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Abstract The dynamics and equilibrium structure of a deterministic population-
genetic model of migration and selection acting on multiple multiallelic loci is stud-
ied. A large population of diploid individuals is distributed over finitely many demes
connected by migration. Generations are discrete and nonoverlapping, migration is
irreducible and aperiodic, all pairwise recombination rates are positive, and selection
may vary across demes. It is proved that, in the absence of selection, all trajectories
converge at a geometric rate to a manifold on which global linkage equilibrium holds
and allele frequencies are identical across demes. Various limiting cases are derived in
which one or more of the three evolutionary forces, selection, migration, and recom-
bination, are weak relative to the others. Two are particularly interesting. If migration
and recombination are strong relative to selection, the dynamics can be conceived
as a perturbation of the so-called weak-selection limit, a simple dynamical system
for suitably averaged allele frequencies. Under nondegeneracy assumptions on this
weak-selection limit which are generic, every equilibrium of the full dynamics is a
perturbation of an equilibrium of the weak-selection limit and has the same stability
properties. The number of equilibria is the same in both systems, equilibria in the
full (perturbed) system are in quasi-linkage equilibrium, and differences among allele
frequencies across demes are small. If migration is weak relative to recombination and
epistasis is also weak, then every equilibrium is a perturbation of an equilibrium of the
corresponding system without migration, has the same stability properties, and is in
quasi-linkage equilibrium. In both cases, every trajectory converges to an equilibrium,
thus no cycling or complicated dynamics can occur.
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1 Introduction

Many natural populations are geographically structured and selection varies spatially
due to heterogeneity in the environment. Dispersal of individuals is usually modeled
in one of two alternative ways, either by diffusion in space or by migration between
discrete colonies, or demes. If population size is sufficiently large, so that random
genetic drift can be ignored, then the first kind of model leads to partial differential
equations [19,34] and is a natural choice for the study of clines, i.e., the gradual
change of phenotype or genotype frequencies along an environmental gradient [25].
This is a wide and fruitful area, but here we will not be concerned with it and instead
refer to Barton [4] and Nagylaki and Lou [49] for recent theoretical developments and
references.

Models of selection and migration between discrete demes originated from the
work of Haldane [24] and Wright [54]. Most of the existing theory is devoted to
study selection on a single diallelic locus in populations with discrete, nonoverlapping
generations that mate randomly within demes. A central focus of research has been
the derivation of conditions for a protected polymorphism, i.e., for protecting both
alleles from eventual loss (e.g., [6,30,50], [42, Chap. 6]).

An important special case is the commonly studied Levene [37] model, in which
individuals disperse independently of their deme of origin. It is much easier to analyze
than other models because after one generation of migration, allele frequencies are
equalized across demes. However, even in the Levene model with a single diallelic
locus, many open problems remain. For instance, the maximum number of coexisting
polymorphic (internal) equilibria is unknown. The theoretical upper bound is 2�− 1,
where � is the number of demes. Numerical searches suggest that it is not achieved
if � ≥ 3, and that the maximum number of equilibria increases very slowly with �.
No cases with more than two stable (and one unstable) polymorphic equilibria have
been detected, and this can occur already with two demes. With seven demes, a fitness
scheme yielding two stable polymorphic together with two stable boundary equilibria
(and three unstable polymorphic equilibria) has been found [29]. However, there are
results that establish simple dynamic behavior. For instance, sufficient conditions for
the existence of a unique, globally stable equilibrium in the Levene model have been
derived (Bürger, unpublished manuscript; [29], [49, Sect. 4.2.4]). For two alleles, all
trajectories converge to some equilibrium because of monotonicity. For multiple alle-
les, the existence of a Lyapunov function ensures at least generic convergence [8,38],
[42, Chap. 6.3].

For arbitrary migration between two diallelic demes, trajectories converge to an
equilibrium in continuous time [49, Section 4.3.2]. With three demes, unstable limit
cycles may occur (Akin, personal communication). In discrete time, convergence has
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not even be proved for two diallelic demes. It can be shown, however, that convergence
occurs if in both demes fitnesses are submultiplicative, which notably includes no
dominance, complete dominance of the fitter allele, and overdominance (Karlin and
Campbell [31]; the proofs of their Results III and IV can be rectified). For arbitrary
migration between multiple demes, convergence is unresolved even for multiplicative
fitnesses, i.e., haploid selection.

In a recent series of papers, Nagylaki and Lou [44,46–48] performed an extensive
study of migration-selection models for a single multiallelic locus. Among others,
they derived conditions for global fixation of an allele, for global loss of an allele,
and they studied how many alleles can be maintained under various assumptions on
selection or dominance, especially, in relation to the number of demes. In addition,
when migration is either sufficiently weak or sufficiently strong relative to selection,
the equilibria are described and convergence of the gene frequencies to an equilibrium
point is demonstrated. Similar results are provided if selection is the same in every
deme. For a succinct review (see [49, Sect. 4.2]). It seems worth noting that these
results for strong and weak migration, and for a homogeneous environment, have
been derived by resorting to analyses of and results on single-locus selection models.

Whereas the theory of migration-selection models for a single locus is fairly well
developed, notwithstanding the many unresolved problems, this is not at all the case for
multiple loci. This lack of theory is likely due to the daunting complexity of multilocus
systems that is apparent already in the absence of migration (e.g., [7]). Some brave
attempts have been made, however. For instance, the existence of clines has been
studied for two [53] and for multiple loci [36]. With discrete demes and two diallelic
loci, Christiansen and Feldman [11] derived sufficient conditions for the protection of
gametes for the so-called Deakin [13] model, which were later generalized to multiple
diallelic loci [10, p. 277]. Christiansen [10, Chap. 5] also studied linkage disequilibria
generated by population (ad)mixture in versions of the continent-island model, as well
as various aspects of migration and selection (see below).

Li and Nei [39] showed that despite absence of epistasis, linkage disequilibrium can
be maintained at migration-selection balance (see also [11]). This is an interesting phe-
nomenon that cannot occur without migration, because then, for nonepistatic selection
and any number of loci and alleles, every trajectory converges to an equilibrium point
that is in linkage equilibrium [35,41]. The identification of conditions under which
linkage equilibrium or near (quasi) linkage equilibrium is approached is of consider-
able theoretical interest because it tremendously simplifies the mathematical analysis
and opens the route to obtaining more insight.

This paper is the first in a series in which a mathematical theory of multiallelic
multilocus migration-selection models is developed and applied to specific biological
problems, such as the role of population subdivision in maintaining genetic variation. It
was inspired by numerous discussions with Thomas Nagylaki, who also shared exten-
sive unpublished results. After setting up the general model, migration and recombi-
nation in the absence of selection are studied in Sect. 3. It is proved that if migration
is ergodic, i.e., irreducible and aperiodic, then all trajectories converge at a geometric
rate to a manifold on which global linkage equilibrium holds and allele frequencies
are identical across demes (Theorem 3.1). This generalizes a classical result valid in
the absence of migration (Remark 3.2).
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942 R. Bürger

Section 4 is devoted to the study of strong migration, whereas selection or recom-
bination may be weak. Because constant backward migration rates are assumed, the
results mainly apply to soft selection, i.e., population regulation within niches. The
main and most interesting result is Theorem 4.3 which establishes the equilibrium
structure and convergence of trajectories to an equilibrium point if selection is suffi-
ciently weak relative to migration and recombination. In this case, the full dynamics
can be conceived as a perturbation of the so-called weak-selection limit. This is a rather
simple system of differential equations, closely related to the multiallelic single-locus
selection dynamics, in which fitnesses are appropriate averages over demes. Under
nondegeneracy hypotheses on the weak-selection limit, which are satisfied generically,
it is proved that every equilibrium is a perturbation of a corresponding equilibrium of
the weak-selection limit and has the same stability properties. In particular, after an
evolutionary short time, quasi-linkage equilibrium is approached, allele frequencies
become nearly deme independent, and all trajectories converge. This generalizes pre-
vious results by Nagylaki et al. [45] for multilocus systems with no migration, and
by Nagylaki and Lou [48] for a single locus with migration. As an application, the
increase of mean fitness is studied in Sect. 4.1.2. The other important limiting case
occurs if migration is strong relative to selection and recombination. It leads to more
complicated dynamics, closely related to that of multilocus selection-recombination
systems and is treated in Sect. 4.2.

In Sect. 5, weak migration is explored, whereas other evolutionary forces may be
weak or strong. The main result (Theorem 5.4 in Sect. 5.2) establishes the equilibrium
structure if migration and epistasis are both weak, but not necessarily equally weak, and
recombination and nonepistatic selection are strong. Under a generic assumption about
hyperbolicity of equilibria, it is established that every equilibrium is a perturbation of a
corresponding equilibrium of the much simpler system in which there is no migration
and selection within each deme is purely nonepistatic. Each equilibrium has the same
stability properties as its corresponding equilibrium in the absence of migration. Again,
convergence of trajectories is established. The limiting cases of weak migration and
weak selection (Sect. 5.1) and when all evolutionary forces are weak (Sect. 5.3) may
lead to more complicated dynamics, hence weaker perturbation results are obtained.
The Appendix contains a glossary of symbols.

The results derived here about the dynamical and equilibrium properties of mul-
tilocus migration-selection models will be useful for a number of applications. First,
they establish scenarios, the weak-selection and the weak-migration case, for which
perturbation techniques can be applied to obtain specific results for special models.
They also justify the use of (quasi-) linkage-equilibrium approximations in such cases.
These are important tools in the study of multilocus systems because they greatly sim-
plify mathematical analysis. In the companion paper, part II, we apply the present
results to study the maintenance of multilocus polymorphism under weak or strong
migration.

2 Notation and model

We consider a diploid population with discrete, nonoverlapping generations, in which
the two sexes need not be distinguished. The population is subdivided into � ≥ 1
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panmictic colonies (demes) that exchange adult migrants independently of genotype.
In each of the demes, selection acts through differential viabilities, which are time and
frequency independent. Mutation and random genetic drift are ignored.

The genetic system consists of L ≥ 1 loci and In ≥ 2 alleles, A(n)
in

(in = 1, . . . , In),
at locus n. We use the multi-index i = (i1, . . . , iL) as an abbreviation for the gamete
A(1)

i1
. . .A(L)

iL
. We designate the set of all demes by G = {1, . . . , �}, the set of all loci

by L = {1, . . . , L}, the set of all alleles at locus n by In = {1, . . . , In}, and the set
of all gametes by I. The number of gametes is I = |I| = ∏

n In , the total number
of genes (alleles at all loci) is I1 + · · · + IL . We use letters i, j, � ∈ I for gametes,
k, n ∈ L for loci, and α, β ∈ G for demes. Sums or products without ranges indicate
summation over all admissible indices, e.g.,

∑
n = ∑

n∈L,
∑
α = ∑

α∈G,
∑

i = ∑
i∈I,∑

in
= ∑

in∈In . We denote the simplex by

�I =
{

z ∈ R
I : zi ≥ 0 for every i ∈ I,

∑

i

zi = 1

}

, (2.1)

and the �-fold cartesian product by ��I .
Let pi,α = pi,α(t) represent the frequency of gamete i among zygotes in deme α

in generation t . We define the following column vectors (the superscript T indicates
transposition):

pi = (pi,1, . . . , pi,�)
T ∈ R

�, (2.2a)

p(α) = (p1,α, . . . , pI,α)
T ∈ �I , (2.2b)

p =
(

pT
(1), . . . , pT

(�)

)T ∈ ��I . (2.2c)

Here, pi , p(α), and p signify the frequency of gamete i in each deme, the gamete
frequencies in demeα, and all gamete frequencies, respectively. We will use analogous
notation for other quantities, e.g., for Di,α .

