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Abstract Stochastic compartmental models of the SEIR type are often used to make
inferences on epidemic processes from partially observed data in which only removal
times are available. For many epidemics, the assumption of constant removal rates is
not plausible. We develop methods for models in which these rates are a time-depen-
dent step function. A reversible jump MCMC algorithm is described that permits
Bayesian inferences to be made on model parameters, particularly those associated
with the step function. The method is applied to two datasets on outbreaks of small-
pox and a respiratory disease. The analyses highlight the importance of allowing for
time dependence by contrasting the predictive distributions for the removal times and
comparing them with the observed data.
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1 Introduction

Statistical analyses of infectious disease data frequently assume a stochastic model
containing Susceptible-Exposed-Infective-Removed (SEIR) compartments. This class
of compartmental model provides a natural description of many epidemics as individu-
als will often pass through several stages of disease development before being removed
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from further participation in disease spread. Incorporating stochasticity into this type
of model is readily achieved by specifying the probabilities of transfer between the
compartments of the model. These probabilities can often be formulated in terms of
a few key parameters which have natural interpretation in terms of the rates at which
individuals contract the disease and are subsequently removed from further participa-
tion. If the values of these parameters can be determined using data collected from an
epidemic outbreak, then steps may be taken to alter these rates in any future outbreak
using public health measures (for example, through inoculation) and hence control
disease spread during further outbreaks.

Inference on the parameters of compartmental models is, however, a non-trivial sta-
tistical problem. The main complication arises from the partial observation of data from
epidemic outbreaks. For example, while the times at which individuals are diagnosed
with the disease (and hence prevented from further infecting susceptible individuals)
are often available from sources such as medical records, the times at which individuals
contract the pathogen are usually much more difficult to ascertain. Recent research, for
example, in [10,21,22], has focused on the implementation of Markov chain Monte
Carlo (MCMC) techniques to help overcome the missing data problem and enable
parameter estimation to be performed. In particular, analyses can be performed from
a Bayesian perspective, which allows (prior) information on the epidemic (possibly
from previous outbreaks) to be incorporated into the current analysis. This approach
also yields full probabilistic information on the parameters of interest. Moreover,
inferences on functions of model parameters are easily obtained given MCMC output
from an analysis of epidemic data. Epidemiological investigators regularly require
information on key indicators of disease spread such as the basic reproduction num-
ber (see Sect. 3.2), which may be expressed as functions of more fundamental model
parameters such as the infection and removal rates in many compartmental models.

An assumption that is usually made with regard to the spread of an infectious dis-
ease is that the time between an individual becoming infective and their removal (the
infectious period) is independent and identically distributed according to some well
known distribution. The most common choice is the exponential distribution as this
invariably results in the formulation of models that are simpler to study analytically
than those with more complex infectious period distributions. However, more realistic
and flexible choices for the infectious period can produce models with very different
properties to the exponential distribution model; see, for example, [2,16] and [17].

An alternative choice for modelling the infectious period is the gamma distribu-
tion [1,17]. This distribution is used by [20] to analyse data from the 1967 smallpox
outbreak in Abakaliki, Nigeria. Their analysis reveals that the length of time spent
in the infectious category during this outbreak has two distinct components. Some
individuals are shown to have a shorter infectious period of around 14 days, while
others remain infectious for approximately 18 days. There are two possible explana-
tions for this finding. The first is that there is a biological interpretation as to why
some individuals remain infectious for around 4 days longer than others. The second
reason is that individuals who contract the disease during the early part of the outbreak
remain infectious for considerably longer as few resources are allocated to isolate these
infectives (perhaps due to a slow response to the seriousness of the ensuing epidemic).
Once it is known that a serious outbreak of smallpox is in progress, further resources
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are made available to identify and isolate infectious individuals who therefore remain
infectious for a shorter period of time (by approximately 4 days according to the
analysis of [20]). The possibility of different length infectious periods during the early
and later stages of this smallpox outbreak is identified in [3]: the author assumes that
the first two infective individuals are infective for a fixed period of 14 days, and when
each of the subsequently infected individuals become infective they remain so for only
7 days.

However, despite evidence of time-inhomogeneity in the period that individuals
remain infectious (and hence in the rate at which infectious individuals are removed
from further participation in the outbreak), there have been few previous attempts to
explicitly capture this feature of epidemics in a compartmental model. One reason
for this may be due to the complexity of such a model and the inherent difficulty in
making inferences on model parameters given partial observation of the data. In this
paper, we develop a stochastic compartmental model for disease outbreak that includes
time-inhomogeneity in the rate at which infectious individuals are removed from the
epidemic. The model assumes that the infectious period is exponentially distributed
for all individuals, however, the rate parameter of the distribution is a step function in
time. The number of change-points in the step function, the position of the changes
and the rates of removal in each step are all assumed to be unknown and are therefore
objects for inference. The model for the infection process allows for heterogeneity
of susceptibility, and the possibility of a latent period for the disease. Inferences for
model parameters, and functions of the model parameters, are made using a Bayesian
approach which incorporates prior information. We develop a reversible jump MCMC
methodology [12] that enables calibration of the model for outbreaks of disease where
the data are only partially observed. An analysis of the Abakaliki smallpox outbreak
discussed previously shows that the model is able to capture changes in the removal
rate and highlight where such changes occur.

The contribution of the paper to the literature of stochastic epidemic modelling is
threefold. We develop an extension of existing stochastic compartmental models that
enables more realistic modelling of disease outbreaks. We provide a methodology that
allows the fitting of this model to partially observed data, and results in more accurate
inferences being made on key epidemiological parameters such as the basic repro-
duction number. Furthermore, much of the work in this area describes procedures for
making inferences about model parameters without assessing the appropriateness of
the model, for example, through associated measures of model fit. We describe how
to assess the adequacy of models by studying their predictive fit, that is, by comparing
the predictive distribution (assuming the model) with the observed data. By providing
evidence that the model outlined here better describes a range of disease outbreaks,
public health measures based on the estimates of the model parameters may be better
suited to preventing future epidemics.

The paper is arranged as follows. In Sect. 2, we describe the SEIR model, the
observed data and the form of prior information which together allow inferences to
be made about key parameters of the epidemic process. An overview of the MCMC
algorithm is given in Sect. 3 (with more details in the Appendix). The algorithm is
tested on simulated data in Sect. 4 and then used to analyse data from the Abakaliki
smallpox outbreak and an outbreak of a respiratory disease in Sects. 5 and 6, respec-
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tively. The paper concludes in Sect. 7 with some general remarks on the additional
insights gained by using our model and on the importance of using predictive measures
of overall model adequacy.

