrations, with rate coefficient α∗, which
has dimensions m s−1. We assume that the deposited monomers and clusters do not
interact with the monomers and clusters present in the bulk fluid, and so do not affect
the deposition rate, α∗. We denote the surface concentrations of deposited monomers
and k-clusters by s∗

1 (x∗, t∗) and s∗
k (x∗, t∗) respectively (for k ≥ 2), where surface

concentration refers to the number per unit length. In a urethral catheter, deposited
crystals become trapped in the developing biofilm; we therefore assume that deposited
monomers and clusters remain on the wall and cannot be poisoned by inhibitor parti-
cles. For simplicity, we also suppose that the inhibitor particles and poisoned clusters
are not deposited on the channel walls.

We focus on the early stages of catheter encrustation and assume that the depos-
ited crystal layer is thin relative to the channel width, so that the channel width is
constant, and the crystal layer does not influence the fluid dynamics. We suppose that
the pressure difference between the reservoir and the external environment is con-
stant, denoted P∗; therefore, assuming Poiseuille flow, the axial velocity is given by
P∗y∗(2Y ∗ − y∗)/(2L∗η∗) where η∗ is the fluid’s dynamic viscosity. [We note that the
flow’s development length is small relative to the channel length (Durst 2005) and is
neglected for simplicity.]

We assume symmetry in the channel’s centre line, y∗ = Y ∗, and solve on the
domain y∗ ∈ [0, Y ∗]. We suppose that initially there are no monomers, clusters or
inhibitor particles present in the reservoir or channel (as the system will have been
flushed when the catheter is inserted). Monomers and inhibitor particles are introduced
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into the reservoir (the bladder) from t∗ = 0 onwards, and we consider the dynamics
as a result of crystals aggregating in the urine and depositing on the catheter.

2.1 Governing equations and boundary conditions

In the well-mixed reservoir, the bulk concentrations of monomers, clusters and inhib-
itor particles are governed by

dc∗
b1

dt∗
= Q∗

1 − λ∗c∗
b1 − A∗c∗2

b1 − A∗c∗
b1h∗

b − A∗c∗
b1

∞∑

j=1

c∗
bj , (2.1a)

dc∗
bk

dt∗
= −λ∗c∗

bk + A∗c∗
b(k−1)c

∗
b1 − A∗c∗

bkc∗
b1 − A∗c∗

bkh∗
b for k > 1, (2.1b)

dh∗
b

dt∗
= H∗ − λ∗h∗

b − A∗h∗
b

∞∑

j=1

c∗
bj . (2.1c)

The bulk concentrations change due to monomers and inhibitor particles entering the
reservoir (the first terms on the right-hand sides of (2.1a,c)), their flux out of the res-
ervoir (the first term on the right-hand side of (2.1b), and the second terms on the
right-hand sides of (2.1a,c)), and aggregation (the remaining terms). In the channel,
the bulk concentrations of monomers, clusters and inhibitor particles are governed by

∂c∗
1

∂t∗
= D∗

(
∂2c∗

1

∂x∗2 + ∂2c∗
1

∂y∗2

)
− P∗

L∗η∗ y∗
(

Y ∗ − y∗

2

)
∂c∗

1

∂x∗

−A∗c∗2
1 − A∗c∗

1h∗ − A∗c∗
1

∞∑

j=1

c∗
j , (2.2a)

∂c∗
k

∂t∗
= D∗

(
∂2c∗

k

∂x∗2 + ∂2c∗
k

∂y∗2

)
− P∗

L∗η∗ y∗
(

Y ∗ − y∗

2

)
∂c∗

k

∂x∗

+A∗c∗
k−1c∗

1 − A∗c∗
k c∗

1 − A∗c∗
k h∗ for k > 1, (2.2b)

∂h∗

∂t∗
= D∗

(
∂2h∗

∂x∗2 + ∂2h∗

∂y∗2

)
− P∗

L∗η∗ y∗
(

Y ∗ − y∗

2

)
∂h∗

∂x∗ − A∗h∗
∞∑

j=1

c∗
j , (2.2c)

where the first terms on the right-hand sides of (2.2) model diffusion, the second terms
model advection and the remaining terms model aggregation.

We solve equations (2.2) subject to the following boundary conditions. We suppose
that the bulk concentrations are continuous at the channel entrance and do not change
as the monomers, clusters and inhibitor particles exit the channel, therefore

c∗
k = c∗

bk, h∗ = h∗
b at x∗ = 0,

∂c∗
k

∂x∗ = ∂h∗

∂x∗ = 0 at x∗ = L∗, (2.3a,b)
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(for k ≥ 1). Symmetry in the channel’s centre line requires that

∂c∗
k

∂y∗ = ∂h∗

∂y∗ = 0 for k ≥ 1 at y∗ = Y ∗. (2.4)

At the channel wall, the monomers and clusters deposit at a rate proportional to their
bulk concentrations, and the inhibitor particles do not deposit, so that

D∗ ∂c∗
k

∂y∗ = α∗c∗
k ,

∂h∗

∂y∗ = 0 for k ≥ 1 at y∗ = 0. (2.5a,b)

Thus, the surface concentrations of deposited monomers and clusters are governed by

∂s∗
k

∂t∗
= α∗c∗

k for k ≥ 1 at y∗ = 0. (2.6)

We assume that initially there are no monomers, clusters or inhibitor particles present
in the reservoir or the channel.

2.2 Nondimensionalisation

We consider the dynamics on the time scale 1/λ∗ over which the monomers, clusters
and inhibitor particles leave the reservoir and enter the channel. We nondimensionalise
using

t∗ = t

λ∗ , x∗ = L∗x, y∗ = Y ∗y,

(c∗
bk, h∗

b, c∗
k , h∗) = Q∗

1

λ∗ (cbk, hb, ck, h), s∗
k = Y ∗Q∗

1

λ∗ sk,

for k ≥ 1, and identify six dimensionless parameters,

ε = Y ∗

L∗ , A = Q∗
1 A∗

λ∗2 , H = H∗

Q∗
1
, P = P∗Y ∗2

L∗2η∗λ∗ , D = D∗

Y ∗2λ∗ , α = α∗

Y ∗λ∗ .

The aspect ratio based on the channel half width is denoted by ε. The parameter A is
the ratio between the aggregation rate and the rate at which monomers, clusters and
inhibitor particles enter the channel. The parameter H is the ratio between the rates at
which inhibitor particles and monomers enter the reservoir. The parameter P gives the
ratio between the rate at which monomers, clusters and inhibitor particles are advected
a distance L∗, and the rate at which they enter the channel, and the parameter D gives
the ratio between the rate at which monomers, clusters and inhibitor particles diffuse
a distance Y ∗, and the rate at which they enter the channel. Finally, the ratio between
the deposition rate and the rate at which monomers, clusters and inhibitor particles
enter the channel is given by α.
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The model is governed by an infinite number of equations, (2.1, 2.2, 2.6), for an
infinite number of variables. For ease, we reduce the number of variables to eleven:
cb1(t), c1(x, y, t), s1(x, t), hb(t), h(x, y, t), and

nb(t) =
∞∑

k=2

cbk(t), n(x, y, t) =
∞∑

k=2

ck(x, y, t), ns(x, t) =
∞∑

k=2

sk(x, t),

mb(t) =
∞∑

k=1

kcbk(t), m(x, y, t) =
∞∑

k=1

kck(x, y, t), ms(x, t) =
∞∑

k=1

ksk(x, t).

