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Abstract We consider a SIR age-structured model with immigration of infectives in
all epidemiological compartments; the population is assumed to be in demographic
equilibrium between below-replacement fertility and immigration; the spread of the
infection occurs through a general age-dependent kernel. We analyse the equations
for steady states; because of immigration of infectives a steady state with a positive
density of infectives always exists; however, a quasi-threshold theorem is proved, in
the sense that, below the threshold, the density of infectives is close to 0, while it is
away from 0, above the threshold; furthermore, conditions that guarantee uniqueness
of steady states are obtained. Finally, we present some numerical examples, inspired
by the Italian demographic situation, that illustrate the threshold-like behaviour, and
other features of the stationary solutions and of the transient.

Keywords Age structured epidemic model · Immigration · Below replacement
fertility · Quasi-threshold theorem · Fixed points of positive operators

Mathematics Subject Classification (2000) 92D30 · 45G10 · 35F25

1 Introduction

The current demographic trend in many Western countries is characterized by tran-
sition to sustained below replacement fertility and a sizeable immigration [18,28].
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2 A. Franceschetti, A. Pugliese

Among the many aspects influenced by this major transition, it has been surmised
that the dynamics of childhood infectious diseases (such as measles) could be sub-
stantially affected [23]). Understanding the possible consequences of such a transition
with the help of mathematical models is important in planning public health policies,
for example vaccination strategies aimed at the control and elimination of an infectious
disease in a population [21].

In this paper we analyse a SIR age-structured model for the spread of an infectious
disease in a population subject to below replacement fertility and immigration. The
model is built, on the one hand, on the stable population model with immigration under
conditions of below replacement fertility [4,7,22], on the other hand on the theory of
age-structured epidemic models [2,6,11,15].

We will therefore assume that the population demographic rates are below repla-
cement (in the demographic literature the acronym BRF, below replacement fertility
is often used), but that an immigration inflow helps in driving the population to sta-
tionarity. In order to focus the attention on the interaction between epidemiology and
demography per se, and not on the interaction among social groups, we assume that
immigrants are indistinguishable by residents, as they arrive. The current setting can
be easily extended to more realistic assumptions, such as considering separately resi-
dents and immigrants, but letting the children of the latter (first-generation) be identical
to residents, but the resulting models would certainly be more complex. Finally, we
assume, following the usual approach in models for infectious diseases aiming at ana-
lytical results [10,11,15], that the population is in a demographically stationary state.
Hence, we assume that the population has reached the equilibrium [4,7,14] between
below-replacement-fertility and immigration. This assumption allows us to obtain the
results discussed in Sects. 4 and 5; in Sect. 6, we present the results of some simulations
that compare the epidemic processes obtained under the assumption of a demogra-
phically stationary state, with those that start from an initial state close to the current
Italian demography and that have a very long transient period.

Threshold theorems are an important contribution of mathematical epidemiology,
starting from the pioneering work of Ross and Kermack–McKendrick. For the SIR
model, without age structure, one can refer to Hethcote [12]. The case of the age-
structured SIR model has been thoroughly analysed by Inaba [15] in terms of R0,
defined as the spectral radius of a certain positive linear operator: when R0 ≤ 1, there
exists only the disease-free equilibrium (DFE), and it is globally stable; on the other
hand, when R0 > 1, the DFE is unstable, and there exists (at least one) endemic
equilibrium.

How do the properties of the model change when immigration is included in the
model? It is rather clear that, if a constant flow of infectives enters the population,
there cannot be a DFE. Brauer and Van den Driessche (2001, [5]) in their analysis of
an SIR model, without age structure, but with a constant flow of new members into
the population a fraction p of which is infective, started from the observation that, if
p > 0 there is a unique endemic equilibrium u∗(p) for all parameter values. However,
they recovered a threshold-like behaviour in the following sense: as p goes to zero, if
R0 < 1, then u∗(p) tends to the DFE as p goes to zero; otherwise if R0 > 1 then for
p = 0 the model has a unique endemic equilibrium u∗, and u∗(p) tends to u∗ as p
goes to zero. R0 is defined as in the SIR model without immigration [12].
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SIR model with age structure and immigration 3

In this paper we extend the threshold result by Inaba [15] considering immigration
of infective individuals, in the same spirit as Brauer and Van den Driessche [5]. We
then briefly discuss conditions that guarantee the uniqueness of the steady state in
this model. The equilibrium dynamics of age-structured SIR models in the framework
of populations with BRF and immigration has already been considered in Iannelli
and Manfredi [13] but under the assumption of proportionate mixing. In this paper
we consider instead fully general age structured mixing patterns that include what is
generally used in realistic simulations of childhood diseases (see, for instance, [3]).

Kretzschmar et al. [20] considered age structure and immigration in a rather detailed
mathematical model of hepatitis B to investigate the effects of immigration of carriers
on the efforts of vaccination in The Netherlands. The focus of the paper was on the
analysis of the specific case, but one of the conclusion was that the immigration of
carriers makes success of universal vaccination a not eventually reachable target, in
agreement with the model of Brauer and Van den Driessche.

2 The equations of the model

We start from the equations for a population with age-strucured fertility and mortality
rates m(a), µ(a) and subject to a constant (as age structure and total number of indi-
viduals) immigration inflow I (a). The evolution of the density n(a, t) of individuals
aged a at time t can be described by the following McKendrick–Von Foerster PDE
with boundary and initial conditions:

⎧
⎪⎪⎨

⎪⎪⎩

(
∂
∂t + ∂

∂a

)
n(a, t) = −µ(a) n(a, t)+ I (a), 0 < a < ω, t > 0,

n(0, t) = B(t) = ∫ ω
0 m(a)n(a, t)da, t ≥ 0,

n(a, 0) = n0(a), 0 < a < ω.

(1)

In (1) ω represents the maximum life span of the individuals, and B(t) is the number
of newborns per unit time at time t. Technical conditions to ensure the well-posedness
of the problem are that the mortality rateµ(a) lies in L1

loc ([0, ω)), with
∫ ω

0 µ(a)da =
+∞, and that the fertility rate m(·) ∈ L∞(0, ω).

We will consider these equations under the conditions of below replacement fertility
(BRF). If π(a) = e− ∫ a

0 µ(s)ds is the proportion of individuals who are still living at
age a (because of the assumptions on µ(·), we have π(ω) = 0), R = ∫ ω

0 m(a)π(a)da
represents the net reproduction rate, i.e. the average number of newborn individuals
an individual is expected to produce during his reproductive life. The BRF condition
is then R < 1. Equation (1) is the basis of the so called stable population model with
immigration (SPI model), used in demography to analyse the long-term behaviour
of populations with BRF and subject to immigration [4]. Cerone [7] and Inaba [14]
proved that the stationary solution of (1), given by

n(a) = Bπ(a)+
ω∫

0

I (s)
π(a)

π(s)
ds, 0 ≤ a ≤ ω (2)
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4 A. Franceschetti, A. Pugliese

with B given by:

B = 1

1 − R

ω∫

0

m(a)π(a)

a∫

0

I (s)

