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Abstract At the offset of a (stochastic) epidemic, it is of importance to have a
mathematical model that will assist in the making of an informed judgement on
whether the epidemic will explode, or will be minor and die out. In this paper, we
consider probabilistic inferences related to the event of extinction of a discrete
time branching process when this cannot be directly observed. Instead, we are
able to observe only a random “trace” of the process, which not only trails the
latter, but also directly affects it (in terms of interventions). A simple model
is proposed that provides tractability, preserves a marginal branching property,
and gives reasonable closed form expressions.

Keywords Partial observation · Extinction/explosion · Joint Markov property ·
Conditional inference · Family name problem
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1 Introduction

Suppose that the observation of a process describing an epidemic is imperfect.
As a result, the observed process differs from the true process according to
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some random mechanism. The epidemic is assumed to be in its initial stages
and may die out with only a few cases or may explode. An objective is to specify
when emergency control rules are justified. Such controls can be thought of as
actions that can decisively affect the epidemic, but have a serious cost to be
avoided if unnecessary (e.g. culling in animal disease, or vaccination/quarantin-
ing in human disease, as in the foot and mouth and SARS epidemics, or, most
recently, in the bird flu incidents). The decision to implement such control rules
will have to take into account the expected future evolution of the epidemic
process, in the context of the assumed model, and also the observations on the
process up to the present time.

More specifically, provided that a suitable Markovian model is chosen, and
its basic parameters are known (perhaps from previous experience), the current
number N of infected individuals is at any point predictively sufficient for the
future of the process. Further, the probability P[E0] that the epidemic becomes
extinct without special intervention can be determined, so that given suitable
tests, a possible decision rule for intervention is to do so only if P[E∞]/P[E0] > c
(with E0, E∞ denoting the events of extinction and of explosion, respectively).
Of course, such a decision rule only takes account of the general specifica-
tions of the process, and does not use information carried by the current value
of the process. If we denote the process by {Zn}n≥0, then it is desirable to
use the probabilities P[E0|Zn = N] = 1 − P[E∞|Zn = N]. The reason we
condition only on the event {Zn = N} obviously stems from the Markovian
property.

However, in order to be more realistic, we have to accept that the values we
observe are not the realisations of the actual process {Zn}, but only a random
subset of them (a point already raised by Kendall [5]). The reality is that not
all infected individuals are detected (at least not immediately). We therefore
have to admit that observation is imperfect, something that makes condition-
ing on the event {Zn = N} inappropriate. What we need to condition on is the
value of the observable process. Of course, it should be noted that while strongly
motivated by practical considerations concerning real epidemics, in the absence
of very specific details, it is hard to proceed beyond general results, and thus
somewhat precarious to make more elaborate suggestions to the scientist mak-
ing the decisions. Therefore, the approach we adopt is purposely fairly general,
in order to allow for flexibility in specific modelling situations. Our main aim is
thus to describe the probabilistic dynamics involved in a certain class of models
incorporating the element of imperfect observation, and to subsequently set
the scene for a number of further problems.

With this decision process in mind, the remainder of this paper deals with
the investigation of the interplay between the properties of the observable and
the true processes when observation is partial. As it might be expected, the
observable process will not necessarily be of a Markovian nature. However, it is
important to note that it is “trailing” a Markov process (the true process, {Zn})
something that is of interest in itself. We work in the setup of Galton–Watson
branching processes.
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Branching processes include discretely observed birth–death processes, and
have been used extensively to model the evolution of the initial stages of epi-
demics in discrete time (see [3,5]; also see [1]). In the standard setting, on some
probability space (Ω , F , P), define {ζj,n}j≥1,n≥0 to be an infinite array of indepen-
dent and identically distributed nonnegative integer-valued random variables,
and N0 to be a nonnegative integer-valued random variable, independent of the
ζj,n. If Xn is the number of infected individuals at time n, then we describe its
evolution in terms of the following branching process

X0 = N0, Xn+1 =
Xn∑

j=1

ζj,n , n ≥ 1, (1)

where an empty sum is taken to be zero. The random variable ζj,n corresponds
to the number of infections caused by the jth infectious individual at time n.
Using the standard terminology, these variables are the offsprings, and their
common law p(k) = P[ζj,n = k], is called the offspring distribution.

We consider an often more realistic situation, in which at any time point,
it is not possible to observe all infections, but only a random subset of them.
In addition, we do not passively witness the evolution of the epidemic, but we
intervene in a way depending on our observations. The general issue in such a
situation is what kind of probabilistic inference we may draw on the behavior of
the true process of infectious individuals based on its observable counterpart
(for an approach to statistical inference see [7]; also see Sect. 7).

To this aim, we propose a model in discrete time, N ∪ {0}, for which the
intuitive idea is as follows. A number (possibly random) of infected individuals
Z0 is inserted among an infinite population of susceptibles at time n = 0. Each
of these Z0 infected individuals is overlooked with probability θ , or observed
with probability 1 − θ , independently for all individuals. If Y0 is the number
of individuals we observe, then U0 = Z0 − Y0 individuals remain unobserved.
Each of the U0 unobserved infected individuals independently produces a num-
ber of infections, according to the same probability mass function, say Ξ . On
the other hand, the observed individuals are isolated at some point between
time 0 and time 1, so that they do not produce infections according to the same
law. In particular, we assume that each observed individual independently pro-
duces a number of infections, according to a probability mass function Υ , where
we assume that FΥ ≥ FΞ (with F denoting the corresponding cumulative dis-
tribution). The sum of the new infections caused by observed and unobserved
individuals constitutes Z1, i.e. the number of infectious individuals at time n = 1.
The process then continues iteratively, as just described. Thus, the observation
procedure does not simply provide us with a “trace” of the initial process, but
has a direct impact on the actual process itself, for infected individuals that have
been observed present a different behaviour as far as offsprings are concerned.

Therefore, at each time point n ≥ 0, there is a number Zn of infected indi-
viduals. There is a probability 1 − θ of observing each one of the infected
individuals, independently for each individual, so that at time n, Yn|Zn = zn
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is binomially distributed with parameters zn and 1 − θ (i.e. we have binomial
thinning). Finally, the new infections are given by,

Zn+1
d=

Un∑

j=1

ξj,n +
Yn∑

j=1

ζj,n, (2)

where the ξj,n and ζj,n are “independent copies” from the distributions Ξ and
Υ , respectively.

