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Abstract A computational algorithm to study the evolution of complex wound
morphologies is developed based on a model of wound closure by cell mitosis and
migration due to Adam [Math Comput Model 30(5–6):23–32, 1999]. A detailed
analysis of the model provides estimated values for the incubation and healing times.
Furthermore, a set of inequalities are defined which demarcate conditions of complete,
partial and non-healing. Numerical results show a significant delay in the healing pro-
gress whenever diffusion of the epidermic growth factor responsible for cell mitosis is
slower than cell migration. Results for general wound morphologies show that healing
is always initiated at regions with high curvatures and that the evolution of the wound
is very sensitive to physiological parameters.
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1 Introduction

Mechanical injury to an organ may be produced by trauma or be the result of surgery.
In any case, its successful healing is crucial to maintain (or even recover) the organ
functionality and integrity. Understanding the biological, chemical and mechanical
processes involved in wound healing is necessary to apply personalized healing ther-
apies that may on one hand speed up the healing process achieving maximal function
recovery in shorter times, and on the other hand help in preventing secondary effects
such as aesthetic scars (keloids or hypertrophic scars), emotional distresses and poor
quality of life often suffered by patients with chronic wounds. To this aim, many
authors have made an effort in describing the processes involved in wound healing
[20,22,26,32,40,41], among many others, and successful therapies [14,31]. In most
of the cases these processes depend on wound location, patient age, patient physiology,
etc.

Healing of cutaneous wounds can be divided into three partly overlapping phases:
inflammation, tissue formation and tissue remodeling [13]. In the inflammatory phase,
the blood clot is formed achieving wound homeostasis, providing a provisional extra-
cellular matrix for cell migration and a rich pool of cytokines. Platelets shed onto
the wound site as result of vascular disturbance secrete chemokines (PDGF, EGF,
TGF-β) that recruit inflammatory cells, macrophages and fibroblasts [41]. Neutriph-
ils and leukocytes (which are immune response cells) clean the wound of foreign
debris and prevent infections. During the tissue formation phase, re-epithelialization,
angiogenesis, fibroplasia and wound contraction occur. Epithelial cells on the border
of the wound undergo phenotype transformation and become motile by dissolution
of intracellular desmosomes and arrangement of cytoplasmic actin filaments. Cell
mobilitation is due to the so-called free edge defect or loss of contact inhibition, and
is stopped when two or more cells come in contact [41].

Two significantly different cell motion modes have been observed in wound heal-
ing: lamellipodia crawling and actin cable contraction. Lamellipodia crawling occurs
when cells on the wound edge develop small finger-like microvilli rich of actin fil-
aments and migrate by adhesion of these microvilli to the substrate followed of cell
contraction in the direction of filopodia [23]. Lamellipodia crawling is observed in
adult epidermal wound healing [26] and corneal wounds [10]. However, in embryos,
cell motion and hence wound healing proceeds differently: an actin cable is rapidly
formed at the wound margin, and the wound closes by contraction of this cable (due to
circumferential tension) dragging the surrounding cells behind. Healing by actin cable
contraction is completed within a few hours, leaves no scar and the wound margin is
smooth during healing [22]. Moreover, there is evidence that both types of cell motion
are self-exclusive to a high degree. Thus, Brock et al. [9] demonstrated that when the
formation of the actin cable is disrupted in embryo chick wounds, cells develop lamel-
lipodia and the healing process may be compromised. Alternatively, Grasso et al. [16]
showed that the actin cable is not formed when the extracellular matrix is preserved
after wounding in in vitro cultures of corneal endothelial cells, and lamellipodia-
induced migration was obtained independently of wound shape or size. The migration
mechanism may as well be influenced by the size of the wound—significantly smaller
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in embryos [9,26]—and growth factor levels—much lower in embryonic wounds [36],
which allows for a stronger influence of mechanical constrains.

Independently on the migration mechanism, an increased cell proliferation is needed
behind the actively migrating cells to support wound closure [40]. Activated macro-
phages release a large number of molecules with angiogenic activity (PDGF, VEGF
and FGF, among many others), which stimulate the migration and mitosis of endo-
thelial cells and vascular growth [5]. Oxygen and nutrients are involved in many of
the healing processes, from oxidative killing of bacteria to ATP levels maintenance to
support cell function and protein synthesis [31], making angiogenesis critical to heal-
ing. Platelets, macrophages and secreted growth factors induce fibroblasts ingrowth
and proliferation a few days after injury. Subsequently, fibroblasts activity consists of
synthesis and deposition of collagen, which polymerizes into collagen fibers that when
covalently cross-linked increase the tensile strength of the tissue. Wound contraction is
due to connective-tissue compaction when fibroblast acquire myofibroblast phenotype,
stimulated by TGF-β and PDGF. In humans, around a 20% of wound size reduction
occurs due to wound contraction whereas in loose-skinned animals the contraction
may reach up to 90% [27]. Finally, once collagen homeostasis is reached, collagen
fibers are reorganized according to local mechanical factors. In this last phase, the
tensile strength of the undamaged tissue recovers up to 80% [41] and more acellular
tissue is eventually obtained by apoptosis of superfluous cells.

Mathematical modelling combined with computer simulations can help understand-
ing the healing process and enlighten optimal conditions for treatments Furthermore,
models of healing mechanisms in nature are of inspiration in the development of
materials with self-healing properties [43]. The monographs by Britton [7] and Mur-
ray [25] are a good introductions to mathematical modelling of biological processes,
whereas Sherratt and Dallon [35] give an exhaustive review of the state-of-the-art
mathematical models of some specific processes involved in wound healing. Sherr-
att and Murray [37] couple for the first time epidermal cell proliferation with the
effect of an inhibitory or activator autocrine growth factor, and study the effect of
exogenous application of the growth factor on the healing response in planar epi-
dermal wounds. Along the same line, Wearing and Sherratt [45] model the effect
of keratinocyte growth factor on the dermis-epidermis interactions during epider-
mal wound healing. Chaplain [12] models the growth of the vasculature towards a
tumor by the chemotactic action of TAF and incorporating the role of the extracel-
lular matrix on the cellular migration pattern through haptotaxis. The direction of
preferential movement of endothelial cells is determined form the microenvironment
conditions. Gaffney et al. [15] model angiogenesis distinguishing between sprouts
and blood vessels. Sprouts are formed from blood vessels and grow towards the
regions of low vascularity, whereas blood vessels do not have the ability to migrate
and passively follow the sprouts. Dynamic merging of sprouts is also included in
the model. Wound contraction by the action of fibroblast and myofibroblast is
modeled by Olsen et al. [27], where the wound and surrounding tissue is treated
as a linear and viscoelastic material, and traction forces exerted by cells onto the
underlaying tissue are incorporated.