π(s)
ds da, (3)

is globally asymptotically stable.
As stated in the introduction, we study the spread of an epidemic under the condition

that the population is in the demographical stationary state (2). We consider a SIR
age-structured epidemic model where X (a, t), Y (a, t), Z(a, t) are the densities of
susceptible, infective and removed individuals of age a at time t ; we assume that the
contact process between individuals is summarised by the transmission coefficient
β(a, a′), that is β(a, a′)X (a, t)Y (a′, t)da da′ is the number of susceptibles aged in
(a, a + da) that contract the disease by means of a suitable contact with an infective
aged in (a′, a′ +da′) in the time unit at time t : i.e. we assume for the force of infection
λ(a, t) (FOI for short) the functional form (see [2,27])

λ(a, t) =
ω∫

0

β(a, s)Y (s, t) ds. (4)

Remark 1 The functional form (4) basically assumes that the force of infection scales
linearly with population density. As observed by Manfredi and Williams [23], such
a choice makes the force of infection too much sensitive with respect to changes in
population size, in case of demographical instabilities. Other choices have been used
in the literature, such as

λ(a, t) =
ω∫

0

β(a, s)
Y (s, t)

n(s, t)
ds or λ(a, t) = 1

N (t)

ω∫

0

β(a, s)Y (s, t) ds. (5)

If population density is stationary, different choices correspond to a redifinition of β,
and we may in any case study the problem using (4). If, on the other hand, population
density fluctuates, different choices for λ(a, t) may give rise to different qualitative
behaviours; this will be explored in the future through simulations.

We denote IX (a), IY (a), IZ (a) the densities of susceptible, infective and removed
immigrants that enter the population in the time unit. For consistency with Eq. (1), we
require IX (a)+ IY (a)+ IZ (a) = I (a).

Finally, we let γ be the removal rate, so that 1/γ is the average infectious period.
Then the spread of the disease can be described by the following nonhomogeneous
system of PDE’s a-la Lotka–McKendrick:

⎧
⎪⎪⎨

⎪⎪⎩

(
∂
∂t + ∂

∂a

)
X = −(λ(a, t)+ µ(a))X + IX (a),

(
∂
∂t + ∂

∂a

)
Y = λ(a, t)X − (µ(a)+ γ )Y + IY (a),

(
∂
∂t + ∂

∂a

)
Z = γY − µ(a)Z + IZ (a).

0 < a < ω, t > 0, (6a)
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SIR model with age structure and immigration 5

To complete system (6), boundary and initial conditions are to be given

X (0, t) = B, Y (0, t) = 0, Z(0, t) = 0, t ≥ 0 (6b)

with B given by (3). Finally, the initial conditions are

X (a, 0) = X0(a), Y (a, 0) = Y0(a), Z(a, 0) = Z0(a), 0 < a < ω. (6c)

Condition (6b) amounts to assuming that all newborn individuals are susceptibles,
that is we assume there is no vertical transmission of the disease (nor, maternally
transmitted immunity).

Moreover, the initial densities (6a) satisfy X0(a) + Y0(a) + Z0(a) = n(a), the
stationary density. Hence, we have

X (a, t)+ Y (a, t)+ Z(a, t) = n(a), ∀t ≥ 0.

The problem to be considered is then given by (6), completed by the relation (4).
Well-posedness can be obtained, as in [15] by setting it as an initial value problem in
the Banach space L1(0, ω). Using standard methods, one can obtain

Theorem 1 Let Ix , Iy, Iz ∈ L1+(0, ω), β ∈ L∞ ((0, ω)× (0, ω)) ≥ 0. Assume that
the initial data X0, Y0 satisfy

X0(·), Y0(·) ∈ AC ([0, ω]) with X0(0) = B, Y0(0) = 0,

X0(a) ≥ 0, Y0(a) ≥ 0 a.e. a ∈ (0, ω). (7)

Then there exists one and only one classical solution of system (6)–(4), which is defined
for all t ≥ 0.

3 Steady states

We now consider existence, uniqueness and threshold behaviour of steady states of
system (6). We start by making suitable assumptions on the contact coefficient β(·, ·)
and the age profile of the immigrants to be used.

We assume again Ix , Iy, Iz ∈ L1(0, ω), β ∈ L∞ ((0, ω)× (0, ω)) to be nonnega-
tive functions. Further we assume

Assumption 1 β(·, ·) satisfies

lim
h→0

ω∫

0

|β(a + h, s)− β(a, s)|da = 0

uniformly for s ∈ R, with β(·, ·) extended by setting β(a, s) = 0 for a, s ∈ (−∞, 0)∪
(ω,+∞);
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6 A. Franceschetti, A. Pugliese

Assumption 2 There exists m > 0, 0 < α < ω such that β(a, s) ≥ m for a.e.
(a, s) ∈ (0, ω)× (ω − α,ω).

Assumption 3 There exist 0 ≤ a1 < a2 ≤ ω such that Iy(a) > 0 a.e. a ∈ (a1, a2).

The equations for the steady states of (6) are as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
da X∗ (a) = − (λ∗(a)+ µ(a)) X∗(a)+ Ix (a),

d
da Y ∗ (a) = λ∗(a) X∗(a)− (γ + µ(a)) Y ∗(a)+ Iy(a),

0 < a < ω,

X∗(0) = B, Y ∗(0) = 0

(8)

with

λ∗(a) =
ω∫

0

β(a, s)Y ∗(s) ds.

By solving (8) directly we obtain:

X∗(a) = Bπ(a)e− ∫ a
0 λ

∗(s) ds +
a∫

0

Ix (σ )
π(a)

π(σ )
e− ∫ a

σ λ
∗(s) dsdσ, (9a)

Y ∗(a) =
a∫

0

e−γ (a−σ) π(a)
π(σ )

(
λ∗(σ )X∗(σ )+ Iy(σ )

)
dσ. (9b)

Then we obtain for the force of infection λ∗(·):

λ∗(a) =
ω∫

0

β(a, ξ)Y ∗(ξ) dξ =
ω∫

0

⎛

⎝Bλ∗(σ )e− ∫ σ
0 λ∗(s) dsπ(σ)

+ λ∗(σ )
σ∫

0

Ix (s)e
− ∫ σ

s λ∗(τ ) dτ π(σ )

π(s)
ds + Iy(σ )

⎞

⎠φ(a, σ )dσ, (10)

where φ(·, ·) is given by:

φ(a, σ ) =
ω∫

σ

β(a, ξ)e−γ (ξ−σ) π(ξ)
π(σ )

dξ. (11)

We consider

L1+(0, ω) =
{

f ∈ L1(0, ω) s.t. f ≥ 0 a.e. on (0, ω)
}
, (12)
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SIR model with age structure and immigration 7

the cone of the nonnegative functions in the Banach space L1(0, ω), and define the
positive nonlinear operator Φ : L1+(0, ω) −→ L1+(0, ω) by setting

(Φψ)(a) =
ω∫

0

⎛

⎝Bψ(σ)π(σ )e− ∫ σ
0 ψ(s) ds

+ ψ(σ)

σ∫

0

Ix (s)e
− ∫ σ

s ψ(τ) dτ π(σ )

π(s)
ds + Iy(σ )

⎞

⎠φ(a, σ )dσ, a ∈ (0, ω).