Thus, the bulk cluster concentrations are nb(t) and n(x, y, t), and the total mass of
monomers and clusters per unit area are mb(t) and m(x, y, t) in the reservoir and
in the channel respectively.1 At the channel wall, the surface cluster concentration is
ns(x, t), and the total mass of monomers and clusters per unit length is ms(x, t). We
can then determine properties of the system in terms of these eleven variables, for
example, the typical cluster size in the channel (including the monomers) is given by
m/(c1 + n).

From (2.1, 2.2, 2.6), the reduced system of governing equations is

dcb1

dt
= 1 − cb1 − 2Ac2

b1 − Acb1nb − Acb1hb, (2.7a)

dnb

dt
= −nb + Ac2

b1 − Anbhb, (2.7b)

dhb

dt
= H − hb − Acb1hb − Anbhb, (2.7c)

dmb

dt
= 1 − mb − Ambhb, (2.7d)

∂c1

∂t
= D

(
ε2 ∂2c1

∂x2 + ∂2c1

∂y2

)
− Py

(
1 − y

2

) ∂c1

∂x
− 2Ac2

1 − Ac1n − Ac1h, (2.7e)

∂n

∂t
= D

(
ε2 ∂2n

∂x2 + ∂2n

∂y2

)
− Py

(
1 − y

2

) ∂n

∂x
+ Ac2

1 − Anh, (2.7f)

∂h

∂t
= D

(
ε2 ∂2h

∂x2 + ∂2h

∂y2

)
− Py

(
1 − y

2

) ∂h

∂x
− Ac1h − Anh, (2.7g)

∂m

∂t
= D

(
ε2 ∂2m

∂x2 + ∂2m

∂y2

)
− Py

(
1 − y

2

) ∂m

∂x
− Amh, (2.7h)

∂s1

∂t
= αc1,

∂ns

∂t
= αn,

∂ms

∂t
= αm at y = 0. (2.7i)

The corresponding boundary conditions (2.3–2.5), become

c1 = cb1, n = nb, h = hb, m = mb at x = 0, (2.8a)

1 For ease, we state the mass with units corresponding to the mass of one monomer.
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Table 1 Physiological estimates of the dimensional parameters required by the model. We justify these
parameter choices and provide references in Appendix A

Parameter Description Value

L∗ Catheter length 0.20 m

Y ∗ Catheter width 0.008/π m

η∗ Urine dynamic viscosity 0.654 × 10−3 kg m−1 s−1

P∗ Pressure difference across catheter 0.050 Pa

λ∗ Rate at which urine leaves bladder 3 × 10−5 s−1

Q∗
1 Monomer input 2 × 1020 m−3 s−1

H∗/Q∗
1 Relative inhibitor-particle input [0, 2]

D∗ Diffusion rate 7 × 10−10 m2 s−1

A∗ Aggregation rate 8.7 × 10−18 m3 s−1

∂c1

∂x
= ∂n

∂x
= ∂h

∂x
= ∂m

∂x
= 0 at x = 1, (2.8b)

D
∂c1

∂y
= αc1, D

∂n

∂y
= αn,

∂h

∂y
= 0, D

∂m

∂y
= αm at y = 0, (2.8c)

∂c1

∂y
= ∂n

∂y
= ∂h

∂y
= ∂m

∂y
= 0 at y = 1, (2.8d)

and the initial conditions become

cb1 = nb = hb = mb = c1 = n = h = m = s1 = ns = ms = 0 at t = 0. (2.9)

To summarise, we prescribe the six dimensionless parameters, ε, A, H , D, P and
α, and solve the governing equations, (2.7), for the eleven variables, subject to the
boundary conditions (2.8) and the initial conditions (2.9).

2.3 Physiological parameter values

Physiologically relevant parameter estimates are discussed in Appendix A and sum-
marised in Table 1. These values lead to the following estimates for some of the
dimensionless parameters

ε = 0.013, A = 2 × 1012, H = 0 − 2, P = 410, D = 3.6. (2.10)

The deposition rate, α, will depend strongly on the biomaterial properties of the cathe-
ter and on the extent of the bacterial biofilm. We therefore use the model to investigate
the impact of different deposition rates.

We focus on the physiologically relevant solutions for which the dimensionless
aggregation rate is large, A � 1, and motivated by (2.10), we suppose that the
parameters, H and D are O(1) as A → ∞. When we asymptotically study the
channel solutions in Sects. 4.1.3 and 4.2.3, we find that the dominant dynamics
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depend on the relative sizes of ε, P and A−1/4 for H > 1 and ε, P and A−1/8

for 0 < H < 1; considering the physiological parameter estimates, (2.10), we let
A−1/4 � ε ∼ P−1 � A−1/8.

Studying the reservoir solutions in Sect. 3, we focus on varying the input of inhib-
itor particles, H ∈ [0, 2]. We then consider the channel dynamics in Sect. 4, and
present both time-dependent numerical solutions and asymptotic steady solutions. We
investigate the dynamics both with no deposition, α = 0, and with sufficiently fast
deposition that its influence on the bulk concentrations can be clearly seen.

3 Reservoir solutions

For large A, the appropriate asymptotic scalings for the steady-state bulk concen-
trations depend upon H , the ratio between the rates at which inhibitor particles and
monomers enter the reservoir. Considering the four asymptotic regimes, H > 1,
0 < H < 1, H ≈ 1 and H ≈ 0, we determine steady reservoir solutions in Sect. 3.1
and discuss dynamics effects in Sect. 3.2.

3.1 Asymptotic steady-state solutions

In Sects. 3.1.1–3.1.4, we discuss the steady solutions of (2.7a-d) in four asymptotic
regimes: H > 1, 0 < H < 1, H ≈ 1 and H ≈ 0. In each case, we obtain the appropri-
ate asymptotic scalings for cb1, nb, hb and mb, by seeking a consistent balance in the
steady-state governing equations (ensuring that the bulk concentrations are positive).

3.1.1 Inhibitor input H > 1

For H > 1, the appropriate asymptotic scalings are

(cb1, mb) = A−1(c̃b1, m̃b), nb = A−2ñb. (3.1a,b)

As the inhibitor-particle input exceeds the monomer input, the inhibitor-particle con-
centration is larger than the concentrations of monomers and clusters. The monomer
concentration is much larger than the cluster concentration and the mass is predomi-
nantly due to the monomers, because many of the monomers are poisoned before they
form clusters. At leading order, the steady-state governing equations (2.7a-d), become

0 = 1 − c̃b1hb, 0 = c̃2
b1 − ñbhb,

0 = H − hb − c̃b1hb, 0 = 1 − m̃bhb.
(3.2a-d)

As the inhibitor-particle concentration is large, the input of monomers and formation
of clusters is balanced with poisoning. We obtain the solution

cb1 = mb = 1

A(H − 1)
, nb = 1

A2(H − 1)3 , hb = H − 1, (3.3a-c)

and the leading-order typical cluster size, mb/(cb1 + nb), equals one.
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3.1.2 Inhibitor input 0 < H < 1

For 0 < H < 1, the concentrations of monomers, clusters and inhibitor particles all
have the same asymptotic scaling:

(cb1, nb, hb, mb) = A−1/2(ĉb1, n̂b, ĥb, m̂b), (3.4)

and so both the monomers and the clusters contribute to the leading-order mass. The
leading-order steady-state governing equations are

0 = 1 − 2ĉ2
b1 − ĉb1n̂b − ĉb1ĥb, 0 = ĉ2

b1 − n̂bĥb,

0 = H − ĉb1ĥb − n̂bĥb, 0 = 1 − m̂bĥb.
(3.5a-d)

In this case, the input of monomers and inhibitor particles into the reservoir is balanced
by aggregation and poisoning, and the flux of monomers, clusters and inhibitor par-
ticles out of the reservoir into the channel does not affect the leading-order reservoir
solution. Equations (3.5) have solution

cb1 = (H(1 − H))1/2

A1/2 , nb = (1 − H)3/2

A1/2 H1/2 ,

hb = H3/2

A1/2(1 − H)1/2 , mb = (1 − H)1/2

A1/2 H3/2 ,

(3.6a-d)

and the leading-order typical cluster size is mb/(cb1 + nb) = 1/H .

