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Abstract The stochastic versus deterministic solution of the Seidel–Herzel model
describing the baroreceptor control loop (which regulates the short-time heart rate)
are compared with the aim of exploring the heart rate variability. The deterministic
model solutions are known to bifurcate from the stable to sustained oscillatory solu-
tions if time delays in transfer of signals by sympathetic nervous system to the heart
and vasculature are changed. Oscillations in the heart rate and blood pressure are
physiologically crucial since they are recognized as Mayer waves. We test the role of
delays of the sympathetic stimulation in reconstruction of the known features of the
heart rate. It appears that realistic histograms and return plots are attainable if sympa-
thetic time delays are stochastically perturbed, namely, we consider a perturbation by
a white noise. Moreover, in the case of stochastic model the bifurcation points vanish
and Mayer oscillations in heart period and blood pressure are observed for whole
considered space of sympathetic time delays.
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1 Introduction

Complex rhythmic processes are typical for living organisms [1]. The human cardio-
vascular system is a paradigmatic source of the fundamental physiological rhythm—
the heart rate, and is controlled by several neural and hormonal mechanisms. Blood
pressure and electrocardiogram (ECG) are the easiest signals to measure from the
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cardiovascular system. The continuous ECG can be transformed into a discrete signal
of normal beat-to-beat cardiac periods, called NN-intervals. It has been demonstrated
that NN-intervals fluctuate in a complex manner: they show the long-range temporal
autocorrelations [2,3], multifractal scaling properties [4,5], and share characteristics
of a physical system in a critical state [6].

The variation in NN series is termed heart rate variability (HRV). It has been
shown that HRV represents the most promising marker in recognizing the relationship
between the autonomic nervous system and the cardiovascular mortality [7–9]. The
heart rate can be increased by slowly acting sympathetic activity or decreased by fast
acting parasympathetic (vagal) activity. The balance between the effects of sympathetic
and parasympathetic nervous systems—the two parts of the autonomic nervous system,
is believed to be reflected in the beat-to-beat changes of the fundamental cardiac cycle.

Respiratory sinus arrhythmia (RSA) is the name of the heart rate modulation due
to the parasympathetic activity which is related to the respiratory cycle. RSA is cha-
racterized by the frequency around 0.25 Hz.

The source of frequency oscillations about 0.1 Hz present in the heart rate and the
blood pressure (so-called Mayer waves) is still debated on (see [9,10] for discussion
and references). The most accepted theory suggests that these waves are caused by the
delayed feedback control of the blood pressure through baroreflex. In general, physio-
logical role of baroreflex is to monitor and regulate the blood pressure and ultimately
maintain circulation to brain and other organs [11]. There are strong clinical links bet-
ween the sympathetic activity and the Mayer waves—if sympathetic activity is chemi-
cally blocked, Mayer waves are significantly reduced or completely eliminated [12].

The NN interval series are the source of information about the underlying mecha-
nisms behind the human cardiovascular system. Recently, the concept of synchroniza-
tion has been exploited for the purpose of identifying the interdependencies between
coupled subsystems. Synchronization phenomenon is a process of adjustment of oscil-
lators due to mutual interactions, see [13] for an introduction. Although the interaction
between the respiratory and the cardiac rhythm is rather weak, the synchronization
between these rhythms has been demonstrated [14–21]. However, in order to verify
and analyze the synchronization of this sort, there is a need of accessing to the system’s
parameters [22], and hence the corresponding models are required.

Living systems are becoming increasingly accessible to modeling. The so-called
open loop conditions, where parts of the control system are studied in isolation, contri-
buted to a better understanding of the physiology of cardiac control. A vast number
of mathematical models of short-term pressure control system has emerged as the
result of this approach. The other approach for modeling is by recovering nonlinear
dynamics directly from the time series [23,24]. The fundamental hypothesis under-
lying mathematical modeling of HRV is that the changes in the cardiac rhythm can be
associated with bifurcations in the model [1]. Bifurcations in a real-life system can be
understood as, for instance, shifting the unhealthy rhythms into the normal one due to
applied drugs.

A popular model for HRV was proposed by DeBoer et al. [25]. In this model the
blood pressure, respiration, peripheral resistance and the cardiac interbeat intervals
are represented by a simple beat-to-beat relations. Within this model the oscillations
similar to Mayer waves appear due to the delay in the sympathetic control loop of
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the baroreflex. Abbiw–Jackson et al. [26] proposed a model in which the main factor
leading to oscillations is the increase of baroreflex feedback amplitudes (gains). Eyal
et al. [27] studied simplified linearized version of DeBoer model. They found that the
increase of sympathetic gain or the decrease of vagal gain parameters leads via Hopf
bifurcation to sustained oscillations. Ottesen [28] modeled chronotropic (heart rate
regulation) and inotropic (contractility of ventricle regulation) parts of the baroreflex-
feedback mechanism. The system can switch between being stable and oscillatory
following the changes in the sympathetic time delay. The role of delays times and
gains within the extension of the Ottesen model was investigated by Fowler et al. to
explain the relation between decreasing gains and aging [29]. In the model proposed
by Ursino et al. [30] the combination of increases in gains and delays is required to
induce instability.