2 A multitype SEIR model

2.1 Model

We adopt a Susceptible-Exposed-Infective-Removed (SEIR) model in which the sus-
ceptible category is partitioned into m sub-categories. Each member of the population
of individuals susceptible to a disease belongs to one of the m groups, and each group
is considered to have a potentially different susceptibility to the disease in question.
Group membership is assumed known and might be affected by factors such as age
or sex, although within each grouping, susceptibility is assumed to be homogeneous.
Initially, there are Ni individuals in group i, i = 1, 2, . . . , m, and the epidemic begins
once an individual from one of the groups contracts the disease. Having contracted
the disease, the individual enters a latent period, where they show no symptoms of
the disease and are unable to infect susceptible individuals, before becoming infec-
tive. Models which include independent parameterisations of the latent and infectious
period distributions are not identifiable given the partial information available in the
data considered here, unless we have very informative prior information about one
of these distributions. Therefore, following the example of [20], we assume a latent
period of fixed length c, with c chosen appropriately according to known proper-
ties of the disease. The epidemic then proceeds according to the following transition
probabilities: in a (small) interval [t, t + dt), the process evolves according to

Pr
{(

Si(t + dt), Ei(t + dt)
) = (

Si(t) − 1, Ei(t) + 1
)} = βiSi(t)I(t)dt + o(dt)

Pr
{(

Ii(t + dt), Ri(t + dt)
) = (

Ii(t) − 1, Ri(t) + 1
)} = γ (t)Ii(t)dt + o(dt)

for i = 1, 2, . . . , m, where (Si(t), Ei(t), Ii(t), Ri(t)) denotes the number of individ-
uals in group i at time t that are susceptible, exposed, infected, and removed, with
I(t) = ∑m

i=1 Ii(t). The model assumes homogeneous mixing within the population.
Each infected individual makes infective contact with a member of susceptibility group
i at rate βi. Infectives are assumed to have the same propensity to infect regardless of
the susceptibility group from which they originate. Note that each infected individual
must pass through the latent period before becoming infective. Since the infection
times are unobserved, the first sign that the epidemic is in progress is at the time of
the first removal. For this reason, the time of the first removal is set to be zero and all
infection and removal times are set relative to this reference time, in the same manner
as [21]. The group to which the first infective belongs is also unknown. The epidemic
is observed until there are no infected individuals remaining in the population and this
occurs at (relative) time T.

The time-dependence of the removal rate is modelled as a step function, with k steps
at times s = (s1, s2, . . . , sk). The function γ (t) takes the value γj when t ∈ [sj, sj+1)

for j = 0, 1, . . . , k, where for convenience s0 ≡ −∞ and sk+1 ≡ T. This formula-
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tion is equivalent to a model in which the distribution of the infectious period has an
exponential intensity γj within interval [sj, sj+1). The end of the epidemic is defined to
be the first time at which no infectives or exposed individuals remain in the population.
Note also that the population is assumed to be closed, and removed individuals play
no further part in the epidemic.

2.2 Data

Information on the epidemic process is assumed to consist only of the initial numbers
of susceptibles in each group, N = (N1, N2, . . . , Nm), along with the removal time of
each infective individual. Let rij (i = 1, 2, . . . , m, j = 1, 2, . . . , ni) denote the time of
removal j in group i, and ni the total number of group i removals. The infection times
and the group from which each infective originates are unknown and are therefore
treated as parameters of the model. We write τij for the time of infection j in group i,
and so this individual becomes infective at time τij + c (after the end of their latent
period). The group from which the initial infective originates is denoted by imin. Let
r = (rij) denote the matrix of removal times and τ = (τij) the matrix of infection
times, but excluding the time of the first infection in the whole population, τimin,1.
Since the complete epidemic is observed, the total number of infections of individuals
in group i is also equal to ni. The total number of infections and the total number of
removals are both equal to n = ∑m

i=1 ni.

2.3 Complete data likelihood

The parameters for which we would like to make inferences are the infection rates
β = (β1, β2, . . . , βm), and the parameters specifying the removal rate step function,
namely the number of steps, k, the step positions s = (s1, s2, . . . , sk), and the removal
rates γ = (γ0, γ1, . . . , γk).

Assuming that both infection and removal times data are fully observed, the like-
lihood function is

π(τ , r|β, γ , k, s, imin, τimin,1)

=
{ m∏

i=1,i �=imin

βiSi(τ
−
i1 )I(τ−

i1 )

}{ m∏

i=1

ni∏

l=2

βiSi(τ
−
il )I(τ−

il )

}{ m∏

i=1

ni∏

l=1

γ (r−
il )Ii(r

−
il )

}

× exp

{
−

m∑

i=1

(
βi

T∫

τimin ,1

Si(t)I(t)dt
)

−
T∫

τimin ,1

γ (t)I(t)dt
}

where Si(t−) denotes the number of susceptible individuals in group i immediately
prior to time t, and similarly for γ (t−) and I(t−).

2.4 Prior model

We assume independent prior distributions for the infection rates, the group and time
of the first infection, and the step function for the removal rates. Following other
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authors such as [21], we take independent gamma priors for the infection rates βi and
the removal rates γj (given the number of steps):

βi ∼ Γ (gβi , hβi), i = 1, 2, . . . , m

γj|k ∼ Γ (gγ , hγ ), j = 0, 1, . . . , k.

Such a choice provides reasonable flexibility for describing prior beliefs and has the
added attraction of facilitating a conjugate update in the MCMC scheme.

The prior model for the step function is similar to that described by [12]. The
number of steps k in [0, T] is assumed to follow a Poisson distribution with mean λ

truncated above at kmax, with probability function

π(k) ∝ λk

k! , k = 0, 1, . . . , kmax,

and kmax chosen to reflect prior beliefs about the maximum number of change-points
in the removal rate. Prior knowledge about the number of change-points is closely
related to that of the removal rates and so care must be taken to ensure a coherent
choice of parameter values for the joint prior distribution of (γ , k). For example,
knowledge of a constant step function corresponds to strong prior information on both
k (π(k = 0) � 1) and the γj|k (gγ � h2

γ ). In general, an informative prior distribution
for k is not consistent with an uninformative prior specification for the γj|k and leads
to the posterior distribution assigning all probability to the simplest (k = 0) model.
Conditional on k, the joint distribution of the positions of the change-points s is taken
to be that of every ath order statistic from a sample of size a(k+1)−1 points sampled
uniformly over [0, T]. Note that it is assumed a priori that no jumps in the step function
occur before time zero. This choice of prior distribution results in the scaled distance
between consecutive change-points (sj+1−sj)/T following a Beta(a, ak) distribution.
Thus the value of a can be chosen to reflect prior beliefs about change-points in the
removal rate function, with large values of a essentially putting step positions on a
fixed grid. Small values of a can result in the MCMC algorithm accepting intervals
containing no data (removal times), and therefore leads to estimates based solely on
prior opinion. Thus care must be taken to choose a appropriately and its impact on the
posterior distribution assessed.