3.1.3 Inhibitor input H ≈ 1

Inspection of (3.3) and (3.6) reveals singularities as H → 1±. We therefore consider
an inner region where H ≈ 1; we let H = 1+ A−1/3 H̄ , where H̄ = O(1) as A → ∞,
and rescale via

(cb1, mb) = A−2/3(c̄b1, m̄b), nb = A−1n̄b, hb = A−1/3h̄b. (3.7)

We obtain these scalings by prescribing that the solution will match to the H < 1
solution as H̃ → −∞ and the H > 1 solution as H̃ → ∞. At leading order, the
steady-state governing equations reduce to the system

0 = 1 − c̄b1h̄b, 0 = c̄2
b1 − n̄bh̄b,

0 = H̄ − h̄b + c̄2
b1, 0 = 1 − m̄bh̄b,

(3.8a-d)

(as 1− c̄b1h̄b = 2c̄2
b1 A1/3 +· · ·). Comparing (3.2) and (3.8), we see that the governing

equations for H > 1 and H ≈ 1 are essentially the same, although for H ≈ 1 we solve
for the inhibitor-particle concentration at a higher order (as Sect. 3.1.1 suggested that
the O(1) component of the inhibitor-particle concentration is zero if H = 1). Equa-
tions (3.8) simplify to

123



820 L. R. Band et al.

n̄b = c̄3
b1, h̄b = 1

c̄b1
, m̄b = c̄b1, c̄3

b1 + H̄ c̄b1 − 1 = 0, (3.9a-d)

and the real root of the cubic for c̄b1, (3.9d), is given by

c̄b1 = 2−1/3
(
(u + 1)1/3 − (u − 1)1/3

)
where u2 = 1 + 4H̄3

27
. (3.10)

For large H̄ , u ∼ 2(H̄/3)3/2 and it is straightforward to show that c̄b1 ∼ H̄−1.
Letting H̄ = (H − 1)A1/3, we find that the solution for large H̄ is identical to the
outer solution (H > 1), given in (3.3). Therefore, (3.10) holds for H � 1, and the
H > 1 solution is redundant. In the limit H̄ → −∞, u takes complex values, and
we let u = iv where v = 2(−H̄/3)3/2 ∈ R. We then find that c̄b1 ∼ (−H̄)1/2 as
H̄ → −∞, so that

cb1 = mb = (1 − H)1/2

A1/2 , nb = (1 − H)3/2

A1/2 , hb = 1

A1/2(1 − H)1/2 . (3.11)

Comparing (3.6) and (3.11), we see that the solution in the limit H̄ → −∞ is not
identically equal to the outer solution (0 < H < 1). Rather, in the limit as H̄ → −∞,
(3.11) matches to the outer solution in the limit H → 1− (3.6).

3.1.4 Inhibitor input H ≈ 0

In the solution for 0 < H < 1, (3.6), the cluster concentration is singular as H → 0+;
therefore, we now construct an asymptotic solution for H ≈ 0. We let H = A−1/3 H̆ ,
where H̆ = O(1) as A → ∞; this scaling ensures we match to the H < 1 solution,
(3.6), as H̆ → ∞. We rescale via

cb1 = A−2/3c̆b1, nb = A−1/3n̆b, hb = A−1h̆b. (3.12)

The inhibitor-particle concentration is small and poisoning occurs slowly, resulting in
the total mass of monomers and clusters being O(1). Many of the monomers form
clusters before they are poisoned, so that the cluster concentration is larger than the
monomer concentration and the typical cluster size is O(A1/3). The leading-order
terms in the steady-state governing equations are

0 = 1 − c̆b1n̆b, 0 = −n̆b + c̆2
b1 − n̆bh̆b,

0 = H̆ − n̆bh̆b, 0 = 1 − mb − mbh̆b,
(3.13a-d)

which can be simplified to

n̆b = 1

c̆b1
, h̆b = H̆ c̆b1, mb = 1

1 + H̆ c̆b1
, c̆3

b1 − H̆ c̆b1 − 1 = 0, (3.14a-d)
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where the cubic equation for c̆b1, (3.14d), has the unique real solution

c̆b1 = 2−1/3
(
(u + 1)1/3 − (u − 1)1/3

)
where u2 = 1 − 4H̆3

27
. (3.15)

In the limit as H̆ → ∞, u takes complex values; we let u = iv where v = 2(H̆/3)3/2 ∈
R and find that c̆b1 ∼ (H̆)1/2. Returning to unscaled concentrations, we obtain

cb1 = H1/2

A1/2 , nb = 1

H1/2 A1/2 , hb = H3/2

A1/2 , mb = 1

H3/2 A1/2 , (3.16)

and so the limit as H̆ → ∞ is consistent with the limit H → 0+ of the outer solution,
(3.6).

3.1.5 Summary of the steady solutions

In summary, we have three asymptotic regions for H : H ≈ 0, 0 < H < 1 and H � 1.
In Fig. 2, we compare the asymptotic steady-state solutions, obtained in Sect. 3.1.1–
3.1.4, with large-time numerical solutions of the governing equations (2.7a-d). (The
steady state is reached by t = 5.) The numerical solutions are produced by solving
(2.7a-d) with initial conditions (2.9), using MATLAB’s differential equation solver
ode45 (which uses a fourth-order accurate Runge–Kutta method). For A = 5,000,
there is excellent agreement between the numerical solutions at large times and the
asymptotic steady-state solutions.

Increasing the rate at which inhibitor particles enter the reservoir increases the inhib-
itor-particle concentration (Fig. 2c), and reduces the cluster concentration (Fig. 2b) (as
more clusters are poisoned). From (3.6), the monomer concentration increases with H
for H < 0.5, and decreases with H for H > 0.5 (Fig. 2a). There are two competing
effects: increasing the inhibitor-particle concentration reduces the number of clusters
for the monomers to aggregate with, which increases the monomer concentration and
is the dominant effect for H < 0.5; however, increasing the inhibitor-particle concen-
tration also increases the number of monomers poisoned, which reduces the monomer
concentration, and is the dominant effect for H > 0.5.

With no inhibitor particles, the mass per unit area equals one. The mass reduces
as the input of inhibitor particles increases (Fig. 2d), and more of the monomers and
clusters become poisoned. Although not studied here, we would expect the mass of
poisoned monomers and clusters to increase with H . For H � 1, many monomers
are poisoned before they can aggregate with clusters, so the typical cluster size is
small (approximately equal to one) and the leading-order mass is entirely due to the
monomers, mb = cb1. Therefore, the reservoir contains predominantly monomers
and inhibitor particles. For H < 1, the typical cluster size increases with decreas-
ing H (Fig. 2e), and monomers, clusters and inhibitor particles are all present in the
reservoir.
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Fig. 2 Influence of the ratio between the rates at which inhibitor particles and monomers enter the reser-
voir, H , on the steady-state bulk concentrations in the reservoir, with a large aggregation rate A = 5,000.
We compare the asymptotic solutions (3.6, 3.10, 3.15), with a numerical solution of the governing equa-
tions, (2.7a-d), at t = 10; a monomer concentration, cb1; b cluster concentration, nb; c inhibitor-particle
concentration, hb; d mass per unit area, mb; e typical cluster size mb/(cb1 + nb)