The idea of Seidel and Herzel proposition (SH model), is based on including the
internal dynamics of one heartbeat [31]. It is achieved by introducing a phase of
the sinus node (the first pacemaker of the heart) and then considering the sensitivity of
the sinus node phase change to the autonomic neurotransmitter kinetics and the vascu-
lar dynamics. An increase of the delays in conveying of sympathetic nervous system
signals leads via Hopf bifurcation to the heart rate oscillations [32]. These oscillations
are interpreted as Mayer waves. Recently this approach was used in modeling the
complex phenomena related to heart dynamics, such as synchronization between the
respiration and the heart rate [33] or the presence of 1/ f fluctuations in the interbeat
interval signals. Also some autonomic nervous system dysfunctions were simulated
by manipulation of the parameters of SH model [34].

It is known that the cardiovascular signals behave deterministically, but the noise of
various origins is one of their inherent properties [1,35,36]. The basic neurotransmitter
of the sympathetic nervous system—noradrenaline, is distributed to the heart and
vessels via the diffusion. Therefore this process should be represented by a slow
dynamics dependent on a stochastic process. Moreover, sympathetic time delays play
a special role in the system—they are the bifurcation parameters. Depending on the
delays values the SH model solution can be a fixed point or can exhibit sustained
oscillations. Therefore it is interesting how the solution changes if stochastically driven
delays in signal transfer are considered—this is the central aim of the present work.
We demonstrate that the heartbeat intervals—solutions of SH model with stochastic
delays provide NN series with PDFs that are closer to real-life series and exhibit low
frequency modulations (Mayer waves) independently of the mean values of delays.
We focus our interest on the bifurcation regime. This regime demands careful dealing
with model parameters. For that reason we present and discuss the basic model in
detail.

We start with the introducing of HRV measures (Sect. 2), then we present the
SH model (Sect. 3). We give also the basic underlying physiological reasoning
behind the mathematical relations. In Sect. 4 we show the solution obtained for
the representative parameter settings and discuss the influence of the presence of
respiratory oscillations. Next, we present the stability diagrams obtained when the
delays in the transmission of sympathetic activity change (Sect. 5), and finally, in
Sect. 6 we observe the changes that occur when the delays are perturbed by a
noise.
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2 The HRV analysis

Before we move on to the theoretical study, we want to present the methods of HRV
analysis, which we use in order to compare numerical results to the real-life NN
data. HRV can be analyzed in different ways [7]: time domain, frequency domain and
nonlinear methods are used. One of them (within the so-called geometrical methods
of the time domain) converts NN intervals into the sample probability distribution
function (PDF) of NN intervals. Then for example, the width of the histogram at a
specific height is converted into the measure of HRV or/and its geometric shape is
classified into several pattern-base categories (e.g., triangular-like shape is used in
clinical practice).

The nonlinear method of HRV analysis applied in this paper is the Poincaré plot.
It is a diagram in which each NN interval is plotted as a function of the previous
one. A plot of this sort provides a graphical presentation of the correlation between
consecutive RR intervals. Woo [37] classified qualitatively shapes of Poincaré plot of
RR series, which characterize the degree of the signal complexity.

The real physiological data were collected and prepared in the Medical Academy of
Gdańsk [38]. For each person the 24-hour ECG Holter monitoring was performed. The
24-h ECG Holter signals are annotated to extract normal RR signals. The group chosen
to analyze consists of 15 healthy individuals without a history of any cardiovascular
disease, with both echocardiogram and electrocardiogram in the normal range. The left
ventricle ejection fraction was normal. From each signal the 5-h continuous diurnal
subset was extracted in order to obtain a stationary series.

The exemplary histograms obtained for the real-life data are presented in Fig. 1,
and the Poincaré plots in Fig. 2.

3 SH model

SH model provides empirical relations between different mechanisms involved in the
baroreceptor-cardiac reflex. The arguments behind these relations are strongly physio-
logically grounded; [32] brings a detailed discussion. It could be instructive to learn
about modeling of the physiology of the human cardiovascular control system from
[32,28], here however we present a simplified summary to give the background for
understanding the role played by parameters in the considered model. For a syste-
matic description of the cardiovascular system and its control we refer to [8–10] and
references therein.

The arterial baroreflex can be considered to be a feedback control system because
it maintains mean arterial pressure near the target value using the set of sensors and
effectors, see Fig. 3 for the visualization of relationships between the variables. The
sensors are arterial baroreceptors—nerve fiber endings in arterial walls, which are
sensitive to the arterial blood pressure. The rate at which the blood pressure changes:

— baroreceptor activity vb:

vb = k1(p − p(0)) + k2
dp

dt
(1)
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Fig. 1 The examples of probability density functions (PDF) of the NN series obtained for healthy subjects
during daily activity. See text for detailed description of the data. The bin of the histogram is equal to 8 ms,
the log scale is applied to the PDF axis
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Fig. 2 Examples of Poincaré plot for the same healthy subjects as in Fig. 1
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Fig. 3 The scheme of SH model of the baroreceptor control loop. Arrows depict relations between variables

(p—blood pressure; k1 = 0.02 mmHg−1, k2 = 0.00125 s mmHg−1, p(0) =
50 mmHg—parameters)

When blood pressure rises the baroreceptors fire more signals into the medulla
in the brain. Usually the medulla responds by sending signals along the sympathetic
system (an inhibiting signal) and the parasympathetic system (an activating signal).
Moreover, the activity of both subsystems is modulated by respiration:

— sympathetic activity vs :

vs = max(0, v(0)
s − kb

s vb + kr
s | sin(π fr t + �φr

s )|) (2)

( fr = 0.2s−1—respiratory frequency; v
(0)
s = 0.8, kb

s = 0.7, kr
s = 0.1,�φr

s =
0.0—parameters)

— parasympathetic activity vp:

vp = max(0, v(0)
p + kb

pvb + kr
p| sin(π fr t + �φr

p)|) (3)

( fr —respiratory frequency; v
(0)
p = 0.0, kb

p = 0.3, kr
p = 0.1,�φr

p = 0.0—
parameters)

The parasympathetic system is relatively fast-acting, the heart rate is generally
reduced within a time interval smaller than the time between the heart beats. Conver-
sely, the heart rate increases in response to the sympathetic signals via much slower
action—the diffusion of chemicals noradrenaline (Na) called also norepinephrine.
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There are delays of 2–5 s before the sympathetic impulse takes effect in changing the
cardiac concentration of Na:

— cardiac concentration of sympathetic transmitter ccNa :

dccNa

dt
= −ccNa

τcNa
+ ks

ccNa
vs(t − θcNa) (4)

(τcNa = 2.0s, ks
ccNa

= 1.2—parameters, θcNa—time delay)

In the absence of the feedback from the autonomic nervous system the heart is
known to continue beating spontaneously at a rate set by firing of the sino-atrial node.
This intrinsically controlled behavior is described in the model by the idea of the sinus
node phase φ.

In the absence of the baroreflex control the phase is assumed to grow linearly up
to the threshold value 1 after which abruptly switches to 0 (integrate-and-fire model)
[39]. Hence, a heart beat is generated each time the phase is reset to 0. The heart rate
is raised following the increase in the concentration of Na and conversely is reduced
with the increase of the vagal activity. In addition, the action of the vagal system to
the heart rate depends on the phase of the heart cycle. To simulate this dependence a
concept of a phase-effectiveness curve is introduced:

— phase effectiveness curve F:

F(ϕ) = ϕ1.3(ϕ − 0.45)
(1 − ϕ)3

(1 − 0.8)3 + (1 − ϕ)3 (5)

Moreover the saturation property of a physiological signal x(t) is simulated by a
sigmoidal function as follows:

x(t) −→x0,y0 x̃ [x(t); x0, y0] = x(t) + (x0 − x(t))
x(t)y0

x y0
0 + x(t)y0

(6)

where x0, y0 are parameters which are characteristic for a given signal saturation.
Then the change of the sinus node phase is modeled as follows:

— sinus node phase ϕ:
dϕ

dt
= 1

T (0)
fs(t) f p(t) (7)

( fs, f p—sympathetic and parasympathetic influences; T (0) = 1.1 s—parameter)
— sympathetic influence on the phase velocity of the sinus node:

fs(t) = 1 + kcNa
ϕ c̃cNa[ccNa(t); ĉcNa, ncNa] (8)

(kcNa
ϕ = 1.6, ĉcNa = 2.0, ncNa = 2.0—parameters)
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— parasympathetic influence on the phase velocity of the sinus node:

f p = 1 − k p
ϕ ṽp[vp(t − θp); v̂p, n p]F(ϕ) (9)

(vp(t−θp)—delayed parasympathetic activity, F(ϕ)—phase effectiveness curve,
k p
ϕ = 5.8, v̂p = 2.5, n p = 2.0—parameters)

The cardiac concentration of Na influences the heart contractility—the strength with
which the blood is pumped into vessels:

— cardiac contractility S′
i :

S′
i = S(0) + kc

SccNa + kt
STi−1 (10)

(Ti−1—duration of the previous heart period; S(0) = 25 mmHg, kc
S = 40 mmHg, kt

S =
10 mmHgs−1—parameters) then saturated:

Si = ˜S′
i [S′

i (t);̂S, nS] (11)

(̂S = 70 mmHg, nS = 2.5: parameters)
Arteries and capillaries resistance to flow is increased by the sympathetic activity

signals when signal rate increases. The vascular system is modeled by the Windkessel
model. The blood pressure decay during the diastole, described by the Windkessel time
constant, is modulated by the vascular noradrenaline concentration, which follows
sympathetic activity. Thus, the sympathetic activity enters the system via two ways:
directly to the heart and to the vessels. Each impact is delayed with its characteristics:

— Windkessel time constant τv:

τv = τ (0)
v − τv c̃vNa[cvNa(t); ĉvNa, nvNa] (12)

(τ (0)
v = 2.2s, τv = 1.2s, ĉvNa = 10.0, nvNa = 1.5—parameters)

— vascular concentration of sympathetic transmitter cvNa :

dcvNa

dt
= −cvNa

τvNa
+ ks

cvNa
vs(t − θvNa) (13)

(τvNa = 2.0s, ks
cvNa

= 1.2—parameters, θvNa—time delay)

Finally, the loop is closed by setting the changes in blood pressure:

— blood pressure during the systolic part of the heart cycle:

p = di−1 + Si
t − ti
τsys

exp

{

1 − t − ti
τsys

}

(14)

(di−1—diastolic pressure during the systolic part of the heart cycle, ti —time of
last contraction onset, τsys = 0.125 s—parameter)
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Fig. 4 The dependence of τv on cvNa : the case when ĉvNa = 10.0 and ĉvNa = 1.0

— blood pressure during the diastolic part of the heart cycle:

dp

dt
= − p

τv(t)
(15)

SH model modification:
(a) Figure 4 presents the dependence of τv—Windkessel time ‘constant’ on cvNa ,

which follows Eq. (12). Such dependence leads to negative τv . However, since τv is
responsible for the blood pressure decay in aorta during diastolic part of the heartbeat
cycle, see Eq. (15), it must be positive. Based on this we propose the following change
in the sigmoidal function parameter: let ĉvNa = 1.0 in place of ĉvNa = 10.0. This
change becomes important only in the case when delays θcNa , θvNa are greater than
3.0. The similar change was introduced in [34].