The models presented in above-mentioned references are specific for single pro-
cesses of wound healing in adult mammals. However, the processes described above
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are intrinsically interconnected and influence each other during healing in a non-
straightforward manner. Coupling their effects in a single model for healing phenom-
ena is not easy and it has taken a long time for models to be formulated. There is also a
limited knowledge of the role of wound shape (and size) on the healing kinetics, since
most of the analysis carried out so far is restricted to axisymmetric wound shapes
(i.e. planar or circular wounds). To our knowledge, only Sherratt and Murray [38]
made an attempt to tackle the change in the evolution of the wound shape during
healing as a response of the mitotic function of the growth factors. They observed
that when the growth factors inhibit cell mitosis, ovate wounds evolve towards more
elongated shapes as flat parts of the wound heal faster due to the greater accumulation
of the mitosis inhibitor at the convex ends. Models of wound healing in embryos are
also scarcely developed. Sherratt et al. [36] model the formation of the actin cable
after injury by balancing the traction forces exerted by the substratum with the net
forces on the actin filaments. However, the wound evolution is not considered in their
model.

In the present paper, we extend the work by Adam and co-workers. Adam [3]
applied the principles of a tumour growth model [2] to tissue regeneration. The model
was based exclusively on the distribution of a mitogenic growth factor (that here we
identify with EGF). Contrarily to the models described above, Adam did not incorpo-
rate any cellular density. Adam [3] considered only planar wounds on planar surfaces.
Subsequently, circular wounds on planar surfaces [6] and circular wounds on spherical
surfaces—as an approach to the skull cap—[4] were studied. In all these references,
only the conditions for healing initiation were considered, in order to perform predic-
tions on the so-called critical size defect. The time evolution of the wound was always
disregarded. In a following paper, Vermolen et al. [44] studied the growth factor dis-
tribution prior to closure on elliptical wounds, whereas the wound evolution during
healing was only tackled for circular wounds under the assumption of diffusive equi-
librium. In the present work, we incorporate the time dependence of the problem to
capture the evolution of the wound during healing. Moreover, we consider the wound
morphology as key parameter on the healing kinetics, and present a computational
model based on well known level set method designed to deal with arbitrary wound
shapes. In our opinion, substantial knowledge on the healing process may be gained
by incorporating the wound shape in the analysis.

The paper is organized as follows. First, the chemical model of wound closure is
presented in Sect. 2 for general wound geometries. Subsequently, the computational
method is described in mathematical rigor in Sect. 3. A Narrow Band Level Set Method
[1] is used to capture the wound margin in time. A standard Galerkin Finite Element
Method, with adaptive local grid refinement around the wound edge, is implemented
to compute the EGF concentration at the wound edge more accurately and efficiently.
Afterwards, analytic solutions and conditions for complete healing are described for
certain asymptotic cases in Sect. 4, revealing parameter groupings that decide the
success of healing. Next, in Sect. 5 we demonstrate the large influence of the physio-
logical and geometrical parameters of the model on the healing kinetics. Finally, the
consequences of our study are presented in Sect. 6, and the full list of parameters,
physiological and numerical, used in our calculations is given in the Appendix.
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2 The mathematical model for wound closure

Epidermal wound closure in adults is entirely due to cell mitosis and migration. The
mitotic activity is mainly responsible for the thickening of the epidermis, once the
continuity of the basal membrane has been re-established. Since the thickness of
the epidermis is very small compared to the wound dimensions, we will assume here
that the wound is two dimensional. Hence, we will focus on the closure (i.e.
re-epithelialization) of the basal membrane by cell mitosis and lamellipodia-induced
migration, and disregard the thickening step.

In order to simplify the model, we consider a generic epidermic growth factor (EGF)
that stimulates the increase of cellular activity in a layer surrounding the wound edge.
The domain of computation Ω consists of the wounded region Ωw, which is sur-
rounded by the active layer Ωal and the undamaged tissue Ωu in the outer part, i.e.
Ω = ∪iΩ i and Ωi ∩ Ω j = ∅ for i, j ∈ {w, al, u} and i �= j . The concentration c of
the EGF within Ω is determined by the following reaction–diffusion equation

∂c

∂t
− D∆c + λc = Pχ

Ωal(t)
, (1)

which states the diffusional transport of the EGF through the epidermal tissue, its
depletion or natural decay and its production. The characteristic function χ , which
only has support in Ωal(t), is used to account for the production of the EGF since it only
takes place inside the active layer (i.e. by the band of cells surrounding the wound,
[40]). Hence, the model described here does not incorporate growth factor signals
between the dermis and the epidermis, such as KGF. For a model that deals with this
kind of communication we refer to [45]. The parameters D, λ and P respectively
denote the diffusion, decay and production rates of the EGF. At the outer boundary
of the domain Ω we impose a no-flux boundary condition, i.e. ∇c · n = 0 where n
denotes the normal vector.

Wound closure occurs by migration of cells into the center of the wound. We define
the wound edge Γ as the advancing front of cells. We assume that cells become motile
if the accumulated EGF concentration exceeds a threshold value θ , as in classical
models of tissue regeneration and tumour growth [8,17,18,39]. This discontinuous
switch mechanism is just a limiting case for the coupling of EGF concentration and
cell mitosis through a sigmoid function. Investigation of the effect of the slope in
the sigmoid function on the healing behaviour may be interesting, but departs from
the aim of the present work. In addition to this, cell migration may be interrupted if the
EGF concentration drops below this threshold value. Therefore, in this approach cell
motility is dose-dependent. Moreover, we assume that the closure rate is proportional
to the local curvature of the wound edge [44], which is in line with the observations
made by Buck [10]. Hence, the normal velocity vn of the wound edge Γ is given by

vn = (α + βκ) H(c − θ), (2)

where α ≥ 0 and β ≥ 0 (and α + β > 0) denote the coefficients of the migration
rate, κ denotes the local curvature of the wound edge and H represents the Heaviside
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function, defined as H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0. Note that under this
definition of the closure rate, the normal vector n points towards the wounded area.