As the first infection time occurs before time zero (relative to the time of the first
removal), we adopt a uniform U(−d, 0) distribution for τimin,1 (d > 0), with the lower
endpoint chosen to be a time prior to which it is believed the epidemic cannot have
begun. This prior is of the same form as that used by [13] in their analysis of a multitype
epidemic. Also, in the absence of further information, we assume a discrete uniform
distribution for the susceptibility group from which the initial infective originates, that
is, imin ∼ U{1, 2, . . . , m}.

3 Posterior inference

Information about the unknown parameters (and unobserved data) in the complete
data likelihood and prior distribution are combined using Bayes theorem to give the
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posterior distribution

π
(
β, γ , k, s, imin, τimin,1, τ

∣
∣r

) ∝ π
(
τ , r

∣
∣β, γ , k, s, imin, τimin,1

)

×π
(
β, γ , k, s, imin, τimin,1

)
.

Posterior inference can be conducted by simulating from a Markov chain for which the
equilibrium distribution is the posterior distribution of interest. There are several stan-
dard methodologies available for constructing such a Markov chain, and the process
is generally known as Markov chain Monte Carlo (MCMC) [8].

An MCMC scheme begins with some suitable choice of parameter values to ini-
tialise the Markov chain. Simulation of the Markov chain proceeds by successively
updating parameter values according to a standard methodology. This is most simply
achieved when the conditional distributions of each parameter (given the other param-
eters of the model) are known standard distributions. Such an algorithm is known
as a Gibbs sampler. If this is not the case then parameter values are simulated using
a slightly more complex procedure known as a Metropolis-Hastings sampler. Here
updates are proposed from a standard distribution (known as the proposal distribu-
tion) which is hopefully similar to the actual non-standard conditional distribution.
The proposed update is in turn accepted with a probability that ensures that the equi-
librium distribution of the Markov chain is the one required, that is, the posterior
distribution. Further, if the proposed update results in a change to the dimensionality
of the Markov chain, we use a technique known as a reversible jump update in which
the acceptance probability also takes account of the dimension change [12]. We note
that other dimension changing moves are possible [23] but are not considered any
further here.

In order to simulate from the posterior distribution for the epidemic model given
above, we construct an MCMC algorithm that employs both Gibbs sampler updates
and, where appropriate, Metropolis-Hastings updates. The method uses techniques
similar to those of [10,21] and [22] to explore the space of the infection rates and
hidden infection times, and those outlined by [12] for the step function. Mixing over
uncertainty for the step function is complicated by the need to use reversible jumps
which propose changes to the number of steps k.

3.1 MCMC scheme

The MCMC scheme begins with an initial choice of parameters and hidden infec-
tion times, though particular care must be taken to ensure that the infection times
are feasible (and have positive density). A simple example of an infeasible sequence
of infection times would be one in which the infection of a susceptible individual
occurred whilst there were no infectious individuals in the population. Further, the
only point at which no individuals lie in the exposed or infective categories is at the
end of the epidemic.

The scheme proceeds by cycling through the following steps. Note that the techni-
cal details of the algorithm, including the conditional distributions and the acceptance
probabilities for the Metropolis-Hastings moves, are reserved for the Appendix.
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Update infection times: Propose an update to the sequence of hidden infection times
by reallocating a randomly (uniformly) chosen infection time to a new time sampled
from a U(−d, T) proposal distribution. The associated time at which the individual
becomes infective is moved to a new time τ ′ +c. The move is rejected immediately
if the proposed sequence of infections and removals is infeasible. Otherwise the
move is accepted with the appropriate Metropolis-Hastings acceptance probability.

Update infection parameters: Sample a new value for each infection rate parameter
βi (i = 1, 2, . . . , m) from its conditional posterior distribution given all other states
of the chain.

Update removal rate step function: The proposal of a new realisation of the removal
rate step function is more complicated and involves different moves for each aspect
of the step function. At each iteration, one of the following choices is made:

(i) Update removal rates: with probability q1, simulate a new value for γj (j =
0, 1, . . . , k) from the conditional distribution of each removal rate given k, s
and the other states of the chain.

(ii) Update existing step positions: with probability q2, select one of the step
positions sj uniformly from the k existing steps and propose moving sj to a
new position s′

j sampled from a U(sj−1, sj+1) distribution. Accept the pro-
posed position with the appropriate Metropolis-Hastings acceptance
probability.

(iii) Increase number of steps: with probability q3, propose an additional step at a
position s′ sampled uniformly over (0, T). Note that this is a reversible jump
move which induces an enlargement of the parameter space as additional
parameters are required to specify the position of the step and the removal
rates between the old and new change-points.

(iv) Decrease number of steps: with probability q4 = 1 − q1 − q2 − q3, propose
a removal of a step position, sj say, chosen uniformly from the k existing
steps. The move also requires a change in the dimensionality of the parameter
space, and is the reverse of the proposal to increase the number of steps.

3.2 Inference for the basic reproduction number

In addition to being able to make inferences about model parameters such as the infec-
tion rates, the unobserved infection times and the parameters describing the removal
rate step function, it is straightforward to make inferences about other parameters of
epidemiological interest such as the basic reproduction number, R0. This is usually
defined to be the expected number of new cases caused by a typical infective in a
large and entirely susceptible population during the early stages of an epidemic; see,
for example, [14]. Heterogeneity in infectivity across the population has been stud-
ied by [18] using a model which allows individuals to have different reproductive
numbers, each of which is a draw from a distribution with mean R0. However, we
focus on the more basic task of estimating the population level reproduction number
R0. This is important since a major epidemic will occur with positive probability if
R0 > 1, and will typically die out quickly if R0 ≤ 1; see [14]. The basic reproduction
number is of particular importance to epidemiological investigators since inferences
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on R0 can be used to guide vaccination policies aimed at reducing the number of
susceptible individuals in a population to a level such that R0 is brought below the
unity threshold [6].

