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Abstract. An susceptible-infected epidemic model with endogenous behavioral changes is
presented to analyze the impact of a prophylactic vaccine on disease prevalence. It is shown
that, with voluntary vaccination, whether an endemic equilibrium exists or not does not
depend on vaccine efficacy or the distribution of agent-types. Although an endemic equilib-
rium is unique in the absence of a vaccine, the availability of a vaccine can lead to multiple
endemic equilibria that differ in disease prevalence and vaccine coverage. Depending on the
distribution of agent-types, the introduction of a vaccine or, if one is available, a subsidy for
vaccination can increase disease prevalence by inducing more risky behavior.

1. Introduction

Currently 40 million people worldwide are infected with the human immunodefi-
ciency virus (HIV) [23]. It has already taken the lives of over 20 million people in
the two decades since the first reported case of acquired immune deficiency syn-
drome (AIDS), and an average of 14,000 people are newly infected each day [24].
No effective cure or vaccine for HIV exists, although currently available antiret-
roviral therapy (ART) can increase the length of time an infected person remains
healthy before progressing to full-blown AIDS.

The risk of being infected with HIV can be reduced by engaging in less risky
behavior such as using condoms in sexual activities or avoiding the sharing of nee-
dles for injection drug users. Indeed, studies have shown that a significant number
of adults have adopted various forms of safer sexual behavior in response to the
AIDS epidemic [1,6]. Moreover, behavioral changes resulting from government
AIDS education campaigns and effective dissemination of information regarding
the disease through social networks have significantly reduced HIV prevalence in
Uganda [22] located in sub-Saharan Africa, a region of the world that is home to
more than 60% of all people currently infected with HIV [23]. However, many
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experts believe that the best hope for containing the epidemic, especially in devel-
oping countries where 95% of all new infections occur [23], is a preventive vaccine
[5,11,13,21].

The development of an effective HIV vaccine remains at present a monumental
scientific challenge, mainly due to the tremendous variability of the virus caused by
its high mutation rate [7,13]. Moreover, even if a vaccine is developed eventually, it
is extremely unlikely to provide sterilizing immunity, the ability to block infection
completely, especially given the mutability of HIV [10,14]. At the same time, there
is concern that the availability of an imperfect vaccine that offers only partial or
limited immunity can actually cause the prevalence of HIV to rise if vaccinated
individuals increase their levels of risky behavior (behavioral disinhibition) [2,17].

Several studies have examined mathematically the effects of behavioral dis-
inhibition on disease incidence and have shown that even modest changes in risk
behavior resulting from the presence of a vaccine can increase HIV prevalence if the
vaccine is not perfectly effective in preventing infection [2,4,9,15,20]. However,
since individual risk behavior is treated as given and exogenous in the mathemat-
ical models employed in these studies, the results that are derived from them can
be sensitive to model specification and changes in parameter values. For example,
whether dissemination of an imperfect vaccine can increase HIV prevalence in these
models depends critically on the magnitude of behavioral change and the vaccine
coverage. Moreover, without a general theory of how risk behavior is determined
with or without a vaccine being available, the conditions under which behavioral
disinhibition effects can be sufficiently large to increase HIV prevalence when an
imperfect vaccine is available cannot be elucidated or identified using these models.

This paper departs from these earlier studies by considering a simple suscepti-
ble-infected (SI) epidemic model in which agents’ risk behavior, rather than being
exogenously specified, is derived using the utility maximization framework of ra-
tional choice theory to examine the population-level impact of a nonsterilizing
prophylactic vaccine on the prevalence of a sexually transmitted disease (STD).
Previous work on the rational choice epidemiological modeling of STDs have
considered the interaction between individuals’ incentives to engage in self-pro-
tective behavior and the equilibrium disease prevalence [3,8,12,18]. For instance,
Chen [3] considers an SI model with utility maximizing agents, establishes the
conditions under which an endemic equilibrium exists, and examines how the dis-
ease prevalence varies with respect to changes in the reproductive number of the
disease as well as the preferences of agents for engaging in risky behavior. The
model presented here extends these earlier works in rational choice epidemiology
by explicitly incorporating a preventive vaccine into the analysis to assess its ef-
fect on the equilibrium prevalence of an STD. The analysis focuses on the case in
which vaccination is voluntary, so that vaccine coverage as well as risk behavior
are endogenously determined by the model and not exogenously given.