Tracking the wound edge

The model, as presented here, falls within the category of moving boundary prob-
lems. The wound edge Γ , also referred to as the front position or interface, has to be
determined at each time step in order to identify the various parts of the domain of com-
putation (wounded region, active layer and outer tissue) and to solve the concentration
equation (1).

In this work, we use the Level Set Method [29] to follow the evolution of the wound
edge in time. The wound edge is identified as the zero level set of a continuous function
φ. At the initial time, we define the level set function φ as follows:

φ(x, 0) =

⎧
⎪⎨

⎪⎩

+ dist(x, Γ (0)), if x ∈ Ωw(0),

0, if x ∈ Γ (0),

− dist(x, Γ (0)), if x ∈ Ωu(0),

where we have arbitrarily chosen φ to be positive inside the wound, and negative
outside. Using the total time-derivative of the level set function at the wound edge, we
have that

0 = d

dt
φ∣
∣
Γ

= ∂φ

∂t
+ vn||∇φ||. (3)

This equation is only valid at the wound edge, but can be extended to the whole domain
of computation if a velocity field v is determined satisfying the following conditions:

(i) v(·, t) is continuous over Ω , and
(ii) its normal projection, v · n, equals the closure rate vn given in Eq. (2) at the

wound edge.

We will present a simple velocity extension fulfilling constrains (i) and (ii) in the fol-
lowing section. For the time being, let us assume that such a velocity field v exists.
The closure of the wound is then obtained by advection of the wound edge by means
of the so-called level set equation:

∂φ

∂t
+ v · ∇φ = 0. (4)

Note that in this framework, the normal vector n and the curvature κ can be computed
from φ as follows:

n = ∇φ

||∇φ|| , κ = ∇ · n.

123



A mathematical analysis of physiological and morphological aspects 611

The interested reader is referred to the books by Osher and Fedkiw [28] and Sethian
[34] where a detailed presentation of the method and a wide collection of applications
are given.

Re-initialization of φ

The level set function φ is initialized as a signed distance function. This choice enables
us with a straightforward identification of the various subdomains in Ω . In particular,
the wounded tissue corresponds to the region of φ being positive, and the active layer
is given by

Ωal(t) = {x ∈ Ω | 0 < −φ(x, t) < δ(x, t)},

where δ denotes the local thickness of the active layer, which may depend on the local
curvature of the wound edge [44]. In order to keep accurate the representation of the
active layer, the level set function should remain a signed distance function after solv-
ing the advection equation (4), at least a distance δ from its zero level set. Normally,
this property is lost if time increases, and several remedies have been suggested for
its repair. The most extended remedy is to solve the Eikonal equation

||∇φ|| = 1, (5)

either iteratively [30,42] or directly [33,46]. Iterative methods are very competitive
if we wish to keep φ a distance function in a thin band of a couple of grid nodes
around the interface. However, their computational cost increases as the bandwidth
gets larger, and eventually, direct methods are computationally cheaper. In our case,
the bandwidth depends on the active layer thickness, which may be large compared to
the grid size. Therefore, we will use a direct method, the Fast Marching Method [33],
to solve Eq. (5).

3 The computational approach

The solution of Eq. (1) is approximated by using a Finite Element Method with piece-
wise linear basis functions. Further, we have to deal with a moving interface and
with a sharp (discontinuous) change of the EGF production across the edges of the
active layer. Tracking the wound edge position in time with the Level Set Method
allows us to deal in a straightforward manner with wounds of complicated geometries
involving morphological changes. Supplementing the Finite Element Method with a
local refinement of elements neighbouring the wound edge results into a more accu-
rate representation of the EGF concentration and into higher grid resolutions for the
computation of the closure rate in an efficient way.

As a background or fixed basis mesh we use a structured triangulation with linear
elements, see Fig. 1(left) and, at each time step, the elements close to the interface
are refined, see Fig. 1(center), according to a criterion that is specified below. After
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Fig. 1 Left: fixed basis FE mesh with the interface position φ = 0 (solid curve) and the contours φ = ±dist
(dashed curves). The elements within these contours are to be refined. Center: refined FE mesh. Right: the
nested Cartesian grids

refinement, the refined region presents a Cartesian structure, see Fig. 1(right), where
the (nonlinear) hyperbolic equations inherited from the level set formulation can be
easily solved with finite difference or finite volume schemes.

Hence, in order to compute the solution (i.e. EGF concentration and wound edge
location) at a certain time step, we need to perform a number of steps. Globally speak-
ing, first we have to compute the velocity field v from the EGF concentration profile
at the previous time step. Next, the level set function has to be updated to obtain the
wound edge location at the next time step. Subsequently, φ has to be reinitialized to a
distance function in order to obtain an accurate representation of the active layer, and
finally, the partial differential equation (1) is solved to find the EGF distribution at the
next time step. However, since the fixed basis mesh is adapted to the wound edge each
time step, there are a few communication steps that have to be taken carefully. The
complete algorithm is presented in Algorithm 1.

Algorithm 1 Computation of the solution at time t + ∆t from the solution at time t
Input: c, φ and refined finite element mesh at time t
Output: vn , ∆t , c, φ and refined finite element mesh at time t + ∆t
1: Extend vn over the refined Cartesian band, compute v = vnn
2: Choose time step ∆t according to v
3: Solve level set Eq. (4) over the refined Cartesian band
4: Re-initialize φ inside the refined Cartesian band
5: Map φ to the global coarse Cartesian grid (note that φ is not yet defined over the nodes outside the

refined Cartesian band)
6: Extend φ outside the (coarse) Cartesian band solving ||∇φ|| = 1
7: Compute the refined finite element grid according to the new position of the interface
8: Map concentration profile on the previous refined FE triangulation to the current refined FE triangulation
9: Map φ from the nested Cartesian grids to the refined FE triangulation
10: Compute the production term over the refined FE triangulation
11: Solve concentration equation (1) over the refined FE triangulation
12: Map concentration at the refined FE triangulation to the refined Cartesian grid

Regularizations of the characteristic and Heaviside functions

Cell motility is determined by interpolation of the EGF concentration at the wound
edge. The discontinuous production term Pχ is regularized in order to diminish numer-
ical wiggles present at the edges of the active layer which may spoil the accuracy of the
closure rate. Therefore, instead of the characteristic function χ we use a regularized
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version χε defined as follows:

χε(φ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

[
1 + sin

(
π
ε
(φ + ε

2 )
)]

, if 0 < φ < ε,

1, if 0 ≤ φ ≤ −δ,
1
2

[
1 + sin

(
π
ε
(φ + δ + ε

2 )
)]

, if −δ < φ < −δ − ε,

0, otherwise,

where ε is a parameter defined by the user to establish across how many grid cells the
regularization is applied. In our numerical computations we use ε = 1.5 ·max(∆xRef ,

∆yRef), where ∆xRef and ∆yRef denote respectively the grid size of the refined band
in the x and y directions. A similar regularization could be adopted for the definition
of the closure rate, though the standard definition of the Heaviside function has been
used in our calculations.