The frequency of allele A(k)
ik

among gametes in deme α is

p(k)ik ,α
=

∑

i |ik

pi,α, (2.3)

where the sum runs over all multi-indices i with the kth component fixed as ik . The
marginal frequency of the gamete with components ik for the loci k ∈ K is

p(K)iK,α
=

∑

i |iK
pi,α, (2.4)

where
∑

i |iK runs over all multi-indices i with the components in K fixed as iK. We
write

p(k)ik
=

(
p(k)ik ,1

, . . . , p(k)ik ,�

)T ∈ R
� (2.5a)
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944 R. Bürger

for the vector of frequencies of allele A(k)
ik

in each deme, and similarly,

p(K)iK
=

(
p(K)iK,1

, . . . , p(K)iK,�

)T ∈ R
�. (2.5b)

Let xi j,α and wi j,α denote the frequency and fitness of genotype i j in deme α,
respectively. We designate the marginal fitness of gamete i in deme α and the mean
fitness of the population in deme α by

wi,α = wi,α(p(α)) =
∑

j

wi j,α p j,α (2.6a)

and

w̄α = w̄α(p(α)) =
∑

i, j

wi j,α pi,α p j,α, (2.6b)

respectively.
Let mαβ be the probability that an adult individual in demeαmigrated from deme β.

Then, the �×� backward migration matrix M = (mαβ) is stochastic, i.e., it satisfies

mαβ ≥ 0 for every α, β ∈ G and
∑

β

mαβ = 1 for every α. (2.7)

We assume that M is constant, as it is the case for soft selection [9,14], [42, p. 135].
Our life cycle starts with zygotes in Hardy–Weinberg proportions. Selection acts

in each deme on the newly born offspring. Adults migrate, then recombination and
random mating occur in each deme. This life cycle extends that of Nagylaki [42,
p. 133]. To deduce the general multilocus migration-selection dynamics (Nagylaki,
personal communication), let

x∗
i j,α = pi,α p j,αwi j,α/w̄α (2.8a)

be the frequency of genotype i j in deme α after selection, and

x∗∗
i j,α =

∑

β

mαβx∗
i j,β (2.8b)

its frequency in deme α after selection and migration. Then, the frequency of gamete
i in deme α in the next generation, i.e., after recombination, is

p′
i,α =

∑

j,�

Ri, j�x
∗∗
j�,α, (2.8c)

where Ri, j� is the probability that during gametogenesis, paternal haplotypes j and �
produce a gamete i by recombination. We leave it to the reader to check the obvious
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fact that the processes of migration and recombination commute. Thus, instead of
(2.8b) and (2.8c), we can write

p′
i,α =

∑

β

mαβ p#
i,β , (2.9a)

where

p#
i,α =

∑

j,�

Ri, j�x
∗
j�,α (2.9b)

describes selection and recombination in deme α. We shall view (2.8) or, equivalently,
(2.9) as a dynamical system on ��I .

Let {K,N} be a nontrivial decomposition of L, i.e., K and its complement N=L\K
are each proper subsets of L and, therefore, contain at least one locus. (The decom-
positions {K,N} and {N,K} are identified.) We designate by cK the probability of
reassociation of the genes at the loci in K, inherited from one parent, with the genes
at the loci in N, inherited from the other. Let

ctot =
∑

K

cK, (2.10)

where
∑

K runs over all (different) decompositions {K,N} of L, denote the total recom-
bination frequency. We designate the recombination frequency between loci k and n,
such that k < n, by ckn . It is given by

ckn =
∑

K∈Lkn

cK, (2.11)

where Lkn = {K : k ∈ K and n ∈ N} [7, p. 55]. Throughout this paper, we assume
that all pairwise recombination rates ckn are positive. Hence,

cmin = min
k<n

ckn > 0. (2.12)

We define

Di,α = 1

w̄α

∑

j

∑

K

cK
(
wi j,α pi,α p j,α − wiK jN, jKiN,α piK jN,α p jKiN,α

)
. (2.13)

This is a measure of linkage disequilibrium in gamete i in deme α. Therefore
([7, p. 56], [43]), we obtain

p#
i,α = pi,α

wi,α

w̄α
− Di,α. (2.14)
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946 R. Bürger

It seems worth noting that the full dynamics, (2.8) or (2.9), does not depend on linkage
disequilibria between demes.

Let

�0,α =
{

p(α) : pi,α = p(1)i1,α
· · · · · p(L)iL ,α

}
⊆ �I (2.15)

denote the linkage-equilibrium manifold (also called the Wright manifold) in deme α,
and let

�0 = �0,1 × · · · ×�0,� ⊆ ��I . (2.16)

If there is no position effect, i.e., if

wi j,α = wiK jN, jKiN;α

for every i , j , and K, then Di,α = 0 for every p(α) ∈ �0,α . Hence,

�0,α ⊆ {p(α) : D(α) = 0}, (2.17)

where D(α) is defined in analogy to (2.2b). In the absence of selection, equality holds
in (2.17).

We posit that

The backward migration matrix M is ergodic, i.e., irreducible and aperiodic. (E)

Given irreducibility, the biologically trivial condition that individuals have positive
probability of remaining in some deme, i.e., mαα > 0 for some α, suffices for aperi-
odicity [17, p. 426].

By (E), there exists a principal left eigenvector µ ∈ int�� such that

µT M = µT . (2.18)

The corresponding principal eigenvalue 1 of M is simple and exceeds every other
eigenvalue in modulus [20, p. 53, 80]. The principal eigenvector µ is the unique
stationary distribution of the Markov chain with transition matrix M . The vector µ
depends only on the relative migration rates [48, p. 29]. For z ∈ R

� we define its norm
‖z‖ = maxα |zα|. Moreover, we write

e = (1, . . . , 1)T ∈ R
�. (2.19)

Letλ1 denote the nonunit eigenvalue of M with largest modulus. Then, the convergence
theorem for ergodic, or stochastic and primitive, matrices [17, p. 393], [52, p. 9] implies
that for every κ with

|λ1| < κ < 1, (2.20)
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we have

∥
∥
∥Mt z − eµT z

∥
∥
∥ ≤ czκ

t , (2.21)

where cz is independent of t . If λ1 is a simple eigenvalue (which it is generically), we
can take κ = |λ1|.

For y, z ∈ R
� , we denote the Schur, i.e., componentwise, product of y and z by

y ◦ z = (y1z1, . . . , y�z�)
T . (2.22)

We average pi,α with respect to µ,

Pi = µT pi , P = (P1, . . . , PI )
T ∈ �I , (2.23)

and define the gamete-frequency deviations q from the average gamete frequency P:

qi,α = pi,α − Pi , (2.24a)

qi = pi − Pi e ∈ R
�, (2.24b)

q(α) = p(α) − P ∈ R
I , (2.24c)

q = (qT
(1), . . . , qT

(�))
T ∈ R

I�. (2.24d)

Therefore, q measures spatial heterogeneity or diversity. If q = 0, the gametic distri-
bution is spatially homogeneous.

3 Migration and recombination

We study migration and recombination in the absence of selection. Our aim is to prove
that if migration is ergodic and all pairwise recombination rates are positive, then after
a sufficiently long time all gamete and allele frequencies become deme independent
and global linkage equilibrium is approached. This generalizes the well known fact
that in multilocus systems in which recombination is the only evolutionary force,
linkage disequilibria decay to zero at a geometric rate (see Remark 3.2).

In the absence of selection, i.e., if wi j,α = 1 for every i , j , α, the dynamics (2.8)
reduces to

p′
i,α =

∑

β

mαβ(pi,β − Di,β), (3.1)

where [43, eq. 32]

Di,β =
∑

K

cK

(
pi,β − p(K)iK,β

p(N)iN,β

)
(3.2)
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948 R. Bürger

and {K,N} as above (2.10). In vector form, i.e., with the notation (2.2a), (3.1) becomes

p′
i = M(pi − Di ). (3.3)

Using the vector notation (2.5b) and (2.22), we define the vector of linkage dise-
quilibria

D(K)
iK

=
∑

i |iK
Di =

∑

S

c(K)S

[
p(K)iK

− p(S)iS
◦ p(T)iT

]
∈ R

�, (3.4)

where {S,T} is a nontrivial decomposition of K, i.e., S and T = K\S are each proper
subsets of K, and c(K)S designates the probability of reassociation of the genes at the
loci in S, inherited from one parent, with the genes at the loci in T, inherited from the
other.

Summing (3.3) over all multi-indices i with the components in K fixed as iK and
using the linearity of M , we obtain the recursion

p(K)iK

′ = M
(

p(K)iK
− D(K)

iK

)
(3.5)

for the gametic frequencies of loci in K. For allele frequencies, (3.5) reduces to

p(k)ik

′ = Mp(k)ik
. (3.6)

In analogy to (2.23), we define the average allele frequency of A(k)
ik

by

P(k)ik
= µT p(k)ik

∈ R (3.7)

and observe that, by (2.18), P(k)ik

′ = P(k)ik
. Therefore, in the absence of selection, the

average allele frequencies P(k)ik
(t) are constant, and we write

P(k)ik
= P(k)ik

(t) = P(k)ik
(0). (3.8)

Let q(k)ik
= ∑

i |ik
qi ∈ R

� . Then,

q(k)ik
(t) = p(k)ik

(t)− P(k)ik
e, (3.9)

and, from (3.6) and (3.7),

q(k)ik
(t) = Mt p(k)ik

(0)− eµT p(k)ik
(0).

Hence, applying (2.21) to z = p(k)ik
(0), we obtain

∥
∥
∥q(k)ik

(t)
∥
∥
∥ ≤ a(k)ik

κ t (3.10)
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for every k and every ik , where the a(k)ik
are appropriate constants. Therefore, every

allele-frequency vector p(k)ik
(t) converges geometrically at least as fast as κ t to the

constant and uniform vector P(k)ik
e. For reasons that will become clear in (3.25), we

choose κ such that, in addition to (2.20), it satisfies

κ 	= 1 − ckn (3.11)

for every two-locus recombination rate ckn .
If K ⊆ L, K 	= ∅, we write

∏

k∈K

p(k)ik
=

(
∏

k∈K

p(k)ik ,1
, . . . ,

∏

k∈K

p(k)ik ,�

)T

∈ R
� (3.12)

and similarly for other vectors in R
� . According to our general convention for sums and

products, we simply write
∏

k p(k)ik
if K = L. Moreover, we shall use the abbreviations

P̃(K)iK
=

∏

k∈K

P(k)ik
∈ R and P̃i =

∏

k∈L

P(k)ik
∈ R. (3.13)

Theorem 3.1 Suppose that (3.3) and (E) hold. Then, the manifold

	0 =
{

p ∈ ��I : pi = P̃i e
}

= {
p ∈ ��I : D = 0 and q = 0

}
(3.14)

is invariant under (3.3) and globally attracting at a uniform geometric rate. Further-
more, every point on	0 is an equilibrium point. Thus, linkage equilibrium and spatial
homogeneity are quickly approached under recombination and (ergodic) migration.