2 Definition of the partially observed branching process

Let (Ω , F , P) be a probability space. Let N0 be a fixed (or possibly random) non-
negative integer. Let {ξi,j}i≥1,j≥0 and {ζi,j}i≥1,j≥0 be independent infinite arrays
of iid nonnegative integer-valued random variables, with common probability
mass function (pmf) Ξ and Υ , respectively. Let {Bi,j}i≥1,j≥0 be an infinite array
of iid Bernoulli random variables on the same space, with probability of suc-
cess 1 − θ , where θ ∈ (0, 1). Let N0, {ξi,j}i≥1,j≥0, {ζi,j}i≥1,j≥0 and {Bi,j}i≥1,j≥0 be
independent. We define a stochastic process {(Zn, Yn)}n≥0 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z0 = N0,

Zn+1 =
Zn∑

i=1

ξi,n(1 − Bi,n)+
Zn∑

i=1

ζi,nBi,n, n ≥ 0

Yn :=
Zn∑

i=1

Bi,n, n ≥ 0

(3)

An empty sum is zero. We also put Un := Zn − Yn, for n ≥ 0. As noted in the
introduction, Zn represents the infectious individuals at time n, Yn the observed
infected individuals at time n, and Un the unobserved infected individuals at
time n. We call ξi,j the offsprings of the unobserved infected individual i at time
j, and thus Ξ corresponds to the pmf of the offspring distribution (similarly for
the observed individuals). In the sequel, we denote the respective probability
generating functions (pgf) by GΞ and GΥ .

It is immediate from the iterative definition of Zn, that the process {Zn}n≥1
of infectious individuals at time n is a Galton–Watson branching process, with
an offspring distribution that is a mixture of Ξ and Υ , with mixing proportions
1 − θ and θ , respectively (set ψi,j := ξi,j(1 − Bi,j)+ ζi,jBi,j). We shall denote the
common pmf of the {ψi,j} by Ψ (·), and the corresponding pgf by GΨ .

Our attention will be focused on the interplay between the Zn and Yn pro-
cesses: their joint behaviour, as well as the conditional behaviour of the true
process Zn which is unobservable given observations on its observable coun-
terpart, Yn.

In order to study this interplay, we first consider a simpler model than
model (3). The intuitive idea is to break down the analysis of this process into
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separately analysing the contributions made from unobserved and observed
individuals, respectively. In mathematical terms, “separately” should translate
into taking advantage of a lurking stochastic independence:

Lemma 1 For any n ≥ 0, the contributions made by the unobserved individ-
uals are conditionally independent of the contributions made by the observed
individuals, given the number of observed individuals, i.e.

Zn∑

i=1

ξi,n(1 − Bi,n)

∣∣∣∣∣∣
Yn

∐ Zn∑

i=1

ζi,nBi,n

∣∣∣∣∣∣
Yn (4)

Proof This is immediate from the assumptions on model (3).

Since the observed individuals are known at any point in time, any proba-
bility measure of interest is conditioned on Yn. Therefore, we may proceed in
our analysis by first studying in depth the extreme scenario in which observed
individuals produce no offsprings at all (that is, Υ is such that P[ζi,j = 0] = 1).
The results can then be extended to cover the full model, by our conditional
independence argument (Lemma 1), modifying the results according to the
appropriate convolutions of the probability measures involved.

3 Analysis of a simplified model

According to the approach set out in the previous paragraph, we begin by
studying the extreme case in which observed individuals are unable to produce
offsprings. We thus modify model (3) so that

Zn+1 =
Zn∑

i=1

ξi,n(1 − Bi,n)
d=

Zn−Yn∑

i=1

ξ
′
i,n (5)

It is this formulation that we shall follow throughout Sects. 3, 4, and 5. The
results are extended to the general case [Eq. (3)] in Sect. 6.

Remark 1 In this simplified situation, one may note a simple analogy to the
original “family name problem” of branching processes (see [6]). Suppose that
we are interested in the survival of a family name. At each time point n ≥ 1,
the family size Zn, consists of the sum of Yn females and Un males. We assume
that the society is patriarchical, so only the males produce offsprings that hold
the family name. If for each generation we only observe the number of female
family members, what can we infer about the survival of the family name? In
the family name context, each time point represents a generation: if someone
is part of generation n, they are obviously not part of generation n + 1. Never-
theless, in the epidemic context, we make no such assumption. An individual
that is infected at time n may continue to be so at the next time point (as an
“offspring” of himself).
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Interestingly, in this simplified model, it can be seen that the process of
unobserved individuals {Un} admits a weak representation as a Galton–Watson
branching process:

Proposition 1 There exists a probability space (Ω ′, F ′, P′) on which we may

define a Galton–Watson branching process {U′
n}n≥0, such that (U′

n1
, . . . , U′

nk
)

d=
(Un1 , . . . , Unk), for any finite collection of non-negative integers {n1, . . . , nk}.
Proof It suffices to show that the law of {Un}n≥0 is that of a branching process
started at U0 = Z0 − Y0. This follows immediately upon noting that

Un+1 = Zn+1 − Yn+1
d=

Un∑

i=1

ξ ′
i,n −

Un∑

i=1

ξ ′
i,n∑

k=1

B′
k,n =

Un∑

i=1

⎧
⎨

⎩ξ
′
i,n −

ξ ′
i,n∑

k=1

B′
k,n

⎫
⎬

⎭ , (6)

where {ξ ′
i,j}i≥1,j≥0 is an infinite array of iid-Ξ random variables on the space

(Ω ′, F ′, P′), and {B′
ij}i≥1,j≥0 is an infinite array of iid Bernoulli(1 − θ) random

variables on the same space, independent of {ξ ′
i,j}i≥1,j≥0.

Although {Un} admits the branching property, and hence has a straightfor-
ward behaviour, it is not of particular interest, since, in any practical situation,
it is, by definition, unobservable.