After approximating the early stages of the epidemic to a Poisson process with rate∑m
i=1 βiNi, and noting that a typical infective remains so for a mean period of 1/γ0

during this period, the basic reproduction number for our model can be shown to be

R0 = 1
γ0

m∑

i=1

βiNi.

The analyses of data in following sections focus particularly on the possibility of
improved estimation of this important parameter given the model developed in this
paper compared to less sophisticated models.

4 Analysis of simulated data

We now validate our MCMC algorithm by demonstrating its performance on simu-
lated data. The data were generated from a population comprising a single (m = 1)
homogeneous susceptibility group in which there were N1 = 100 initially suscep-
tible individuals. The length of the latent period was specified to be c = 10, and
the infection rate was chosen to be β1 = 0.0012. The removal rate during the early
part of the epidemic was set at γ0 = 0.08, increasing to γ1 = 0.4 after the change-
point at s1. The time of the change was chosen to coincide with that of the 10th
removal, which occurred at s1 = 59.8. A total of n1 = 27 infections and sub-
sequent removals were observed before the end of the simulated epidemic at time
T = 100.4.

The analysis assumed that the data consisted of the removal times of infected indi-
viduals, given in Table 1, along with the number of heterogeneous susceptibility groups
(m = 1), the initial population size (N1 = 100), and the length of the latent period
(c = 10). The infection times and the times at which individuals entered the infective
category were assumed to be unobserved, as were those parameters specifying the
removal rate step function and the rate of infection.

Prior specifications were made on the unknown parameters as follows. The prior
mean infection rate was chosen to be 0.001, which is of the same order of magni-
tude as the infection rate specified in the simulation. A relatively large value of 1.0
was chosen for the prior variance so that the analysis used fairly uninformative prior
knowledge for the infection rate β1. A similar strategy was employed for choosing
the parameters of the prior distribution for the removal rates γj|k: the prior mean and

Table 1 Simulated data

Removal times 0 3.9 22.3 29.8 30.8 40.2 42.8 47.7 55.5
59.8 61.0 61.2 61.3 61.4 62.0 63.3 64.8 68.1
69.6 70.5 71.6 76.3 80.9 81.0 87.0 89.6 100.4
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variance were both chosen to be 0.1. The parameter choices for the prior distribution
on the removal rate step function were made so that the prior information was suffi-
ciently uninformative to allow inferences to be based primarily on the information in
the data, yet sufficiently coherent to ensure that the MCMC scheme explored the full
space of the posterior distribution and did not allocate all the posterior probability to
the model with k = 0 removal rate change-points. Specifically, the maximum number
of changes in the removal rate was set to be kmax = 8, with the number of steps k
assumed to follow the truncated Poisson distribution with rate λ = 1. The parameter
of the prior distribution for the step locations s was set at a = 2. Finally, the time of
the initial infection was assumed to have occurred no earlier than d = 50 time units
before the first removal.

The analysis was performed by implementing the MCMC algorithm described in
Sect. 3, with the move probabilities qi for the proposals to update the removal rate step
function each chosen to be equal to 0.25 (i = 1, 2, 3, 4). A sample of 100,000 iterations
was required before convergence seemed to have occurred, and this was subsequently
confirmed by using diagnostics such as the Heidelberger and Welch [15] and Geweke
[9] tests. A further 100 million iterations with a thin of 10,000 produced a sample
of 10,000 (almost uncorrelated) values from the posterior distribution. The MCMC
output is displayed in the form of marginal and conditional posterior distributions in
Fig. 1, with corresponding summary measures in Table 2.

The posterior distribution of k shows that the majority of the posterior mass lies
with the model for which there is one change-point in the removal rate. The posterior
distribution of s1|k = 1 is centred around the correct (but assumed unknown) value
of the change-point (s1 = 59.8). Further, the summary measures for the removal rates
given a single change-point highlight the more rapid rate of removal after s1 com-
pared to that earlier in the simulated epidemic, and are fairly close the theoretical
values underpinning the simulated data (γ0 = 0.08, γ1 = 0.4). The conditional pos-
terior distribution of the infection rate, β1|k = 1, is also located near to its theoretical
value (β1 = 0.0012).

Significantly smaller amounts of posterior mass are allocated to the models for
which there are k = 0 or k = 2 removal rate changes. Note that these relatively
implausible models give misleading inferences on the removal process, though infer-
ences for the infection rate are fairly similar to those in the “true” model (k = 1).
In particular, as expected, the posterior distribution for the removal rate γ0|k = 0
is located between those of γ0|k = 1 and γ1|k = 1, as γ0|k = 0 is essentially an
average of the slower early rate and the more rapid later rate in the epidemic. For
the k = 2 change-points model, the conditional posterior distribution of s2|k = 2
is similar to that of s1|k = 1, however, that of s1|k = 2 has a large variance and is
close to its prior distribution (as shown by the dotted line on the lower right plot of
Fig. 1).

The figure (bottom plot) and Table 2 also highlight the effect of mis-specifying the
number of change-points in the removal rate. For example, assuming a time-homoge-
neous removal rate (k = 0) clearly underestimates the basic reproduction number R0
as this model is unable to capture the slower rate of removal during the early stages of
the epidemic. Correctly including a single change-point leads to doubling the estimate
for R0 but also increases its standard deviation four-fold. Recall that initial predictions



Inference for stochastic epidemic models 233

Fig. 1 Selected marginal posterior distributions for the simulated data analysis
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Table 2 Posterior means (and standard deviations) for selected parameters

Parameter

k 1.09 (0.48)
β1 0.0011 (0.0005)
R0 2.78 (3.33)
k 0 1 2
β1|k 0.0014 (0.0006) 0.0011 (0.0005) 0.0011 (0.0005)
γ0|k 0.127 (0.053) 0.045 (0.028) 0.050 (0.044)
γ1|k 0.300 (0.168) 0.125 (0.224)
γ2|k 0.310 (0.232)
R0|k 1.19 (0.34) 2.77 (1.22) 3.41 (5.23)

for whether or not the epidemic will die out are made using Pr(R0 ≤ 1). In our simula-
tion model the true value for R0 is 1.5. All three models (k = 0, 1, 2) correctly indicate
that the epidemic will not die out quickly: P̂r(R0 ≤ 1|k, r) = 0.311 (k = 0), 0.009
(k = 1), 0.044 (k = 2). However, the time-homogeneous model clearly underplays
the strength of evidence for a serious outbreak of the epidemic.