(13)

Each fixed point of Φ in the positive cone is a force of infection λ∗(·) that satisfies
(10); hence, through (9), it yields an equilibrium solution of (6); and viceversa.

Just by looking at (9b) we see that, because of assumption 3, in any equilibrium
solution of (6) the density infectives Y ∗(·) satisfies Y ∗ > 0. This means that in presence
of infectives in the immigrant population, there is no DFE, as was noted by Brauer
and Van den Driessche [5] for a SIR model without age structure.

Furthermore, if we define

u0(a) = (Φ (0)) (a) =
ω∫

0

Iy(σ )φ(a, σ )dσ, a ∈ (0, ω); (14)

we see that any fixed point λ∗ of (13) satisfies λ∗(a) ≥ u0(a) a.e. Under Assumption 2,
we have

φ(a, σ ) ≥ m

ω∫

max{σ,ω−α}
e−γ (ξ−σ) π(ξ)

π(σ )
dξ ≥ me−γω

ω∫

max{σ,ω−α}
π(ξ) dξ = φm(σ ). (15)

It is easy to see that φm(σ ) > 0 for all σ < ω; moreover, φm(·) is continuous and
nonincreasing. Then, because of Assumption 3,

u0(a) ≥
ω∫

0

Iy(σ )φm(σ )dσ = u > 0.

This means that at an equilibrium solution of (6), the force of infection λ∗ is strictly
positive at all ages.

We study fixed points of (13) using the theory of positive operators defined on a
cone in a Banach space.

We first note that there exists R > 0 such that ‖Φψ‖1 ≤ R ∀ψ ∈ L1+(0, ω).
In fact, using the definition, we have

φ(a, σ ) ≤ ‖φ‖∞ ≤ ‖β‖∞ω.
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8 A. Franceschetti, A. Pugliese

Then,

Φ(ψ)(a) ≤ ‖φ‖∞

⎛

⎝B

ω∫

0

ψ(σ)e− ∫ σ
0 ψ(s) ds dσ

+
ω∫

0

Ix (s)

ω∫

s

ψ(σ)e− ∫ σ
s ψ(τ) dτdσ ds + ‖Iy‖1

⎞

⎠

= ‖φ‖∞

⎛

⎝B
(

1 − e− ∫ ω
0 ψ

)
+

ω∫

0

Ix (s)
(

1 − e− ∫ ω
s ψds

)
+ ‖Iy‖1

⎞

⎠

≤ ‖φ‖∞
(
B + ‖Ix‖1 + ‖Iy‖1

)
, (16)

and R can be obtained easily.
Define now

D = {ψ ∈ L1+(0, ω) : ‖ψ‖1 ≤ R} ∩ {ψ ∈ L1+(0, ω) : ψ ≥ u0}. (17)

We have the following

Theorem 2 Let assumptions 1–3 hold. Then

(i) D is closed, bounded, convex and such that Φ(D) ⊆ D;
(ii) Φ is completely continuous.

Hence, there exists ψ ∈ D such that ψ = Φ(ψ).

Proof (i) follows immediately from the definition, and the previous considerations.
(ii) There exists C > 0 s.t. ‖Φ(ψ1)−Φ(ψ2)‖1 ≤ C‖ψ1 −ψ2‖1 ∀ψ1, ψ2 ∈ L1+(0, ω);
in fact

(Φ(ψ1))(a)− (Φ(ψ2))(a)

=
ω∫

0

B

⎛

⎝ψ1(σ )e
−
σ∫

0
ψ1(τ )dτ − ψ2(σ )e

−
σ∫

0
ψ2(τ )dτ

⎞

⎠π(σ)φ(a, σ ) dσ

+
ω∫

0

Ix (s)

ω∫

s

π(σ)

π(s)

⎛

⎝ψ1(σ )e
−
σ∫

s
ψ1 − ψ2(σ )e

−
σ∫

s
ψ2

⎞

⎠φ(a, σ ) dσ ds. (18)

For the first term in (18) we have

∣
∣
∣
∣
∣
∣
B

ω∫

0

π(σ)
(
ψ1(σ )e

− ∫ σ
0 ψ1 − ψ2(σ )e

− ∫ σ
0 ψ2

)
φ(a, σ ) dσ

∣
∣
∣
∣
∣
∣
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SIR model with age structure and immigration 9

≤ ‖φ‖∞ B

∣
∣
∣
∣
∣
∣

ω∫

0

d

dσ

(
e− ∫ σ

0 ψ2 − e− ∫ σ
0 ψ1

)
dσ

∣
∣
∣
∣
∣
∣

= ‖φ‖∞
∣
∣
∣e−‖ψ2‖1 − e−‖ψ1‖1

∣
∣
∣ ≤ ‖φ‖∞ ‖ψ2 − ψ1‖1 a.e. a ∈ (0, ω)

and a similar inequality holds for the second term in (18). Then in particular Φ is
continuous.

To prove compactness ofΦ, let us introduce the linear operators T1 : L1+(0, ω) −→
L1+(0, ω) and T2 : L1+([0, ω]2) −→ L1+(0, ω) defined as

(T1ψ)(a) =
ω∫

0

ψ(σ)k1(a, σ )dσ (T2ϕ)(a) =
ω∫

0

ω∫

0

ϕ(s, σ )k2(a, s, σ )dσ ds,

k1(a, σ ) = Bπ(σ)φ(a, σ ) k2(a, s, σ ) = φ(a, σ )Ix (s)
π(σ )

π(s)
χ{s≤σ }(s, σ ).

T1 and T2 are linear, continuous and positive; furthermore, thanks to Assumption 1,
we can apply Riesz–Frechet–Kolmogorov theorem on compactness in L1 to conclude
that T1 and T2 are compact operators.

Furthermore let us define the nonlinear operators F1 : L1+(0, ω) −→ L1+(0, ω),
F2 : L1+(0, ω) −→ L1+([0, ω]2) as

(F1ψ)(σ) = ψ(σ)e− ∫ σ
0 ψ(τ)dτ , (F2ψ)(s, σ ) = ψ(σ)e− ∫ σ

s ψ(τ)dτ .

F1 and F2 are continuous, hence Ti ◦ Fi are compact operators in L1+(0, ω).
Hence, we obtain that Φ = T1 ◦ F1 + T2 ◦ F2 + u0 is compact.
From (i) we know that Φ(D) ⊆ D, with D closed, bounded and convex. From

Schauder’s principle it follows that Φ has at least a fixed point in D. ��
Remark 2 An important role in what follows pertains to the spectral radius, ρ(T ), of
the linear operator T = Φ ′(0), given by

(Tψ)(a)=
ω∫

0

ψ(σ)

⎛

⎝Bπ(σ)+
σ∫

0

Ix (s)
π(σ )

π(s)
ds

⎞

⎠ φ(a, σ )dσ (19)

for a ∈ (0, ω), ψ ∈ L1(0, ω).
T is a linear, continuous, positive and compact operator (one can use the same

arguments as for Ti ) and is closely related to the next-generation operator T̃ as defined
in [8,9]. Indeed, we have (check Sect. 7.3 of [8])

(T̃ϕ)(a) = S(a)

ω∫

0

ϕ(σ)

ω∫

σ

β(a, s)
π(s)

π(σ )
e−γ (s−σ) ds dσ, (20)
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10 A. Franceschetti, A. Pugliese

where

S(a) = Bπ(a)+
a∫

0

Ix (s)
π(a)

π(s)
ds (21)

represents the susceptibles in a population at the demographic equilibrium (2), in
which no infections have occurred.