It is shown that the reproductive number of the disease in the model, which
determines whether an endemic equilibrium exists or not, does not depend on the
efficacy of the vaccine. Although an endemic equilibrium is unique in the absence
of a vaccine, the availability of a vaccine can lead to multiple endemic equilibria
that differ in disease prevalence and vaccine coverage. Whether the introduction



A susceptible-infected epidemic model with voluntary vaccinations 255

of an imperfect vaccine can worsen an epidemic depends on the efficacy of the
vaccine as well as the costs to agents of taking other preventive actions against the
risk of infection, and the conditions under which the availability of a vaccine can
result in a higher prevalence are identified.

The exposition is organized as follows. The model is developed in Sect. 2.
Results concerning the existence and number of endemic equilibria, as well as the
relationship between vaccine availability and disease prevalence, are presented in
Sect. 3. Various policy implications of the model are derived in Sect. 4. Lastly,
concluding remarks and a summary of results are given in Sect. 5.

2. The model

Consider a population consisting of a continuum of agents, each of whom can be
either susceptible or otherwise infected with an STD. Assume that, once infec-
tion occurs, agents remain infected for the remainder of their lives. The utility of
being infected is ui , and the utility of being susceptible and healthy is uh , where
uh > ui ≥ 0. Let the utility at death be 0. Time is discrete, and, in any period,
a susceptible agent has the option of taking a costly action to self-protect against
the risk of infection. Assume that the self-protective action is perfectly effective at
blocking transmission of the disease. The utility cost of self-protection is cs > 0,
so that if a susceptible agent chooses to self-protect in some period, then the agent’s
net utility in that period is uh − cs .

Suppose that a vaccine for the disease exists and that every susceptible agent
can also choose to be vaccinated in any period at a utility cost of cv > 0. Assume
that, in any period, the decision to be vaccinated precedes the decision of whether
or not to adopt the self-protective action. Vaccination reduces a susceptible agent’s
chances of acquiring the disease from contacts with infected partners. While an
unvaccinated susceptible agent who chooses not to self-protect becomes infected
with probability β ∈ (0, 1] after one contact with an infected partner, the corre-
sponding probability for a susceptible agent after vaccination is βv ∈ [0, β). Thus,
the vaccine decreases the transmission probability of the disease, and the efficacy
of the vaccine can be measured by (β −βv)/β. If βv > 0, then the vaccine does not
confer sterilizing immunity. Assuming that the vaccine offers lifelong immunity, a
susceptible agent will choose to be vaccinated at most once. Given any x ∈ R+ and
y ∈ R+, let Ft (x, y) denote the proportion of agents in period t with vaccination
cost cv ≤ x and self-protection cost cs ≤ y. Hereafter, an agent with vaccination
cost cv and self-protection cost cs will be referred to as a type-(cv, cs) agent.

For simplicity, it is assumed that an agent’s expected life span is independent
of infection status. Specifically, in any period, an agent, whether infected or not,
dies at the end of the period with probability δ ∈ (0, 1), which is also the mortal-
ity rate given a continuum of agents. Note that the expected lifetime utility of an
infected agent is therefore ui/δ. Upon death, an agent, regardless of infection status,
is immediately replaced by an unvaccinated susceptible agent with the same costs
of vaccination and self-protection. Therefore, the population size is constant over
time and Ft (x, y) = F (x, y) for all t , x , and y. Assume that the joint distribution
function F is continuous, and denote its density function by f .
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All agents, infected or not, acquire one partner in every period. In particular,
partner acquisition is characterized by proportional mixing, so that the probability
of contacting a partner who is infected in any period t is given by the proportion of
agents who are infected in that period Pt . Taking current and the future prevalence
of the disease as given, the decision problem of a susceptible agent in each period
is to maximize expected lifetime utility by choosing whether or not to take the
self-protective action and, if the agent has not been vaccinated, whether to do so or
not. Given the stated assumptions of the model, consider the following two cases
for the optimization problem of a susceptible agent.

Case 1: A vaccinated susceptible agent.