3.2 Dynamic effects

3.2.1 Asymptotic analysis

The previous section considered the steady solutions of the equations governing the
reservoir concentrations (2.7a-d). We now investigate how the concentrations evolve
to these steady-state values by exploiting the large parameter, A, and analysing the
dynamics on several time scales.
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For H > 1, H ≈ 1 and 0 < H < 1, the dynamics on the first two time scales
are identical. On a fast time scale, τ = At = O(1), the concentrations are small and
increase due to monomers and inhibitor particles entering the reservoir and clusters
forming when two monomers aggregate. Rescaling the concentrations via

(cb1, mb, hb) = A−1(c̃b1, m̃b, h̃b), nb = A−2ñb, (3.17)

the leading-order governing equations (2.7a-d), become

dc̃b1

dτ
= 1,

dñb

dτ
= c̃2

b1,
dh̃b

dτ
= H,

dm̃b

dτ
= 1. (3.18a-d)

As the inhibitor-particle concentration is small, poisoning is negligible on this time
scale. Solving (3.18) subject to the initial conditions, (2.9), we obtain

c̃b1 = m̃b = τ, ñb = τ 3

3
, h̃b = Hτ. (3.19a-c)

The fast t = O(A−1) dynamics, (3.19), break down once τ = O(A1/2) because the
dominant balance, (3.18), no longer holds. We therefore consider a second time scale,
T = A1/2t = O(1). To match to (3.19), the concentrations are O(A−1/2), and we
therefore rescale via (3.4), which results in the leading-order governing equations

dĉb1

dT
= 1 − 2ĉ2

b1 − ĉb1n̂b − ĉb1ĥb,
dn̂b

dT
= ĉ2

b1 − n̂bĥb,

(3.20a-d)
dĥb

dT
= H − ĉb1ĥb − n̂bĥb,

dm̂b

dT
= 1 − m̂bĥb.

Comparing (3.5) and (3.20), we see that for 0 < H < 1, the concentrations approach
their steady states, (3.6), in the limit as T → ∞. For initial conditions (2.9), we solve
(3.20) using MATLAB’s differential equation solver ode45, and as shown in Fig. 3,
we find excellent agreement with a numerical solution of the full equations, (2.7a-d)

With a large inhibitor input, H > 1, the inhibitor-particle concentration is O(1)

at the steady state (Sect. 3.1.1), and the flux of inhibitor particles out of the reservoir
is significant. Thus, the concentrations evolve to their steady solutions more slowly
(than for 0 < H < 1), and we must also examine dynamics on an O(1) time scale.
The concentrations scale via (3.1), and the leading order governing equations give

0 = 1 − c̃b1hb, 0 = c̃2
b1 − ñbhb,

dhb

dt
= H − hb − c̃b1hb, 0 = 1 − m̃bhb.

(3.21a-d)

Therefore on the O(1) time scale, the inhibitor-particle concentration increases, and
the input of monomers and the formation of clusters are balanced by poisoning of
monomers and clusters respectively. Equations (3.21) have solution
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(d)

(b)(a)

(c)

(e) (f)

Fig. 3 The evolution of the bulk concentrations in the reservoir. We compare asymptotic and numerical
solutions of the governing equations, (2.7a-d), with A = 5,000 and either H = 0.5 (a, c, e) or H = 1.5
(b, d, f)); a, b monomer concentration, cb1(t); c, d cluster concentration, nb(t); e, f) inhibitor-particle
concentration, hb(t)

hb = H − 1 + Be−t , c̃b1 = m̃b = 1

hb
, ñb = 1

h3
b

, (3.22a-d)

where the constant B remains to be determined. To match the dynamics on the inter-
mediate time scale (t = O(A−1/2)) to those on the O(1) time scale, we require
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ĉb1 → 0+, n̂b → 0+, ĥb → ∞ and m̂b → 0+ as T → ∞. Then (3.20) suggests that
ĥb ∼ (H − 1)T as T → ∞. Matching these intermediate-time-scale dynamics to the
outer solution, (3.22), as t → 0+, we find B = H − 1, which determines the outer
solution, (3.22). Considering the scalings for the concentrations on each time scale,
we see that the concentrations of monomers and clusters go through transients that are
much larger than both their initial conditions and final steady-state values.

For H ≈ 1, the concentrations also evolve to their steady solutions on an O(1)

time scale; in this case, they are scaled via (3.7), and are governed by

0=1 − c̄b1h̄b, 0=1 − m̄bh̄b, 0= c̄2
b1 − n̄bh̄b,

dh̄b

dt
= H̄ − h̄b + c̄2

b1, (3.23)

which reduce to

c̄b1 = m̄b = 1

h̄b
, n̄b = 1

h̄3
b

, t =
h̄b∫

0

h̄
′2
b

H̄ h̄
′2
b − h̄

′3
b + 1

dh̄′
b, (3.24)

(as matching to the intermediate time-scale dynamics requires that h̄b → 0 as t → 0).
If h̄b is a root of H̄ h̄2

b − h̄3
b + 1, the concentrations satisfy the steady-state equa-

tions (3.9); from (3.24), we see that as h̄b approaches a root of this cubic equation,
t → ∞, and therefore the concentrations evolve to their steady-state values on an
O(1) time scale according to (3.24).

With H ≈ 0, the evolution can also be analysed using three asymptotic time scales;
however, due to the small inhibitor-particle input, the inhibitor-particle concentration
is smaller than in the other cases. At early times, t = A−1τ , the concentrations are
scaled via

(cb1, mb) = A−1(c̃b1, m̃b), nb = A−2ñb, hb = A−4/3h̀b, (3.25)

and are governed by (3.18, 3.19) (with H replaced by H̆ = A1/3 H , and h̃b replaced
with h̀b). As before, the fast time scale breaks down once τ = O(A1/2) and we move
to the intermediate time scale, t = A−1/2T . Here, the concentrations are scaled via

(cb1, nb, mb) = A−1/2(ĉb1, n̂b, m̂b), hb = A−5/6h́b, (3.26)

and governed by

dĉb1

dT
= 1 − 2ĉ2

b1 − ĉb1n̂b,
dn̂b

dT
= ĉ2

b1,
dh́b

dT
= H̆ − ĉb1h́b − n̂bh́b,

dm̂b

dT
= 1.

However, as for H � 1, the concentrations evolve to their steady states on an O(1)

time scale, with their steady-state scalings (3.12). The evolution is governed by

0=1−c̆b1n̆b,
dn̆b

dt
=−n̆b+c̆2

b1−n̆bh̆b, 0= H̆ − n̆bh̆b,
dmb

dt
=1 − mb−mbh̆b,
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which reduce to

c̆b1 = 1

n̆b
, h̆b = H̆

n̆b
, t =

n̆′
b∫

0

n̆
′2
b

1 − H̆ n̆
′2
b − n̆

′3
b

dn̆′
b, t =

m′
b∫

0

n̆b

n̆b − m′
bn̆b − H̆m′

b

dm′
b,

(as matching to the intermediate time-scale dynamics suggests that n̆b → 0+ and
mb → 0+ as t → 0). We note that n̆b approaches a root of 1 − H̆ n̆

′2
b − n̆

′3
b as t → ∞,

which corresponds to a solution of the steady state equations (3.14).