(b) Kotani et al. [33] modified the model to incorporate the baroreflex impact to the
respiratory synchronization and back to study the cardiorespiratory synchronization.

(c) The phase effectiveness curve F(ϕ) replaced by a constant was considered in
[31,34]. It has been observed that this change critically influences the stability of the
solution with respect to the coupling between baroreceptors and vagal nerves [31].

4 Numerical simulation of the model

The adapted Runge–Kutta method of fourth order with a constant step size (h = 0.001 s)
[40] is used. The ring buffers are introduced to store the history of sympathetic and
vagal activities. The first 500 s of the evolution are neglected as a transient time.
Then results are collected and analyzed. The results with parameters setting as in the
original Seidel–Herzel proposition are presented in Fig. 5. Subsequently, starting from
the top of Fig. 5, we show: (left panel with respiratory included, right panel without
respiratory)

– The blood pressure p which is characterized by a rapid increase during the systole,
and a gentle decrease during the diastole. Minimum (diastolic—about 80 mmHg)
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Fig. 5 Time series of the SH model basic variables: blood pressure p(t) (mmHg), baroreceptor activity
vb(t), parasympathetic activity vp(t − θp), cardiac sympathetic activity vs (t − θcNa), concentration of Na
in the heart ccNa(t), phase of sinus node φ(t) and the length of heart beat periods T (t) (s). Time delays
of sympathetic activity are constant and equal to each other �cNa = �vNa = 1.65s (a). The influence of
respiration can be seen in modulations of waveforms (RSA) (b). Time series when the respiratory modulation
of neural activities is neglected

and maximum (systolic—about 140 mmHg) values of this wave neatly reproduce
the physiological data.

– Baroreceptors activity vb is basically proportional to the blood pressure p. Hence
the waves in the first and the second panels are similar.

– The parasympathetic activity vp that affects the heart with a time delay θp is
shown. Due to this delay the oscillations of the activity are shifted in time. Since
transmission of the signal is fast, the delay can be assumed to be constant and
relatively small, i.e., θp = 0.5 s.

– The sympathetic system activity vs enters in the model with two delays: θcNa and
θvNa corresponding to its influence on the heart and vascular system, respectively.
Delays θcNa , θvNa represent the time intervals needed for the transmitters to trans-
fer the information by diffusion. The activity affecting the heart vs(t − θcN A) is
presented in the figure.

– The cardiac ccNa and the vascular cvNa Na concentrations take the same values if
the delays θcNa and θvNa are identical.

– The phase of the sinus node ϕ is plotted. This phase mimics heart beating (integrate-
and-fire model) and establishes the rhythm of the whole system. The intrinsic sinus
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Fig. 6 PDF of time series T(t) presented on Fig.5a. The histogram bin is 0.001 s and the log scale to
probability axis is applied. Time delays of sympathetic activity are constant and equal to each other �cNa =
�vNa = 1.65s

node period is T0 = 1.1 s but all variables of the model oscillate with a period about
0.8 s.

– The sequence of heart beat periods Ti , i.e., the time intervals between two conse-
cutive heart beats are presented.

Our numerical results are slightly different from the results presented in [31]. To
explain the difference let us observe that there is some inconsistency in the results
of [31]. For example, assuming that the baroreceptor activity vb takes values in the
interval [1, 2.6] as it is shown in [31], then following Eq. (3) the parasympathetic
activity vp should vary in the interval [0.4, 0.9], hence it cannot exceed 1 which is
what appears in Fig. 4 of [31].

The sympathetic and parasympathetic activities are influenced by the respiratory
neurons. This relation is represented by the sine function in Eqs. (2) and (3). The blood
pressure and heart period variation caused by the respiratory (RSA) is clearly visible
in the plots of Fig. 5a.

All system variables are modulated with the frequency of respiration desirable. But
the probability density function obtained from 2,500 beat-to-beat intervals shows,
see Fig. 6, that the extremal values for heart periods—the minimal about 0.68 s
and the maximal about 0.81 s, occur with a sharply peaked probability ten times
larger than the mean value. Hence, the respiratory modulation provides the HRV
which is far from properties of the real-life heart rate, see Fig. 1. RSA vanishes
when the sine function is replaced by its average value and hence the respiratory
modulation of the neural activities is neglected, see Fig. 5b. In our further simu-
lations we concentrate on interactions other than those between the heart and
respiration.
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5 Stability in SH model due to time delays

It is well known that a control system which exhibits powerful responses and contains
time delays can be unstable that means it can cause the oscillations of variables which
grow in an unbounded fashion [41,42]. Such unstable control system can nevertheless
produce sustained, constant amplitude oscillation if the feedback control contains the
nonlinear elements that limit the swing of the variables.