Now, the marginal process of infected individuals {Zn}n≥0 is a Galton–Watson
branching process, and as such, it is a discrete time Markov chain with respect
to the filtration {Zn}n≥0 = {σ(Z0, . . . , Zn)}n≥0. On the other hand, knowledge
of the history of {Yn}n≥0 up to any order, is predictively insufficient in the
Markov sense for {Yn}n≥0 in itself. Such an insufficiency is inherent from the
very definition of the process {Yn}n≥0. The explicit dependence of Yn on Zn
suggests the consideration of the joint process {(Zn, Yn)}n≥0 as a process on
the first quadrant of the lattice Z

2. By the iterative nature of the process, it is
straightforward to see that the joint process constitutes a Markov chain.

3.1 One-step transition probabilities

To derive an explicit form for the one step transition probabilities, we notice
that by definition, Yn+1 is conditionally independent both of Zn and of Yn,
given Zn+1 (this is clear by the definition of Yn+1). This enables us to obtain
a particularly simple closed form for one-step transition probabilities. Let the
k-fold convolution of Ξ with itself be Ξ∗

k . Then,

P[Z1 = z1, Y1 = y1|Z0 = z0, Y0 = y0]
= P[Z1 = z1|Z0 = z0, Y0 = y0] P[Y1 = y1|Z1 = z1, Z0 = z0, Y0 = y0]
= Ξ∗

z0−y0
(z1)

(
z1

y1

)
(1 − θ)y1θz1−y1 .
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If one is to use standard offspring distributions such as Ξ being Poisson with
parameter λ or Geometric with parameter ν, then one obtains a Poisson with
parameter λ(z0 − y0) or a Negative Binomial with parameters ν and z0 − y0,
respectively, for Ξ∗

z0−y0
.

Accordingly, the generating function for the one-step transition probabilities
assumes a very convenient form. Let the n-step transition probability generating
function be

Pn(r, s) =
∞∑

a=0

∞∑

b=0

rasb
P[Zn = a, Yn = b|Z0 = z0, Y0 = y0]. (7)

Using the explicit expression derived for the one step transition probability, we
may write

P1(r, s) =
∞∑

a=0

raΞ∗
z0−y0

(a)
∞∑

b=0

(
a
b

)
[s(1−θ)]bθa−b =

∞∑

a=0

ra[θ+s(1−θ)]aΞ∗
z0−y0

(a)

= {GΞ [rs(1 − θ)+ rθ ]}z0−y0 .

Notice that, were it not for the “quarantine assumption”, the joint process
{(Zn, Yn)} would constitute an “infinite” hidden Markov process. However, the
removal of the observed infected individuals from the population implies that

dist{Zn+1, Yn+1|Zn, Yn} �= dist{Zn+1, Yn+1|Zn}.

3.2 Higher order transition probabilities

In the case of higher order transitions, it is a non-trivial task to obtain the exact
form for the conditional probability mass function. However, it is feasible to
obtain the corresponding probability generating function.

Theorem 1 (n-step transitions) Let Pn(r, s) be the probability generating func-
tion corresponding to the mass function P[Zn = ·, Yn = ·|Z0 = z0, Y0 = y0].
Then,

Pn(r, s) = {GΞ [γn−1(rθ + rs(1 − θ))]}z0−y0

=
{

1
θ
γn(rθ + rs(1 − θ))− 1 − θ

θ

}z0−y0

,

where γk(·) stands for the probability generating function of the kth generation of
a Galton–Watson branching process started from a single individual and evolving
as {Zn} evolves marginally.
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Proof As in the case of the one-step transitions, we may write

P[Zn = zn, Yn = yn|Z0 = z0, Y0 = y0]
= P[Zn = zn|Z0 = z0, Y0 = y0] P[Yn = yn|Zn = zn, Z0 = z0, Y0 = y0].

Conditionally on Zn, Yn is independent of both Z0, and Y0, so that

P[Yn = yn|Zn = zn, Z0 = z0, Y0 = y0] = P[Yn = yn|Zn = zn] = B(1−θ ,zn)(yn),

where B(1−θ ,zn) is the binomial probability mass function, with parameters zn
and 1−θ . Furthermore, the definition of the {Zn} process, along with the Markov
property yield the following expression:

P[Zn = zn|Z0 = z0, Y0 = y0]

=
∞∑

z1=0

P[Zn = zn|Z1 = z1, Z0 = z0, Y0 = y0] P[Z1 = z1|Z0 = z0, Y0 = y0]

=
∞∑

z1=0

P[Zn = zn|Z1 = z1]Ξ∗
z0−y0

(z1).

The above observations allow us to determine the generating function for the
n-step transition probabilities. We have

Pn(r, s) =
∞∑

a=0

∞∑

b=0

rasb
P[Zn = a, Yn = b|Z0 = z0, Y0 = y0]

=
∞∑

a=0

∞∑

b=0

rasb
P[Zn = a|Z0 = z0, Y0 = y0]B(1−θ ,a)[b]

=
∞∑

a=0

ra
P[Zn = a|Z0 = z0, Y0 = y0]

∞∑

b=0

(
a
b

)
[s(1 − θ)]bθa−b

=
∞∑

a=0

[rθ + rs(1 − θ)]a
P[Zn = a|Z0 = z0, Y0 = y0]

=
∞∑

a=0

[rθ + rs(1 − θ)]a
∞∑

z1=0

P[Zn = a|Z1 = z1]Ξ∗
z0−y0

(z1)

=
∞∑

z1=0

Ξ∗
z0−y0

(z1)

∞∑

a=0

[rθ + rs(1 − θ)]a
P[Zn = a|Z1 = z1].



Partially observed branching processes for stochastic epidemics 653

Now let γk(·) be as in the assumptions of the theorem. We will have

Pn(r, s) =
∞∑

z1=0

Ξ∗
z0−y0

(z1)

∞∑

a=0

[rθ + rs(1 − θ)]a
P[Zn = a|Z1 = z1]

=
∞∑

z1=0

Ξ∗
z0−y0

(z1)[γn−1(rθ + rs(1 − θ))]z1

= {GΞ [γn−1(rθ + rs(1 − θ))]}z0−y0 .