3.1 The local grid refinement strategy

Due to the structure of the fixed basis mesh, its refinement in the vicinity of the front
position is straightforward if the level of refinement (LOR) is known element-wise.

We say that an element e is within a distance dist from the interface if one or
more of its vertices ei is within a distance dist from the interface (i.e. |φ(ei )| < dist
for i ∈ {1, 2, 3}). All elements within a distance dist from the interface are labeled
with the maximum LOR, that is 2. If dist = 0, elements intersected by the interface
are marked with the maximum LOR. Elements adjacent to those with maximal LOR
are labeled, in principle, with a lower LOR, that is 1. However, to preserve mesh
consistency, their LOR has to be increased when they are adjacent to more than one
element with maximum LOR. This step is illustrated in Fig. 2. Elements further away
are labeled with zero LOR, meaning that they are not refined.

The division of the elements, according to their LOR, is based on the division of
the edges. Let us denote by re f nratio the number of equally sized sub-edges that
appear when the edge of an element is refined. If the LOR of an element is 2, then
all the edges are divided into re f nratio sub-edges, and the element is divided into
re f nratio2 sub-elements. If the LOR is 1, only the edge in common with the neigh-
bouring element with LOR equal to 2 is refined. Consequently, the element is divided
into re f nratio sub-elements (see Fig. 2).

In order to prevent excessively narrow elements, which may impair the accuracy of
the results, we will restrict ourselves to ratios of refinement, re f nratio, of 2 or 3. To
balance the additional work invested in the refinement with the gain in accuracy and

correction refinement

LOR=2

LOR=1

LOR=0

LOR=2

LOR=2

LOR=2

LOR=2

LOR=1

Fig. 2 Correction of the LOR and subsequent subdivision of the elements, with re f nratio = 3
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CPU-times, we define dist such that the elements intersected by the interface and the
elements adjacent to them receive the maximum LOR. Hence, dist �

√
∆x2 + ∆y2,

where ∆x and ∆y denote the element size of the basis mesh. Furthermore, we shall
impose a maximum displacement bound on the time stepping to prevent that the level
of refinement of elements close to the interface changes by more than one within two
consecutive time steps. As we will see below, this is ensured by a CFL condition on
the advection of the level set function.

The transition between two consecutive refined grids (i.e. two consecutive time
steps) can be implemented efficiently if the LOR of the previous mesh is stored in
memory. By construction, the LOR of an element at the new time step either does not
change, or increases by one, or reduces by one its LOR at the previous time step. If
the LOR does not change, the refinement of the element is the same as in the previous
time step. If the LOR is reduced by one, the element is coarsen. Finally, if the LOR is
raised by one, then the refinement of the element increases.

3.2 The two nested Cartesian grids

Due to its structure, the nodes of the background triangulation will be referred to as
the coarse Cartesian grid. Moreover, after refinement, the refined region resembles a
refined Cartesian band which is nested in the coarse Cartesian grid, see Fig. 1(right).
We use both grids to solve the hyperbolic equations inherited from the level set for-
mulation.

3.2.1 The narrow band level set method

In order to update the front position we first need to compute an extension of the front
velocity, and subsequently solve the level set Eq. (4). These operations are carried out
within the refined Cartesian band.

Extension of the front velocity off the interface

The front velocity vn is only defined at the interface location, and an artificial extension
of it is required to solve the level set Eq. (4). As stated before, this extension should
be such that the extended velocity field is continuous. To achieve this, we advect the
front velocity outwards in the proper upwind direction, solving

∂vn

∂τ
+ S(φ)n · ∇vn = 0, (6)

where τ denotes a fictitious time used only in the extension procedure and n denotes
the normal vector, which points towards increasing values of φ (i.e. in the direction
of the gradient of φ, and note that φ > 0 inside the wound). Thus, with this equation,
information is transported from the wound edge inside the wound (when φ > 0) and
outside the wound (when φ < 0). Note that at the wound edge, the previous equation
is degenerated, since S(φ) = 0, and hence the value of vn is not altered.
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The solution of Eq. (6) is computed only inside the refined Cartesian band, as
described in Algorithm 2. We perform a small number of pseudo-time iterations
I ter Max , between 5 and 10, since it is enough to obtain a continuous extension
of vn . The normal vector n = ∇φ

/||∇φ|| is approximated with central differences
inside the band and first order sided differences at the boundary. The local curvature
κ = ∇ · n is computed analogously.

Algorithm 2 Extension of the front velocity onto the refined Cartesian band
Initialization of vn

1: Initialize vn = 0 inside the band
2: if x is a node adjacent to the interface then
3: Compute associated interface point x f = x − φ(x)n (linear interpolation of φ)
4: Compute vn(x f ) according to Eq. (2) (use bi-cubic interpolation of c and κ)
5: Assign vn(x f ) to x
6: end if
Advection of vn off the interface position
1: for I ter = 1 to I ter Max do
2: Solve Eq. (6) for the points not being adjacent to the interface

Time integration: Forward Euler; spatial derivatives: first order upwind discretizations
3: end for
Set v = vnn

Interface advection and re-initialization of φ to a distance function

After the advection field v = (u, v)t is defined over the band, the level set Eq. (4)
is solved inside the band. The time integration is carried out with the Euler forward
method, whereas the space derivatives are discretized with a first order accurate upwind
scheme. The CFL stability condition is satisfied if the time step ∆t is chosen such that

∆t ≤ ∆tCFL := CFL

max
(

u
∆x + v

∆y

) , CFL < 1. (7)

In practice, we will take ∆t = min(∆tCFL,∆tmax), where ∆tmax is used as a default
time step during the incubation periods and prevents the use of excessively large time
steps when the front velocity is close to zero. With this choice of ∆t , the wound edge
will travel over a distance smaller than the grid size during each time step, which is
consistent with the grid refinement algorithm.