Finally the robustness of these inferences was assessed by observing how sensitive
the inferences were to small changes in the parameters of the prior distribution. This
is not straightforward since marginal likelihood functions are difficult to interpret due
to the complex posterior dependence structure induced by the missing data. Instead
we have chosen to simply rerun the analysis many times and to study the effect of
small changes in the prior specification. Overall, we found that such changes resulted
in only very modest changes to the posterior distribution; further details can be found
in [11]. We also found that the posterior mass for the incorrect models (k �= 1) is
largely due to the prior distribution rather than any particularly supportive evidence
in the data.

In summary, the analysis in this section illustrates how our MCMC methodology
can be used to make reliable and accurate inferences about the key parameter values
of this SEIR epidemic process despite the complications due to partial observation
of the epidemic and the use of fairly uninformative prior beliefs on the nature of the
heterogeneity in the removal rate process.

5 Analysis of the Abakaliki smallpox data

The Abakaliki smallpox data are much studied by many previous authors; see, for
example, [3,7,20,21]. The data have a simple structure and so are ideal for illustrat-
ing the methodology we have developed for making inferences on the parameters of
our more complex model. The analysis does not intend to provide new insight into
this outbreak in particular or the smallpox disease in general (a fuller analysis based
on more detailed data from this outbreak is given in [7]). Rather, the analysis serves
to show that improved inferences can be made regarding the spread of this disease
by considering the model proposed in this paper. For example, as already stated in
Sect 3.2, a key epidemiological parameter of interest is the basic reproduction number,
R0. By adopting a model which explicitly models changes in the removal rate, we aim
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Table 3 Abakaliki smallpox data

Day 0 13 20 22 25 26 30 35 38 40 42 47
No. of removals 1 1 1 1 3 1 1 1 1 2 2 1
Day 50 51 55 56 57 58 60 61 66 71 76
No. of removals 1 1 2 1 1 1 2 1 2 1 1

to demonstrate that more accurate inferences may be made on the rate of removal
during the early stages of the epidemic, and hence can lead to improved inference on
R0. This in turn can lead to an improved understanding of the transmission potential
of smallpox during the early stages of the epidemic by providing a more accurate
estimate of Pr(R0 ≤ 1), the probability that the epidemic dies out quickly.

The Abakaliki smallpox data are reported here as the days on which the removal
of individuals actually took place, with the first day set to be time zero (see Table 3).
Inspection of the data reveals large intervening periods between the first three removal
times and thereafter, removals occurring far more frequently. This observation is con-
sistent with the choice of two different fixed length infectious periods used by [3] for
the first two removed individuals and for the remaining infectives. The analysis in [3]
uses a single-type (m = 1) model, implying homogeneous susceptibility of all sus-
ceptible individuals, with no latent period (c = 0) and an initial susceptible population
size of N1 = 120. In our analysis, we also assume the single-type model and the same
initial population size, but use a duration of c = 13 days as this is generally accepted
to be the approximate length of the latent period for the smallpox virus [20].

The parameters of the prior distribution were chosen as follows. Infections were
thought to occur at a rate of around 1 in 1,000 susceptible-infective contacts and so
this was translated into fairly weak prior information by setting the prior mean and
standard deviation for the (single) infection rate β1 as 0.001 and 0.1, respectively. Prior
information suggesting a mean infectious period of around ten days was included by
choosing the prior mean and standard deviation for the γj|k to both be 0.1. We sought
basic step functions for the removal rate by taking a step location rate of λ = 1 and
a maximum permitted number of steps of kmax = 8. This choice assigns most of the
prior probability to the cases k = 0 and k = 1, with mean and standard deviation both
approximately equal to 1, and π(k = 0) = π(k = 1). Note that this choice, together
with that for the γj|k, is sufficiently informative to ensure that the posterior distribu-
tion does not assign all probability to the simplest model. Also, taking a = 2 for the
prior on the step positions incorporates fairly weak information whilst downweighting
both small and large distances between consecutive step positions for all choices of
k, and resulted in no small steps appearing in the posterior distribution. Finally, the
first infection was assumed to have taken place no more than 50 days before the first
removal (d = 50).

We report the results of a typical run of the the reversible jump MCMC algorithm
described in Sect. 3. Convergence of the sampler was assessed by using standard
diagnostics. Equal move probabilities (q1 = q2 = q3 = q4 = 0.25) for the step
function proposals gave acceptable mixing rates. The algorithm required 100,000 iter-
ations before convergence was apparent, and then a posterior sample of size 10,000
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obtained by running the chain for a further 100 million iterations with a thin of 10,000.
Figure 2 shows several marginal and conditional posterior distributions obtained from
this MCMC output, and their summary measures are given in Table 4.

The posterior distribution of k shows that the majority of the posterior mass lies
away from the time-homogeneous model (k = 0) and suggests that there is at least one
change in the removal rate. Conditioning on the posterior modal number of change-
points (k = 1), the posterior densities for γ0 and γ1 show a clear increase in the
removal rate after the change-point, with P̂r(γ0 < γ1|k = 1, r) � 0.981 (s.e. 0.002).
The posterior density for the location of this change-point (s1) has two large modes,
the largest of these occurring at approximately t = 20 days after the first removal,
that is, the time at which the third removal takes place. This is consistent with the
hypothesis that the initial cases are removed far more slowly than those removed once
the epidemic is known to be present in the population. It also agrees with [3], although
that analysis assumed that only the first two removals had a longer infectious period
rather than the first three removals found here. Interestingly, our analysis assuming
k = 1 change-point has a further mode in the posterior density for s1, taking place
at approximately 55 days after the first removal. This finding is consistent with the
locations of the change-points in the two change-point model. The k = 2 model is
well supported by the posterior distribution and separates the bimodal distribution for
s1|k = 1 into two (mainly) unimodal distributions for s1 and s2 (given k = 2). The
figure also shows that, in this two change-point model, the removal rates increase over
time, with P̂r(γ0 < γ1 < γ2|k = 2, r) � 0.764 (s.e. 0.008). This latter finding sug-
gests that an as yet unknown factor at approximately day 55 caused removals to occur
more quickly, resulting in the end of the epidemic on day 76. These conclusions cor-
roborate those of [20], who detect bimodality in the posterior distribution of the mean
infectious period and suggest that the mode representing the longer infectious period
of approximately 18 days was attributable to the initial cases of infection. Our analysis
also gives some indication of where the switch to a shorter infectious period occurs.
O’Neill and Becker [20] follow up their analysis by deleting the first eight removals
from the full data and refitting the model. As a result, the mode corresponding to the
infectious period of the initial infectives at around 18 days in the posterior distribution
for the mean infectious period disappears. The primary mode at approximately day 14
remains but a new mode appears at around day 8. Our analysis suggests that this new
mode corresponds to a group of individuals with a particular short infectious period
of around 4–5 days, these individuals being those removed after around 55 days.