Finally, the second form of the generating function is a consequence of the fact
that the distribution Ψ is a modified version of Ξ , so that

GΨ (s) = θGΞ(s)+ (1 − θ).

This completes the proof.

3.3 Predictions based on the observable component

Since at any point in time n it is only the history Yn = σ(Y1, . . . , Yn) of Y that
is available for any stochastic inference concerning the evolution of the true
epidemic, we may wish to assign probabilities to events concerning the future
of the true process, conditioning on Yn. In general however, the probability
measure P[·|Y0 = y0, . . . , Yn = yn] will not induce distributions that may be
represented in a simple closed form. For example, consider the distribution
P[Zn+1 = zn+1|Y0 = y0, . . . , Yn−k = yn−k]. Assume that the epidemic begins
with Z0 = 1 infections, If one conditions on the past of Zn in order to take
advantage of the Markov property of {Zn, Yn}, then one has

P[Zn+1 =zn+1|Y0 =y0, . . . , Yn−k =yn−k]

=
∑∞

zn=0Ξ
∗
zn−yn

(zn+1)w(zn, yn−k, . . . , yn)∑∞
zn=0 w(zn, yn−k, . . . , yn)

,

where

w(zn, yn−k, . . . , yn)

=
∞∑

zn=0

· · ·
∞∑

zn−k=0

⎧
⎨

⎩

n−1∏

m=n−k

Ξ∗
zm−ym

(zm+1)

(
zm+1

ym+1

) (
1 − θ

θ

)ym+1

θzm+1

⎫
⎬

⎭

×
(

zn−k

yn−k

)
(1 − θ)yn−kθzn−k−yn−k

γ
(zn−k)

n−k (0)

zn−k!
are non-negative weights depending on the history of the process Y. If one does
not assume that Ξ (and hence Ψ ) belongs to a specific family of distributions,
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then one may hardly proceed fruitfully with the above form. It is intuitively
obvious that conditioning beyond some point in the past history of Y will not
contribute appreciable additional information. However, the complicated form
of the above distribution does not allow one to quantify such a statement (e.g. in
terms of the Kullback–Leibler divergence between two measures conditioned
on different lengths of the history of Y). We shall see in the next subsections
that it is possible to get simple closed form expressions when conditioning only
on the present value of the observable process, rather than on its whole history.

3.4 One step predictions

What may we infer about the number of infected individuals tomorrow based
on the number we observe today? Alternatively, in the family name context,
suppose that we are told that the number of female family members at some
generation n is yn. What can one infer about the family size at generation n+1?
We therefore wish to determine the distribution P[Zn+1 = zn+1|Yn = yn].
Throughout the remainder of this section, we assume that Z0 = N0 and Y0 = 0.
That is, we assume that P is in fact Pµ, with the initial distributionµ, that assigns
unit mass to the event {Z0 = N0, Y0 = 0}. The choice of µ as initial distribution
is not restrictive. For suppose that at some time (which we call time n = 1) we
observe a number of infections for the first time. Then, without loss of general-
ity, we may assume that the epidemic had begun from time n = 0 (the previous
time point) from a (possibly random) number of individuals, all of whom were
(by definition) unobserved.

We will proceed as before, using generating functions. Recall that by defini-
tion we have

Zn+1
d=

Un∑

i=1

ξi,n+1 �⇒ Zn+1|{Yn = yn} d=
Zn−yn∑

i=1

ξi,n+1

∣∣∣∣∣∣
{Yn = yn}.

Hence, using standard notation for the generating functions, we will have

GZn+1|Yn=yn(s) = Gξ1,n+···+ξZn−yn ,n|Yn=yn(s)

= E[sξ1,n+···+ξZn−yn ,n |Yn = yn]
= GZn−yn|Yn=yn(GΞ(s))

= E[{GΞ(s)}Zn−yn |Yn = yn]
= E[{GΞ(s)}Zn |Yn = yn]

{GΞ(s)}yn

�⇒ GZn+1|Yn=yn(s) = GZn|Yn=yn(GΞ(s))

{GΞ(s)}yn
(8)

This reduces the problem to the specification of the generating function of
the conditional distribution of Zn given Yn. We have,
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Proposition 2 Suppose that the initial distribution of {Zn, Yn} is µ. Then, the
generating function for the conditional probability distribution of Zn given Yn is
given by,

GZn|Yn=yn(r) = rynλ
(yn)
n (rθ)

λ
(yn)
n (θ)

,

where λk(·) = GN0{G[γk−1(·)]} is the generating function of the (k − 1)th gen-
eration of a Galton–Watson branching process started with initial distribution
dist{∑N0

i=1 ξi,0} and evolving as {Zn} evolves marginally.

Proof Manipulating the definition of a conditional pgf, results in

GZn|Yn=y(r) =
{
∂y

∂sy Pn(r, s)

∣∣∣∣
(r,0)

} /{
∂y

∂sy Pn(r, s)

∣∣∣∣
(1,0)

}

When the initial distribution is µ,

Pn(r, s) =
∞∑

x=0

∞∑

y=0

rxsy
Pµ[Zn = x, Yn = y]

=
∞∑

x=0

rx
Pµ[Zn = x]

∞∑

y=0

sy
Pµ[Yn = y|Zn = x]

= λn(rs(1 − θ)+ rθ),

Therefore,

∂y

∂sy Pn(r, s) = [ry(1 − θ)y]λ(y)n (rs(1 − θ)+ rθ),

and the result follows by substitution.

Corollary 1 Suppose that the initial distribution of {Zn, Yn} is µ. The generating
function for the one-step prediction distribution may be expressed as:

GZn+1|Yn=yn(r) = λ
(yn)
n (θGΞ(r))

λ
(yn)
n (θ)

.

3.5 Higher order predictions

We now address the determination of the distribution Qk(z|y) := Pµ[Zn+k =
z|Yn = y], i.e. the k-step ahead “prediction” distribution. First, we recall a



656 V. M. Panaretos

fundamental yet straightforward “self-similarity” property of the Galton–Wat-
son branching process. Thinking about the process as a random tree, if one is
to isolate any branch of the tree and consider it as a tree of its own, then this is
again a Galton–Watson tree (process).