Despite that the level set function φ is initialized as a distance function, the function
φ̃ resulting from the solution of Eq. (6) is no longer a distance function. Generally, its
deviation after one time step is small, and re-initialization may be evitable. However,
the error accumulates, and after several time steps re-initialization is unavoidable.
In our case, we use a second order accurate Fast Marching Method to solve the
Eikonal equation ||∇φ|| = 1 inside the band. This method proceeds as follows. First,
the function φ is initialized at the nodes adjacent to the interface in such a way that the
zero level set of φ̃ is not altered. Subsequently, φ is extended away in the downwind
direction. Details of this method can be found in [33].

123



616 E. Javierre et al.

3.2.2 Extension of φ outside the band

In order to extend φ further away, i.e. outside the refined Cartesian band, we first map
it to the coarse Cartesian band (i.e. to the nodes which lay both in the refined band
and in the coarse global grid) and subsequently we extend φ outside the band with the
Fast Marching Method. As a result, we obtain a function φ that is defined on the basis
mesh, which does not alter the interface position, and which is a distance function.

4 Asymptotic solutions

This section is devoted to study two simplified problems. In the first case, we consider
the healing process in absence of transport of the EGF, which prevents the supply of
EGF to the wound site. In the second case, we look at the healing process with instan-
taneous diffusion of the EGF, which provides the wound with a suboptimal EGF
distribution. By analysis of their analytic solutions, we will give valuable insights to
the healing behaviour predicted by the model and start to discern the role of some
parameters in the model.

We define tinc as the incubation time that is necessary to activate the closure of the
wound. Hence, tinc is the smallest positive time at which c(x, tinc) ≥ θ for any point
x on the initial wound edge. After this time, the healing process starts and the wound
size decreases. However, new storage or incubation periods may become necessary if
the EGF level at the wound edge falls below θ . Hence, we can describe the healing
process as a series of healing and incubation periods as sketched in Fig. 3, where I i

heal
(i = 1, 2, . . . ) denotes the healing period within the consecutive incubation periods
I i−1

inc and I i
inc. By convention we denote by t i

inc and t i
heal the times at which I i

inc and
I i

heal finish respectively, which are formally defined as

t i
heal := min

(
t > t i−1

inc | c(x, t) < θ for all x ∈ Γ (t)
)

, i ≥ 1,

t i
inc := min

(
t > t i

heal | c(x, t) ≥ θ for any x ∈ Γ (t i
heal)

)
, i ≥ 1.

We extend this convention by denoting I0
inc the first or initial incubation period, t0

inc =
tinc and t0

heal = 0. For sake of the presentation, we will refer to I i
inc for i ≥ 1 as internal

incubation periods.

4.1 No diffusional transport of the EGF

If we assume that there is no diffusional transport of the EGF from the active layer
towards the wound, i.e. D = 0, then the whole production of EGF is maintained inside
the active layer and no EGF flows into the wound. Hence, during a whole incubation
period I i

inc, the EGF concentration is given by

∂c

∂t
+ λc = Pχ

Ωal(t
i
heal)

,
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Fig. 3 Schematic diagram of
the healing process
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with initial condition the concentration at the beginning of the incubation period, i.e.
c(x, t i

heal). Integration in time of the above equation yields:

c(x, t) = exp
(
−λ(t − t i

heal)
)

c(x, t i
heal) + P

λ
χ

Ωal(t
i
heal)

(x)
(

1−exp
(
−λ(t − t i

heal)
))

,

for x ∈ Ω and t ∈ I i
inc. Moreover, since the EGF production is not diffused towards

the wound from the active layer, the concentration at the wound edge decays to zero
as soon as it moves and hence c(x, t i

heal) = 0 for all x ∈ Γ (t i
heal). Therefore, the

concentration at the wound edge is given by

c(x, t) = P

λ

(
1 − exp

(
−λ(t − t i

heal)
))

, for x ∈ Γ (t i
heal), t ∈ I i

inc,

and the healing process will be initiated or resumed within a finite time if and only if

lim
t→∞

P

λ

(
1 − exp

(
−λ(t − t i

heal)
))

> θ, (8)

i.e. if and only if P/λ > θ . This condition was also found by Adam [3] using the
analytic solution of the steady-state problem, and manifests the necessity for the pro-
duction inside the active layer to overcome the chemical depletion as the concentration
reaches the threshold level θ . It is worth noting that, in the case of no diffusion of the
EGF, the thickness or shape of the active layer does not play any role.

Finally, if the healing process can be sustained, i.e. P/λ > θ , then the initial
incubation time tinc is given by

t D=0
inc = 1

λ
log

(
1

1 − λθ
P

)

. (9)
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Fig. 4 Time progression of the EGF concentration at the edge of a circular wound for the case of D = 0.
The horizontal line indicates the upper bound for the threshold value θ in order to initiate healing

Furthermore, because the closure of the wound is permanently interrupted to restore
the EGF concentration at the wound edge, healing of the wound will just not occur.
The EGF concentration at the edge of a circular wound during the first three incubation
periods is plotted in Fig. 4, where the ‘broken’ healing behaviour of the solution can
be observed.

4.2 Instantaneous transport of the EGF

In the case of an instantaneous diffusion of the EGF, the production inside the active
layer is immediately distributed throughout the whole domain of computation and the
EGF concentration shows a flat profile over time. Hence, by integration of Eq. (1) over
Ω , we can define an effective production rate

Peff(t) := P
|Ωal(t)|

|Ω| ,

where |A| denotes the area of A. With this definition, the EGF concentration is given
by the solution of

dc

dt
+ λc = Peff(t), (10)

with initial condition c(0) = 0. The definition of Peff indicates the relevance of the
area of the active layer in the healing process. For instance, if the thickness of the
active layer is kept constant during healing, then the area of Ωal decreases and hence
the production sustained by it diminishes as the wound heals. Despite this seems
adequate since the wound area decreases, it may result in an incomplete healing of the
wound as we will show below.
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Exact integration of Eq. (10) is not always possible since Peff depends on the evo-
lution of the wound. However, it can be solved during the incubation periods, since
then Peff is constant. Thus, the EGF concentration during the i th incubation period
I i

inc is given by

c(t)= Peff (0)
λ

(1 − exp (−λt)) , for i = 0,

c(t) = exp
(−λ(t − t i

heal)
)
θ + Peff (t i

heal)

λ

(
1 − exp

(−λ(t − t i
heal)

))
, for i ≥ 1.