Introducing the linear operator K in L1(0, ω),

(Kϕ)(a) =
ω∫

0

ϕ(σ)

ω∫

σ

β(a, s)
π(s)

π(σ )
e−γ (s−σ) ds dσ

we can write T̃ = S◦K and T = K ◦S, where S represents the multiplication operator
by the function S(a). It is then clear that T and T̃ have the same eigenvalues, hence
the same spectral radius.

We can then interpret ρ(T ) as the reproduction ratio of the infection in a population
at the demographic equilibrium, in which no infections have occurred.

4 Threshold-like results

In the SIR model without immigration Inaba [15] proved that the spectral radius of
T is a threshold for the infection, where T is defined analogously to above with S(a)
being the stationary population in the demographic model without immigration. He
proved

Theorem A (Inaba)

1. If ρ(T ) ≤ 1, the only fixed point of the operator Φ is the null vector ψ ≡ 0;
2. if ρ(T ) > 1 there is at least a nonzero fixed point of Φ.

If the rate of infected immigrants Iy is not zero, then we know (Theor. 2) that a
positive equilibrium is present both if ρ(T ) > 1 and if ρ(T ) ≤ 1, and that there exists
no DFE.

In the SIR model without immigration it is still possible to distinguish between two
different situations for the steady states in terms of the limiting behaviour of the fixed
points of Φ as ‖u0‖1 goes to zero.

We proceed as follows: for fixed Ix (·), Iz(·), we consider a sequence Iy,n ∈
L1+(0, ω) such that Iy,n(a) −→

n
0 a.e. a ∈ (0, ω).

Φn and un are the analogous of (13), (14) in which Iy,n has been inserted in place
of Iy with the corresponding change in the stationary population Bn because of (3).
Moreover, we let Φ0 to be defined as (13) with Iy = 0.

We also define Φ̃n = Φn − un , noting that Φ̃n depends on n only because of
the term Bn . Finally, consider the positive linear operators on L1(0, ω) Tn = Φ ′

n(0),
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SIR model with age structure and immigration 11

T0 = Φ ′
0(0):

(Tnψ)(a) =
ω∫

0

ψ(σ)

⎛

⎝Bnπ(σ)+
σ∫

0

Ix (s)
π(σ )

π(s)
ds

⎞

⎠ φ(a, σ )dσ,

(22)

(T0ψ)(a) =
ω∫

0

ψ(σ)

⎛

⎝B0π(σ)+
σ∫

0

Ix (s)
π(σ )

π(s)
ds

⎞

⎠ φ(a, σ )dσ.

Consider a sequence {ψn} ⊂ L1+(0, ω), where ψn is a fixed point for Φn . Our main
result is the following

Theorem 3 1. If ρ(T0) ≤ 1 then limn→∞ ψn = 0;
2. if ρ(T0) > 1 then there exists δ > 0 such that ‖ψn‖1 ≥ δ ∀n ∈ N.

Remark 3 Analogously to Remark 2, ρ(T0) represents the reproduction ratio of the
infection in a population maintained at demographic equilibrium through the immi-
gration of only susceptible and immune individuals.

Before proving the Theorem, we need some preliminaries. First, we use the follo-
wing

Proposition 1 There exists a converging subsequence of {ψn}. Let ψ = limk→∞ ψnk

for any converging subsequence {ψnk }; then ψ = Φ0(ψ). In other words, the set of
limit points of {ψn} are fixed points for Φ0.

Proof Since 0 ≤ ‖ψn‖ ≤ R, where R = maxn Rn found from (16), and Φ0 is
compact, there exists a converging subsequence {Φ0(ψnk )}.

Let ψ = limk→∞Φ0(ψnk ). We have

ψnk = Φnk (ψnk ) = Φ0(ψnk )+ (
Φnk (ψnk )−Φ0(ψnk )

)
. (23)

Furthermore

(Φnk (ψnk ))(a)− (Φ0(ψnk ))(a)

= (Bnk − B0)

ω∫

0

ψnk (σ )π(σ )e
− ∫ σ

0 ψnk (τ )dτ φ(a, σ ) dσ

+
ω∫

0

Iy,nk (σ )φ(a, σ ) dσ.

Since, by assumption, limn→∞ Iy,n = 0 a.e., and clearly from (3) limn→∞ Bn = B0,
limk→∞[Φnk (ψnk )−Φ0(ψnk )] = 0 a.e., hence in L1.

Substituting this in (23), we have

lim
k→∞ψnk = lim

k→∞Φ0(ψnk ) = ψ
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12 A. Franceschetti, A. Pugliese

so that {ψnk } converges toψ . Furthermore, sinceΦ0 is continuous, limk→∞Φ0(ψnk ) =
Φ0(ψ) and ψ is a fixed point for Φ0.

The same arguments can be applied to any converging subsequence {ψnk }. ��
We also need some results about the spectral theory of positive operators, that we

briefly recall.

Definition 1 Let E be a Banach space, K ⊂ E a cone. The cone K is called total if it
satisfies

K − K = {ψ − ϕ : ψ, ϕ ∈ K } = E .

Theorem B (Krein-Rutman (1948)) Let E be a real Banach space with the total order
cone K. Let A : E −→ E be linear, compact and positive with respect to K, and with
ρ(A) > 0. Then ρ(A) is an eigenvalue of A and A∗ with eigenvectors in K , K ∗,
respectively.

Krein and Rutman [19] present several conditions that ensure the positivity of ρ(A),
and guarantee that it has multiplicity 1. Since L1+(0, ω) has empty interior, we cannot
use their results, but instead use the following theorem on kernel operators.

A f (t) =
∫

K (s, t) f (s)dµ(s). (24)

Theorem C ([26], Theor. V6.6) Let E = L p(µ), where 1 ≤ p ≤ +∞ and (X,Σ,µ)
is a σ -finite measure space. Suppose A ∈ L(E) has the form (24) where K ≥ 0 is a
Σ ×Σ-measurable kernel, satisfying the two assumptions:

(i) some power of A is compact;
(ii) S ∈ Σ and µ(S) > 0, µ(X \S) > 0 implies

∫

X\S

∫

S

K (s, t)dµ(s)dµ(t) > 0. (25)

Then ρ(A) > 0 is an eigenvalue of A with a unique normalized eigenfunction f
satisfying f (s) > 0 µ-a.e.; moreover if K (s, t) > 0 (µ ⊗ µ)-a.e. then every other
eigenvalue λ of A has modulus |λ| < ρ(A).

We can apply this theorem to T0 obtaining

Lemma 1 ρ(T0) is an eigenvalue of T0 and T ∗
0 with a unique normalized strictly

positive eigenvectors ψ and f .