The actual process {Zn} is unobservable, and at time n, we do not know the
number of truly infected individuals. Had we known them, then the distribution
of Zn+k would just be that of the nth generation of a Galton–Watson branching
process started from Zn individuals. All that is known is the value of Yn, and
we use this as a basis for prediction.

An idea is that the probability measure Pµ[Zn+k = z|Yn = y] should be
“similar” to the measure Pµn(y)[Zk = z], where µn(y) := dist{Zn|Yn = y}.
Intuitively, this is saying that probabilistically, the information provided by Yn
allows us to think about the k-step ahead prediction distribution, as the distri-
bution of a branching process at time k with initial distribution dist{Zn|Yn = y}.
However, one must be careful in that the value of Yn contains information
about the thinning that occurred in the step from time n to time n + 1. Thus
we cannot regard the situation as exactly one of a branching process that has
started with initial distribution µn(y). We overcome this by conditioning on the
first step. The random variables {Zm}∞m=n+2 are conditionally independent of
Yn given Zn+1. Hence, if we treat the first step carefully, we can then reduce
the problem to that of determining the (k − 1)th step distribution of a branch-
ing process that evolves as {Zn} with initial distribution dist{Zn+1|Yn = y}
(the latter distribution has been determined in the previous paragraph). This
can be expressed easily through the composition of corresponding probability
generating functions, leading to the following result:

Theorem 2 Let µ be the initial distribution of {Zn, Yn}. The generating function
for the k-step prediction distribution, Qk(z|y) = Pµ[Zn+k = z|Yn = y], is given
by

GQ(r) = GZn+1|Yn=y(γk−1(r)) = λ
(y)
n (θGΞ(γk−1(r)))

λ
(y)
n (θ)

where GZn+1|Yn=y(·) is the generating function of the distribution dist{Zn+1|
Yn = y}, and λm(·), γm(·) are as before.

Proof We begin by noticing that

Qk(zn+k|y) = Pµ[Zn+k = zn+k|Yn = y]

=
∞∑

zn+1=0

Pµ[Zn+k =zn+k|Zn+1 =zn+1, Yn =y]Pµ[Zn+1 =zn+1|Yn =y]
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so that,

GQ(r) =
∞∑

zn+k=0

∞∑

zn+1=0

rzn+kPµ[Zn+k = zn+k|Zn+1 = zn+1, Yn = y]

×Pµ[Zn+1 = zn+1|Yn = y]

=
∞∑

zn+1=0

Pµ[Zn+1 = zn+1|Yn = y]

×
∞∑

zn+k=0

rzn+kPµ[Zn+k = zn+k|Zn+1 = zn+1, Yn = y]

and by conditional independence,

GQ(r) =
∞∑

zn+1=0

Pµ[Zn+1 =zn+1|Yn =y]
∞∑

zn+k=0

rzn+kPµ[Zn+k =zn+k|Zn+1 =zn+1]

=
∞∑

zn+1=0

Pµ[Zn+1 = zn+1|Yn = y](γk−1(r))
zn+1

= GZn+1|Yn=y(γk−1(r)).

The result follows from Corollary 1.

Remark 2 Although writing down an expression for the prediction distribution
when conditioning on the whole history of {Yn} is not feasible without mak-
ing specific distributional assumptions, we may obtain relationships that enable
us to obtain an iterative scheme that allows one to obtain expressions when
making such specific assumptions. To this aim, notice that mimicking the steps
leading to Eq. (8), we may write

GZn+1|{Yn=yn,...,Y1=y1}(s) = GZn|{Yn=yn,...,Y1=y1}(GΞ(s))

{GΞ(s)}yn
(9)

On the other hand, we may apply Bayes’ rule to obtain a connection between
dist{Zn|Yn, . . . , Y1} and dist{Zn|Yn−1, . . . , Y1}:

P[Zn = zn|Yn = yn, . . . , Y1 = y1]
= P[Yn = yn|Zn = zn]P[Zn = zn|Yn−1 = yn−1, . . . , Y1 = y1]∑∞

zn=0 P[Yn = yn|Zn = zn]P[Zn = zn|Yn−1 = yn−1, . . . , Y1 = y1]
�⇒ GZn=zn|{Yn=yn,...,Y1=y1}(s)

=
∑∞

zn=0 szn
(zn

yn

)
(1 − θ)ynθzn−ynP[Zn = zn|Yn−1 = yn−1, . . . , Y1 = y1]

∑∞
zn=0

(zn
yn

)
(1 − θ)ynθzn−ynP[Zn = zn|Yn−1 = yn−1, . . . , Y1 = y1]
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�⇒ GZn=zn|{Yn=yn,...,Y1=y1}(s) =
G(yn)

Zn=zn|{Yn−1=yn−1,...,Y1=y1}(sθ)

G(yn)

Zn=zn|{Yn−1=yn−1,...,Y1=y1}(θ)
(10)

Starting out from the first time points of the process we can thus bootstrap
ourselves upward in time by iteratively switching between Eqs. (9) and (10),
according to the following pattern:

GZ2|Y1

(10)→ GZ2|Y2,Y1

(9)→ GZ3|Y2,Y1

(10)→ GZ3|Y3,Y2,Y1

(9)→ GZ4|Y3,Y2,Y1

(10)→ · · ·

One may then exploit the connection between the one-step ahead prediction
distribution and the k-step ahead prediction distribution to obtain the proba-
bility generating function of the latter. Of course, this sort of iterative scheme
requires “heavy” calculations, since it involves complicated compositions of
high order derivatives. However, given a specific form for the offspring distri-
butions, it is feasible (though considerably tedious) to obtain an exact expres-
sion. Moreover, as discussed earlier, conditioning beyond some point in the
past is not expected to yield considerable additional information, so that one
would not have to go very far back. In addition, since it is the initial phase
of the epidemic that we are modelling, one can usually expect relatively small
values for the {Yn} process (in fact this should be the most interesting scenario
mathematically).