The occurrence of the sustained oscillation in the SH model solution depends on
the values of the delays representing the transfer time of sympathetic activity to the
heart θcNa and to the vasculature θvNa . The sustained oscillation with a significant
large amplitude emerges in the SH model solution for certain pairs of (θcNa , θvNa).
For other values of (θcNa , θvNa), it occurs that series of Ti oscillate with the frequency
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Fig. 7 The sustained oscillation solution in case when both delays are equal to �cNa = �vNa = 3 s. The
consecutive heart periods are not equal but oscillate with period ≈ 15 beats (upper figure). The attractor of
the system is the limit cycle consisting of 474 beats (bottom figure)
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Fig. 8 Bifurcation diagram if the delay in transmitting signals from the brain to the heart θcNa is increasing,
while the delay between the brain and the blood vessels is constant θvNa = 1.65 s. The bifurcation transition
shown here is considered in detail in the main text

about 0.1 Hz and the amplitude in the range of the integration step. To be precise, when
the integration step h changes, the amplitude of the oscillation changes accordingly.

Let us define these two types of solution as:

– the fixed point solution: the heart rate is fixed. The amplitude of oscillation is equal
to 2h. Figure 5b presents such a solution,

– the sustained oscillation solution: the length of the heart beat period oscillates
with a fixed amplitude. Figure 7 shows heart period changes in the case of such a
solution. The sinus node basic oscillations with the mean period of 〈T 〉 = 0.8 s
are modulated with the period 14, 15 beats, i.e., about 12 s. This oscillation can be
identified as the Mayer wave [32]. (The exact length of the cycle is 474 heart beats
in case θcNa = θvNa = 3 s.)

In a series of figures (Figs. 8, 9, 10, 11) we show the bifurcation diagrams—the heart
beat periods calculated for various values of the delays. One of the sympathetic time
delays (Figs. 8, 9, 10), or both of them (Fig. 11) are playing the role of the bifurcation
parameter. For each value of the delays a 1,000 s record obtained from the same initial
conditions is plotted. First 500 s of the transient values are omitted. The sampling step
is 0.01 s.

The presented diagrams are the typical ones representing the complete bifurca-
tion diagram which can be calculated in the whole sympathetic time delays plane
(θcNa × θvNa). The chosen values explain the possible solutions of the SH model and
the bifurcation transitions. For example, let as focus on the transition shown in the
bifurcation diagram in Fig. 8. It appears that (see Fig. 12):

– if θcNa = 1.93 s then we obtain a fixed point (with the accuracy of the numerical
method h = 0.001 s).

– if θcNa = 1.94 s then one point solution switches into the oscillation with the
period T ≈ 10 s and the amplitude 0.003, independently of h.
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Fig. 9 Bifurcation diagram if the delay in transmitting signals from the brain to the blood vessels θvNa =
1.65 s is increasing, while the delay between the brain and the heart θcNa is constant. The critical points:
θvNa ≈ 1.25 s and θvNa ≈ 2.74 s. For θvNa > 4.79 s one can observe the example of the island of stability
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Fig. 10 Bifurcation diagram if the delay in transmitting signals from the brain to the heart θcNa is
increasing, while the delay between the brain and the blood vessels is constant θvNa = 3 s. The critical
point θcNa ≈ 0.58 s

– if θcNa = 1.95 s or θcNa = 1.96 s then the sustained oscillation with the amplitude
about 0.007 is reached, but after a significantly larger transient time.

– if θcNa = 1.97 s then the ordinary sustained oscillation emerges in a time shorter
then 500 s.

Hence, the bifurcation point is distinguished from the other points by the emergence
of a long transient time.
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Fig. 11 Bifurcation diagram if both delays in transmitting sympathetic activity from the brain to the heart
θcNa and to the blood vessels θvNa are increasing accordingly

5.1 Remarks on bifurcation diagram

The phase of the sinus node φ without any influence of the autonomic nervous system
grows linearly up to 1 within a heart period T0 = 1.1 s. The two opposite mechanisms
regulate the speed of φ growth.

The first one—the vagal activity vp, is represented by the factor f p in Eq. (7).
Following the baroreceptor activity, the heart period is increased. If the delay in trans-
mitting this activity to the heart is θp = 0.5 s then the maximum of F(φ) corresponds
to the maximum of vp(t −0.5). Therefore the influence of vp is highly effective when
φ ≈ 0.8, what is visible in the plots of φ in Fig. 5.

The second one—the sympathetic activity vs , is represented by the factor fs in
Eq. (7). If the activity of vs is sufficiently high, then the exponential decay of the
noradrenaline concentration in the heart is switching into its growth. The growing
concentration of the noradrenaline ccNa makes the increase of the phase φ faster. The
next contraction of the heart occurs earlier and thus the heart period is reduced. The
time delay θcNa determines the interval within each heart period when the named
reduction occurs. Simultaneously, the high activity of vs affects the vasculature—
the vascular concentration of Na grows. Since the blood pressure decay constant τv

depends on cvNa then the increase of cvNa makes the decay of the blood pressure faster.
The delay θvNa determines the interval inside each heart period when the named faster
blood pressure decay is observed.