Proof T0 is a kernel operator and, as shown in the proof of Theorem 2, is compact.
Moreover, from (15), it is easy to see that condition (25) is satisfied. Then Theorem C
applies, so that ρ(T0) > 0 and ρ(T0) is the only eigenvalue of T0 of maximal modulus
with a unique normalized eigenvector ψ ∈ L1+(0, ω) and satisfying ψ(a) > 0 a.e.
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T ∗
0 has the same nonzero eigenvalues as T0 with the same multiplicity. Thus ρ(T0)

is an algebraically simple eigenvalue of T ∗
0 and by Theorem B (L1+(0, ω) is a total

cone) it corresponds to a (unique normalized) eigenfunctional f . It remains to be
proved that f is strictly positive. Let us define f̃ ∈ L∞+ (0, ω)\{0} as the function
representing the functional f , i.e.

〈 f, ψ〉 =
ω∫

0

f̃ (σ )ψ(σ)dσ, ∀ψ ∈ L1(0, ω)

T ∗
0 acts from L∞(0, ω) in itself as follows:

(T ∗
0 ϕ)(a)=

ω∫

0

ϕ(σ)

⎛

⎝B0π(a)+
a∫

0

Ix (s)
π(a)

π(s)
ds

⎞

⎠ φ(σ, a)dσ. (26)

Using Assumption 2 as in (15), it can be proved that there exists a continuous function
g : [0, ω] −→ R s.t. g(ω) = 0, g(a) > 0 ∀a ∈ [0, ω) such that

⎛

⎝B0 π(a)+
a∫

0

Ix (s)
π(a)

π(s)
ds

⎞

⎠φ(σ, a) ≥ g(a) a.e. (a, σ ) ∈ (0, ω).

Then

f̃ (a) = 1

ρ(T0)
(T ∗

0 f̃ )(a) ≥ 1

ρ(T0)
g(a)

ω∫

0

f̃ (σ )dσ > 0 a.e. a ∈ (0, ω) (27)

because f̃ ∈ L∞+ (0, ω)\{0}. Then f is strictly positive. ��

Remark 4 This fact can be stated in a more general context by observing that, as a
consequence of Assumption 2, T0 is an irreducible operator on the Banach lattice
L1(0, ω) ([26], V.6). This roughly corresponds to the definition of nonsupporting
operator used by Inaba [15].

Lemma 2 The following inequality holds:

e−‖ψ‖1 T0ψ ≤ Φ̃ψ ≤ T0ψ ∀ψ ∈ L1+(0, ω).
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14 A. Franceschetti, A. Pugliese

Proof Let ψ ∈ L1+(0, ω), then:

(Φ̃ψ)(a) =
ω∫

0

ψ(σ)π(σ )

⎛

⎝B0 e− ∫ σ
0 ψ(s)ds +

σ∫

0

Ix (s)

π(s)
e− ∫ σ

s ψ(τ)dτ ds

⎞

⎠ φ(a, σ )dσ

≤
ω∫

0

ψ(σ)π(σ )

⎛

⎝B0 +
σ∫

0

Ix (s)

π(s)
ds

⎞

⎠ φ(a, σ )dσ = (T0ψ)(a);

(Φ̃ψ)(a) ≥ e− ∫ ω
0 ψ(s)ds

ω∫

0

ψ(σ)π(σ )

⎛

⎝B0 +
σ∫

0

Ix (s)

π(s)
ds

⎞

⎠ φ(a, σ )dσ

= e−‖ψ‖1(T0ψ)(a).

��
Remark 5 By induction a more general inequality can be proved:

e−∑n−1
k=0 ‖T k

0 ψ‖1 T n
0 ψ ≤ Φ̃n ψ ≤ T n

0 ψ, ∀ ψ ∈ L1+(0, ω), ∀ n ∈ N.

All of what has been proved for T0, holds obviously also for Tn , ∀n ∈ N. Moreover,

Lemma 3 limn→∞ ρ(Tn) = ρ(T0), and ρ(Tn) ≥ ρ(T0) for all n.

Proof As seen above Bn −→
n

B0, hence Tn tends to T0 uniformly. Since they are

compact positive operators, ρ(Tn) [and ρ(T0)] are isolated eigenvalues of Tn [and
T0]. Then standard results in perturbation theory (see [17], Sect. IV.3.5) show that
ρ(Tn) −→

n
ρ(T0).

As for the second claim, from (3), one sees B0 < Bn , hence T0 ≤ Tn . From a
comparison result about positive operators (see [25]) then follows that ρ(Tn) ≥ ρ(T0).

��
We can now prove the main threshold result:

Proof of Theorem 3 (i) Using Proposition 1, we see that any converging subse-
quence {ψnk } ⊂ {ψn} tends to ψ fixed point of Φ0. Since, for ρ(T0) ≤ 1,
Φ0 has only 0 as fixed point (Theorem A), ψ = 0, i.e. the whole sequence
converges to 0.

(ii) From ρ(T0) > 1 it follows that ρ(Tn) > 1 ∀ n by virtue of Lemma 3. Let
fn ∈ (L1+(0, ω))∗\{0} be the strictly positive eigenvector of T ∗

n with respect to
the eigenvalue ρ(Tn). Then we have, ∀ n ∈ N,

〈 fn, ψn〉 = 〈 fn, Φn ψn〉 = 〈 fn, Φ̃n ψn + un〉
≥ 〈 fn, e−‖ψn‖1 Tnψn + un〉 > 〈 fn, e−‖ψn‖1 Tnψn〉
= e−‖ψn‖1〈T ∗

n fn, ψn〉 = e−‖ψn‖1ρ(Tn)〈 fn, ψn〉, (28)

123



SIR model with age structure and immigration 15

where the first inequality follows from Lemma 2. Since ψn ≥ un > 0 and fn

is a strictly positive functional, we have that:

1 > e−‖ψn‖1 ρ(Tn), ∀ n ∈ N

that is

‖ψn‖1 > log(ρ(Tn)) ≥ log(ρ(T0)). (29)

The thesis then holds with δ = log(ρ(T0)). ��
Remark 6 The derivation of inequality (29) shows that it can be seen as the combina-
tion of two more basic inequalities:

‖ψn‖1 ≥ ‖ψ0‖1 and ‖ψ0‖1 > log(ρ(T0)),

where ψ0 is a steady state of (6)–(4) without immigration of infective individuals.
The inequality ‖ψ0‖1 > log(ρ(T0)) can be proved analogously to (28) and gives a

lower bound for the steady states of the model without immigration.

5 The issue of uniqueness

Several sufficient conditions guarantee the uniqueness of positive equilibria for the
SIR model without immigration, but there exist no general results. Indeed, there exist
examples (Franceschetti, in preparation) with multiple positive equilibria of the model
without immigration. Hence, we expect that no general results may exist for this model
too, and we consider only the extension to this case of the sufficient conditions found
for the model without immigration.

Iannelli and Manfredi [13] deal with the case of a separable kernel, i.e. β(a, s) =
β1(a)β2(s), where the search for equilibria reduces to a one-dimensional fixed point
problem. We consider here instead the other cases, whose proof [15] is based on the
concept of monotonicity for sublinear operators [1], which we briefly review.