4 Questions related to extinction in the simplified model

Naturally, in the context of a partially observed stochastic epidemic, one wishes
to make inferences related to the event of extinction of the actual process,
based on the information provided by its observable counterpart. Such infer-
ences could be the basis for making a decision on adopting emergency control
measures or not. We address this issue by considering the conditional probabil-
ity of extinction and the conditional distribution of the time to extinction, given
the present value of the observable process. In this section, we deal with the
simplified model (5), obtaining results that will serve as the basis for the results
given in Sect. 6 for the general model (3).

4.1 The event of extinction

We consider the question of determining the probability of extinction. Let E0
denote the event of extinction

E0 :=
⋃

n≥0

{Zn = 0}.

In the unconditional case, the matter is settled by the martingale property of
Zn/(θρ)

n, where ρ = Eξ . Hence, in the critical and subcritical cases θρ � 1,
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extinction occurs almost surely, ‘exponentially fast’ (in the sense that P[Xn >

0] ≤ E[Xn] = θnρn). In the case θρ > 1 we recall the following fact (e.g. [2]):

Theorem 3 Let ϕ(·) be the offspring distribution generating function, for a
Galton–Watson process {Xn}n≥1 started from a single individual. If the mean
m = ϕ′(1) of the offspring distribution is such that m > 1, then there exists a
unique fixed point s0 of ϕ(·) that is less than 1, and satisfies

s0 = P[E0|X0 = 1].

Obviously, the observation of the process {Yn} provides information about
the possibility of extinction or explosion, which we wish to incorporate in our
“prediction”, through the probability distribution P[E0|Yn = y]. In order to
specify this distribution, we use the fact that each individual of a certain gen-
eration of a Galton–Watson process gives rise to a new independent Galton–
Watson process with the same probabilistic properties. Thus, at time n, the
existence of Yn = y observed individuals, implies that there is an (unknown)
random number of unobserved individuals Un = Zn − Yn, that will give rise
to Un new independent Galton–Watson processes, each with the same law,
namely that of {Zn}. Each of these Un Galton–Watson processes dies indepen-
dently with probability s0, where s0 is the unique point that satisfies GΨ (s) = s
and s �= 1.

Assuming that the initial distribution of the process is µ, we may follow an
analysis taking special care at the first step (from time n to time n + 1) to see
that

Pµ[E0|Yn = y] =
∞∑

z=0

Pµ[E0|Zn+1 = z, Yn = y]Pµ[Zn+1 = z|Yn = y]

=
∞∑

z=0

(s0)
z
Pµ[Zn+1 = z|Yn = y]

= GZn+1|Yn=y(s0)

= λ
(y)
n (θGΞ(s0))

λ
(y)
n (θ)

.

Recapitulating, the problem of conditional extinction is trivial in the subcritical
and critical cases, and in the case θρ > 1, the probability of extinction given
the present value of the observable process has been seen to have a simple
expression, Pµ[E0|Yn = y] = GZn+1|Yn=y(s0).

4.2 Time to extinction

Consider the problem of predicting the time to extinction on the basis of
information on the process Yn at the present time. Let T0 denote the time to
extinction,
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T0 := inf{n ≥ 0 : Zn = 0}.

We wish to determine the distribution

τn(k|y) := Pµ[T0 ≤ n + k|Yn = y].

We first note that

{Zk = 0} = {T0 ≤ k} a.s.

Therefore, the problem of determining the distribution of the time to extinc-
tion is a special case of that of making n-step “predictions”, in the sense that it
suffices to derive the probability distribution Qk(z|y) = Pµ[Zn+k = z|Yn = y].
If GQ is the generating function corresponding to this probability distribution
(suppressing dependence on k and y for tidiness), then

Pµ[T0 ≤ n + k|Yn = y] = Qk(0|y) = GQ(0) = λ
(y)
n (θGΞ(γk−1(0)))

λ
(yn)
n (θ)

.

5 An interesting special case

In this section, we consider an instance of the simplified model (5), which is
seen to have certain attractive properties. As seen in the previous paragraphs,
the determination of n-step transition probabilities as well as prediction distri-
butions depends on the marginal distribution of Zn. In general, the family of
these distributions changes over time, making their determination impractical
(although theoretically feasible). Nevertheless, there is a choice of initial dis-
tribution and offspring distribution Ξ , such that the marginal distributions of
both Zn and Yn remain invariant in time, in the sense that they remain within
the same family, with different defining parameters.

This special distribution, as might be anticipated, is the Geometric distribu-
tion. Suppose that Ξ is the Geometric pmf with probability of success p and
mean ρ =: (1 − p)/p. In addition, suppose either that Z0 = 1 or that Z0 has a
Geometric distribution. Recalling the definition of Z1,

Z1 =
Z0∑

i=1

ψi,0 =
Z0∑

i=1

ξi,0(1 − Bi,0),

we see that Z1 has a modified Geometric distribution (i.e. the result of taking
a geometric distribution and shifting an amount of mass at zero, while re-
normalizing the mass at the positive integers to maintain unit total mass). In the
current section, we assume for simplicity that Z0 = 1 (so Y0 = B1,0), inducing an
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initial distribution µ0 = dist{Z0, Y0}. Since a modified Geometric stopped sum
of iid modified Geometric random variables, has itself a modified Geometric
distribution, then by the iterative definition of Zn,

Zn =
Zn−1∑

i=1

ξi,n−1(1 − Bi,n−1),

we see that Zn has a modified Geometric distribution for every n ≥ 1. In fact,
the generating function at time n, admits a simple representation:

GZn(r) = 1 − νn + νnr
pn

1 − (1 − pn)r
, (11)

with

νn = (ρθ)n
1 − s0

(ρθ)n − s0
, pn = 1 − s0

(ρθ)n − s0
, and s0 = 1 − θq

q
,

the latter being the non-negative root of the equation s = 1 − θ + (θp)/(1 −
(1 − p)s), different from 1.

What is particularly attractive with such a formulation, is that Yn is also
distributionally temporally invariant (up to defining parameters) and has the
modified Geometric distribution.

Proposition 3 Let Ξ be a geometric distribution with mean ρ = (1 − p)/p. Let
{Zn, Yn} have initial distribution µ0 and evolve as before. Then, for all n ≥ 1,
the marginal distributions induced by µ0 for both Zn and Yn are of a modified
Geometric type.