If these both processes—the decrease in the heart period length and the increase in
the blood pressure decay appear synchronously, then the consecutive heart contraction
starts at the blood pressure almost equal to the pressure of the previous contraction.
Also, there is no difference between the values of ccNa at the beginning and the end
of a heart cycle. The same goes for cvNa . The model leads to the solution with a
constant value of the heart period (fixed point solution). In such case a single point is
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Fig. 12 The bifurcation transition with bifurcation parameter θcNa , and θvNa = 1.65 s is set constant.
θcNa = 1.93 s—the fixed point solution (the upper panel), θcNa = 1.94 s and 1.95 s—low amplitude oscil-
lations obtained after long transient time (the middle panel), θcNa = 1.97 s—high amplitude oscillations
revealed in less than 500 s. The solution for θcNa = 1.96 s is presented for scale comparison in each case

plotted in the bifurcation diagram, see Fig. 11 for the situation with θcNa = θcNa ∈
(0, 1.9) s. But a cooperation of two processes does not imply equivalence of their time
scales.

When θv = θc > 1.9 s denoting that the system is adjusted to a state which took
place almost three heart beats ago, the synchronization is not attained. Small nume-
rical differences between the consecutive heart interval properties are amplified and
subsequently effect (after many time steps) in the destruction of the synchronization.
Properties of a system which is driven by spiky changes in the neuronal activities stron-
gly change from one heart period to another: this is particularly visible in the case of a
fragile state attained if both delays are close to the double heart period θv = θc ≈ 1.5 s
(see Fig. 11).

Since physiologists found that the heart rate response to the sympathetic nerve is
slower than the vasculature response [9], it would be interesting to investigate the SH
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model solutions in the case when the two delays are independent, compare Figs 8, 9,
and 10. To this end we inspect the complete bifurcation diagram plane (θcNa ×θcNa) in
the range of the parameters [0, 5]×[0, 5] s with the step 0.1 s. The rough investigation
of this diagram provides four regions where a rapid switch from a fixed point solution
to an oscillatory solution is observed:

I θcNa < 0.5 s :
independently of the θvNa value the system limit is a fixed point solution T ∗ ≈
0.75 s. The value of the stable time period depends periodically on θvNa with a
period length of about 0.75 s (See Figs. 8, 10, 11 for examples of such parameter
settings.). These results suggest that the fast reaction of the cardiac noradrenaline
concentration ccNa to the baroreceptor stimuli provides a strong force which
drives quickly to the next heart contraction, and which dominates over the other
processes in the system.

II 0.5s < θcNa < 1.0 s:
for θvNa > 2.7 s large enough the bifurcation happens. The value of θvNa

at which the transition occurs depends weakly on θcNa and is approximately
θvNa > 2.7 s (Fig. 10 shows the example of such parameter settings).

III 1.0s < θcNa < 2.0 s:
apart from the region θvNa > 2.7 s the oscillatory solution appears also if θvNa

is small enough. Here we observe two bifurcation points: the former θ
cri tA
vNa ends

the oscillatory solution region for small θvNa , while the latter θ
cri tB
vNa starts the

oscillatory solution region for large θvNa . Between these two points the fixed
point solution occurs. The section of the complete bifurcation diagram for a
fixed θcNa = 1.65 s is presented in Fig. 9. The critical points are θ

cri tA
vNa ≈ 1.2 s

and θ
cri tB
vNa ≈ 2.7 s. The other critical values of θcNa in this region are presented

below:

θcNa [s] 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

θ
cri tA
vNa [s] 0.4 0.5 1.1 1.3 1.5 1.3 1.3 1.3 1.5 2.2

θ
cri tB
vNa [s] 2.7 2.7 2.6 2.5 2.5 2.7 2.7 2.8 2.7 2.4

In the case when θcNa − θvNa > 0.5 s then the growths of ccNa and cvNa are
separated in time. It means that the order from the sympathetic system to speed up
the blood pressure decay does not meet the elevated noradrenaline concentration
ccNa what accelerates the sinus node phase growth. Therefore the blood pressure
at the moment of the heart contraction is lower than the blood pressure at the
end of the previous diastolic phase.

IV 2.0 < θcNa :
for any θvNa only oscillatory solution happens.

The above presented stability analysis is rough. The bifurcation points are determined
with some inaccuracy (resulted from the resolution of the diagram) and moreover the
problem of the islands of stability in the oscillatory regions is completely omitted.
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The vast complexity of the stability picture in this model is however beyond the basic
interest of this presentation.

Closing, we should mention that the heart period length in the oscillatory solu-
tions takes values in the interval (0.3, 1.4), what means that the heart periods vary
around the fixed point solution. Moreover, it implies also that the intrinsic heart period
T0 = 1.1 s is shortened by the sympathetic nervous system activity to be approxima-
tely 0.8 s. One can conclude that the basic stationary state of cardiovascular system
is maintained by the sympathetic system. However, if we switch off the parasympa-
thetic influence to the sinus node phase completely (by, for instance setting f p = 1)
then the blood pressure and the cardiac noradrenaline concentration vary strongly, rea-
ching unphysiological values, namely p(t) ∈ (80, 200) mmHg and ccNa ∈ (0, 0.8) if
θvNa = θcNa = 3 s. Hence the parasympathetic system influence to the stabilization
is of crucial importance.