Turning to inferences for the infection rate β1, Fig. 2 shows its posterior distribution
in the zero, one and two change-point models for the removal rate. The (unconditional)
distribution obtained after taking account of the uncertainty regarding the number of
change-points is very similar to that in the k = 1 model and therefore is not shown. We
note that the posterior mean for β1|k = 1 is close to the maximum likelihood estimate
(β̂ = 0.00131) obtained by [3] when assuming that the first two cases are infective for
14 days and the later cases for only 7 days. Its posterior standard deviation is larger
than the standard error of the m.l.e. quoted by [3] (s.e.(β̂) = 0.00024), mainly due to
allowing for uncertainty on the infection times.

As noted earlier in the paper, inferences on the basic reproduction number are key
to gaining an understanding of the spread of the disease and hence in developing
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Fig. 2 Selected marginal posterior distributions for the smallpox data analysis
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Table 4 Posterior means (and
standard deviations) for selected
parameters

Parameter

k 1.37 (0.90)
β1 0.0016 (0.0007)
R0 4.02 (5.29)
k 0 1 2
β1|k 0.0021 (0.0008) 0.0016 (0.0007) 0.0014 (0.0006)
γ0|k 0.206 (0.072) 0.077 (0.052) 0.055 (0.045)
γ1|k 0.246 (0.098) 0.136 (0.074)
γ2|k 0.272 (0.120)
R0|k 1.24 (0.34) 3.95 (4.94) 4.99 (5.99)

methods to tackle further epidemic spread. The lower plot in Fig. 2 demonstrates that
posterior inferences for the basic reproduction number are sensitive to the number
of removal rate change-points assumed in the model. For example, the model with a
time-homogeneous removal rate is unable to capture the slower rate of removal during
the early stages of the epidemic. Therefore inferences on γ0 are dominated by the more
rapid removal of later cases, resulting in this parameter being overestimated and, con-
sequently, R0 being underestimated. In contrast, models which allow for changes in
the removal rate do capture the slower diagnosis of the earliest cases and enable more
accurate inferences on γ0 and hence on R0. The (conditional) posterior distributions
of R0|k for different k in Fig. 2 highlight the sensitivity of inferences about R0, and
hence about whether the epidemic will die out, on the number of change-points in the
removal rate: P̂r(R0 ≤ 1|k, r) = 0.249 (k = 0), 0.025 (k = 1), 0.015 (k = 2).

The sensitivity of the posterior distribution to the choice of prior distribution was
assessed by using repeated runs of the analysis to study the effect of small changes
in the prior specification. We found that such changes resulted in only very modest
changes to the posterior distribution; further details can be found in [11].

The inferential comments above are only appropriate if they relate to a model which
adequately describes the observed epidemic. We have compared the predictive dis-
tributions of the removal times for both the full model and the time-homogeneous
model (k = 0) with the observed data. In this context, the predictive distribution is
determined as the posterior average of realisations of the epidemic process, where
the average is taken over the posterior distribution, that is, the predictive density for
removal time rij is

f (rij|r) = Eθ |r
[
f (rij|θ)

]

where θ represents all model unknowns (parameters and unobserved data) and f (rij|θ)

denotes the density of the removal time induced by the epidemic model. Therefore, the
predictive distributions can be obtained by repeatedly simulating epidemic realisations
for randomly sampled iterates from the MCMC output θ i. Figure 3 shows box and
whisker plots of the predictive distributions for every fourth removal time (relative to
the first removal time). The left plot of each pair is the distribution for the removal
time given the simpler (time-homogeneous removal rate) model, and that on the right,
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Fig. 3 Predictive distributions for smallpox removal times

the distribution for the more complex (time-inhomogeneous) model. The observed
removal time is represented by the cross between the plots. The whiskers extend to the
upper and lower 2 1

2 percentiles, and the box gives the median and inter-quartile range.
The figure demonstrates that both models give a reasonable description of the removal
times early in the epidemic. Later in the epidemic, the observed removals fall well into
the lower tails of the predictive distribution for the simpler model. This model fails
to capture the change in removal rate and therefore over-predicts the removal times.
However, our larger and more flexible model removes much of this lack-of-predictive
fit by explicitly modelling such changes. It also impacts inferences for the infection
rate and thereby has the capacity to permit more accurate modelling of the unobserved
infection times. This analysis shows clearly the benefit of allowing change-points in
the removal rate on the fit of the model to the data.

6 Analysis of respiratory disease data

The second dataset concerns an outbreak of a respiratory disease on the South Atlantic
island of Tristan da Cunha [4]. The data are presented in Table 5 and take the form
of the number of daily removals in each of three different susceptibility categories
(infants = 1, children = 2 and adults = 3). As in the analysis of the smallpox data,
the times of infection are not observed. An initial study of the data reveals that there is
a large intervening period between the first and second removal times, with more fre-
quent removals occurring thereafter. This may indicate a slower rate of removal during
the early stages of the epidemic. Once again the purpose of the analysis performed
here is to locate change-points in the removal rate and to provide a model that better
describes the transmission of the disease in question. In particular, an improvement
in the accuracy of inferences made on key parameters such as the basic reproduction
number during the early part of the epidemic are vital in providing estimates of the
potential of the outbreak to become a major epidemic.
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Table 5 Tristan da Cunha respiratory disease data

Group Day

0 7 9 10 11 12 14 15 16 17 18 19 20 21 28 29

Infants 0 0 0 3 1 3 1 0 0 1 0 0 0 0 0 0
Children 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0
Adults 1 1 1 0 2 3 1 4 1 1 3 2 1 2 1 1

A Bayesian analysis of these data has been performed by [13] assuming a multi-
type model with three categories, containing initial numbers of susceptibles N1 = 25,
N2 = 36 and N3 = 193. As the disease is not known to have any significant latent
period, they assume a negligible latent period by taking c = 0. We also adopt this model
and investigate the extent to which the removal rate is time-inhomogeneous. Again
we incorporate weak prior beliefs for the infection rate parameters βi (i = 1, 2, 3) by
taking prior mean and standard deviations of 0.001 and 0.1, respectively. Weak prior
beliefs are also included for the removal rate parameters γj|k: mean 0.1 and standard
deviation 0.3. This choice of standard deviation is different to that used in the previous
analyses, and appears to give a more coherent specification of the joint prior distribu-
tion of (γ , k) in this case. Similar arguments to those used in the smallpox analysis
led to the same choice of the maximum number of change-points (kmax = 8), and of
the other removal step function parameters (λ = 1, a = 2, d = 50).