Remark 3.2 (i) In the absence of migration, this theorem is well known [5],
[7, pp. 56–57], [23,40], [41, pp. 248–251 and 265–266], [43,51].

(ii) Another representation of 	0 is

	0 =
{

p ∈ ��I : pi =
∏

k

p(k)ik
and q(k)ik

= 0 for every k and ik

}

.

The equivalence of pi = ∏
k p(k)ik

for every i and Di = 0 for every i is readily

checked and well known (e.g., [45, p. 114]). Clearly, q = 0 implies q(k)ik
= 0.

If q(k)ik
= 0 for every k and ik , and pi = ∏

k p(k)ik
, hence D = 0, we obtain

qi = pi − Pi e = ∏
k p(k)ik

− P̃i e = 0.

Remark 3.3 As pointed out by T. Nagylaki, this theorem does not hold if the migration

matrix is reducible or periodic. If, for instance, M =
(

1 0
1
2

1
2

)

, then an allele that is

initially absent in the second deme will be also absent at equilibrium, whereas its
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950 R. Bürger

frequency can be positive in the first deme. If M =
(

0 1
1 0

)

, then each generation the

gamete frequencies are swapped between the demes. In both cases, convergence to
q = 0 will in general not occur.

Proof of Theorem 3.1 First, we show equivalence of the two representations in (3.14).
If pi = P̃i e, then Pi = µT pi = P̃i , hence q = 0. Moreover, p(k)ik

= P(k)ik
e, hence

pi = ∏
k p(k)ik

which implies Di = 0. The other inclusion is even more obvious.
If p ∈ 	0, then (3.3) implies p′

i = Mpi . Because q = 0, we have pi = Pi e
and p′

i = M Pi e = Pi e = pi . This proves that every point is an equilibrium, hence
invariance of 	0.

The proof of convergence is inspired by that of Nagylaki [43, pp. 634–635] for the
decay of linkage disequilibria under recombination and weak selection. We will use
induction and proceed in five steps.

(i) Recursion relations for the linkage disequilibria. We introduce the linkage dis-
equilibria

di,α = pi,α −
∏

k

p(k)ik ,α
. (3.15)

Then, for every nonempty subset K ⊆ L, we have

d(K)iK,α
=

∑

i |iK
di,α = p(K)iK,α

−
∏

k∈K

p(k)ik ,α
, (3.16)

where p(L)iL,α
= pi,α and d(L)iL,α

= di,α . In analogy to (2.2a) and (2.5b), we use the vector

notation di and d(K)iK
. Then, (3.16) takes the form

d(K)iK
= p(K)iK

−
∏

k∈K

p(k)ik
. (3.17)

The following relation between D(K)
iK

and d(K)iK
is immediately obtained from (3.4)

and (3.17):

D(K)
iK

= c(K)d(K)iK
− g(K)iK

(
p(K)iK

)
. (3.18)

Here, c(K) = ∑
S c(K)S denotes the probability of a recombination event in K, S is a

nonempty proper subset of K, and

g
(K)
iK
(p(K)iK

) =
∑

S

c(K)S

[

d(S)iS
◦ d(T)iT

+ d(S)iS
◦

∏

n∈T

p(n)in
+ d(T)iT

◦
∏

n∈S

p(n)in

]

, (3.19)

where T = K\S and the circle denotes the Schur product, (2.22). From (3.17), we
deduce the recursion relation for d(K)iK

by employing successively (3.5) and (3.6), (3.17)
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and (3.18), and collecting terms:

d(K)iK

′ = p(K)iK

′ −
∏

k∈K

p(k)ik

′

= Mp(K)iK
− M D(K)

iK
−

∏

k∈K

Mp(k)ik

= Md(K)iK
+ M

∏

k∈K

p(k)ik
− c(K)Md(K)iK

+ Mg
(K)
iK
(p(K)iK

)−
∏

k∈K

Mp(k)ik

= χK Md(K)iK
+ M

∏

k∈K

p(k)ik
−

∏

k∈K

Mp(k)ik
+ Mg(K)iK

(p(K)iK
), (3.20)

where χK = 1 − c(K) is the probability that there is no recombination event in K.
(ii) A convergence property under migration. Our aim is to prove

∥
∥
∥
∥
∥

M
∏

k∈K

p(k)ik
(t)−

∏

k∈K

Mp(k)ik
(t)

∥
∥
∥
∥
∥

≤ b(K)iK
κ t (3.21)

for some constant b(K)iK
independent of κ . Using (3.9) and expanding, we obtain

∏

k∈K

p(k)ik
(t) =

∏

k∈K

(
q(k)ik

(t)+ P(k)ik
e
)

=
∑

S

(
∏

n∈S

q(n)in
(t) ◦

(
P̃(T)iT

e
)
)

+ P̃(K)iK
e, (3.22)

where
∑

S is over all nonempty subsets S ⊆ K and T = K\S. Using Mp(k)ik
(t) =

p(k)ik
(t + 1) and applying (3.22) twice, we get

M
∏

k∈K

p(k)ik
(t)−

∏

k∈K

Mp(k)ik
(t)

= M

[
∑

S

(
∏

n∈S

q(n)in
(t) ◦

(
P̃(T)iT

e
)
)

+ P̃(K)iK
e

]

−
∑

S

(
∏

n∈S

q(n)in
(t + 1) ◦

(
P̃(T)iT

e
)
)

− P̃(K)iK
e

= M

[
∑

S

(

P̃(T)iT

∏

n∈S

q(n)in
(t)

)]

−
∑

S

(

P̃(T)iT

∏

n∈S

q(n)in
(t + 1)

)

,
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where we have used M
(

P̃(K)iK
e
)

= P̃(K)iK
Me = P̃(K)iK

e. Applying the obvious estimates

‖Mz‖ ≤ ‖z‖ and P(k)ik
≤ 1, as well as (3.10), we arrive at the desired estimate:

∥
∥
∥
∥
∥

M
∏

k∈K

p(k)ik
(t)−

∏

k∈K

Mp(k)ik
(t)

∥
∥
∥
∥
∥

≤
∑

S

(
∏

n∈S

∥
∥
∥q(n)in

(t)
∥
∥
∥ P̃(T)iT

)

+
∑

S

(
∏

n∈S

∥
∥
∥q(n)in

(t + 1)
∥
∥
∥ P̃(T)iT

)

≤
∑

S

∏

n∈S

(
a(n)in

κ t
)

+
∑

S

∏

n∈S

(
a(n)in

κ t+1
)

≤ b(K)iK
κ t .

The leading term κ t on the right-hand side results from sets S with a single element.
The constant b(K)iK

can be chosen such that b(K)iK
< 2

∑
S

∏
n∈S a(n)in

.
(iii) Decay of the linkage disequilibria for two embedded loci. Let us assume that K

contains only two loci. Then, d(k)ik
= 0 for every k and ik . Therefore, g(K)iK

(p(K)iK
) = 0

and (3.20) simplifies to

d(K)iK

′ = χK Md(K)iK
+ M

∏

k∈K

p(k)ik
−

∏

k∈K

Mp(k)ik
. (3.23)

We prove that the d(K)iK
decay geometrically at rate

λK = max(κ, χK). (3.24)

From (3.23) and (3.21), we infer

∥
∥
∥d(K)iK

(t + 1)
∥
∥
∥ ≤ χK

∥
∥
∥d(K)iK

(t)
∥
∥
∥ + b(K)iK

κ t .

By iteration, we obtain

∥
∥
∥d(K)iK

(t)
∥
∥
∥ ≤ χ t

K

∥
∥
∥d(K)iK

(0)
∥
∥
∥ + b(K)iK

t−1∑

τ=0

χτKκ
t−τ

≤ χ t
K

∥
∥
∥d(K)iK

(0)
∥
∥
∥ + b(K)iK

λt
K

λK − min(κ, χK)

≤ A(K)iK
λt

K, (3.25)

where the constant A(K)iK
can be chosen such that

A(K)iK
≤

∥
∥
∥d(K)iK

(0)
∥
∥
∥ + b(K)iK

λK − min(κ, χK)
,
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and (3.11) guarantees that λK − min(κ, χK) = max(κ, χK) − min(κ, χK) > 0. This
implies that for every subset K ⊆ L consisting of two loci, the linkage disequilibria
D(K)

iK
tend to zero geometrically at rate λK because for two loci we have D(K)

iK
=

c(K)d(k)ik
; cf. (3.18).

(iv) Decay of the linkage disequilibria for multiple loci. We extend the definition
(3.24) to sets K containing more than two loci by setting

λK = max
(
κ, 1 − c(K)min

)
, (3.26)

where c(K)min denotes the smallest two-locus recombination rate in K. We now show that
if (3.25) holds for every proper subset K ⊂ L, then it holds for L with

λ = λL = max(κ, 1 − cmin). (3.27)

Clearly, χK ≤ λK ≤ λ for every K ⊂ L, and λ < 1 by (2.12) and (2.20).