Because of the continuity of c, it is easy to see that the healing process will be initiated
or continued if and only if

Peff(t i
heal)

λ
> θ, for i ≥ 0, ⇐⇒ P

λ

|Ωal(t i
heal)|

|Ω| > θ, for i ≥ 0.

Hence, in the case of instantaneous transport of the EGF, the healing process will start
if and only if

P

λ
> θ

|Ω|
|Ωal(0)| , (11)

which, for fixed decay rate λ and threshold concentration θ , provides a lower bound
for the production rate P as function of the active layer and the animal sizes. When
the healing process can be initiated, the initial incubation time is given by

t D→∞
inc = 1

λ
log

(
1

1 − λθ
P

|Ω|
|Ωal(0)|

)

. (12)

Note furthermore that initiation of the healing process is much more demanding in
the case of fast diffusion processes, as can be seen by comparison of Eqs. (8) and
(11), since it is reasonable to expect that |Ω|/|Ωal(0)| 
 1. Moreover, if diffusion
is instantaneous (i.e. D → ∞), healing will not be resumed once it ceased due to
an insufficient size of the active layer. The reason is that this insufficient size gives
c′(t i

heal) < 0, making impossible the accumulation of the necessary growth factor at
the wound edge.

Healing response of a circular wound under instantaneous transport of the EGF

The analytic expression of the EGF concentration during healing can be obtained for
certain definitions of the active layer and the mitotic rate. In the remaining of this
section we consider the healing response of a circular wound of radius r0 in a circular
domain of computation of radius Rc and an active layer of constant thickness δ. In this
case, the area of the active layer is given by

|Ωal(t)| = πδ(2r(t) + δ),
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Table 1 Description of the
healing response as function of
the physiological parameters of
the model

θ α Healing

≤ P

λ

δ2

R2
c

Any Complete

∈
(

P

λ

δ2

R2
c

,
P

λ

δ(r0 + δ)

R2
c

]

Large Complete

Small Incomplete

∈
(

P

λ

δ(r0 + δ)

R2
c

,
P

λ

δ(2r0 + δ)

R2
c

]

Any Incomplete

>
P

λ

δ(2r0 + δ)

R2
c

Any Not initiated

where r(t) denotes the wound radius at time t . If in addition we take β = 0, then

r(t) = r0 − α (t − tinc) ,

and

c(t) = θ exp (−λ(t − tinc)) + Pδ

R2
c λ2

{
λ (2r(t) + δ)

+2α − exp (−λ(t − tinc)) (λ(2r0 + δ) + 2α)
}
, (13)

during the first healing period, i.e. t ∈ I1
heal. The complete healing of the wound occurs

if and only if there is a time theal > tinc such that r(theal) = 0 and c(theal) > θ . It is
easy to see, after simple algebraic manipulations, that this condition is equivalent to

θ <
Pδ

R2
c λ2

2α + λδ − exp
(
−λr0

α

)
(2α + λ(2r0 + δ))

1 − exp
(
−λr0

α

) ,

which establishes the healing success as a function of the physiological parameters of
the model. Table 1 summarizes the healing response for several values of θ and α.

For the cases in which the healing is not complete, the wound radius at the stopping
time can be computed from Eq. (13), since then there is a time tstop > tinc such that
c(tstop) = θ and rstop := r0 − α(tstop − tinc), which yields

θ = Pδ

R2
c λ2

2α + λ
(
2rstop + δ

) − exp
(
−λ

r0−rstop
α

)
(2α + λ (2r0 + δ))

1 − exp
(
−λ

r0−rstop
α

) .

The EGF concentration during time is plotted in Fig. 5a for two different values of θ ,
of which the smallest gives complete healing of the wound whereas the largest yields
incomplete healing. The healing response and wound radius at stop for a wide range
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Fig. 5 Healing of a circular wound with instantaneous diffusion of the EGF. a Time evolution of the EGF
concentration for two different values of θ . The horizontal line indicates the upper bound for θ in order to
initiate healing; b The healing response in the case of D → ∞ for several closure rates. Under this notation,
successful healing is obtained when rstop = 0

of closure rates is presented in Fig. 5b, where the reduction of rstop towards successful
healing (i.e. rstop = 0) by the increase of the migration rate can be observed.

Healing time

If healing is complete (see Table 1), then it proceeds directly after incubation without
internal incubation times. Hence, the wound evolution after initiation is the same as
if the threshold condition upon cell motility is disregarded or θ is set equal to zero.
Therefore,

t D→∞
heal = t D→∞

inc + tθ=0
heal .

Computation of tθ=0
heal for general wound morphologies only requires the solution of

Eq. (4) with vn = α + βκ , which is much easier than the solution of the complete
problem. Furthermore, tθ=0

heal is known for simple wound morphologies [44].

5 Analysis of healing kinetics

The specific role of diffusion and cell migration rates in the healing behaviour described
by Eqs. (1), (2) and (4) are discussed here. Results for a circular wound under var-
ious physiological conditions will show the strong interdependence between these
processes and their impact on the healing kinetics. Results for more complex wound
morphologies evidence locally different healing behaviours.

5.1 The role of diffusion in the healing kinetics

The diffusion term in Eq. (1) is responsible for the supply of EGF to the wound in
order to sustain its healing. We have seen in Sect. 4 that in absence of diffusion, the
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Fig. 6 Influence of the diffusion term in the healing behaviour. a Incubation and healing times as a function
of D. b Healing behaviour for two different values of D that give the same healing time

incubation time tinc is minimal but healing is not obtained in a finite time. On the other
hand, if diffusion is instantaneous, the incubation time is exponentially increased by
the ratio of the domain of computation and the active layer areas, i.e. |Ω|/|Ωal(0)|.
Furthermore, in the case of successful healing, it proceeds directly after incubation.