Proof This is immediate from the fact that an integer-valued random variable X
has the modified Geometric distribution if and only if its probability generating
function admits the representation (e.g. [4]):

GX(s) = α + βs
α′ + β ′s

, αβ ′ �= α′β.

Equation (11) shows that the pgf of the marginal distribution of Zn admits such
a representation and, by binomial thinning, we have that

GYn(s) = GZn(s(1 − θ)+ θ)

= 1 − νn + νn
pnθ + (1 − θ)pns

1 − qnθ − qn(1 − θ)s
,

where νn and pn = 1 − qn are as before.
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Corollary 2 The marginal probability mass function of Yn induced byµ0 is given
by,

Pµ0 [Yn = y] =

⎧
⎪⎪⎨

⎪⎪⎩

1 − νn + νn
pnθ

1 − qnθ
if y = 0;

νnpnqy−1
n

(1 − θ)y

(1 − qnθ)y+1
if y > 0.

5.1 Exact expressions when branching is geometric

Throughout this section, we assume that Ξ is the Geometric distribution with
mean ρ =: (1 − p)/p. The temporal distributional invariance (up to families)
and the corresponding closed form expression for the generating function of
the process of infected individuals provide us with simple closed forms for the
distributions discussed in the previous section. In this paragraph we provide the
explicit expressions.

5.1.1 Transition probabilities

The generating function for the transition probabilities of the process {(Zn, Yn)}
can be determined by substitution, from the general form obtained in Theo-
rem 1. This will be

Pn(r, s) = {
GΞ

[
GZn−1(rθ + rs(1 − θ))

]}z0−y0

= pz0−y0

[
1 − q

(
1 − νn + pnνn(rθ + rs(1 − θ))

1 − (1 − pn)(rθ + rs(1 − θ))

)]y0−z0

.

In what follows, we additionally assume that Z0 = 1 (i.e. that the initial
distribution of the joint process is µ0, as earlier).

5.1.2 Predictions based on the observable component

First we determine the probability generating function of the distribution
P[Zn = z|Yn = y], which was seen to play a major role in our analysis:

GZn|Yn=y(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − νn + νnpnrθ/(1 − qnrθ)
1 − νn + νnpnθ/(1 − qnθ)

if y = 0;

ry
(

1 − qnθ

1 − qnθr

)y+1

if y > 0.

The second branch of the distribution can be seen to be a y-shifted negative
binomial distribution, with success probability 1 − qnθ and y + 1 number of
successes.
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For the generating function of the k-step ahead prediction distribution we
distinguish two cases.

In the case y = 0, we have

GZn+k|Yn=0(r)

= cn

(
1 − νn + νn

θppn(1 − qk−1r)
p + qνk−1 − qnθp − (pqk−1 + qνk−1 − θpqnqk−1)r

)
,

whereas if y > 0,

GZn+k|Yn=y(r) = (1 − qnθ)
y+1

(
1 − qnθp(1 − qk−1r)

p + qνk−1 − (pqk−1 + qνk−1)r

)−y−1

,

where

cn = [
1 − νn + νnpnθ/(1 − qnθ)

]−1

and νn, pn = 1 − qn are as before.

5.1.3 Time to extinction and probability of extinction

The distribution τn(k|y) = Pµ0 [T0 ≤ n + k|Yn = y] of the time to extinction
assumes the form

τn(k|y) = GZn+k|Yn=y(0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cn

(
1 − νn + νn

θpnp
p + qνk−1 − qnθp

)
if y = 0;

(1 − qnθ)
y+1

(
1 − qnθp

p + qνk−1

)−y−1

if y > 0.

As for the conditional distribution of eventual extinction, this can be seen to be

Pµ0 [E0|Yn = y] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cn

(
1 − νn + νn

pn(p/q)
1 − qn(p/q)

)
if y = 0;

(
1 − qnθ

1 − qn(p/q)

)y+1

if y > 0.

6 Extension to the general partially observed branching process

So far we have considered a situation where an infected individual that is
observed at time n is instantaneously removed, and so is unable to produce
offsprings:
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Zn+1 =
Zn∑

i=1

ξi,n(1 − Bi,n)
d=

Zn−Yn∑

i=1

ξ
′
i,n (12)

We now use our results as a pivot to obtain answers in the general scenario of
model (3), where

Zn+1 =
Zn∑

i=1

ξi,n(1 − Bi,n)+
Zn∑

i=1

ζi,nBi,n (13)

Since the observed individuals are known at any point in time, any proba-
bility measure of interest is conditioned on Yn. Therefore, Lemma 1 allows us
to obtain these measures by convolving the measures obtained in the previous
paragraphs, with an appropriate measure arising from the contribution of the
observed individuals.

6.1 Transition probabilities

As before, we shall consider the Markov chain {(Zn, Yn)}n≥0, whose state-space
is the first quadrant of the lattice Z

2. The one-step transition probabilities are
given by

P[Z1 = z1, Y1 = y1|Z0 = z0, Y0 = y0] = Ξ∗
z0−y0

∗ Υ ∗
y0
(z1)

(
z1

y1

)
(1 − θ)y1θz1−y1 ,

where Υ ∗
k stands for the k-fold convolution of Υ with itself. The generating

function for the n-step transition distribution is given in the following theorem.

Theorem 4 Let Pn(r, s) be the probability generating function corresponding to
the mass function P[Zn = ·, Yn = ·|Z0 = z0, Y0 = y0], where Zn evolves as in
(13). Then,

Pn(r, s) = {
GΞ

[
φn−1(rθ + rs(1 − θ))

]}z0−y0
{
GΥ

[
φn−1(rθ + rs(1 − θ))

]}y0 ,

where φk(·) stands for the probability generating function of the kth generation of
a Galton–Watson branching process started from a single individual and evolving
as {Zn} evolves marginally.
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Proof Mimicking the steps for the proof of Theorem 1, we have

Pn(r, s) =
∞∑

a=0

[rθ + rs(1 − θ)]a
P[Zn = a|Z0 = z0, Y0 = y0]

=
∞∑

a=0

[rθ + rs(1 − θ)]a
∞∑

z1=0

P[Zn = a|Z1 = z1]Ξ∗
z0−y0

∗ Υ ∗
y0
(z1)

=
∞∑

z1=0

Ξ∗
z0−y0

∗ Υ ∗
y0
(z1)

∞∑

a=0

[rθ + rs(1 − θ)]a
P[Zn = a|Z1 = z1].