Given a Banach space E partially ordered by means of a cone C , let u, w ∈ E be
such that u ≤ w, the order interval of extremes u, w is the set [u, w] = {v ∈ E : u ≤
v ≤ w} = (u + C) ∩ (w − C). A nonlinear mapping A : D(A) ⊆ E −→ E is called
increasing if, for all u, v ∈ D(A) such that u < v we have Au ≤ Av; is called strictly
increasing if the strict inequality sign Au < Av holds; and is called e-increasing if
there exists e ∈ C \ {0} such that for every u, v ∈ D(A) with u < v there exists
constants α = α(u, v) > 0, β = β(u, v) > 0 such that α e ≤ Av − Au ≤ β e.

A nonlinear mapping A : [v,w] −→ E is called sublinear with respect to [v,w] if
the following holds:

A (v + τ(u − v))− (v + τ(Au − v)) ≥ 0, ∀ u ∈ [v,w], ∀ τ ∈ [0, 1].

A is called strictly sublinear if it holds the strict inequality sign for every u ∈
(v,w] = [v,w]\{v} and τ ∈ (0, 1); A is called e-sublinear if there exists e ∈ C \{0}
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16 A. Franceschetti, A. Pugliese

such that for every u ∈ (v,w] and every τ ∈ (0, 1) there exists δ = δ(u, τ ) > 0 such
that

A (v + τ(u − v))− (v + τ(Au − v)) ≥ δ e.

The following uniqueness result is due to Amann [1].

Theorem D Let E be an ordered Banach space. Let us set [v,∞) = {u ∈ E : u ≥ v}
and suppose A : [v,∞) −→ E is e-sublinear and e-increasing and suppose there
exists γ > 0 such that 0 ≤ Av − v ≤ γ e. Then A has at most one fixed point in
(v,∞) = [v,∞)\{v}.

We can consider the operator Φ as operating from the order interval [u0,∞) into
itself, Φ : [u0,∞) −→ [u0,∞), in view of the fact that Φψ ≥ u0 ∀ψ ∈ L1+(0, ω).
We have

Proposition 2 Φ is e-sublinear on [u0,∞) with e(a) ≡ 1.

Proof Given ψ ∈ L1+(0, ω) with ψ > u0, τ ∈ (0, 1) we have:

Φ (u0 + τ(ψ − u0)) (a)− (u0 + τ(Φψ − u0)) (a)

= (1 − τ)

ω∫

0

u0(σ )

⎛

⎝Bπ(σ)e− ∫ σ
0 ((1−τ)u0(η)+τψ(η))dη

+
σ∫

0

Ix (s)e
− ∫ σ

s ((1−τ)u0(η)+τψ(η)) ds

⎞

⎠φ(a, σ )dσ

+ τ
ω∫

0

ψ(σ)

⎛

⎝Bπ(σ)e− ∫ σ
0 ψ(η)dη

(
e(1−τ) ∫ σ0 (ψ(η)−u0(η))dη − 1

)

+
σ∫

0

Ix (s)e
− ∫ σ

s ψ
(

e(1−τ) ∫ σs (ψ(η)−u0(η))dη − 1
)

ds

⎞

⎠φ(a, σ ) dσ. (30)

Since φ(a, s) ≥ φm(s) > 0 a.e. (see (15)), we obtain

Φ (u0 + τ(ψ − u0)) (a)− (u0 + τ(Φψ − u0)) (a) ≥ δ, (31)

where δ = δ(ψ, τ) > 0 is the constant obtained substituting φm(s) to φ(a, s) in (30).
��

Following Inaba [15], an assumption on the kernel φ(·, ·) that guarantees the mo-
notonicity of the operator Φ is the following

Assumption 4

− d φ

ds
(a, s) = β(a, s)n(s)− γφ(a, s) ≥ 0 a.e. (a, s) ∈ (0, ω)× (0, ω). (32)
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SIR model with age structure and immigration 17

We then have

Proposition 3 Under assumption 4, the operator Φ is e-increasing with respect to
the order interval [u0,∞).

The proof is identical to that of Inaba.
Hence, we obtain

Theorem 4 Under the assumptions 1–4 there always exists a unique equilibrium of
(6).

Proof The existence part comes from Theorem 2.
As for uniqueness, we use Theorem D. Sublinearity and monotonicity have already

been discussed. It remains to check the condition

∃ γ > 0 : 0 ≤ Φu0 − u0 ≤ γ e.

We have Φu0 − u0 = Φ̃u0 > 0. Moreover, we have (Φu0) (a)− u0(a) ≤ γ e(a) a.e.
with e(a) ≡ 1 as in Proposition 2 and γ = ‖Φu0‖∞ + ‖u0‖∞. ��

Note that, for the case without immigration, Inaba showed, under assumption 4, that
there exists a unique positive equilibrium, if ρ(T ) > 1, and no positive equilibrium
if ρ(T ) ≤ 1; moreover, for all parameter values there exists the DFE. The present
results shows clearly the effect of immigration.

Another result of Inaba concerning uniqueness is that, when ρ(T ) ≤ 1, there are
no positive equilibria of the system without immigration. A related result holds also
for the system with immigration, but requires some qualifications and preliminaries.
First, we state the following

Lemma 4 If ρ(T ) < 1, ψ ∈ L1+(0, ω) is a fixed point of Φ then we have:

(0 ≤) ψ ≤ (I − T )−1u0.

Proof We have 0 ≤ Tψ + u0 −Φψ = Tψ + u0 − ψ .
Since ρ(T ) < 1, there exists (I − T )−1 and, because T ∈ L+(L1(0, ω)),

(I − T )−1 ∈ L+(L1(0, ω)). Then we have:

0≤(I − T )−1 (Tψ + u0 − ψ) = (I − T )−1 (u0 − (I − T )ψ) = (I − T )−1u0 − ψ,

which is the thesis. ��
The following lemma establishes that, if ‖v0‖ is small enough, Φ is monotone on

the order interval [0, v0].
Proposition 4 Let

‖v0‖e‖v0‖ < e−γω. (33)

Then the operator Φ is e-increasing on the order interval [0, v0].
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18 A. Franceschetti, A. Pugliese

Proof Given ψ1, ψ2 ∈ L1+(0, ω) such that ψ1 < ψ2 ≤ v0 we have:

(Φψ2)(a)− (Φψ1)(a)

= B

ω∫

0

π(σ) (ψ2(σ )− ψ1(σ )) e− ∫ σ
0 ψ2(τ )dτ φ(a, σ ) dσ

−B

ω∫

0

ψ1(σ )π(σ )
(

e− ∫ σ
0 ψ1(τ )dτ − e− ∫ σ

0 ψ2(τ )dτ
)
φ(a, σ ) dσ

+
ω∫

0

Ix (s)

π(s)

ω∫

s

(ψ2(σ )− ψ1(σ )) e− ∫ σ
s ψ2(τ )dτ φ(a, σ ) dσ ds

−
ω∫

0

Ix (s)

π(s)

ω∫

s

ψ1(σ )
(

e− ∫ σ
s ψ1(τ )dτ − e− ∫ σ

s ψ2(τ )dτ
)
φ(a, σ ) dσ ds

≥ B

ω∫

0

π(σ) (ψ2(σ )− ψ1(σ )) e− ∫ σ
0 ψ2(τ )dτ φ(a, σ ) dσ

−B

ω∫

0

ψ1(σ )π(σ )

σ∫

0

(ψ2(τ )− ψ1(τ )) dτ φ(a, σ ) dσ

+
ω∫

0

Ix (s)