3.2.2 Summary of dynamic effects

For H = 0.5 and H = 1.5, Fig. 3 shows excellent agreement between the asymp-
totic and numerical solutions of the evolution of the concentrations (from the initial
conditions (2.9), to the steady solutions shown in Fig. 2). On the fast time scale
(t = O(A−1)), the concentrations of monomers and inhibitor particles increase due to
the flux into the reservoir (Fig. 3a, b, e, f), and the monomers aggregate, which causes
the cluster concentration to increase (Fig. 3c, d). As the concentrations of inhibitor
particles and clusters increase on time scale t = O(A−1/2), more of the monomers
become poisoned or aggregate with the clusters, which causes the monomer concen-
tration to decrease (Fig. 3a, b). If the inhibitor-particle input, H , is sufficiently small,
more inhibitor particles are taken up in poisoning the monomers and clusters than enter
the reservoir, and so the inhibitor-particle concentration reaches a maximum and then
decreases to its steady state (Fig. 3e). The cluster concentration remains large in this
case, and increases monotonically to its steady state, because the number of clusters
that are created by pairs of monomers aggregating is greater than the number that
become poisoned (Fig. 3c). With a larger value of H , however, the inhibitor-particle
concentration increases monotonically to its steady state, and on a t = O(1) time
scale, poisoning causes the cluster concentration to reduce (Fig. 3d). The monomer
concentration overshoots its steady state for all H , and depending on the value of H ,
the concentrations of clusters and inhibitor particles either overshoot their steady state
or increase monotonically to their steady state. Note that Fig. 3c clearly shows the
O(A−1) error in the asymptotic steady solution.

4 Channel solutions

Motivated by the reservoir solutions, we consider the channel dynamics in two
asymptotic regimes for H : (i) H > 1 where predominantly only monomers and inhib-
itor particles enter the channel (from Sect. 3.1.1), and (ii) 0 < H < 1, where mono-
mers, clusters and inhibitor particles enter the channel (from Sect. 3.1.2). We compare
solutions with no deposition and with significant deposition, and in the latter case,
determine the distribution of deposited monomers and clusters. For both H > 1 and
0 < H < 1, we present numerical solutions and construct asymptotic solutions that
capture the region of rapid variation close to the channel entrance. In the limit as A →
∞, the relative sizes of the diffusion, advection, and aggregation terms in the governing
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equations (2.7e-h) are the same for the four bulk concentrations (monomers, clusters,
inhibitor particles and mass). Asymptotic analysis of similar advection–diffusion–
deposition dynamics (but with no aggregation) can be found in references (Woollard
et al. 2008; Edwards 1999; Edwards et al. 1999). We do not analyse the H ≈ 1 and
H ≈ 0 cases; for these cases, the relative sizes of the advection, diffusion and aggrega-
tion terms are different for different bulk concentrations which leads to a significantly
more complicated asymptotic solution structure, and is beyond the scope of this paper.

The numerical solutions are produced by solving the governing equations, (2.7),
using the method of lines. At each time step, we evaluate the right-hand sides of equa-
tions (2.7) by approximating the spatial derivatives using second-order accurate central
differences, except at the boundaries x = 1, y = 0 and y = 1. Where necessary, we
use a variable mesh to resolve the solutions. At the boundaries x = 1, y = 0 and
y = 1, we prescribe the first-order derivatives (with respect to x and y respectively)
(2.8b-d); we evaluate the derivatives in the governing equations and boundary con-
ditions by creating ghost points and using second-order-accurate central differences.
For the time stepping, we again use MATLAB’s differential equation solver ode45.

4.1 Inhibitor input H > 1

4.1.1 With no deposition, α = 0

We first consider H > 1 and suppose that there is no deposition. Figure 4 shows a
numerical solution of the governing equations, (2.7), with A = 104, ε = P−1 = 0.2
and H = 1.5 at t = 5 (by which time the bulk concentrations have reached their
steady state). The fluid entering the channel contains small bulk concentrations of
monomers and clusters and a large bulk concentration of inhibitor particles. Therefore
as the monomers and clusters are advected through the channel, they are poisoned by
the inhibitor particles, and the bulk concentrations of monomers and clusters decay
rapidly with x (Fig. 4a, b). With a larger inhibitor input, H , monomers and clusters
are poisoned faster and their bulk concentrations decay more rapidly with x . Only
a small proportion of the inhibitor particles is required to poison all the monomers
and clusters, and so throughout the channel the bulk inhibitor-particle concentration
is approximately constant and equal to that in the reservoir, h ≈ H − 1 (results not
shown). The bulk concentrations are approximately uniform across the channel width.
As in the reservoir with H > 1 (Sect. 3.1.1), throughout the channel the typical
cluster size is approximately one (results not shown), and the mass per unit area is
approximately equal to the bulk monomer concentration (Fig. 4a, c).

At a representative spatial point close to the channel entrance, x = 0.002, y = 1,
Fig. 5 shows the time evolution of the bulk concentrations of monomers, clusters and
inhibitor particles to the steady solution shown in Fig. 4. The dynamics are very similar
to the reservoir dynamics discussed in Sect. 3.2.2 (Fig. 3b, d, f).

4.1.2 With deposition, α �= 0

Figure 6a–c shows a large-time numerical solution with deposition onto the channel
wall, for A = 104, ε = P−1 = 0.2 and α = 100 (this choice is motivated by the
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Fig. 4 Numerical solution of (2.7) for the bulk concentrations in the channel at t = 5, with a large aggre-
gation rate, A = 104, and parameters H = 1.5, α = 0, ε = P−1 = 0.2, and D = 1; a bulk monomer
concentration, c1(x, y); b bulk cluster concentration, n(x, y); c mass per unit area, m(x, y)

(a) (b) (c)

Fig. 5 Time dependence of the bulk concentrations in the channel from a numerical solution of (2.7)
with parameters A = 104, H = 1.5, α = 0, ε = P−1 = 0.2, and D = 1; a bulk monomer concen-
tration, c1(0.002, 1, t); b bulk cluster concentration, n(0.002, 1, t); c bulk inhibitor-particle concentration,
h(0.002, 1, t)

asymptotic analysis in Sect. 4.1.3, which suggests that deposition influences the bulk
concentrations provided α ∼ A1/2). Comparing Figs. 4a, b and 6a, b, we see that
deposition only affects the bulk concentrations in a boundary layer next to the channel
wall. In the boundary layer, deposition causes the bulk concentrations of monomers
and clusters to decay rapidly with x over a shorter axial length of the channel, whereas
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Fig. 6 Numerical solution of (2.7) with a large aggregation rate, A = 104, and parameters H = 1.5,
α = 100, ε = P−1 = 0.2, and D = 1. The bulk concentrations are shown at t = 5 (once equilibrium
has been established), and the surface concentrations are shown at t = 1, 2, 3, 4, 5; a bulk monomer con-
centration, c1(x, y); b bulk cluster concentration, n(x, y); c mass per unit area, m(x, y); d time-dependent
surface concentrations; e surface mass per unit area, ms (x, t)

it leads to slightly larger bulk inhibitor-particle concentrations (results not shown),
because there are fewer monomers and clusters for the inhibitor particles to poison.

During the period of the initial increase in the bulk concentrations of monomers
and clusters (shown in Fig. 5a, b), monomers and clusters are deposited along the full
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length of the channel. Once the bulk concentrations of monomers and clusters have
reached their steady state, the surface concentrations increase linearly with time, with
their growth rates proportional to the bulk concentrations at the channel wall, (2.7i)
(Fig. 6d). Thus, once equilibrium is attained, monomers and clusters predominantly
deposit close to the channel entrance, x = 0, (Fig. 6e).