First, we estimate gi (pi ) = g
(L)
iL

(
p(L)iL

)
. If we set K = L in (3.19) and observe

∥
∥
∥p(k)ik

∥
∥
∥ ≤ 1 and

∥
∥
∥d(k)ik

∥
∥
∥ ≤ 1, the induction hypothesis yields

‖gi (pi )‖ ≤
∑

S

c(K)S

(
2

∥
∥
∥d(S)iS

∥
∥
∥ +

∥
∥
∥d(T)iT

∥
∥
∥
)

≤ Aiλ
t , (3.28)

with S and T as in (3.19) and Ai = ∑
S c(K)S

(
2A(S)iS

+ A(T)iT

)
. Therefore, (3.20),

(3.21), and (3.28) imply

‖di (t + 1)‖ ≤ χL ‖di (t)‖ + biκ
t + Aiλ

t ≤ χL ‖di (t)‖ + (bi + Ai )λ
t ,

where χL = 1 − c(L) = 1 − ctot ≤ λ. As in (3.25), we infer

‖di (t)‖ ≤ Biλ
t , (3.29)

for an appropriate constant Bi . This completes the induction argument and shows that
d(K)iK

decays to zero geometrically at rate λ for every nonempty subset K ⊆ L.
Therefore, setting K = L in (3.18) and (3.19), (3.28) and (3.29) imply that

D(t) → 0 as t → ∞ at the geometric rate λ. (3.30)

(v) Decay of the spatial heterogeneity, q. By (2.23) and (3.15), we can write

Pi = µT pi = µT di + µT
∏

k

p(k)ik
.
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This together with (2.24b) and (3.15) shows that

‖qi (t)‖ = ‖pi (t)− Pi (t)e‖

=
∥
∥
∥
∥
∥

di (t)+
∏

k

p(k)ik
− eµT di (t)− eµT

∏

k

p(k)ik

∥
∥
∥
∥
∥

≤ 2 ‖di (t)‖ +
∥
∥
∥
∥
∥

∏

k

p(k)ik
− eµT

∏

k

p(k)ik

∥
∥
∥
∥
∥
, (3.31)

where we have used
∥
∥eµT

∥
∥ ≤ 1. Using (3.9) and expanding, we get

∏

k

p(k)ik
− eµT

∏

k

p(k)ik

=
∏

k

(
q(k)ik

+ P(k)ik
e
)

− eµT
∏

k

(
q(k)ik

+ P(k)ik
e
)

=
∑

K:K 	=∅

(
∏

k∈K

q(k)ik
◦

(
P̃(N)iN

e
)
)

+ P̃i e

− eµT

⎡

⎣
∑

K:K 	=∅

(
∏

k∈K

q(k)ik
◦

(
P̃(N)iN

e
)
)

+ P̃i e

⎤

⎦

=
∑

K:K 	=∅

(

P̃(N)iN

∏

k∈K

q(k)ik

)

− eµT

⎡

⎣
∑

K:K 	=∅

(

P̃(N)iN

∏

k∈K

q(k)ik

)⎤

⎦, (3.32)

where
∑

K:K 	=∅ runs over all nonempty subsets of L, N = L\K, and P̃(N)iN
= 1 if

N = ∅. From (3.32), P(k)ik
≤ 1, and (3.10), we obtain

∥
∥
∥
∥
∥

∏

k

p(k)ik
(t)− eµT

∏

k

p(k)ik
(t)

∥
∥
∥
∥
∥

≤ 2
∑

K:K 	=∅

∏

k∈K

∥
∥
∥q(k)ik

(t)
∥
∥
∥

≤ 2
∑

K:K 	=∅

∏

k∈K

(
a(k)ik

κ t
)

≤ aiκ
t (3.33)

for some constant ai . Therefore, employing (3.29) and (3.33), (3.31) yields

‖qi (t)‖ ≤ 2Biλ
t + aiκ

t ≤ (2Bi + ai )λ
t .

Hence

q(t) → 0 as t → ∞ at the geometric rate λ. (3.34)

This finishes the proof of Theorem 3.1. ��
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Remark 3.4 If, as is generically the case, the nonunit eigenvalue of M of largest
modulus, λ1, is simple and |λ1| 	= 1 − cmin, then the rate of convergence to 	0 is
λ = max(|λ1| , 1 − cmin). Otherwise, any λ with max(|λ1| , 1 − cmin) < λ < 1 can be
chosen.

4 Strong migration

We assume that migration is strong, whereas other evolutionary forces may be weak.
The most interesting case arises if migration and recombination are both strong and
selection is weak. We treat it first. In Sect. 4.1.1, we prove that all trajectories converge
to an invariant manifold 	ε close to 	0 (3.14) on which there is linkage equilibrium
and allele frequencies are deme independent. On	ε , the dynamics can be described by
a small perturbation of a system that has a Lyapunov function. In particular, this implies
that all trajectories converge, i.e., no cycling can occur, and the equilibrium structure
can be inferred. As an application, we study the increase of mean fitness in Sect. 4.1.2.
A further application, the maintenance of polymorphism under strong migration, is
treated in the subsequent paper. The second case, investigated in Sect. 4.2, is that of
weak selection and weak recombination. Then, the limiting dynamics is equivalent to
that of a panmictic population under selection and recombination. Since, in general,
the latter admits richer dynamics and is not fully understood, only weaker conclusions
can be drawn.

Throughout this section, we assume (E), i.e., the backward migration matrix is
ergodic.

4.1 Weak selection

To investigate weak selection we follow Nagylaki et al. [45], Sect. 3, and set

wi j,α = 1 + εri j,α, (4.1)

where ε ≥ 0 is sufficiently small and
∣
∣ri j

∣
∣ ≤ 1. We assume fixed migration and

recombination rates, mαβ and cK, so that fitness differences are small compared with
them. From (2.6) and (4.1), we deduce

wi,α(p(α)) = 1 + εri,α(p(α)), w̄α(p(α)) = 1 + εr̄α(p(α)), (4.2)

in which

ri,α(p(α)) =
∑

j

ri j,α p j,α, r̄α(p(α)) =
∑

i, j

ri j,α pi,α p j,α. (4.3)

4.1.1 Equilibrium structure and convergence

When selection is dominated by migration and recombination, we expect that linkage
disequilibria within demes as well as gamete- and gene-frequency differences between
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demes decay rapidly to small quantities. In particular, we expect approximately pan-
mictic evolution of suitably averaged gamete frequencies in quasi-linkage equilibrium.
We also show that all trajectories converge to an equilibrium point, i.e., no complicated
dynamics, such as cycling, can occur. In the absence of migration, this was proved
by Nagylaki et al. [45] (Theorem 3.1). For a single locus under selection and strong
migration, this is the content of Theorem 4.5 in Nagylaki and Lou [48]. The following
Theorem 4.3 and its proof combine and extend these results as well as the underlying
ideas and methods.

To formulate and prove this theorem, we define the vector

ρα =
(

p(1)1,α, . . . , p(1)I1,α
, . . . , p(L)1,α , . . . , p(L)IL ,α

)T ∈ �I1 × · · · ×�IL (4.4)

of all allele frequencies at every locus in deme α, and the vector

π =
(

P(1)1 , . . . , P(1)I1
, . . . , P(L)1 , . . . , P(L)IL

)T ∈ �I1 × · · · ×�IL (4.5)

of all averaged allele frequencies at every locus. We note that in the presence of
selection the P(k)ik

, hence π , are time dependent. Instead of p, we will use π , D, and
q to analyze (2.8), and occasionally write p = (π, D, q).

On the linkage-equilibrium manifold�0,α (2.15), which is characterized by the ρα
(α ∈ G), the selection coefficients of gamete i , allele in at locus n, and of the entire
population are

ri,α(ρα) =
∑

j

ri j,α

∏

k

p(k)jk ,α
, (4.6a)

r (n)in ,α
(ρα) =

∑

i |in

ri,α(ρα)
∏

k:k 	=n

p(k)ik ,α
, (4.6b)

r̄α(ρα) =
∑

i

ri,α(ρα)
∏

k

p(k)ik
, (4.6c)

cf. (4.3). As in (2.18), let µ denote the principal left eigenvector of M . We introduce
the average selection coefficients of genotype i j , gamete i , allele in at locus n, and of
the entire population:

ωi j =
∑

α

µαri j,α, (4.7a)

ωi (π) =
∑

j

ωi j

∏

k

P(k)jk
=

∑

α

µαri,α(π), (4.7b)

ω
(n)
in
(π) =

∑

i |in

ωi (π)
∏

k 	=n

P(k)ik
=

∑

α

µαr (n)in ,α
(π), (4.7c)

ω̄(π) =
∑

i

ωi (π)
∏

k

P(k)ik
=

∑

α

µα r̄α(π). (4.7d)
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For ω̄, we obtain the alternative representations

ω̄(π) =
∑

n

∑

in

ω
(n)
in

P(n)in
(4.7e)

=
∑

i, j

ωi j

(
∏

n

P(n)in

) (
∏

k

P(k)jk

)

, (4.7f)

and

dω̄(π)

d P(n)in

= 2ω(n)in
(π). (4.8)

For reasons that will be justified by the following theorem, we call the differential
equation

d P(n)in

dt
= P(n)in

[
ω
(n)
in
(π)− ω̄(π)

]
, (4.9a)

D = 0, q = 0 (4.9b)

on ��I the weak-selection limit of (2.8). In view of the following theorem, it is more
convenient to consider (4.9a) and (4.9b) on ��I instead of (4.9a) on �I1 × · · · ×
�IL . The differential equation (4.9a) is a Svirezhev–Shashahani gradient ([7, p. 42],
[45, p. 16]) with potential function ω̄. In particular, ω̄ increases strictly along noncon-
stant solutions of (4.9a) because

dω̄

dt
= 2

∑

n

∑

in

P(n)in

[
ω
(n)
in
(π)− ω̄(π)

]2 ≥ 0. (4.10)

We shall also need the assumption:

All equilibria of (4.9a) are hyperbolic. (H.1)

Remark 4.1 An equilibrium of a system of differential equations is hyperbolic if the
Jacobian matrix at that equilibrium has no eigenvalues on the imaginary axis. For
systems of difference equations, hyperbolicity means that no eigenvalue has modulus
one. A hyperbolic equilibrium is always an equilibrium point, and in a compact set
there can be at most finitely many hyperbolic equilibria. Hyperbolicity is a generic
property for systems of the form (4.9a) (see [45, Appendix B]). We call a property
generic if it holds in an open dense set of full measure.

Remark 4.2 The proofs of the theorems below are based on the notion of a chain-
recurrent point [12]. Let X be a compact set with metric d and let f : X → X be a
continuous map. A point x ∈ X is called chain recurrent (with respect to f ) if, for
every δ > 0, there exists a finite sequence x0 = x , x1, . . . , xr−1, xr = x (often called
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a δ-pseudo-orbit) such that d( f (xm), xm+1) < δ for m = 0, 1, . . . , r − 1. The set of
chain-recurrent points contains the limit sets of all orbits. In contrast to these limit sets,
which need not change continuously under small perturbations (they can ‘explode’),
the set of chain-recurrent points has good properties under perturbations [3, p. 244].

Theorem 4.3 Suppose that (2.8), (4.1), (E) and (H.1) hold, the backward migration
matrix M and all recombination rates cK are fixed, and ε > 0 is sufficiently small.

(a) The set of equilibria�0 ⊂ ��I of (4.9) contains only isolated points, as does the
set of equilibria�ε ⊂ ��I of (2.8). As ε → 0, each equilibrium in�ε converges
to the corresponding equilibrium in �0.

(b) In the neighborhood of each equilibrium in �0, there exists exactly one equilib-
rium point in�ε . The stability of each equilibrium in�ε is the same as that of the
corresponding equilibrium in �0; i.e., each pair is either asymptotically stable
or unstable.

(c) Every solution p(t) of (2.8) converges to one of the equilibrium points in �ε .

Proof In view of Theorem 3.1 and the theory of normally hyperbolic manifolds
[18,27], for sufficiently small ε there exists a smooth invariant manifold 	ε close
to 	0, and 	ε is globally attracting at a geometric rate for (2.8) [45, p. 114]. The
manifold 	ε is characterized by an equation of the form

(D, q) = εψ(π, ε), (4.11)

where ψ is a smooth function of π . Thus, on 	ε , and more generally, for any initial
values, after a long time,

D(t) = O(ε) and q(t) = O(ε). (4.12a)

Plugging (4.1) into (2.13) shows that, for given p, linkage disequilibrium D in the
presence of selection differs from D in the absence of selection only by terms of order
ε. Therefore, (3.18) and (3.19) imply that D(t) = O(ε) is equivalent to

d(t) = O(ε), (4.12b)

where d =
(

dT
(1), . . . , dT

(�)

)T ∈ R
I� .