π(s)

ω∫

s

π(σ) (ψ2(σ )− ψ1(σ )) e− ∫ σ
s ψ2(τ )dτ φ(a, σ ) dσ ds

−
ω∫

0

Ix (s)

π(s)

ω∫

s

ψ1(σ )π(σ )

σ∫

s

(ψ2(τ )− ψ1(τ )) dτ φ(a, σ ) dσ ds

=
ω∫

0

⎛

⎝B +
σ∫

0

Ix (s)

π(s)
ds

⎞

⎠ (ψ2(σ )− ψ1(σ ))

×
⎛

⎝π(σ)e− ∫ σ
0 ψ2(τ

′)dτ ′
φ(a, σ )−

ω∫

σ

ψ1(τ )π(τ)φ(a, τ )dτ

⎞

⎠ dσ (34)

Moreover, we have, for τ ∈ [σ, ω],

π(τ)φ(a, τ ) =
ω∫

τ

β(a, ξ)e−γ (ξ−τ)π(ξ) dξ ≤
ω∫

σ

β(a, ξ)π(ξ) dξ.
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SIR model with age structure and immigration 19

Then we obtain

ω∫

σ

ψ1(τ )π(τ)φ(a, τ ) dτ ≤ ‖ψ1‖1 max
τ∈[σ,ω]π(τ)φ(a, τ )

≤ ‖ψ1‖1

ω∫

σ

β(a, ξ)π(ξ) dξ (35)

and

π(σ)e− ∫ σ
0 ψ2(τ

′)dτ ′
φ(a, σ ) ≥ e−‖ψ2‖1

ω∫

σ

β(a, ξ)e−γ (ξ−σ)π(ξ) dξ

≥ e−‖ψ2‖1 e−γω
ω∫

σ

β(a, ξ)π(ξ) dξ. (36)

Substituting (35) and (36) in (34), we obtain

(Φψ2)(a)− (Φψ1)(a)

≥ B
(

e−‖v0‖1e−γω − ‖v0‖1

)
ω∫

0

(ψ2(σ )− ψ1(σ ))

ω∫

σ

β(a, ξ)π(ξ) dξ dσ. (37)

We have ψ2 > ψ1, (33) holds, and, because of assumption 2,

ω∫

σ

β(a, ξ)π(ξ) dξ ≥ φm(σ ) > 0 for all σ ∈ (0, ω);

hence, the definition of e-increasing operator is satisfied with e(a) ≡ 1

α(ψ1, ψ2) = B
(

e−‖v0‖1e−γω − ‖v0‖1

)
ω∫

0

(ψ2(σ )− ψ1(σ ))φm(σ ) dσ,

β(ψ1, ψ2) = 2 max {‖Φψ1‖∞, ‖Φψ2‖∞} .

��
Combining Lemma 4 and Proposition 4, we obtain

Theorem 5 Let ρ(T ) < 1 and assumptions 1–2 hold. Then, for ‖Iy‖1 small enough,
there exists a unique equilibrium of (6). Moreover, the corresponding force of infection
λ∗ satisfies λ∗ ≤ (I − T )−1u0.

Proof Lemma 4 shows that all solutions lie in [0, (I − T )−1u0], while Proposition 4
shows that, if
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20 A. Franceschetti, A. Pugliese

‖(I − T )−1u0‖e‖(I−T )−1u0‖ < e−γω, (38)

Φ is e-increasing on [0, (I − T )−1u0].
Finally, when ‖Iy‖1 is small enough, (38) is satisfied (remember the definition (14)

of u0), and Theorem D can be applied. ��
Probably a sharper condition forΦ to be an increasing operator on [0, (I −T )−1u0]

can be found, but (38) suffices for our aims.

6 A numerical example

We illustrate our model by an example somehow inspired by the Italian demographic
setting, and with epidemic parameters similar to what generally used for measles.

Precisely, fertility and mortality rates are taken from females’ demographic data of
Italy in 2004 [16]. In Fig. 1, we show the functions m(·) and π(·) used. The corres-
ponding value of R is approximately 0.6, so that it is definitely a below-replacement
population.

The age-dependent immigration rate has been parametrized as

Ix (a) = I ix (a), Iy(a) = I iy(a), Iz(a) = I iz(a), (39)

where i(a) = ix (a)+ iy(a)+ iz(a) is such that
∫ ω

0 i(a) da = 1. Hence, I represents
the total immigration rate, and will be used as a free parameter, while the function i(a)
represents the age profile of immigration. As the age profile of immigration we have
used the profile reported in Fig. 2, that was fitted by Manfredi and Valentini [22] to
Italian immigration data prior to 2000. The profile shows the typical features of work
migrations with a marked peak at young workers ages, plus a smaller peak at zero age.
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Fig. 1 The fertility m(·) and survival π(·) functions used in the simulations
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Fig. 2 The immigration function used in the simulations, and the resulting stationary population. Age-
dependent immigration rate I (a) = I i(a), where I = 100, 000 and i(·) is the function shown in the figure.
The stationary population is obtained with I (a) and the functions m(·) and π(·) shown in Fig. 1

From the demographic parameters and the immigration rate, one can compute
through (2) the stationary population. Assuming I = 100,000 (time is measured in
years), we obtain the population shown in Fig. 2; total population is slightly above
9,500,000 inhabitants. Note however that the demographic rates consider only females,
so that, assuming 1:1 sex ratio and equal survival of males and females, the total
population would be around 19 millions.

As for the distribution of the immigrants among the epidemic classes, we have
chosen

ix (a) = i(a)e−λi a, iy(a) = i(a)
λi

γ − λi

(
e−λi a − e−γ a)

(40)

with λi = 4 (year)−1 and γ = 52 (year)−1; clearly iz(a) = i(a)− ix (a)− iy(a). This
amounts to assume that the source population (i.e. the population where the migrants
come from) is homogeneously mixing by age, with an average age at infection around
4 years, and moreover that migrants are not selected from an epidemioloigcal point of
view. Since γ is the recovery rate, this corresponds to an average infectious period of
1 week.

The contact rates are assumed to follow a WAIFW matrix, with values tailored to
the dynamics of measles in Italy [21].

Precisely, we assume that

β(a, s) =
∑

i, j=1,...,n

βi jχIi (a)χI j (s) = βi j , if a ∈ Ii , s ∈ I j , i, j = 1 . . . n, (41)

where Ii = [ai−1, ai ] are intervals partitioning [0, ω], i.e. 0 = a0 < a1 < . . . an = ω.
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In this case, we have

(Tψ)(a) =
∑

i

χIi (a)

ω∫

0

ψ(σ)n(σ )gi (σ ) dσ,

where

n(σ ) = Bπ(σ)+
σ∫

0

Ix (s)
π(σ )

π(s)
ds

and

gi (σ ) =
∑

j

βi j

ω∫

σ

χI j (ξ)e
−γ (ξ−σ) π(ξ)

π(σ )
dξ

so that the range of T is in the subspace, Vn , generated by {χIi (·), i = 1, . . . n}.
Hence, the eigenvalues of T (and so its spectral radius) can be found by looking at

the finite-dimensional operator T : Vn → Vn that (after some computations) can be
represented by the matrix

Ti j =
a j∫

a j−1

k(σ )

⎡

⎣βi j Q j (σ )+
∑

l> j

βil Ql(al−1)e
−γ (al−1−σ)

⎤

⎦ dσ, (42)

where

k(σ ) = B +
σ∫

0

Ix (s)

π(s)
ds, σ ∈ (0, ω),

Q j (σ ) =
a j∫

σ

e−γ (ξ−σ)π(ξ)dξ, σ ∈ (a j−1, a j ), j = 1 . . . n.