4.1.3 Asymptotic steady-state solutions

The numerical solutions show that variations in the steady-state bulk concentrations
are confined to a short region close to the channel entrance. We now focus on small
x , and exploit large-A asymptotics to examine the structure of the steady solution. We
expect the scalings for the bulk concentrations close to the channel entrance to be the
same as those in the reservoir; therefore from Sect. 3.1.1, we let

(c1, m) = A−1(c̃1, m̃), n = A−2ñ. (4.1a-c)

For small x , it is straightforward to show that the dominant dynamics depend on the
relative sizes of ε, P and A−1/4; considering the physiological parameter estimates,
(2.10), we suppose that ε ∼ P−1 � A−1/4 and rescale x = √

Dε x̃/
√

A (where
x̃ = O(1) as A → ∞). Thus, in this region, axial advection is negligible and axial
diffusion balances aggregation. The leading-order steady-state governing equations,
(2.7e-h), become

0 = ∂2c̃1

∂ x̃2 − c̃1h, 0 = ∂2ñ

∂ x̃2 + c̃2
1 − ñh, 0 = ∂2h

∂ x̃2 , 0 = ∂2m̃

∂ x̃2 − m̃h, (4.2a-d)

and the bulk channel concentrations equal the bulk reservoir concentrations, (3.3), at
x̃ = 0. From (4.2c), h = C1 x̃ + H − 1, where C1 is a constant. Before solving for c̃1,
ñ and m̃, we determine C1 by matching to the x = O(1) solution.

For x = O(1), the steady-state governing equations, (2.7e-h), reduce to

0 = c̃1h, 0 = c̃2
1 − ñh, 0 = y

(
1 − y

2

) ∂h

∂x
, 0 = m̃h, (4.3a-d)

(using scalings (4.1)). Thus, the bulk inhibitor-particle concentration, h, is constant,
the remaining governing equations give c̃1 = ñ = m̃ = 0, and the boundary condition
at x = 1, (2.8b), is automatically satisfied. Matching to small-x solutions, we find
that h = H − 1 for all x . We can then use (4.2) to find the remaining small-x bulk
concentrations

c1 = m = 1

A(H − 1)
exp

(
− x

√
A(H − 1)

ε
√

D

)
, (4.4a)

n = 1

A2(H − 1)3

[(
4(H − 1)3 − 1

)
exp

(
− x

√
2A(H − 1)

ε
√

D

)

+
(

2 − 4(H − 1)3
)

exp

(
− x

√
A(H − 1)

ε
√

D

)]
. (4.4b)
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For y = O(1), there is excellent agreement between the small-x asymptotic steady
solutions, (4.4), and the large-time numerical solution of the governing equations (2.7)
(results not shown). Note that, as suggested by the numerical solutions in Figs. 4 and
6, the bulk concentrations for y = O(1) are independent of the deposition rate, α.

Next to the channel wall, there exists a boundary layer, y = O(ε A−1/2). For
x = O(1), the boundary layer solutions are identical to those in the central bulk of the
channel, h = H − 1, c̃1 = ñ = m̃ = 0 (for all values of α). At the channel entrance,
x = O(ε A−1/2), deposition influences the leading-order boundary-layer solutions
provided α = O(A1/2). In this region, the leading-order governing equations are two
dimensional and could be solved numerically; however, we do not pursue this here.
With a smaller α, the leading-order bulk concentrations are not affected by deposition
and are uniform across the channel width.

4.2 Inhibitor input 0 < H < 1

4.2.1 With no deposition, α = 0

Figure 7 shows a large-time numerical solution of the governing equations, (2.7), with
H = 0.5, A = 106, ε = P−1 = 0.05, and no deposition, α = 0. As for H > 1
(Fig. 4), the monomers entering the channel at x = 0 aggregate with clusters and
inhibitor particles as they are advected through the channel, which causes the bulk
monomer concentration to decay rapidly with x (Fig. 7a). If H is sufficiently large
(for example H = 0.75), the dynamics are qualitatively the same as in the H > 1
solution: there are enough inhibitor particles present to poison all the monomers and
clusters in the initial axial length of the channel, and so only inhibitor particles are
present in the remaining length of the channel. In contrast, with a smaller H (for
example, H = 0.5 shown in Fig. 7), all the inhibitor particles are used up in poisoning
the monomers and clusters, and so the bulk inhibitor-particle concentration decays
rapidly with x in the initial axial length of the channel (Fig. 7c), and only clusters
are present in the remaining portion of the channel (Fig. 7b). Close to the channel
wall, monomers, clusters and inhibitor particles are advected more slowly than at the
channel centre; therefore, aggregation occurs in a shorter axial length of the channel,
and the bulk concentrations of monomers and clusters decay with x more rapidly. As
in the reservoir, increasing the input of inhibitor particles leads to a reduction in the
mass per unit area and the typical cluster size.

In the channel, the time evolution at a typical point in the flow is qualitatively the
same as the evolution in the reservoir which we discussed in Sect. 3.2.2 (Fig. 3a, c, e).

4.2.2 With deposition, α �= 0

Figure 8a–e shows a large-time numerical solution with deposition, for H = 0.5,
A = 106 and α = A1/4. (We note that this choice of deposition rate is motivated
by the asymptotic analysis in Sect. 4.2.3.) As for H > 1, deposition causes the bulk
concentrations of monomers and clusters to rapidly decay with x close to the wall. As
the distance from the channel wall increases, the effect of deposition drops off, and at
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Fig. 7 Numerical solution of (2.7) for the bulk concentrations in the channel at t = 5, with a large
aggregation rate, A = 106, and parameters H = 0.5, α = 0, ε = P−1 = 0.05, and D = 1. The x-scales
vary between the graphs to best highlight features of the solution; a bulk monomer concentration, c1(x, y);
b bulk cluster concentration, n(x, y); c bulk inhibitor-particle concentration, h(x, y); d mass per unit area,
m(x, y); e typical cluster size m/(c1 + n)

the channel centre its influence is no longer felt. As for H > 1, some monomers and
clusters deposit along the full length of the channel wall during the initial transient
phase and once the bulk concentrations reach their steady state (shown in Fig. 8a–e),
the surface concentrations increase linearly with time (Fig. 8f, g), with their growth
rate proportional to the bulk concentrations at the channel wall (from equation (2.7i)).
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Fig. 8 Numerical solution of (2.7) with a large aggregation rate, A = 106, and parameters H = 0.5,
α = A1/4, ε = P−1 = 0.05, and D = 1. The bulk concentrations are shown at t = 5 (once equilibrium
has been established), and the surface concentrations are shown at t = 1, 2, 3, 4, 5. The x-scales vary
between the graphs to best highlight features of the solution; a bulk monomer concentration, c1(x, y);
b bulk cluster concentration, n(x, y); c bulk inhibitor-particle concentration, h(x, y); d mass per unit area,
m(x, y); e typical cluster size, m(x, y)/(c1(x, y) + n(x, y)); f surface monomer concentration, s1(x, t);
g surface cluster concentration, ns (x, t)
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The steady-state bulk monomer concentration decays rapidly with x in the initial axial
length of the channel, and so monomers predominantly deposit in this region (Fig. 8f).
If H is sufficiently small, clusters are present throughout the channel at the steady
state; clusters continue to deposit along the full channel length (Fig. 8g), and the typ-
ical cluster size in the deposited layer increases with x . In contrast, with a larger H ,
the steady-state bulk cluster concentration rapidly decays in the initial axial length of
the channel and so cluster deposition predominantly occurs in this region. In all cases,
maximum deposition occurs close to the channel entrance (x = 0).

4.2.3 Asymptotic steady-state solutions

As for H > 1, the steady-state bulk concentrations vary mainly in the initial axial
length of the channel, which enables us to investigate the structure of the solution
asymptotically. For small x , we expect the bulk concentrations in the channel to have
the same scalings as those in the reservoir (Sect. 3.1.2), thus

(c1, n, h, m) = A−1/2(ĉ1, n̂, ĥ, m̂). (4.5)

It is straightforward to show that the dominant small-x behaviour depends on the
relative size of ε, P and A−1/8. Using the physiological parameter estimates, (2.10),
we find it is appropriate to focus on the case ε ∼ P−1 � A−1/8. (We note that this
regime is consistent with the H > 1 assumption that ε � A−1/4.) For y = O(1), there
are three axial asymptotic regimes: for small x , axial diffusion balances advection;
for intermediate x , aggregation balances advection; and for x = O(1), aggregation
dominates.