Next, we derive the recursion relations in an O(ε) neighborhood of 	0 which, in
particular, contains 	ε . Equation (3.10) in Nagylaki et al. [45] shows that in an O(ε)
neighborhood of 	0 we have

p(n)in ,α

# = p(n)in ,α
+ εp(n)in ,α

r (n)in ,α
(ρα)− r̄α(ρα)

w̄α(ρα)
+ O(ε2) (4.13)
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for every α ∈ G. From (4.6b) and (3.9), (4.7b) and (4.12a), and (4.7c), we obtain

∑

α

µαr (n)in ,α
(ρα) =

∑

α

∑

i |in

µαri,α(ρα)
∏

k:k 	=n

(
P(k)ik

+ q(k)ik ,α

)

=
∑

i |in

ωi (π)
∏

k:k 	=n

P(k)ik
+ O(ε)

= ω
(n)
in
(π)+ O(ε). (4.14)

Furthermore, (4.6c) and (3.9), as well as (4.7b), (4.7d), and (4.12a) yield

∑

α

µα r̄α(ρα) =
∑

α

∑

i

µαri,α(ρα)
∏

k

(
P(k)ik

+ q(k)ik ,α

)
= ω̄(π)+ O(ε). (4.15)

From (4.14), (4.15), and (4.2), we conclude

∑

α

µα
r (n)in ,α

(ρα)− r̄α(ρα)

w̄α(ρα)
= ω

(n)
in
(π)− ω̄(π)+ O(ε). (4.16)

Therefore, we obtain from (3.7); (2.9a); (2.18); (4.13) and (3.9); (3.7), (4.16) and
(4.12a):

P(n)in

′ = µT p(n)in

′ = µT M p(n)in

# = µT p(n)in

#

= µT p(n)in
+ ε

∑

α

µα

(
P(n)in

+ q(n)in ,α

) r (n)in ,α
(ρα)− r̄α(ρα)

w̄α(ρα)
+ O(ε2)

= P(n)in
+ εP(n)in

[
ω
(n)
in
(π)− ω̄(π)

]
+ O(ε2). (4.17)

The leading term in (4.17),

P(n)in

′ = P(n)in
+ εP(n)in

[
ω
(n)
in
(π)− ω̄(π)

]
, (4.18)

is the weak-selection approximation of (2.8). Because this is exactly the approximate
dynamics under panmixia, i.e., (3.6) in Nagylaki et al. [45], we have ω̄(π ′) > ω̄(π)

unless π ′ = π . In particular, the dynamics (4.18) on 	0 is gradient like.
Rescaling time t in generations as τ = εt , we see at least formally that as ε → 0,

the difference equation (4.17) approaches the differential equation (4.9a). Both have
the same equilibria. The latter is a Svirezhev–Shahsahani gradient [7, p. 42–43]. In
particular, (4.10) shows that ω̄ increases strictly along nonconstant solutions of (4.9a).
The eigenvalues ν of (4.9a) correspond to the eigenvalues 1 + εν + O(ε2) of (4.17).
Since (4.9a) is a gradient system, all eigenvalues of the Jacobian are real. As in Nagylaki
et al. [45] (p. 116, below their assumption H), it follows that (H.1) is equivalent to
the hypothesis that (4.17) has no equilibria with an eigenvalue 1, or to hyperbolicity
of equilibria of (4.18) for small ε.
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Now the proof of Theorem 3.1 in Nagylaki et al. [45] yields all statements of
Theorem 4.3 except the first in (b), where instead of ‘exactly one’ only ‘at most one’
follows because, in principle, the perturbed equilibrium may lie outside the simplex if
the unperturbed is unstable. It remains to show that this cannot happen in the present
case. The reason is that at every boundary equilibrium p̂ = (π̂, 0, 0) of (4.9), a
subset of alleles is absent from the population because P̂(n)in

= 0 implies p̂(n)in ,α
= 0

for every α. Of course, if P(n)in
= 0 for some n and in , then P(n)in

′ = 0 for any

migration, selection, or recombination scheme. Hence, the condition P̂(n)in
= 0 is

preserved under perturbations. Because all pairwise recombination rates are positive
and gamete frequencies are equalized among demes, the frequencies of exactly those
gametes are positive at equilibrium in one and, hence, every deme that carry none of
the absent alleles. The positive gamete frequencies can change under perturbations,
but will remain positive (and ≤ 1) under sufficiently small perturbations. Since the
proof of Theorem 3.1 in Nagylaki et al. [45] demonstrates that a unique perturbed
equilibrium exists in a small neighborhood of (π̂, 0, 0), it must be the one with the
same subset of alleles absent as at the unperturbed equilibrium, and with the positive
gamete frequencies slightly perturbed. Hence, it is again at the boundary of ��I . ��
Remark 4.4 For applications, the essence of the above theorem is that the exact dynam-
ics for weak selection can be perceived as a perturbation of the weak-selection limit.
This is much easier to study because of linkage equilibrium and deme-independent
allele frequencies. Under weak selection, the exact dynamics quickly leads to quasi-
linkage equilibrium and spatial quasi-homogeneity (cf. Remark 4.9).

Remark 4.5 (i) To apply the proof of Theorem 3.1 in Nagylaki et al. [45], the
references in [45] to Eqs. (3.6), (3.10), (3.13), and (3.14) have to be replaced by
references to the present equations (4.18), (4.17), (4.9a), and (4.10). Their (3.5)
is not needed here because it is equivalent to their (3.10), which corresponds to
our (4.17).

(ii) The proof of Theorem 3.1 in Nagylaki et al. [45] shows in particular that, for
sufficiently small ε, the number of chain-recurrent points of (4.9a) is finite.
It is this property which implies convergence of trajectories of the perturbed
dynamics (2.8); see [22] and Remark 3.1 in [45], which applies unaltered here.

(iii) Remark 3.4 in [45] suggests that the hyperbolicity condition (H.1) can be weak-
ened, i.e., it is sufficient to assume that if an eigenvalue 0 occurs at any equilib-
rium of (4.9a), it has algebraic multiplicity 1.

(iv) By assuming π − ρα = O(ε) for every α, Christiansen [10, p. 295], showed
that for multiple diallelic loci and weak selection, linkage disequilibria decay to
order O(ε).

Remark 4.6 We can easily estimate the time t̃1 required to reach (4.12a). By Remark 3.4
and because the rate of approach to	ε is of order λ+O(ε), we can take (λ+O(ε))t̃1 =
ε, so that (4.12a) holds for

t ≥ t̃1 = ln ε

ln(λ+ O(ε))
= ln ε

ln λ
+ O(ε) (4.19)
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(cf. [43] for multiple loci without migration; and [48] for a single locus with migration).
The time t̃1 is evolutionary short unless selection or migration are very weak or linkage
is very tight.

4.1.2 Increase of mean fitness

We study properties of mean fitness and generalize results of Nagylaki [43]
and Nagylaki et al. [45] for multiple loci without migration and of Nagylaki and
Lou [48] for a single locus with migration.

Remark 4.7 Suppose the assumptions of Theorem 4.3 apply. If (4.12a) holds and π
is bounded away from the equilibria of (4.9a), then �ω̄(π) = ω̄(π ′)− ω̄(π) > 0.

To prove this statement, we designate by ϕ ∈ R
(I1+···+IL ) the vector that has the

components P(n)in

[
ω
(n)
in
(π)− ω̄(π)

]
for all n and in . Further, we denote the scalar

product of two vectors y, z of the same length by 〈y, z〉 = ∑
j y j z j . Then, we obtain

from (4.17), Taylor’s theorem, and (for the last equality) (4.8) and (4.7e):

ω̄(π ′) = ω̄(π + εϕ + O(ε2))

= ω̄(π)+ ε〈ϕ,∇π ω̄(π)〉 + O(ε2)

= ω̄(π)+ ε
∑

n

∑

in

P(n)in

[
ω
(n)
in
(π)− ω̄(π)

] dω̄(π)

d P(n)in

+ O(ε2)

= ω̄(π)+ 2ε
∑

n

∑

in

P(n)in

[
ω
(n)
in
(π)− ω̄(π)

]2 + O(ε2). (4.20)

This implies ω̄(π ′) > ω̄(π) if π is bounded away from the equilibria and ε > 0 is
sufficiently small.

Next, we prove a deeper result for the average of the (exact) mean fitnesses over
demes:

w̄(p) =
∑

α

µαw̄α(p(α)). (4.21)

Theorem 4.8 Suppose the assumptions of Theorem 4.3 apply. If (4.12a) holds, π
is bounded away from the equilibria of (4.9a), and p is within O(ε2) of 	ε , then
�w̄(p) > 0.

Proof The proof is an adaptation of that in Remark 3.7 of Nagylaki et al. [45]; see also
Theorem 4.12 of Nagylaki and Lou [48]. First, we prove that our assumptions imply

(D′, q ′)− (D, q) = O(ε2). (4.22)

Writing the exact recursion for (D, q) as

(D′, q ′) = f (π, (D, q), ε), (4.23)
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where f is a smooth function of π and (D, q), we infer from (4.11) that

εψ(π ′, ε) = f (π, εψ(π, ε), ε). (4.24)

By assumption, we have

(D, q) = εψ(π, ε)+ O(ε2). (4.25)

Appealing successively to (4.23) and (4.25), Taylor’s theorem, (4.24), Taylor’s theorem
again and (4.17), and (4.11), we obtain

(D′, q ′) = f (π, εψ(π, ε)+ O(ε2), ε) = f (π, εψ(π, ε), ε)+ O(ε2)

= εψ(π ′, ε)+ O(ε2) = εψ(π, ε)+ O(ε2)

= (D, q)+ O(ε2),

which is precisely (4.22).
The averaged mean fitness can be written as

w̄(p) = 1 + εr̄(π, (D, q)), (4.26)

where r̄(π, (D, q)) = ∑
α µα r̄α(p(α)). On 	0 this gives, by employing (3.14), (4.3),

and (4.7d),

r̄(π, (0, 0)) =
∑

α

µα r̄α(π) = ω̄(π). (4.27)

Finally, we obtain by invoking successively (4.17) and (4.22), Taylor’s theorem,
again Taylor’s theorem and (4.11), (4.27) and (4.20),

r̄(π ′, (D′, q ′)) = r̄(π + εϕ + O(ε2), (D, q)+ O(ε2))

= r̄(π, (D, q))+ ε〈ϕ,∇π r̄(π, (D, q))〉 + O(ε2)

= r̄(π, (D, q))+ ε〈ϕ,∇π r̄(π, (0, 0))〉 + O(ε2)

= r̄(π, (D, q))+ 2ε
∑

n

∑

in

P(n)in

[
ω
(n)
in
(π)− ω̄(π)

]2 + O(ε2).