In the example, we chose n = 5 and the age grouping 0–2, 3–5, 6–10, 11–19,
19+ corresponding to main school grades in Italy. As for the matrix β, the following
structure used in epidemiological studies of the transmission dynamics of measles in
Italy [24,23] was adopted

⎛

⎜
⎜
⎜
⎜
⎝

β1 β1 β1 β1 β5
β1 β2 β4 β4 β5
β1 β4 β3 β4 β5
β1 β4 β4 β3 β5
β5 β5 β5 β5 β5

⎞

⎟
⎟
⎟
⎟
⎠

(43)
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Fig. 3 The solid line shows the proportion infected, i.e.
∫

Ȳ (a) da
∫

n(a) da
, at the equilibrium value of system (6) for

different values of immigration rate I , corresponding to different population sizes. π(·) as in Fig. 1, relative
immigration rate as in Fig. 2. The contact rate has the structure (41) with the matrix β given by (43). The
dashed line shows the proportion infected in a population with the same population densities, mortalities
and contact rates, but without immigration. Parameter values are β1 = 1.254 · 10−5, β2 = 4.68 · 10−5,
β3 = 1.16 · 10−4, β4 = 1.986 · 10−5, β5 = 1.042 · 10−5; the ages used in (41) are a1 = 3, a2 = 6,
a3 = 11, a4 = 19; γ = 52

so that, through (42), we are reduced to the computation of the spectral radius of a
5 × 5 matrix.

If (39) holds, it is easy to see that all terms of the matrix T are linear in the parameter
I (remember the definition (3) of B), so that the spectral radius of T is a linear function
of I . It is then easy to find the threshold value of I , i.e. the value at which ρ(T ) = 1
that, with the numerical values specified in Fig. 3, is I ≈ 74.6. As can be seen from
(3) to (2), the population density at demographic equilibrium is an increasing function
of total immigration; thus, we may as well consider the threshold as a function of
population density P obtained at P ≈ 7.1 million.

In Fig. 3, we show the equilibrium values of the proportion infected, Y/N , vs. the
value of population density. It can be seen that, below the threshold (P < 7.1 × 106),
the proportion infected is very close to 0, while above the threshold it rises sharply.
It must be remarked, however, that the joint action of BRF and immigration yields a
stationary population density which is significantly older compared to an underlying
stationary through births and deaths only population, as can be seen in Fig. 2.

In order to disentangle the effect of age structure from that of overall population
density, we considered a stationary population without immigration, that has however
the same population density (and the same mortality, but higher fertilities) as the
population with immigration studied here. The dashed line in Fig. 3 shows, for each
population density, the equilibrium infection prevalence in a stationary population
without immigration at that population density.

Comparing the solid and dashed line in Fig. 3, one immediately sees that a BRF
population maintained by immigration has a much lower infection prevalence (and a
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Fig. 4 The age distribution of susceptibles (X ) and immune (Z ) individuals at the stationary equilibrium
in a population with immigration (_imm) and in a stationary population of the same total size without
immigration (_noimm). All parameters as in Fig. 3 with I = 100

higher threshold for persistence) than a population where stationarity follows from the
balance of births and deaths only.

In order to understand how age structure affects this difference, we show in Fig. 4
the age profile of the susceptible and immune individuals in the two cases. In a closed
population maintained constant by births, susceptibles start from a high level and drop
quickly up to 20 years with a corresponding sharp increase of immune individuals. In a
corresponding population maintained stationary through immigration, there are fewer
individuals (hence, fewer susceptibles) at young age, but the decline in susceptibles
is much slower. The BRF has a much smaller number of young individuals, hence
a smaller force of infection, since in our example contact rates are generally higher
among younger age-classes; moreover, most immigrants will have already been natu-
rally immunized in their countries, hence the force of infection is not much larger in
older ages. A similar effect of immigrants’ age on basic reproduction ratio has been
shown in [13] when contact rates have a separable structure.

If we considered instead an infection with a long and asymptomatic infectious phase,
immigration from high prevalence countries might induce different effects [20].

Looking carefully, one can also see a qualitative difference between the shapes of
the solid and dashed lines. The dashed line shows a sharp threshold, with no infection
below the threshold. On the other hand, one may note that with immigration (the
solid line) the proportion of infected individuals, while displaying a sharp bend at the
threshold, grows steadily also below the threshold (we have a ‘quasi-threshold’). If
we had chosen a smaller proportion of infective immigrants, the curve would look
sharper, as Theorem 3 states.

Finally, we analyse through simulations the importance of transients for the model.
To this purpose, we consider again system (6a), but with initial conditions based on
the current Italian demographic structure so that n(a, t) = X (a, t)+Y (a, t)+ Z(a, t)
is not constant in time; hence, we also changed the boundary condition (6b) to
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Fig. 5 The age distribution of the population with constant fertility, mortality and immigration rates at
different times. See the text for more explanation
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Fig. 6 Total number of infectives vs. time. The solid line shows the solution of (6) starting from the
stationary population (3)–(2); the dashed line the solution starting from the population shown, at t = 0, in
Fig. 5. Parameter values are as in Fig. 3 with I = 100, 000

X (0, t) =
ω∫

0

m(a)n(a, t), Y (0, t) = Z(0, t) = 0.

In Fig. 5, we show the predicted demographic evolution starting from the current Italian
demographic structure with constant fertility and mortality rates shown in Fig. 1, and
immigration rate shown in Fig. 2.

In Fig. 6, we show the predicted evolution of the total number of infectives under
two different scenarios: in the first, we start from an initial population inspired by
the current demographic situation, as outlined above; in the second, we start from
the stationary population shown in Fig. 2; in both simulations the initial fractions of
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susceptibles, infectives and immune are close to what would be a stationary solution
consistent with the force of infection estimated for measles in the Italian population
[21]. It can be seen that the two simulations are rather different: starting from the current
demographic situation, initially there are oscillations, close to a biennial period, in the
number of infectives, while starting from the stationary population one needs (because
the overall population density is lower) several years for the susceptibles to build up
enough to sustain an epidemic, followed by longer and milder oscillations. Further on,
however, the oscillations in the solution “from current” damp out quickly, and, after
a few decades, the number of infectives decreases steadily towards the equilibrium;
on the other hand, the oscillations in the solution “from stationary” persist over all
200 years of simulations. It appears then that the demographic transient has a strong
stabilizing effect on the epidemic oscillations, and this fact, not easily explained, has
been verified with several other initial conditions.

Moreover, the influence of initial conditions can still be seen after 200 years of
simulations, since the two solutions are still noticeably different. Hence, the analysis
of the stationary case, while it may emphasize relevant quantities to consider, is not
an adequate predictor of the dynamics of the infection over a reasonable time horizon.
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