In the inner regime, we let x = Dε2 x̂/P (where x̂ = O(1) as A → ∞), and we
obtain the leading-order balance

0 = ∂2ĉ1

∂ x̂2 − y
(

1 − y

2

) ∂ ĉ1

∂ x̂
, 0 = ∂2n̂

∂ x̂2 − y
(

1 − y

2

) ∂ n̂

∂ x̂
,

0 = ∂2ĥ

∂ x̂2 − y
(

1 − y

2

) ∂ ĥ

∂ x̂
, 0 = ∂2m̂

∂ x̂2 − y
(

1 − y

2

) ∂m̂

∂ x̂
,

(4.6a-d)

Solving (4.6) subject to the boundary condition (2.8a) at x̂ = 0, and assuming that the
bulk concentrations remain finite as x̂ → ∞, we find that the bulk concentrations are
constant and equal to the reservoir bulk concentrations (3.6).

As x̂ → ∞, the effects of axial diffusion and advection terms diminish; axial
diffusion becomes negligible and advection is balanced by aggregation. Thus, with
x = Px̄/A1/2, the dominant dynamics are governed by

y
(

1 − y

2

) ∂ ĉ1

∂ x̄
= −2ĉ2

1 − ĉ1n̂ − ĉ1ĥ, y
(

1 − y

2

) ∂ n̂

∂ x̄
= ĉ2

1 − n̂ĥ,

y
(

1 − y

2

) ∂ ĥ

∂ x̄
= −n̂ĥ − ĉ1ĥ, y

(
1 − y

2

) ∂m̂

∂ x̄
= −m̂ĥ,

(4.7a-d)
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and the bulk concentrations are equal to those in the reservoir, (3.6), at x̄ = 0. For
each y = O(1), we solve (4.7) numerically using the method of lines and find good
agreement with a large-time numerical solution of the full governing equations (results
not shown).

For x, y = O(1), we consider the scalings (4.5), and find the leading-order steady-
state governing equations, (2.7e-h), are

0=−ĉ1n̂ − 2ĉ2
1 − ĉ1ĥ, 0= ĉ2

1 − n̂ĥ, 0=−ĉ1ĥ − n̂ĥ, 0=−ĥm̂. (4.8a-d)

There are two possible solutions, either c1 = h = 0, n �= 0, m �= 0, or c1 = n = m =
0, h �= 0. We determine the appropriate solution by matching to the numerical small-x
solutions (governed by (4.7)). We find that for H � 0.56 the x = O(1) solution is
c1 = h = 0, n �= 0, m �= 0; however, for H � 0.56, the x = O(1) solution is
c1 = n = m = 0, h �= 0. This is in agreement with the numerical solutions of the full
governing equations, (2.7): for large H the inhibitor particles poison all the monomers
and clusters in the initial axial length of the channel, and so for x = O(1) the bulk
cluster concentration is zero (as in Fig. 4), whereas for smaller H , all the inhibitor
particles are used up in poisoning the monomers and clusters, and so for x = O(1),
the bulk concentration of inhibitor particles is zero, h = 0 (as in Fig. 7). In both cases,
all the monomers have aggregated with clusters or been poisoned in the initial axial
length of the channel, and so for x = O(1), bulk monomer concentration is zero and
the remaining bulk concentrations are constant.

As was the case for H > 1, the asymptotic solutions confirm the numerical find-
ing that the deposition does not affect the leading-order dynamics for y = O(1). If
α = O(ε−2), deposition reduces the bulk concentrations in a boundary layer in the
inner region where x̂ = Px/(Dε2) = O(1) and ŷ = Py/(Dε) = O(1) (as A → ∞).
With a smaller deposition rate, α = O(A1/4), deposition does not affect the bulk
concentrations in this inner region, but only in the intermediate and final axial regions.
Here there is a boundary layer, y = O(A−1/4), in which deposition reduces the bulk
concentrations of monomers and clusters. If α is smaller than O(A1/4) deposition does
not influence the leading-order dynamics.

5 Conclusions

We investigate crystal aggregation and deposition in the catheterised lower urinary
tract, modelling the bladder as a reservoir of fluid and the urethral catheter as a rigid
channel. We assume that monomers and inhibitor particles enter the well-mixed res-
ervoir fluid at a constant rate; the monomers then aggregate to form clusters, and the
monomers and clusters are poisoned if they aggregate with an inhibitor particle. The
monomers, clusters, and inhibitor particles are advected from the reservoir through
the lumen of the channel, where they diffuse and aggregate in the bulk fluid and are
deposited on the channel wall. Based on the available physiological parameter esti-
mates, we assume that the ratio between the aggregation rate and the rate at which
monomers, clusters and inhibitor particles leave the reservoir and enter the channel,
A, is large. We investigate the effect of inhibitor particles on the amount of deposition.

123



836 L. R. Band et al.

In the reservoir, equilibrium is attained when there is a balance between aggrega-
tion, poisoning (inhibition), and the fluxes into and out of the reservoir. Increasing
the input of inhibitor particles into the reservoir, H , increases the inhibitor-particle
concentration. These inhibitor particles poison the monomers and clusters, and so an
increase in H decreases the cluster concentration and the total mass of monomers
and clusters per unit area (not including the poisoned monomers and clusters). The
relationship between H and the monomer concentration is non-monotonic due to two
competing effects: as H increases there are fewer clusters for the monomers to aggre-
gate with, which causes the monomer concentration to increase (this is the dominant
effect for H < 0.5). On the other hand, as H increases more of the monomers are
poisoned which causes the monomer concentration to decrease and is the dominant
effect for H > 0.5.

As the monomers are advected through the channel, their steady-state bulk concen-
tration decreases due to aggregation with clusters, poisoning by the inhibitor particles
and deposition on the channel wall, and thus the bulk monomer concentration rapidly
decays over a short axial length of the channel. If H is large, the inhibitor particles
poison all the clusters and the bulk cluster concentration also decays rapidly in the
initial axial length of the channel and only inhibitor particles are advected through
the remainder of the channel. In contrast, with a smaller H all the inhibitor particles
are used up in poisoning the monomers and clusters, and so the bulk inhibitor-particle
concentration decays rapidly with x , and only clusters are advected through the full
length of the channel.

We assume that initially there are no monomers, clusters or inhibitor particles in
the reservoir or the channel. As monomers and inhibitor particles enter the reservoir,
aggregate and are advected through the channel, the bulk concentrations of monomers,
clusters and inhibitor particles increase. In both the reservoir and the channel, the bulk
monomer concentration overshoots the steady state for all H , whereas depending
on the value of H , the bulk concentrations of clusters and inhibitor particles either
overshoot their steady state or increase monotonically to their steady state. During
the initial transient phase, before equilibrium is attained, monomers and clusters are
deposited along the whole length of the channel. Once the bulk concentrations reach
their steady state, the surface concentrations increase linearly with time, with their
growth rates proportional to their bulk concentrations at the channel wall. Studying
the dynamics using large-A asymptotics, we find that deposition only affects the bulk
concentrations in a boundary layer next to the channel wall. If the inhibitor-particle
input, H , is sufficiently large, the steady-state bulk concentrations of monomers and
clusters rapidly decay with x in the initial axial length of the channel, and deposition
predominantly occurs in this region; in contrast, with a smaller H , clusters are present
throughout the channel at the steady state and deposition continues along the whole
channel length. In both cases, the surface concentrations are greatest at the channel
entrance.