(4.28)

Therefore, the assertion of the theorem follows from (4.26). ��
Remark 4.9 Equation (4.22) shows that linkage disequilibria and the measure q of
spatial diversity change very slowly on 	ε . It justifies to call states on 	ε spatially
quasi-homogeneous and to be in quasi-linkage equilibrium.
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4.2 Weak selection and weak recombination

Here, we derive the strong-migration, weak-selection weak-recombination limit. In
addition to (4.1), we posit

cK = εγK, K ⊆ L, (4.29)

where ε ≥ 0 is sufficiently small and γK is defined by this relation. We assume
fixed mαβ and let ε → 0 in (4.1) and in (4.29). Then, migration is the only strong
evolutionary force, and selection and recombination are ‘equally’ weak.

In the absence of selection and recombination (ε = 0), the system (2.8) reduces to

p′
i = Mpi (4.30)

for every i ∈ I. Repeating the calculations that led from (3.6) to (3.10), we find P ′
i = Pi

and

q(t) → 0 (4.31)

as t → 0 at the geometric rate κ; cf. (2.20). In particular,

pi (t) → Pi (0)e, (4.32)

so that the gamete frequencies become deme independent.
Therefore, the manifold

�0 = {
p ∈ ��I : q = 0

}
(4.33)

is invariant under (4.30) and globally attracting at the uniform geometric rate κ . Fur-
thermore, every point on �0 is an equilibrium of (4.30).

For sufficiently small ε, there exists a smooth invariant manifold �ε close to �0,
and �ε is globally attracting at a geometric rate for (2.8) [45, p. 114]). The manifold
�ε is characterized by an equation of the form [45, p. 114]

q = εσ (P, ε), (4.34)

where σ is a smooth function of P . Thus, on �ε , and more generally for any initial
values after a long time,

q(t) = O(ε), (4.35)

i.e., on �ε the distribution of gamete frequencies is spatially quasi-homogeneous.
Next, we derive the recursion relations in an O(ε) neighborhood of �0 which, in

particular, contains �ε . Substituting (2.24a) and (4.34) into (4.3), we obtain

ri,α(p(α)) = ri,α(P)+ O(ε), r̄α(p(α)) = r̄α(P)+ O(ε). (4.36)
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Consequently, (4.2) yields

wi,α(p(α)) = 1 + εri,α(P)+ O(ε2), (4.37a)

w̄α(p(α)) = 1 + εr̄α(P)+ O(ε2). (4.37b)

For the linkage disequilibria we obtain from (2.13) by invoking (4.1), (4.29), and
(4.37b):

Di,α = 1

1 + O(ε)

∑

j

∑

K

εγK
{[1 + O(ε)]pi,α p j,α − [1 + O(ε)]piK jN,α p jKiN,α

}

= ε�i,α + O(ε2), (4.38)

where N = L\K and

�i,α =
∑

j

∑

K

γK(pi,α p j,α − piK jN,α p jKiN,α) =
∑

K

γK

(
pi,α − p(K)iK,α

p(N)iN,α

)
,

(4.39)

cf. (3.2). Inserting (4.37) and (4.38) into (2.9a) and using (2.14), we obtain

p′
i,α =

∑

β

mαβ

{
pi,β [1 + ε(ri,β(P)− r̄β(P))] − ε�i,β

} + O(ε2). (4.40)

We multiply (4.40) by µα , sum over α, use (2.23), (2.18), (2.24a), (4.38) and (4.39),
and, for the second equality, (4.35) to infer

P ′
i = Pi + ε

∑

β

µβ(Pi + qi,β)[ri,β(P)− r̄β(P)]

− ε
∑

K

γK

∑

β

µβ

[
pi,β −

(
P(K)iK

+ q(K)iK,β

) (
P(N)iN

+ q(N)iN,β

)]
+ O(ε2)

= Pi + εPi

∑

β

µβ [ri,β(P)− r̄β(P)] − ε
∑

K

γK

[
Pi − P(K)iK

P(N)iN

]
+ O(ε2),

(4.41)

where P(K)iK
= µT p(K)iK

and q(K)iK
is defined in analogy to (2.5b). In analogy to (4.7),

we define the average selection coefficients of gamete i and the entire population by

ωi (P) =
∑

j

ωi j Pj =
∑

α

µαri,α(P), (4.42a)

ω̄(P) =
∑

i, j

ωi j Pi Pj =
∑

α

µα r̄α(P). (4.42b)
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Setting

hi (P) = Pi [ωi (P)− ω̄(P)] +
∑

K

γK

(
Pi − P(K)iK

P(N)iN

)
, (4.43a)

(4.41) simplifies to

P ′
i = Pi + εhi (P)+ O(ε2). (4.43b)

Hence, we can express the strong-migration approximation in (4.43b) as

P ′ = P + εh(P), h = h(P) = (h1(P), . . . , hI (P))
T ∈ R

I . (4.44)

This is equivalent to the dynamics for panmixia with L recombining loci, fitnesses
1 + εωi j and recombination rates εγK. We note that (4.44) holds not only on �ε , but
also in an O(ε) neighborhood of �0 because in its derivation we used (4.35) rather
than (4.34).

If we scale time in generations as τ = εt , we see at least formally that as ε → 0,
the difference equation (4.43b) converges to the differential equation

d Pi

dτ
= hi (P) = Pi [ωi (P)− ω̄(P)] −

∑

K

γK

[
Pi − P(K)iK

P(N)iN

]
, (4.45a)

which we augment with

q = 0. (4.45b)

We call (4.45) the strong-migration limit of (2.8). Clearly, (4.44) and (4.45a) have the
same equilibria. The eigenvalues ν of (4.45a) correspond to the eigenvalues 1 + εν of
(4.44).

In general, it cannot be expected that the asymptotic behavior of solutions of (2.8)
under strong migration is governed by (4.45) because its chain-recurrent set does not
always consist of finitely many hyperbolic equilibria. Akin [1,2] proved that (4.45)
may exhibit stable cycling. Therefore, under strong migration and if selection and
recombination are about equally weak, convergence of trajectories of (2.8) will not
generally occur. The dynamics (4.43b) and (4.45) become simple, for instance, if
there is no epistasis (cf. [16,41,45]). Then, mean fitness is a Lyapunov function, all
equilibria are in linkage equilibrium, and a special case of Theorem 4.3, which does
not assume weak nonepistatic selection, is recovered.

Instead of Theorem 4.3, the following considerably weaker result can be proved.

Proposition 4.10 Suppose that (4.1), (4.29) and (E) hold, the backward migration
matrix M is fixed and ε > 0 is sufficiently small.

(a) Every solution p(t) of (2.8) converges to the manifold �ε given by (4.34), i.e.,
after a sufficiently long time gamete frequencies between demes differ by at most
O(ε).
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(b) In the neighborhood of each hyperbolic equilibrium of (4.45), there exists exactly
one equilibrium point of (2.8). The stability properties of the two equilibria are
the same.

Proof (a) has been shown above.
(b) follows from an adaptation of (part of) the proof of Theorem 3.1 in Nagylaki

et al. [45]. The estimates (4.41) and (4.43b) imply that (2.8) restricted to �ε ,
and expressed in the coordinates P ∈ �I , behaves like a first-order numerical
discretization procedure for the differential equation (4.45a), with step size ε,
whereas (4.44) is essentially the Euler scheme for (4.45a). By Corollary 2.3 of
Garay [21], which is an extension of the Hartman–Grobman theorem, there exists
a δ > 0 such that for sufficiently small ε, the recursion relation (4.41) has a single
hyperbolic fixed point as the only invariant set in the δ-neighborhood of each of
the equilibria of (4.45a). Unstable boundary equilibria cannot move out of the
simplex by the same reasoning as at the end of the proof of Theorem 4.3. ��

Remark 4.11 An argument as in Remark 4.6 shows that after an evolutionary short
time, t̃2, deviations from the manifold �0 are of order O(ε). After this time span,
the population evolves approximately as if it were panmictic. More precisely, let p(t)
denote a solution of the full dynamics (2.8) and let P(t) be a solution of the much
simpler strong-migration approximation (4.44) such that

Pi (t̃2) = µT pi (t̃2) (4.46)

for every i ∈ I. Then,

pi (t) = p̆i (t)+ O(ε), t̃2 ≤ t ≤ K1/ε, (4.47)

as ε → 0, where K1 denotes a constant and p̆i,α = Pi for every α ∈ G. The proof is
analogous to that of Eq. (53) in Nagylaki [43] and is omitted.

If P(t) does not convergence to some equilibrium point or if P(t̃2) is on the stable
manifold of an unstable equilibrium, the restriction t ≤ K1/ε may become necessary.

Remark 4.12 Assume (4.1) and (4.29), and let P(ε)(t) and P(τ ), where τ = εt , denote
solutions of (4.44) and (4.45), respectively, satisfying P(ε)(0) = P(0). Then, classical
results on numerical discretization show that there exists a constant K2 such that

P(τ ) = P(ε)(t)+ O(ε), 0 ≤ τ ≤ K2. (4.48)

Thus, the solutions remain close together for a time interval of length O(1), i.e., for
O(1/ε) generations. The reason is that the discretization (4.44) is the Euler method,
hence has consistency order one [15, Theorem 4.10 and Example 4.11]. Clearly, in
the range of attraction of an asymptotically stable equilibrium, these solutions remain
close together for all times.

Combining this remark with that above shows that after an evolutionary short time,
t̃2, solutions of (2.8) can be approximated by solutions of the strong-migration limit
(4.45) for an evolutionary long time.
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Similar remarks apply to the weak-selection approximation (4.18). There, however,
every solution converges to an equilibrium. Hence, the constraint t ≤ K2/ε is needed
only in the nongeneric case in which a solution is started on the stable manifold of an
unstable equilibrium.

4.3 Weak recombination

If recombination is weak relative to migration and selection, the limiting dynamics
becomes formally equivalent to a single-locus migration-selection model. Such models
have been treated in considerable detail by Nagylaki and Lou [46–49], and are not
further considered here.

5 Weak migration

The second interesting limiting case that admits a fairly general analytical study is
that of weak migration. Selection and recombination may be weak or strong. The
equilibrium structure as well as convergence of trajectories to an equilibrium point can
be established for strong recombination and selection if epistasis is weak (Sect. 5.2).
The limiting cases in which migration and selection are weak (Sect. 5.1) or when all
evolutionary forces are weak (Sect. 5.3) do, in general, not yield simple dynamics.
An application, the maintenance of multilocus polymorphism under weak migration,
weak epistasis, and in the absence of overdominance and underdominance will be
studied in the companion paper.

In the absence of migration, the dynamics (2.8) reduces to p′
i,α = p#

i,α , which can
be written in the form

p′
i,α = pi,α

wi,α

w̄α
− Di,α (5.1)

for every i ∈ I and every α ∈ G; see (2.14). Therefore, we have � decoupled
multilocus selection dynamics, one for each deme. For a single deme, (5.1) is well
known. Although many special cases have been studied, in part in considerable detail
(e.g., [7, Chapter 2]), no general results are available. In particular, trajectories of (5.1)
do not necessarily converge to an equilibrium. For two diallelic loci, the occurrence
of stable cycling in (5.1) has been established [26,28].