The incubation and healing times for a wide range of diffusion rates D are plotted
in Fig. 6a. The incubation time continuously increases as the diffusion rate increases,
as the EGF is sent far from the interface delaying its accumulation. Furthermore, the
results for the incubation times as D → 0 and D → ∞ agree perfectly with the
asymptotic values given in Eqs. (9) and (12) respectively. Besides that, we observe
that the healing time increases exponentially as the diffusion rate decreases, since
then the closure of the wound is faster than the EGF diffusion into the wound. This
implies, numerically, more and longer internal incubation times, and physiologically
the impossibility to sustain the healing process. As D increases, the healing time
reduces until it reaches its minimum. This minimal healing time is obtained when the
diffusion and the closure rates are balanced. We denote by Dcrit the critical diffusion
rate that gives the minimal healing time. We observe that the difference between the
healing and the incubation times remains constant for diffusion rates above Dcrit , and
the time consumed between incubation and healing agrees with the healing time of
the wound with θ = 0. This means that if D > Dcrit, then the healing progress is not
delayed by internal incubation times and therefore the increase of the healing time
is entirely due to the increase of the incubation time. Furthermore, in these cases the
closure of the wound is slower than the diffusion of the EGF into the wound.

As a consequence of the behaviour of the healing time with respect to the diffusion
rate, there exist pairs of diffusion rates that result in the same healing time. The evo-
lution of the wound radius for one of these pairs is presented in Fig. 6b. As is to be
expected, the healing at the lower diffusion rate is initiated earlier. However, for the
higher diffusion rate, the evolution of the wound radius after initiation is the same as
for θ = 0, whereas it is delayed for the lower diffusion rate.
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Fig. 7 Isocurves of the delay factor fdelay as a function of the closure rate α and the threshold concentration
θ for two diffusion rates. The contribution of the curvature to the closure rate has been disregarded, i.e.
β = 0. Hence, the healing time for θ = 0 is given by tθ=0

heal = r0
α . a D = 5·10−7 cm2/s. b D = 10−6 cm2/s

5.2 The role of the closure rate in the healing kinetics

In the previous section we have seen that the healing process is optimal, in the sense
that it is not delayed, if the wound closure is slower than the diffusion of the EGF into
the wound. In this section, we will measure the delay of the healing process due to the
closure rate.

The delay in the healing process can be measured by

tdelay = (theal − tinc) − tθ=0
heal , (14)

which primarily depends on the threshold condition θ and on the migration rate param-
eters α and β. Furthermore, we can define a delay or retardation factor as follows:

fdelay := tθ=0
heal

theal − tinc
, (15)

which equals 1 if there is no delay and is smaller than 1 if there is some delay. Hence,
the healing kinetics for any threshold condition θ > 0 can be expressed as a delay of
the healing kinetics for θ = 0, since theal = tinc + tθ=0

heal / fdelay. The delay factor for a
circular wound as a function of θ and α is presented in Fig. 7 for two different diffusion
rates. The contribution to the closure rate of the wound curvature β is disregarded in
this test, i.e. β = 0. The results show that for either low migration rates or θ values no
delay is obtained. However, there is an exponential decrease of the delay factor as α

and θ increase, since then the diffusion term is not capable of sustain the necessary flux
of EGF into the wound. Furthermore, comparison of the results for the two different
diffusion rates shows that a larger diffusivity mitigates the delayed kinetics for a wider
range of θ and α. This agrees with the results obtained in the previous section.
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Fig. 8 Influence on the healing behaviour of the wound morphology and θ . In all the cases, the initial
area of the wound is the same. a Incubation times (in minutes) for several elliptical wounds and θ values.
b Healing times (in hours) for several elliptical wounds and θ values

5.3 The effect of wound geometry on healing kinetics

The role of wound morphology on the healing kinetics is investigated in this section.
To this end, we start with the healing of an elliptical wound of area 0.78540 cm2

with various elongations. In this simulation, we neglect the mechanical forces acting
on the tissue. Due to the symmetry of the problem, we solve only one quarter of the
ellipse. The incubation times for various wound elongations and θ values are presented
in Fig. 8a. It can be seen from the results that the incubation time is reduced by the
elongation of the wound, although this effect is only significant for large values of
θ . This is a consequence of the diffusion term, which aids the accumulation of the
EGF at the regions of high curvature. As is to be expected, we observe an exponential
increase of the incubation time with θ . The isocurves of the healing time for various
wound elongations and θ values are plotted in Fig. 8b. Similarly to the incubation time,
the healing time increases with θ and decreases with the wound elongation. However,
the increase of the healing time with θ is merely linear, since the EGF accumulation
inside the wound reduces the retardation of the healing kinetics.

Finally, we consider the healing of a wound with a more complicated geometry
for various values of θ and β. The initial shape of the wound is a four-legged starfish
whose edge is given by the zero level set of the function φ = max(φs, φc), where φs

denotes the distance function whose zero level set is the curve

x = (a + b cos
(
2nlegsπϕ

)
cos (2πs), y = (a + b cos

(
2nlegsπϕ

)
sin (2πs)

where ϕ ∈ [0, 1] and nlegs denotes the number of legs of the starfish, four in this case,
and φc denotes the distance function whose zero level set is the circle of radius a − 4

6 b
and centered at the origin. By construction, φs and φc must be chosen positive at the
origin, in order to have φ positive inside the wound.

The initial wound together with the morphology when 30, 60 and 90% of the ini-
tial area is healed are presented in Fig. 9. This morphology, although hardly found
in practice, illustrates nicely several aspects of the model. First, that the contribution
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Fig. 9 Effect of physiological parameters on the morphology of the wound during healing. a α = 1, β = 0,
θ = 0, b α = 1, β = 0, θ = 10−4, c α = 1, β = 0, θ = 10−3, d α = 1, β = 0.05, θ = 0 e α = 1,
β = 0.05, θ = 10−4, f α = 1, β = 0.05, θ = 10−3, g α = 1, β = 0.1, θ = 0, h α = 1, β = 0.1,
θ = 10−4, i α = 1, β = 0.1, θ = 10−3

of the curvature to the migration rate may induce a retreat of the wound edge in the
concave regions, see Fig. 9d, g, h, i. Second, that larger values of θ results into longer
lag periods for the concave parts of the wound. However, once initiated, the healing of
the concave areas is more easily sustained because of the EGF accumulation due to the
overlap of the diffusion fronts. And last, that during healing the wound may evolve into
several (five in this case) disjoint smaller wounds that heal as isolated islands. We have
obtained this behaviour for small values of β or large values of θ , see Fig. 9a–c, e, f, h, i.
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6 Discussion