We make various simplifying assumptions, the validity of which could be investi-
gated in future work. To make analytical progress, we study the bulk concentration
of clusters of two or more particles; however, considering the dynamics of all the dif-
ferent cluster sizes individually could provide further insight. With this formulation,
we could extend the model by incorporating fragmentation of the crystal clusters,
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and allowing the aggregation and fragmentation rates to depend on cluster size (see
Eq. 5.3); such a study would, of course, be primarily numerical. It is also likely that the
aggregation rates depend on the local environment (Clapham et al. 1990), for example,
on the urine’s pH. As the presence of a bacterial biofilm, increases the urinary pH,
we could model this phenomenologically by relating the aggregation rates to the local
pH. It is also possible that free bacteria within the urine could become trapped within
the crystal clusters and further influence the aggregation (Edin-Liljegren et al. 1994).

The model assumes a constant deposition rate; however, it is likely that the deposi-
tion rate will depend on cluster size, and may be influenced by the crystals and biofilm
present on the catheter surface. It may be more accurate to model aggregation between
crystals in the bulk urine and deposited crystals and to consider deposition only on
the clean catheter surface. At a later stage of catheter encrustation, the deposited layer
will have finite thickness and influence the urine flow, a situation which we investigate
in a forthcoming paper (L.R. Band, J.A.D. Wattis, L.J. Cummings and S.L. Waters,
paper in preparation).

We ignore spatial variations in the bulk concentrations in the bladder, and we
do not consider the catheter’s eyelet and balloon, which can also become encrusted
(Morris and Stickler 1998). Encrustation of the eyelet and balloon could reduce the
bulk concentrations of crystals in the bladder and could reduce the flux from the bladder
into the catheter. We also make various simplifications when modelling the inhibition.
To make the model more tractable, we ignore the poisoned crystals and assume that
they are not deposited on the catheter’s surface. We also ignore aggregation between
inhibitor particles in the bulk fluid and crystals deposited on the catheter’s surface.

All the above model extensions could, in principle, be addressed, although for
these more complex mathematical models only numerical solutions would be possi-
ble. (The simplifying assumptions made in this paper enable us to make analytical
progress, which has lead to a clear understanding of the dominant processes.)

Current literature suggests that the encrusted layer grows due to two mechanisms:
by crystals growing within the biofilm, and by crystals growing in the surrounding
urine then being incorporated into the biofilm following deposition (Stickler and Mor-
gan 2006; Suller 2005). Although experimental studies suggest that crystals grow
more rapidly within the biofilm and that the biofilm provides protection from crystal
dissolution (McLean et al. 1991; Clapham et al. 1990), the relative importance of the
two mechanisms remains unclear. Our model focuses on the deposition of the crystals
which aggregate within the urine. For all parameter values, some crystals are deposited
along the full length of the catheter, and deposition is most extensive in the region
close to the catheter’s entrance. These key features agree with the experimental work
by Morris et al. (1999). In contrast, a mathematical model that focused on the crystals
that form beneath the biofilm (Siggers et al. discussed in the introduction), found that
most encrustation occurs at the opposite end of catheter (farthest from the bladder).
These model results (which focus on the two alternative mechanisms) suggest that
crystal deposition plays a key role in encrustation and catheter blockage.
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Appendix A: Physiological parameter values

We now discuss the physiological parameter values appropriate for modelling crystal
aggregation in urine that is stored in the bladder (the reservoir) and then flows through
a catheterised urethra (the channel).

A typical catheter has length L∗ = 0.20 m, and width 2Y ∗ = 0.016/π m (corre-
sponding to a catheter size known as 16 F).2 We take the urine dynamic viscosity to
be that of water, η∗ = 0.654×10−3 kg m−1 s−1, and the urine temperature to be body
temperature, T ∗ = 310 K. We assume the bladder volume is constant, and typically
5×10−4 m3. Thus, the flux of urine into the bladder from the kidneys equals the flux of
urine out of the bladder through the catheterised urethra, and we take a typical flux, F∗,
to be 1 ml min−1 (or 1.7 × 10−8 m3 s−1) [Cummings et al. 2004; Stickler and Morgan
2006; Morris and Stickler 2001], which corresponds to an average axial velocity of
8.2 × 10−4 m s−1 in the catheter. Equating this physiological average axial velocity
with the average axial velocity in our two-dimensional model, P∗Y ∗2/(3L∗η∗), we
find that the pressure difference between the reservoir and the external environment
is P∗ = 0.050 Pa.

To interpret the dimensional parameters λ∗ and Q∗
1, we consider a simplified model

in which there is no aggregation, A∗ = 0. Then, the rate of change of the number of
monomers in the reservoir equals the influx of monomers minus the outflux of mono-
mers, i.e.

d

dt∗

∫

V ∗
c∗

b1 dV ∗ = c∗
up F∗ − c∗

b1 F∗, (5.1)

where V ∗ is the bladder volume, c∗
up is the upstream bulk monomer concentration,

and F∗ is the fluid flux both into and out of the reservoir. As we assume the bladder
volume is constant, we simplify (5.1) to find

dc∗
b1

dt∗
= c∗

up F∗

V ∗ − c∗
b1 F∗

V ∗ . (5.2)

Thus, comparing (5.2) with (2.1a), we find that λ∗ = F∗/V ∗ ≈ 3 × 10−5 s−1,
and that we need to estimate the upstream bulk monomer concentration to calculate
Q∗

1 = c∗
up F∗/V ∗. Mathur et al. (2006) suggest that urine above the nucleation pH

contains 2 − 16 moles of calcium phosphate and 8 − 20 moles of magnesium stru-
vite per m3, Thus, assuming that these are suitable estimates for the bulk monomer

2 The size of a urethral catheter is measured in French units (F), where 1F corresponds to an outer diameter
of 1/π mm (or an outer circumference of 1mm). Catheters typically range from 10 F–28 F.
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concentration in the fluid entering the bladder, we take a typical influx bulk mono-
mer concentration to be 10 moles per m3, and estimate Q∗

1 = 2 × 1020 m−3 s−1. We
represent the presence of citrate by an input of inhibitor particles. Wang et al. (1993)
suggest that citrate concentrations in normal urine are between 0 − 4 moles per m3

(where 1 mole=6.023 × 1023 particles of unit size). Thus, taking a typical influx bulk
monomer concentration to be 2 − 20 moles per m3, and a typical influx bulk inhibi-
tor-particle concentration to be 0 − 4 moles per m3, the ratio H = H∗/Q∗

1 ∈ [0, 2].
The radius of a crystal monomer is approximately r∗

s = 5 × 10−10 m
(Wierzbicki et al. 1997), and we determine the diffusion coefficient using the Stokes–
Einstein relation D∗ = k∗T ∗/(6πη∗r∗

s ) ≈ 7 × 10−10 m2 s−1 (where Boltzmann’s
constant k∗ = 1.38 × 10−23 m2 kg s−2 K−1). Using the fluid velocity at the
channel’s centre line, U∗ = P∗Y ∗2/(2L∗η∗), the particle Péclet number for the
monomers, Pmon

e = r∗
s U∗/D∗ = 7×10−6 � 1 and so diffusion dominates over advec-

tion. Hence, we use the kernel for diffusion-dominated aggregation derived by
Smoluchowski (1916), namely

A∗ = 2k∗T ∗

3η∗

(
1 + 1

j1/3

) (
1 + j1/3

)
, (5.3)

for aggregation between a cluster of j particles and a monomer [see Friedlander
(2000) for further details]. To enable analytical progress, we assume the aggregation
rate is independent of cluster size and use the kernel for aggregation between a pair
of monomers A∗ = 8.7 × 10−18 m3 s−1 (from (5.3) with j = 1).
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