To investigate weak migration, we follow Nagylaki and Lou [48] and set

mαβ = δαβ + εaαβ, (5.2)

where ε ≥ 0 measures the strength of migration. Because M is a stochastic matrix,
we have

aαβ ≥ 0 for every β 	= α, and
∑

β

aαβ = 0 for every α. (5.3)

If ε = 0, there is no migration and the dynamics is given by (5.1). In this section, we
do not assume ergodicity (nor irreducibility) of the backward migration matrix M .
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Convergence of trajectories of (2.8) does occur under sufficiently weak migration
and arbitrary selection if every equilibrium of (5.1) is hyperbolic, whence there are only
finitely many equilibria, and the only chain-recurrent points of (5.1) are its equilibria.
This follows immediately from the results on the perturbation properties of chain-
recurrent sets [3, p. 244]. In general, however, it is difficult to characterize the set of
chain-recurrent points.

5.1 Weak selection

In the absence of migration and selection, the linkage-equilibrium manifold�0 (2.16)
is invariant and globally attracting at a uniform geometric rate (Remark 3.2(i) or
Theorem 3.1). For weak migration and selection, i.e., for sufficiently small ε, the
theory of normally hyperbolic manifolds [18,27] implies the existence of a smooth
invariant manifold�ε close to�0, which is globally attracting at a geometric rate for
(2.8) [45, p. 114]. The manifold �ε is characterized by an equation of the form

D = εζ(ρ, ε), (5.4)

where ζ is a smooth function of ρ. Thus, on �ε , and more generally, for any initial
values, after a long time,

D(t) = O(ε). (5.5)

It follows that on �ε , linkage disequilibria are of order ε and, in fact, change very
slowly, i.e., �D(t) = O(ε2); cf. [43] and (4.22). Therefore, �ε can be called the
quasi-linkage equilibrium manifold [45]. Clearly, �ε ⊇ 	ε ; cf. Remark 4.9.

From (2.9) and (2.14) we obtain by invoking (5.2) and (4.1):

p′
i,α= pi,α[1 + ε(ri,α − r̄α)] − Di,α+ε

∑

β

aαβ pi,β − ε
∑

β

aαβDi,β + O(ε2).

(5.6)

By summing (5.6) over all multi-indices i with in fixed and using
∑

i |in
Di,α = 0

[7, p. 72], we obtain in an O(ε) neighborhood of�0, in which r (n)in ,α
(p(α)) = r (n)in ,α

(ρα)+
O(ε) and r̄α(p(α)) = r̄α(ρα)+ O(ε) hold:

p(n)in ,α

′ = p(n)in ,α
+ εp(n)in ,α

[
r (n)in ,α

(ρα)− r̄α(ρα)
]

+ ε
∑

β

aαβ p(n)in ,β
+ O(ε2). (5.7)

Therefore, the limiting dynamics on ��I is given by

dp(n)in ,α

dt
= p(n)in ,α

[
r (n)in ,α

(ρα)− r̄α(ρα)
]

+
∑

β

aαβ p(n)in ,β
, (5.8a)

D = 0. (5.8b)
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Equation (5.8a) is formally equivalent to the slow evolution limit for a single locus in
Nagylaki and Lou [48, Eq. (2.20)].

In general, convergence of trajectories in (5.8a) does not occur. Akin (personal
communication) has established for three diallelic demes that Hopf bifurcations can
produce unstable limit cycles. This result precludes global convergence, though not
generic convergence. No general results concerning (5.8) are available. For some
special cases, such as two alleles or uniform selection in all demes, see [48,49].

The following result is proved in essentially the same way as Proposition 4.10.

Proposition 5.1 Suppose that (4.1) and (5.2) hold, the backward migration matrix
M and the recombination rates cK are fixed, and ε > 0 is sufficiently small.

(a) Every solution p(t) of (2.8) converges to the manifold �ε given by (5.4), i.e.,
after a sufficiently long time quasi-linkage equilibrium is approached.

(b) In the neighborhood of each hyperbolic, asymptotically stable equilibrium of
(4.45), there exists exactly one equilibrium point of (2.8), and it is asymptotically
stable. In the neighborhood of each hyperbolic, unstable internal equilibrium of
(4.45), there exists exactly one equilibrium point of (2.8), and it is unstable. In
the neighborhood of each hyperbolic, unstable boundary equilibrium of (4.45),
there exists at most one equilibrium point of (2.8), and if it exists, it is unstable.

Analogs of Remarks 4.11 and 4.12 apply.

5.2 Weak epistasis

If migration and epistasis are weak relative to recombination and additive selection,
then a much stronger result than Proposition 5.1 can be derived, namely Theorem 5.4. It
is a twofold generalization of Theorem 2.3 of Nagylaki et al. [45], in which convergence
of trajectories to equilibrium is proved in multilocus systems with weak epistasis. Here,
we not only extend their theorem to weak migration, but also formulate a ‘uniform’
version as explained below. We shall need this stronger result for our application on
the maintenance of polymorphism.

It will be convenient to collect fitness parameters in vectors. We write W = (wi j,α)

for the collection of fitnesses of every genotype in each deme and view it as a vector,
i.e., W ∈ R

I 2� . In the absence of position effects, its dimension is H�, where H =∏
n∈L

(In+1
2

)
. Similarly, we write S = (si j,α) for the vector of epistasis parameters

introduced below. S has the same length as W . Further, we need to assign additive
fitness components u(n)in jn ,α

> 0 to single-locus genotypes. We collect them in the

vector U = (u(n)in jn ,α
) of length J�, J = ∑

n∈L
(In+1

2

)
. Finally, we write A = (aαβ)

and consider it as a matrix of dimension � × �. We define

Sη = {S = (si j,α) : ∣
∣si j,α

∣
∣ ≤ η for every i , j , α}, (5.9a)

Mw,ε = {A = (aαβ) : A satisfies (5.3) and
∣
∣aαβ

∣
∣ ≤ ε for every α, β}, (5.9b)

U = {U = (u(n)in jn ,α
) : u(n)in jn ,α

> 0 for every n, in , jn , α}. (5.9c)
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To investigate weak migration and weak epistasis, we assume that the backward
migration matrix is of the form

M = I + A, (5.10)

where I is the � × � unity matrix and A ∈ Mw,ε , and

wi j,α =
∑

n

u(n)in jn ,α
+ si j,α, (5.11)

where U ∈ U, S ∈ Sη and η ≥ 0 measures the strength of epistasis. It is always
assumed that η is small enough so that wi j,α > 0. Throughout the following, we posit

η = η(ε), (5.12)

where η : [0, 1) → [0,∞) is C1 and satisfies η(0) = 0. Therefore, migration and
epistasis need not be ‘equally’ weak. In particular, the case η ≡ 0, i.e., no epistasis, is
included.

In the absence of migration and of epistasis (ε = η = 0), we have�w̄α ≥ 0 within
each deme, with equality if and only if

pi,α(wi,α − w̄α) = 0 for every i ∈ I. (5.13)

Let

Fα = {p(α) : pi,α(wi,α − w̄α) = 0 for every i ∈ I} ⊆ �I (5.14)

and let

F = F1 × · · · × F� ⊆ ��I (5.15)

be the cartesian product. We recall the definition of the linkage equilibrium manifold
�0 from (2.16).

Remark 5.2 Lemma 2.1 of Nagylaki et al. [45] implies that if ε = 0, then the equilibria
of (5.1) are exactly the points in F∩�0. Thus, in the absence of epistasis and migration,
p is an equilibrium point of (5.1) if and only if for every α ∈ G, p(α) is both a selection
equilibrium for each locus and is in linkage equilibrium.

We start by generalizing Lemma 2.2 of Nagylaki et al. [45].

Lemma 5.3 If ε = η = 0 in (5.2) and (5.11), then the only chain-recurrent points of
(5.1) are its equilibria.

Proof Lemma 2.2 of Nagylaki et al. [45] shows that in every deme, i.e., for every fixed
α, the only chain-recurrent points of (5.1) are its equilibria. Because, in the absence
of migration, the dynamics in the demes are decoupled, a point p is chain recurrent if
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and only if every p(α), α ∈ G, is chain recurrent for the dynamics restricted to deme
α. Therefore, and by Remark 5.2, the chain-recurrent points of the (full) dynamics
without migration are exactly the equilibria, F ∩�0. ��

In Nagylaki et al. [45], it was shown that for given U ∈ U and S ∈ S1, an ε0 exists
such every trajectory of (2.8) converges if W is given by wi j,α = ∑

n u(n)in jn ,α
+ εsi j,α ,

where 0 < ε < ε0. We observe that, infact, for given U ∈ U an ε > 0 exists such that
convergence of all trajectories occurs for every W satisfying (5.11) with S ∈ Sη(ε). We
shall need the following generic assumption (see [45, Appendix A], and Remark 4.1):

In the absence of epistasis, every equilibrium of (5.1) is hyperbolic. (H2)

Theorem 5.4 Suppose that (2.8) holds, U ∈ U is such that (H2) holds, all recombi-
nation rates cK are fixed, and ε > 0 is sufficiently small. Then, for every parameter
combination (W,M) satisfying (5.10), (5.11), and (5.12), the following holds:

(a) The set of equilibria �0 ⊂ ��I of (5.1) (with η = 0) contains only isolated
points, as does the set of equilibria �(W,M) ⊂ ��I of (2.8). As ε → 0 in (5.11),
each equilibrium in �(W,M) converges to the corresponding equilibrium in �0.

(b) In the neighborhood of each asymptotically stable equilibrium in�0, there exists
exactly one equilibrium point in �(W,M), and it is asymptotically stable. In the
neighborhood of each unstable internal equilibrium in �0, there exists exactly
one equilibrium point in�(W,M), and it is unstable. In the neighborhood of each
unstable boundary equilibrium in �0, there exists at most one equilibrium point
in �(W,M), and if it exists, it is unstable.

(c) Every solution p(t) of (2.8) converges to one of the equilibrium points in�(W,M).

Proof By referring in the proof of Theorem 2.3 in Nagylaki et al. [45] to the above
Lemma 5.3 instead of their Lemma 2.2, their proof of Theorem 2.3 applies unaltered
because (5.10) together with (5.11) yields a small C1 perturbation of the dynamics
with ε = η = 0. (Corollary 32 in [3] does not assume that the perturbation is caused
by a single parameter. It holds for arbitrary, small C1 perturbations.) ��
Remark 5.5 (i) Parts (a) and (b) of the above theorem follow immediately from

Theorem 4.4 of [33] which, essentially, is an application of the implicit function
theorem. Part (c) is much stronger and relies, among others, on the notion of
chain-recurrent points and their properties under perturbations of the dynamics.
The reason is that hyperbolicity of all equilibria does not exclude the existence
of limit cycles or of more complicated dynamics; cf. Remark 4.2.

(ii) In contrast to the case of weak selection (Theorem 4.3), unstable boundary
equilibria can leave the state space under weak migration [32]. For an explicit
example in a single-locus setting, see [48, Remark 4.2].

(iii) For the relation between Theorem 4.3 and Theorem 5.4, in particular, the dif-
ferent kinds of perturbations involved, we refer to Remark 3.3 in Nagylaki
et al. [45].