The MCMC algorithm was implemented with qi = 0.25 (i = 1, 2, 3, 4) for a burn-
in of 100, 000 iterations, followed by a further 100 million iterations with a thin of
10, 000, giving a sample of 10,000 iterates. Figure 4 gives posterior densities for the
main model parameters, with summary statistics included in Table 6.

The posterior distribution for k shows strong support for the inclusion of one
removal rate change in the model, with some support for two change-points. Con-
ditional on there being k = 1 change-point, the position of the change seems to occur
at a time s∗ which is approximately on day 9 or day 10 of the epidemic. This is in
contrast with the smallpox data, for which the distribution of s1|k = 1 showed much
larger variation. Note that the bi-modality of this distribution is due to the discrete
nature of these data and disappears when the removal times are perturbed from their
integer values. As in the previous analyses, given k = 1, the posterior distributions of
γ0 and γ1 highlight a significant increase in the removal rate for cases diagnosed later
in the epidemic compared to the rate at which the initial cases are removed. Turning
to the model with two change-points in the removal rate, the marginal posterior dis-
tributions for the two change-points (s1 < s2) both indicate a change-point at time
s∗. Further, a study of the bivariate distribution of (s1, s2) reveals that this apparent
contradiction is due to uncertainty about the location of a change-point in addition to
that around time s∗. In particular, the conditional posterior distributions for s1|s2 = s∗
and s2|s1 = s∗ both strongly resemble their respective prior distributions which in
turn explains the low posterior probability attached to this more complex model.

The marginal posterior distributions of the infection rate parameters βi (i = 1, 2, 3)
in Fig. 4 show a consistent change in location between those obtained assuming a
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Fig. 4 Marginal posterior distributions for the respiratory disease data analysis
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Table 6 Posterior means
(standard deviations) for
selected parameters

Parameter

k 1.20 (0.60)
β1 0.0020 (0.0012)
β2 0.0008 (0.0005)
β3 0.0006 (0.0003)
R0 18.61 (144.56)
k 0 1 2
β1|k 0.0039 (0.0015) 0.0019 (0.0011) 0.0018 (0.0011)
β2|k 0.0015 (0.0007) 0.0007 (0.0005) 0.0007 (0.0005)
β3|k 0.0011 (0.0003) 0.0006 (0.0003) 0.0005 (0.0003)
γ0|k 0.3304 (0.0830) 0.0304 (0.0396) 0.0294 (0.0514)
γ1|k 0.2982 (0.0886) 0.1827 (0.1557)
γ2|k 0.3166 (0.1852)
R0|k 1.15 (0.27) 16.49 (93.22) 31.62 (302.72)

time-inhomogeneous (k �= 0) and a time-homogeneous (k = 0) removal rate, typi-
cally halving the posterior mean. The standard deviations are only slightly smaller for
models which include changes in the removal rate. However, all these models indicate
that children and adults have similar levels of susceptibility to the disease and that
both are at a lower level than that of infants. Further details on statistical procedures
for amalgamating susceptibility categories with similar infection rates can be found
in [11].

Inferences on the basic reproduction number also depend on the form of the removal
rate step function assumed in the model. As with the smallpox data analysis, it appears
that the model with constant removal rate suggests that R0 is smaller than models for
which the removal rate is permitted to vary through time. Once again this is most likely
due to the inability of the model for which k = 0 to capture the slower removal rate
during the early stages of disease spread. The overestimation of the removal rate at the
beginning of the epidemic results in posterior inferences on R0 which underestimate
its likely magnitude. This is also noticeable in the posterior probability that the basic
reproduction number exceeds unity, as P̂r(R0 ≤ 1|k = 0, r) = 0.314, compared to
P̂r(R0 ≤ 1|k = 1, r) = 0.0017 and P̂r(R0 ≤ 1|k = 2, r) = 0.0061. The model for
which k = 1, which has far greater posterior probability than that for which k = 0,
gives very different inferences on R0 than the time-homogeneous model. The sensi-
tivity of the posterior distribution to the choice of prior distribution was very similar
to that described in the previous analyses; see [11] for full details of the sensitivity
analysis.

An assessment of the improvement in fit of our model to these data, compared to the
simpler time-homogeneous removal rate model, can once again be made by consider-
ing predictive distributions of the removal times. Epidemics with exactly 40 removals
were simulated using parameters sampled from the joint posterior distribution of both
the simple (k = 0) and more complex (variable k) models. The predictive distributions
for the second to the eighth removals are included in Fig. 5. Box and whisker plots
representing the predictive distributions of removal times for the simple model are on
the left of each pair, and the cross gives the observed data point.For the simple model,
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Fig. 5 Predictive distributions for respiratory disease removal times

inference on the removal rate is dominated by the later removal times, which occur
at a faster rate than the first three removals. This explains why the observed times
of the second and third removals occur later than the most likely times predicted by
this simple model. The simple model provides a reasonable fit to the data after the
occurrence of the initial removals. By including a time-dependent removal rate, the
model gives a far better fit to the initial data points, and the predictive distribution of
the subsequent removals has a smaller variance. The predictive distributions for later
removals are not included here, but the more complex model continues to provide a
better fit to these data than the simple model.

7 Conclusions

The models considered in this paper represent generalisations of the multitype SEIR
compartmental model to include a set of models for which the removal rate is time-
inhomogeneous. An MCMC algorithm similar to that of, amongst others, [21] and the
reversible jump MCMC algorithm of [12] are jointly implemented to fit the models to
simulated data and two real life epidemic outbreaks. Although only the removal times
of the infective individuals are available for analysis, this information is sufficient to
be able to determine the posterior distributions for the number and positions of the
removal rate changes.

For both the smallpox data and the respiratory disease data, it appears that the
initial cases are removed at a slower rate than later cases. This is most likely due to
misdiagnoses of the initial cases as the epidemic is not known to be present within the
population. The smallpox data also shows a possible removal rate change later in the
course of the epidemic. The construction of predictive distributions for the removal
times for both models demonstrates the improved fit of the models which include
time-inhomogeneous removal rates. The improvement in fit might be more marked if
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these methods were applied to analyse data from much longer epidemics, for which
time-dependence of model parameters assumes greater importance [19].