And, by the definition of φk(·),

Pn(r, s) =
∞∑

z1=0

Ξ∗
z0−y0

∗ Υ ∗
y0
(z1)[φn−1(rθ + rs(1 − θ))]z1

= {
GΞ

[
φn−1(rθ + rs(1 − θ))

]}z0−y0
{
GΥ

[
φn−1(rθ + rs(1 − θ))

]}y0 ,

completing the proof.

6.2 Predictions based on the observable component

Theorem 5 Suppose that the initial distribution of {Zn, Yn} is µ. The generating
function for the one-step prediction distribution, Pµ[Zn+1 = z|Yn = y], may be
expressed as:

GZn+1|Yn=yn(r) = η
(yn)
n (θGΞ(r))

η
(yn)
n (θ)

[GΥ (r)]yn ,

where ηk(·) = GN0{G[φk−1(·)]} is the probability generating function of the
(k − 1)th generation of a Galton–Watson branching process started with initial
distribution dist {∑N0

i=1 ξi,0} and evolving as {Zn} evolves marginally. More gen-
erally, the generating function for the k-step prediction distribution, Pµ[Zn+k =
z|Yn = y], is given by

G(r) = η
(yn)
n (θGΞ(φk−1(r)))

η
(yn)
n (θ)

[GΥ (φk−1(r))]yn

where ηm(·) is as before.

Proof We have that
Zn+1 = A + B, (14)

where A are the offsprings produced by the unobserved individuals and B are
the offsprings produced by the observed individuals. Lemma 1 then shows that
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A is independent of B conditional on Yn, and the result follows immediately.
For the k-step generating function, we simply imitate the proof of Theorem 2
replacing λk(·) by ηk(·).
Corollary 3 Suppose that the initial distribution of {Zn, Yn} is µ. The probability
of extinction conditional on the current observations on the process is given by

Pµ[E0|Yn = y] = η
(y)
n (θGΞ(s0))

η
(y)
n (θ)

[GΥ (s0)]y, (15)

where s0 is the unique point that satisfies φ1(s) = s and s �= 1. Furthermore, the
time to extinction conditional on the current observations on the process is given
by

Pµ[T0 < n + k|Yn = y] = η
(y)
n (θGΞ(φk−1(0)))

η
(y)
n (θ)

[GΥ (φk−1(0))]y (16)

Remark 3 The exact results obtained when the offspring distribution is in the
Geometric family are extended easily in the context of the general partially
observed branching process—one may assume a geometric distribution with a
different parameter for the offsprings of the observed individuals, and modify
the results according to the results of this paragraph.

7 Discussion

Incorporating a random mechanism that leads to the partial observation of a
branching process will often lead to more realistic models for stochastic epidem-
ics, yet will also usually lead to major complications. Especially in the case when
observation of subsets of the process leads to modifications of the actual process
of infections, even simple such mechanisms can lead to intractable situations.

In this paper, we have suggested a model that introduces partial observation
through binomial thinning, and interventions through what we have called the
quarantine assumption. We have shown that such a model preserves the mar-
ginal branching property of the process of infected individuals, while making the
joint process of infected and observed individuals a Markov chain on Z

2+ ∪ {0}.
We have specified (up to generating functions) the transition probabilities, and
also the conditional distributions for the true process given the present of the
observable process.

In addition, we have seen how the probability of extinction and the distribu-
tion of the time to extinction are altered when we take into account that what
we observe is not the true process. All these distributions are described entirely
through the law of a branching process evolving as the true process evolves
marginally. Finally, we have seen how the above formulation gives particularly
simple expressions in a special case, that of Geometric branching.

These results describe the probabilistic behaviour of the process, and the
modifications needed to be made in certain fundamental quantities when mod-
elling the initial stages of an epidemic according to a branching process. These
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modifications can be important when considering the implementation of control
measures given observations of a small time period of the epidemic. Of course,
this requires knowledge (at least to some approximation) of the relevant
parameters.

When the parameters involved are unknown, we have the very interesting
problem of conducting statistical inferences on the parameter values given the
observation of a finite sample path of the observable process {Yn}. Statistical
inference for branching processes is already a very interesting topic even for
processes that are completely observed [4]. A starting point would be to try to
write down a likelihood function (which could also lead to a Bayesian setup)
given values y = {y1, . . . , yn}. This could be rather complicated, and it may
be more practical to write down a pseudolikelihood, as if {Yn} possessed the
Markov property:

�{y} := Pµ[Yn = yn|Yn−1 = yn−1] × · · · × Pµ[Y2 = y2|Y1 = y1]Pµ[Y1 = y1],
(17)

for some initial measure µ. One may immediately obtain expressions for these
“transition probabilities”:

P[Yn = yn|Yn−1 = yn−1] =
∞∑

zn=0

P[Yn = yn|Zn = zn]P[Zn = zn|Yn−1 = yn−1]

=
∞∑

zn=0

zn!
yn!(zn − yn)! (1 − θ)ynθzn−yn

× P[Zn = zn|Yn−1 = yn−1]
= (1 − θ)yn

yn! G(yn)

Zn|Yn−1=yn−1
(θ)

Some applied work in this direction has been done by Meester et al. [7]
in connection to swine fever data, under the simplifying assumption of a spe-
cific finitely supported offspring distribution. In addition to actually performing
inference, another interesting question is that of the comparison of the infer-
ential results from assuming perfect observation with those obtained assuming
partial observation and how these may affect control decisions.

A further issue raised in this paper, that is immediately connected with the
appropriateness of pseudolikelihood estimation, is that of “relevant informa-
tion”. One would think that using the whole past of the observable process
should not make much difference in terms of information as compared to using
a few steps. How few steps one may use, and what kind of relative entropy
difference this would lead to are relevant questions in this context.
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