We also performed a few simulations with the sinus node intrinsic period set to
T0 = 0.6 s. Then the SH model provides a solution with the heart period length about
0.65 s. As it could be expected in this case, we observe a rather high value of the
blood pressure, p(t) ∈ (120, 160) mmHg what makes the baroreceptor activity really
strong and results in the minimal role of the sympathetic system activity. The final
effect is that the differences between the heart periods are low, namely smaller than
0.02 s.

Physiologists found that the heart rate response to the sympathetic nerve stimulation
is slower than that of the vasculature [9]. With regard to the steady state changes in the
sympathetic nervous activity, the heart rate response is characterized by a time delay
of 1–3 s.

However, in various models the distributed delays are usually simplified and
approximated with a single delay time (2–6 heart beats in DeBoer model [25], 2 s
in Ursino model [30], 3 s in Fowler model [29]). Within the proposition of Seidel
and Herzel we see that differentiation of delays is important since both delays
actively form the solution and therefore the relation between delays deserves a special
attention.

6 Stochastic approach

Noise is an intrinsic property of physiological systems [1]. Nevertheless, the determi-
nistic models of the cardiovascular system are proposed in order to facilitate progress
in its understanding. Then the noise is introduced into the model as an external per-
turbation to the model parameters [35]. In the case of SH model, so far it has been
found that it can exhibit stable cardiorespiratory synchronization against the noise
added to the baroreceptor activity [33]. Moreover, it has been also shown that thanks
to the vagal activity perturbed by a gaussian white noise and baroreceptor activity
perturbed by a Brownian noise, the heart rate series exhibits a long-range correlation
[34]. The question that we ask in the present paper is how HRV estimated by the PDF
of heartbeats changes, if the delays in transferring neural signals are perturbed by a
white noise.
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Let ξ be a random variable with the uniform distribution and ξ ∈ [−̂ξ,̂ξ ] for some
fixed maximal level of noisêξ . Let us assume that a time, needed for a signal to transfer
the neural information varies stochastically around some mean value. Then Eqs. (4)
and (13) take the following form:

dc∗
dt

= − c∗
τ∗ + ks∗vs(t − (θ∗ + ξ∗)) (16)

where * represents parameters related either to heart cNa or to vasculature vNa. The
random numbers are generated by standard 48-bit arithmetic functions accessible in
C compilers in Unix systems.

Na concentration acts like a buffer, so the distribution of the sympathetic impulses
over a heart cycle is not very important [32]. Moreover, Na needs to be removed
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Fig. 13 Time series obtained by simulating the model with stochastic delays—the case of the fixed point
solution stochastically perturbed, θvNa = θvNa = 1.65, the noise level: ̂ξ = 1 s. See Fig. 5 for detailed
description of y axis
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Fig. 14 Time series of T obtained in deterministic case when θcNa = θvNa = 1 (the fixed point solution)
and with delays stochastically perturbed with ̂ξ = 0.5

from the synaptic gap and delivered down to a different location. This process takes
much more time than a time step of the model simulation. Therefore we assign a new
random value to each delay for each cardiac cycle separately. To avoid effects related
to respiration we again consider the system with the constant respiration only.

One can as well model the noise ξ∗ by a continuous variable. In this case, at
each numerical step the delay is set to a different random value. It appears that such
randomness of delays does not cause significant change in the solutions.

6.1 Stochastic perturbation to a fixed point heart rate

If the time delays are stochastic then even in the absence of the respiration the stable
heart rate becomes irregular. Figure 13 shows the time series obtained when the values
of delays are taken independently and uniformly from the interval [0.65, 2.65] s . The
regular waveforms obtained in the deterministic case (compare to Fig. 5b) are now
varying irregularly, Fig. 14. The unperturbed evolution provides the histogram of the
heart beat periods (the histogram bin is equal to 0.01) with one peak, see Fig. 15a.
Depending on the magnitude of the added noise this line becomes broadened. Note that
even at the low level of the noise, namely if ̂ξ ≥ 0.1, the histogram shape resembles
the distribution of the real-life series of NN intervals presented in Fig. 1. Moreover,
the Poincaré plot of the solution with the noise level ̂ξ = 1 s (Fig. 16) resembles the
diagrams for NN series (see Fig. 2).

6.2 Stochastic perturbation to an oscillating heart rate

In the case when θcNa = θvNa = 3 s the deterministic SH model provides the sustained
10 s rhythms, see Fig. 7. Figure 17 shows an example of the series obtained when delays
are random and large 2s < θcNa, θvNa < 4 s.
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Fig. 15 PDF of the heart beat period T in case of the fixed point solution. The unperturbed evolution (a)
and the evolution with the increasing level of noise is shown in subsequent panels (b–d). The log scale is
applied to PDF axis. θvNa = θvNa = 1.65 s, the noise level: a ̂ξ = 0, b ̂ξ = 0.1 s, c ̂ξ = 0.5 s, d ̂ξ = 1 s
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Fig. 16 Poincaré plot for fixed point solution (θvNa = θvNa = 1.65 s) perturbed by noise of level̂ξ = 1 s.
The PDF of this series is presented in Fig. 15d

The histogram of the heart beat intervals in the case of the deterministic dynamics
takes the form of a double peaked distribution with two sharp peaks at the left and
the right wing, see Fig. 18a. The shortest and the longest period appear with the
probability ten times larger than the mean value. Such a distribution does not resemble
any distribution found for the real-life NN interval series.