Fitting models with time-dependent removal rate parameters also results in changes
to the posterior distribution of the time-homogeneous infection rates. Moreover, large
changes are exhibited in the posterior distributions of the basic reproduction num-
ber when assuming models for which the removal rate may vary through time. This
information may be be vital for epidemiologists determining strategies for tackling
the spread of a disease. Basing such strategies on the inferences made on R0 clearly
demands that the model accurately reflects the dynamics of disease spread, and takes
into account changes in the dynamics through time. Time variation in the removal rate
is likely to be exhibited in a wide range of epidemics, and the techniques outlined
here give a method for determining such variation. The infection rates of the epidemic
are also candidates for modelling as time-inhomogeneous parameters since the rate
of transmission of the disease might change, for example, once knowledge of the
epidemic is made public [5]. We have not investigated a model with time-dependent
infection rates as the removal times data alone are not sufficient to determine the num-
ber and location of the changes in the infection rates. The reversible jump techniques
considered here could be adapted to fit models with time dependency in both infection
and removal rate parameters given more informative data.

Acknowledgments PRG gratefully acknowledges receipt of a research studentship from the Engineering
and Physical Sciences Research Council.

A Appendix

Further details of the MCMC scheme outlined in Section 3.1 are included here. Recall
that the MCMC scheme begins with some initial choice of parameters and hidden
infection times, although the initial choice of parameters must be made such that the
selection is feasible (and has positive density). The scheme then proceeds by cycling
through the following steps.

Update infection times: Propose an update to the sequence of hidden infection times
by reallocating a randomly (uniformly) chosen infection time to a new time τ ′,
sampled from a U(−d, T) distribution. Shift the associated time at which the indi-
vidual becomes infective to a new time τ ′ + c. Note that this will also update imin
if the group of the randomly selected infective is different to imin and τ ′ < τimin,1.
Accept the proposed move with probability min{1, A}, where

A =
π

(
τ ′, r

∣
∣β, γ , k, s, i′min, τ ′

i′min,1

)

π
(
τ , r

∣
∣β, γ , k, s, imin, τimin,1

) .

Update infection parameters: Sample a new value for each infection rate parameter
βi (i = 1, 2, . . . , m) from its conditional posterior distribution given all other states
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of the chain, that is

βi|· ∼ Γ

(
gβi + ni − δi,imin , hβi +

T∫

τimin ,1

Si(t)I(t)dt
)

, i = 1, 2, . . . , m

where δij is Kronecker’s delta function.
Update removal rate step function: The proposal of a new realisation of the removal

rate step function is more complicated and involves different moves for each aspect
of the step function. At each iteration, one of the following choices is made:

(i) Update removal rates: with probability q1, simulate a new value for each
removal rate γj (j = 0, 1, . . . , k), conditional on k, s and the other states of
the chain, using

γj|k, s, · ∼ Γ

(
gγ + wj , hγ +

sj+1∫

sj

I(t)dt
)

, j = 0, 1, . . . , k

where wj is the total number of removals occurring in (sj, sj+1).
(ii) Update existing step positions: with probability q2, select one of the step

positions sj uniformly from the k existing steps. Propose moving sj to a new
position s′

j sampled from a U(sj−1, sj+1) distribution. Accept the proposed
position with probability min{1, A}, where

A = π
(
τ , r

∣
∣β, γ , k, s′, imin, τimin,1

)

π
(
τ , r

∣
∣β, γ , k, s, imin, τimin,1

) ×
[
(sj+1 − s′

j)(s
′
j − sj−1)

(sj+1 − sj)(sj − sj−1)

]a−1

.

(iii) Increase number of steps: with probability q3, propose an additional step at
a position s′ sampled uniformly over (0, T). Suppose s′ ∈ (sj, sj+1). The cur-
rent removal rate γj over (sj, sj+1) must be split into removal rates γ ′

j over the
interval (sj, s′) and γ ′

j+1 over (s′, sj+1). Note that adding a new step induces

an enlargement of the parameter subspace by two new parameters, s′ and an
additional removal rate. A proposed division of γj into (γ ′

j , γ ′
j+1) is achieved

by using a stochastic innovation and preserving a weighted geometric mean,
that is, such that

(s′ − sj) log γ ′
j + (sj+1 − s′) log γ ′

j+1 = (sj+1 − sj) log γj

and

γ ′
j+1

γ ′
j

= 1 − u
u



246 R. J. Boys, P. R. Giles

where u is sampled from a U(0, 1) distribution. The move is accepted with
probability min{1, A}, where

A = π(τ , r|β, γ ′, k′, s′, imin, τimin,1)

π(τ , r|β, γ , k, s, imin, τimin,1)
× π(k + 1)

π(k)

×
[
a(k + 2) − 1

]!
Ta

[
a(k + 1) − 1

]!(a − 1)! ×
[
(s′ − sj)(sj+1 − s′)

(sj+1 − sj)

]a−1

× h
gγ
γ

Γ (gγ )

(
γ ′

j γ
′
j+1

γj

)gγ −1

exp
{ − hγ (γ ′

j + γ ′
j+1 − γj)

}

× q4T
q3(k + 1)

×
(γ ′

j + γ ′
j+1)

2

γj
.

Note that a proposed increase in the number of steps beyond kmax cannot be
accepted as π(k = kmax + 1) = 0.

(iv) Decrease number of steps: with probability q4 = 1 − q1 − q2 − q3, propose
a removal of a step position, sj say, chosen uniformly from the k existing
steps. The removal rates (γj−1, γj) are replaced by a new removal rate γ ′

j−1
that satisfies the weighted geometric mean condition

(sj − sj−1) log γj−1 + (sj+1 − sj) log γj = (sj+1 − sj−1) log γ ′
j−1.

The proposed move is accepted with probability min{1, A}, where

A = π(τ , r|β, γ ′, k′, s′, imin, τimin,1)

π(τ , r|β, γ , k, s, imin, τimin,1)
× π(k − 1)

π(k)

×Ta (ak − 1)!(a − 1)!
[
a(k + 1) − 1

]! ×
[

(sj+1 − sj−1)

(sj+1 − sj)(sj − sj−1)

]a−1

×Γ (gγ )

h
gγ
γ

(
γ ′

j−1

γj−1γj

)gγ −1

exp
{ − hγ (γ ′

j−1 − γj−1 − γj)
}

× q3k
q4T

×
γ ′

j−1

(γj−1 + γj)2 .

Note that a proposed reduction in the number of steps below zero cannot be
accepted as π(k = −1) = 0.
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