A computational model for the simulation of epidermal wound healing, with special
attention to wound morphology, has been proposed in this work. The solution approach
is based on the well known Level Set Method, which allows for complex evolutions of
the wound edge. This method has been used in a wide range of applications, from fluid
dynamics [42], materials science [19] to computer vision [21]. It has been recently
applied to tumour growth [18] and, as far as we know, the present work is the first time
it is applied to model wound healing dynamics. Local refinement of the computational
grid around the wound edge is applied to capture the healing kinetics more accurately
and efficiently, exploiting the combination of finite element and finite difference/finite
volume methods. Healing is induced by EGF production by cells surrounding the
wound, and a switch closure mechanism based on a threshold EGF concentration is
used to determine the regions of actual healing as time progresses [3].

The current mathematical model treats the wound edge specifically, unlike other
models. The healing kinetics are phenomenologycal and cope with the chemical con-
trol of re-epithelialization in a rather simple fashion. However, the healing behaviour
calculated from it agrees qualitatively well with existing models [37] (not shown).
Moreover, it is worth noting that in the present model, cell population is not incor-
porated (which may be seen as a deficiency, since for instance chemotaxis may not
be included) and only the position of the wound edge is really considered. Strictly
speaking, the trajectory of cells invading the wound site is not relevant (to the model),
and only the point at which they contribute to healing is of interest (to the model). Two
closure kinetics are predicted by the simulations (see Sects. 5.1 and 5.2): a delayed
cellular migration, when the theoretical closure rate cannot be achieved because of
insufficient supply of EGF to the wound edge, and a ‘geometric’ cellular migration,
when the EGF supply is guaranteed after the incubation period and the wound heals
as predicted by its geometry.

As in most of the published models (and in all the cited here), we see the wound from
the top, and disregard many important aspects related to its depth. Nevertheless, deep
wounds heal differently to superficial wounds: re-epithelialization is always present,
but however, if the vasculature is not disrupted at the moment of injury, the blood clot
is not formed and angiogenesis may not be necessary. Coupling the closure model
with angiogenesis is a topic of further research. It is likewise important to note that
the principles of the present model could also be applied to actin purse string heal-
ing kinetics by just replacing the chemically induced closure rate by the mechanical
stimulus sensed by cells [24] at the wound edge.

The simulations presented in this paper aim at providing new insights onto the
kinetics of wound closure, in particular on the role of wound shape. Results agree
with the observations made by Buck [10]: healing always starts at regions of high
convexity. In very specific cases, an undesired retreat of the wound edge was observed
at localized areas (the concave areas) of the wound. This effect may be avoided
by a strict control of the closure rate parameters. However, it is worth noting that
skin tension on head and neck wounds may induce not only changes on the wound
shape but also an increase on the area [11]. Unfortunately, the results predicted
here are rather qualitative, mainly due to the limited knowledge of the physiological
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parameters of the model. Until sufficient experimental work is done to capture the
evolution of the wound edge, area, etc. for general wounds, the validation of the
model will be difficult and the predictive power of the mathematical method will be
limited.

Finally, regions of unsuccessful healing (i.e. incomplete) may be demarcated in
function of the parameters. Using asymptotic solutions, we showed that healing is
eventually aborted if the closure rate is not adequate. The thickness of the active layer
and the wound shape play a critical role in this matter as well. A deeper character-
ization of the critical size defect may be accomplished by parametric studies of the
present model.
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Appendix: Data set of the numerical tests

Of the physiological model parameters, only D = 5 × 10−7 cm2/s [3] and λ =
1.6 × 10−51/s [38] have been estimated. The authors are not aware of valid estimates
for the other parameters, and hence these will be treated as fitting parameters in the
calculations. In order to simplify the analysis, we fix P = 5 × 10−7 [c]/s (in which
[c] denotes the unit of the EGF concentration) and δ = 0.1 cm throughout our calcu-
lations. The other parameters will be taken, depending on the analysis purposes, as
summarized in Tables 2 and 3.

Table 2 Physiological parameters for the asymptotic solutions presented in Figs. 4 and 5

Figure 4 Figure 5a Figure 5b

Geometry Circular Circular Circular

(cm) r0 = 0.5 r0 = 0.5 r0 = 0.5

θ ([c]) 2.5 × 10−2 5 × 10−4 ∈ [3 × 10−5, 7 × 10−3]
10−3

10−9, 10−7, 5 × 10−7

α (cm/s) 10−5 10−5 10−6, 2 × 10−6, 3 × 10−6

4 × 10−6, 5 × 10−6, 7 × 10−6

β (cm2/s) 2.1 × 10−7 2.1 × 10−7 0

Ω [0,1.5] [0,1.5] [0,1.5]
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Table 3 Physiological and numerical parameters used in the calculation of the results presented in
Figs. 6, 7, 8 and 9

Figure 6 Figure 7 Figure 8 Figure 9

Geometry Circular Circular Elliptical Starfish

(cm) r0 = 0.5 r0 = 0.5 a = √
0.25/AR a = 0.25

b = a/AR b = 0.225

AR = 1,. . .,5

θ ([c]) 8 × 10−4 ∈ [0, 10−3] ∈ [0, 3 × 10−3] ∈ [0, 3 × 10−3]

α (cm/s) 10−5 ∈ [10−5, 10−4] 10−5 1

β (cm2/s) 2.1 × 10−7 0 2.1 × 10−7 0, 0.05, 0.1

[0, Lx ] × [0, L y ]
Ω [0,1.5] [0,1.5] Lx = 0.5 + a [−1, 1] × [−1, 1]

L y = 0.5 + b

AR, nx, ny

1, 24, 24

# Internal 2, 29, 20 nx, ny

Nodes 499 499 3, 33, 19 50, 50

4, 37, 18

5, 39, 17

re f nratio 3 3 3 3

ε (cm) 1.5 × 10−3 1.5 × 10−3 ≈ 1.33 × 10−2 1.31 × 10−2

∆tmax (s) 5 5 30 30

CFL 0.15 0.15 0.15 0.45

AR the wound aspect ratio, mx and my the number of internal nodes in the x and y directions, respectively
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