(iv) If ε = 0, then all equilibria are in �0, i.e., there is linkage equilibrium within
each deme, but not between demes. If ε > 0 is sufficiently small, then there is
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weak linkage disequilibrium within each deme, i.e., Di,α = O(ε) for every i
and every α; cf. Remark 2.3 in Nagylaki et al. [45].

5.3 Weak evolutionary forces

Finally, one can also consider the case when all evolutionary forces are weak, i.e.,
ε → 0 in (4.1), (4.29), and (5.2). Then the limiting dynamics on ��I becomes

dpi,α

dt
= pi,α[ri,α(p(α))− r̄α(p(α))] −�i,α +

∑

β

aαβ pi,α, (5.16)

with �iα as in (4.39). Hence, selection, recombination, and migration are decoupled,
and (5.16) may be viewed as the continuous-time version of (2.8). The dynamics
(5.16) is neither fully understood if migration is absent nor if linkage disequilibria
vanish.

Remark 5.6 If (5.16) is viewed as the continuous-time version of (2.8), then analogs
of Theorem 4.3, Proposition 4.10, Proposition 5.1, and Theorem 5.4 apply. The proofs
of the analogs of Theorem 4.3 and Proposition 4.10 are conceptually much easier
because they do not require the reference to discretization procedures.
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Appendix

Table 1 Glossary of symbols. For both the Roman and Greek alphabets, uppercase letters precede lower
case ones. For each uppercase or lowercase letter, listing is in order of appearance of the definition in the
text. The references are to the equation closest to the definition of each symbol. Thus, (2.1), (2.1)+, (2.1)−
refers to Eq. 2.1, the text below Eq. 2.1, the text above Eq. 2.1, respectively. Symbols that occur only in a
single paragraph are not included

Symbol Reference Definition

A(n)
in ,α

(2.1)− Allele in at locus n

A(K)iK,α
(3.25) Constant

Ai (3.28) Constant

A (5.9)− Backward migration matrix with entries aαβ

a(k)ik
(3.10) Constant

ai (3.33) Constant

aαβ (5.2) Backward migration rates

Bi (3.29) Constant
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Table 1 continued

Symbol Reference Definition

b(K)iK
(3.21) Constant

cK (2.10)− Frequency of reassociation of the genes at the loci in K, inherited
from one parent, with the genes at the loci in L\K, inherited from
the other

ctot (2.10) Total frequency of recombination

ckn (2.11) Recombination frequency between loci k and n with k < n

cmin (2.12) The smallest two-locus recombination rate

c(K)S (3.4)+ Frequency of reassociation of the genes at the loci in S, inherited
from one parent, with the genes at the loci in K\S, inherited from
the other

c(K ) (3.18)+ Frequency of a recombination event in K

c(K)min (3.26)+ Smallest two-locus recombination rate in K

Di,α (2.13) L-locus linkage disequilibrium in deme α

D(α) (2.2c)+ (D1,α, . . . , DI,α)
T ∈ R

I

Di (2.2c)+ (Di,1, . . . , Di,�)
T ∈ R

�

D (2.2c)+ Vector in R
I� with components Di,α

D(K)iK
(3.4) Vector in R

� of linkage disequilibria among all loci in K

di,α (3.15) L-locus linkage disequilibrium in deme α

d(K)iK,α
(3.16) Linkage disequilibrium in deme α among all loci in K

di (3.17)− (di,1, . . . , di,�)
T ∈ R

�

d(K)iK
(3.17) Vector in R

� of linkage disequilibria among all loci in K

d (4.12b)+ Vector in R
I� with components di,α

e (2.19) (1, . . . , 1)T ∈ R
�

Fα (5.14) Set of equilibria under selection

F (5.15) F1 × · · · × F�
G (2.1)− Set of all demes

g
(K)
iK

(3.19) Recombination function

gi (3.28)− Recombination function

H (5.9)− ∏
n∈L

(In+1
2

)

hi (4.43a) Selection function

h (4.44) Selection function

In (2.1)− Number of alleles at locus n

In (2.1)− Set of all alleles at locus n

I (2.1)− Set of all gametes

I (2.1)− Total number of gametes

in (2.1)− Allelic index at locus n

i (2.1)− Gametic index (i1, . . . , iL )

iK (2.4)+ Vector with components ik for every k ∈ K

J (5.9)− ∑
n∈L

(In+1
2

)
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Table 1 continued

Symbol Reference Definition

j (2.1)− Gametic index ( j1, . . . , jL )

k (2.1)− Locus index

K (2.10)− Subset of L

K1 (4.47) Constant

K2 (4.48) Constant

L (2.1)− Number of loci

L (2.1)− Set of all loci

Lkn (2.11)+ {K : k ∈ K and n ∈ N}
� (2.1)− Gametic index (�1, . . . , �L )

M (2.7)− Backward migration matrix

Mw,ε (5.9b) Set of migration matrices

mαβ (2.7)− Backward migration rate

N (2.10)− L\K, complement of K in L

n (2.1)− Locus index

O (4.12a) Order symbol

Pi (2.22) Average frequency of gamete i

P (2.22) (P1, . . . , PI )
T ∈ �I

P(k)ik
(3.7) Average frequency of allele A(k)

ik

P(K)iK
(4.41)+ µT p(K)iK

∈ R

P̃(K)iK
(3.13)

∏
k∈K P(k)ik

∈ R

P̃i (3.13)
∏

k∈L P(k)ik
∈ R

pi,α (2.2a)− Frequency of gamete i in deme α

pi (2.2a) (pi,1, . . . , pi,�)
T ∈ R

�

p(α) (2.2b) (p1,α, . . . , pI,α)
T ∈ �I

p (2.2c) Vector in ��I with components pi,α

p(k)ik ,α
(2.3) Frequency of the allele A(k)

ik
in deme α

p(K)iK,α
(2.4) Gametic frequency for loci in K in deme α

p(k)ik
(2.5a)

(
p(k)ik ,1

, . . . , p(k)ik ,�

)T ∈ R
�

p(K)iK
(2.5b)

(
p(K)iK,1

, . . . , p(K)iK,�

)T ∈ R
�

qi,α (2.24a) pi,a − Pi

qi (2.24b) pi − Pi e ∈ R
�

q(α) (2.24c) p(α) − P ∈ R
I

q (2.24d) Vector in R
I� with components qi,α

q(k)ik
(3.9)−

(
q(k)ik ,1

, . . . , q(k)ik ,�

)T ∈ R
�

q(K)iK
(4.41)+

(
q(K)iK,1

, . . . , q(K)iK,�

)T ∈ R
�

R
I (2.1) I -dimensional Euclidean space

Ri, j� (2.8c)+ Probability that haplotypes j and � produce gamete i by
recombination
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Table 1 continued

Symbol Reference Definition

ri j,α (4.1) Selection coefficient of genotype i j in deme α

ri,α(p(α)) (4.3) Selection coefficient of gamete i in deme α

r̄α(p(α)) (4.3) Mean selection coefficient in deme α

ri,α(ρα) (4.6a) Selection coefficient of gamete i in deme α

r (n)in ,α
(ρα) (4.6b) Selection coefficient of allele A(n)

in
in deme α

r̄α(ρα) (4.6c) Mean selection coefficient in deme α

r̄ (4.26)+ Average mean selection coefficient

r (n)in ,α
(p(α)) (5.7)− Selection coefficient of allele A(n)

in
in deme α

r̄α(p(α)) (5.7)− Mean selection coefficient in deme α

S (3.4)+ Subset of K

S (5.9)− Vector in R
I 2� holding the epistasis parameters ri j,α

Sη (5.9a) Set of epistasis parameters

si j,α (5.11) Epistasis parameters

T (3.4)+ K\S, complement of S in K

t (2.2)− Time in generations

t̃1 (4.19) Characteristic time to reach quasi-linkage equilibrium and spatial
quasi-homogeneity

t̃2 (4.46)− Characteristic time to reach an O(ε) neighborhood of �0

U (5.9)− Vector in RJ� of additive fitness components u(n)in jn ,α

U (5.9c) Set of vectors U

u(n)in jn ,α
(5.11) Additive fitness components

W (5.9)− Vector in RI 2� of fitnesses wi j,α

wi j,α (2.5b)+ Fitness of genotype i j in deme α

wi,α (2.6a) Marginal fitness of gamete i in deme α

w̄α (2.6b) Mean fitness in deme α

w̄ (4.21) Average mean fitness

xi j,α (2.5b)+ Frequency of genotype i j in deme α

y (2.22)+ Vector in R
�

z (2.19)− Vector in R
�

α (2.1)− Deme index

β (2.1)− Deme index

� (2.1)− Number of demes

γK (4.29) Scaled recombination rate

�I (2.1) Simplex in R
I

��I (2.1)+ (�I )
�

ε (4.1) Small non-negative parameter

η (5.12) Smooth non-negative function of ε (or its value)

�i,α (4.39) L-locus linkage disequilibrium in demeα in the absence of selection

κ (2.20) Number satisfying |λ1| ≤ κ < 1
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Table 1 continued

Symbol Reference Definition

�0,α (2.15) Linkage-equilibrium manifold for deme α

�0 (2.16) Linkage-equilibrium manifold

�ε (5.4)− Quasi-linkage-equilibrium manifold

λ1 (2.19)+ Nonunit eigenvalue of M with largest modulus

λK (3.24) max(κ, χK)

λK (3.26) max(κ, 1 − c(K)min)

λ (3.27) max (κ, 1 − cmin)

µ (2.18) Principal left eigenvector of M

�0 (4.33) Invariant manifold under pure migration

�ε (4.34)− Invariant manifold under weak selection, weak recombination, and
migration

π (4.5) Vector of averaged allele frequencies

ρα (4.4) Vector of allele frequencies in deme α

�0 (5.15)+ Set of all equilibria of (5.1) with η = 0

�(W,M) (5.15)+ Set of all equilibria of (2.8) under weak migration and weak epistasis

τ (4.18)+ Scaled time

�0 (4.11)− Set of all equilibria of (4.9)

�ε (4.11)− Set of all equilibria of (2.8) under weak selection

χK (3.20)+ Probability that there is no recombination event in K

	0 (3.14) Invariant manifold under recombination and migration

	ε (4.11) Invariant manifold under recombination, migration and weak
selection

ψ (4.11) Function characterizing 	ε

ωi j (4.7a) Average selection coefficient of genotype i j

ωi (π) (4.7b) Average selection coefficient of gamete i on 	0

ω
(n)
in
(π) (4.7c) Average selection coefficient of allele A(n)

in
on 	0

ω̄(π) (4.7d) Average mean selection coefficient on 	0

ωi (P) (4.42a) Average selection coefficient of gamete i on �0

ω̄(P) (4.42b) Average mean selection coefficient on �0

T (2.2a)− Transposition of a vector
∗ (2.8a) Value of quantity after selection
∗∗ (2.8b) Value of quantity after selection and migration
′ (2.8c) Value of quantity in next generation
# (2.9b) Value of quantity after selection and recombination

ˆ (4.18)+ Indicates an equilibrium value

◦ (2.21) Schur product of vectors
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