The stochastic noise makes the modeled distribution of the heart beat periods similar
to the real-life data distribution. When the noise level is large enough the distribution
almost approaches the desired shape, see Fig. 18d.

What is important is that the main oscillation of the deterministic solution
(i.e., the Mayer wave) is preserved, see Fig. 19, and additionally, the return plot for
the heart beat series resembles the plots known for the real-life time series (see Fig. 2).
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Fig. 17 Time series obtained by simulating the model with stochastic delays—the case of the sustained
oscillation of heart period stochastically perturbed. θvNa = θvNa = 3 s, ̂ξ = 1 s Sympathetic time delays
are taken independently and uniformly from the interval [2, 4] s. See Fig. 5 for detailed description of y axis

Notably, the overall shape of this plot seems to be inherited from the deterministic
solution (see Fig. 7), although the inside of the limit cycle is now densely
occupied.

6.3 The effect of noise on stability

The bifurcation diagram smooths out when the noise is added to the delays. Critical
points disappear, namely there is no rapid change in the type of the solution when
the mean delay changes. The intervals of the stable point solutions become regions of
the sustained oscillations with a slightly smaller amplitude than the amplitude of the
oscillations arisen after the bifurcation, see Figs. 20 and 21. Let us notice that at the
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Fig. 18 PDF of the heart period T in case oscillating heart rate. The unperturbed evolution (a) and evolution
with the increasing level of noise is shown in subsequent panels (b–d). The log scale is applied to PDF axis.
θvNa = θvNa = 3 s, noise level a ̂ξ = 0, b ̂ξ = 0.5 s, c ̂ξ = 1 s, d ̂ξ = 1.5 s

noise level̂ξ = 0.5 the spread of the heart beat intervals is larger than 0.2 s, even in the
stable region of the deterministic solution. Moreover, Mayer wave type oscillations
are present, see Fig. 14, even far away from the deterministic bifurcation point.

7 Conclusion

Models of the cardiovascular interactions are still debated [9,10]: one is faced with a
rather broad range of possible parametric models to consider [25–27,29,30]. In this
paper we investigated the statistical and dynamical properties of the SH nonlinear
model of baroreflex—the scheme that is assumed to provide a short-term control of
the cardiorespiratory system. SH model is sufficiently simple to allow a mathematical
analysis of dynamics and at the same time sufficiently complete to provide a faith-
ful representation of the underlying physiology. The model is capable (after Kotani
et al. modification [33]) to describe the interactions between the three main rhythms
of the human physiology: the heart rate, the blood pressure and the respiration. Hence,
it is an appropriate proposition for investigations of reasons of HRV. The sustained
oscillations in the heart rate and blood pressure interpreted as the Mayer waves emerge
here as the resonance effect between intrinsic oscillations and delays, when varying
the delay parameters.

When sympathetic time delays are perturbed by a white noise, the statistical features
of the real-life cardiorespiratory system, such as the probability density functions of
NN intervals, and geometrical properties of return plots of NN intervals are resembled.
Moreover, in the case of the stochastic model the bifurcation points vanish and the
Mayer oscillations in the heart period and the blood pressure are observed for the
whole considered space of the sympathetic time delays.

When dealing with the loop dependencies one could expect that the stochastic
perturbation of any parameter will effect the solution in a similar way. However, here
in the SH model, if the time delays are considered as random we obtain a possibility
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Fig. 19 Time series of heart periods T in case of the sustained oscillation solution for the random delays.
θvNa = θvNa = 3 s, noise level̂ξ = 1 s. Notice that low frequency oscillations are preserved, though they
appear with different amplitudes, what results that the return plot is the cloud of points

to separate two physiological processes driving the blood pressure. The concentration
of the noradrenaline in vasculature determines the diastolic blood pressure while the
concentration of the noradrenaline in the heart via change in the cardiac contractility
determines the systolic blood pressure. Therefore, the activity of baroreceptors as well
as the sympathetic nerves activity contains both effects. For this reason their stochastic
properties are different from those when a simple white noise is added to them. What
is to be discussed is the type of the randomness that is inserted into the time delays. For
simplicity we considered a white noise although any noise in the biological systems
usually exhibit 1/ f type power spectrum, what is opposed to a white noise which
has a flat power spectrum. Moreover, it has been found experimentally [43] that 1/ f
noise added externally to the baroreflex centers via venous blood pressure receptors
affects the heart rate response more strongly than the white noise. The investigations
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Fig. 20 Diagram of heart beat periods if the delay in transmitting signals from the brain to the heart θcNa is
increasing, while the delay between the brain and the blood vessels is constant θvNa = 1.65 s. Both delays
change stochastically in each heart beat interval, noise level ̂ξ = 0.5
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Fig. 21 Diagram of heart beat periods if the delay in transmitting signals from the brain to the blood vessels
θvNa is increasing, while the delay between the brain and the heart is constant θcNa = 1.65 s. Both delays
change stochastically in each heart beat interval, noise level ̂ξ = 0.5

regarding the differences in the influence related to various noise types we leave for
the further studies.

In the further investigations the time delay of the vagally cardiac baroreflex res-
ponse should be considered as varying also since it is known that this time delay is
influenced by the postural changes and/or can be changed by the introduction of the
atropine [44].
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