Using dynamic programming [19], the optimization problem of a vaccinated sus-
ceptible agent in period t is given by the optimality equation

Uv (Pt ) = max
{

uh − cs + (1 − δ) Uv (Pt+1) ,

uh + (1 − δ)
[
βv Pt

ui

δ
+ (1 − βv Pt ) Uv (Pt+1)

]}
, (1)

where Uv (Pt ) is the value of the agent in period t . The first expression in the max-
imand is the value of self-protecting in period t , and the second expression gives
the value of risky behavior in that period.

Case 2: An unvaccinated susceptible agent.

Letting Un (Pt ) denote the value of an unvaccinated susceptible agent in period t ,
Un (Pt ) solves the optimality equation

Un (Pt ) = max
{

Uv (Pt ) − cv, uh − cs + (1 − δ) Un (Pt+1) ,

uh + (1 − δ)
[
β Pt

ui

δ
+ (1 − β Pt ) Un (Pt+1)

]}
. (2)

The first expression in the maximand, Uv (Pt ) − cv , gives the value of being vac-
cinated in period t at cost cv . The second expression is the value of self-protecting
in period t without getting vaccinated, while the last expression is the agent’s value
with no self-protection or vaccination in period t .

Letting Wv (P) ≡ Uv (P)−ui/δ, Wn (P) ≡ Un (P)−ui/δ, and w ≡ uh −ui ,
Eqs. (1) and (2 ), respectively, can be rewritten as

Wv (Pt ) = max {w − cs + (1 − δ) Wv (Pt+1) ,

w + (1 − δ) (1 − βv Pt ) Wv (Pt+1)} (3)

and

Wn (Pt ) = max {Wv (Pt ) − cv, w − cs + (1 − δ) Wn (Pt+1) ,

w + (1 − δ) (1 − β Pt ) Wn (Pt+1)} . (4)

Using the solutions to the optimization problems in (3) and (4), the law of
motion governing disease prevalence can be derived. The notations employed in
the derivations are introduced below.
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• σv,t (cv, cs): The proportion of type-(cv, cs) unvaccinated susceptible agents in
period t who choose to self-protect and be vaccinated in that period.

• σn,t (cv, cs): The proportion of type-(cv, cs) unvaccinated susceptible agents in
period t who choose to self-protect and not to be vaccinated in that period.

• ρv,t (cv, cs): The proportion of type-(cv, cs) unvaccinated susceptible agents in
period t who choose to be vaccinated but not self-protect in that period.

• ρn,t (cv, cs): The proportion of type-(cv, cs) unvaccinated susceptible agents in
period t who choose not to self-protect and not to be vaccinated in that period.

• rt (cv, cs): The proportion of type-(cv, cs) vaccinated susceptible agents in period
t who choose not to self-protect in that period.

• St (cv, cs): The proportion of type-(cv, cs) agents who are unvaccinated and sus-
ceptible in period t .

• It (cv, cs): The proportion of type-(cv, cs) agents who are infected in period t .
• Vt (cv, cs): The proportion of type-(cv, cs) agents who are vaccinated and sus-

ceptible in period t .

Note that σv,t (cv, cs) + σn,t (cv, cs) + ρv,t (cv, cs) + ρn,t (cv, cs) = 1 and
St (cv, cs) + It (cv, cs) + Vt (cv, cs) = 1 for all t , cv , and cs .

With the stated model assumptions, the proportion of type-(cv, cs) unvacci-
nated susceptible agents in period t who survive to period t +1 as infected agents is
(1 − δ) Pt

[
βvρv,t (cv, cs) + βρn,t (cv, cs)

]
. Analogously, 1−δ is the proportion of

type-(cv, cs) vaccinated susceptible agents in period t who remain alive in period
t + 1, and, of those, the fraction Ptβvrt (cv, cs) is infected. Therefore, the disease
prevalence among type-(cv, cs) agents evolves over time according to the following
system of equations:

St+1 (cv, cs)= (1−δ)
[
σn,t (cv, cs)+ρn,t (cv, cs) (1 − β Pt )

]
St (cv, cs) + δ,

It+1 (cv, cs) = (1 − δ)
[
It (cv, cs) + [

St (cv, cs)
(
βvρv,t (cv, cs) (5)

+βρn,t (cv, cs)
) + Vt (cv, cs) βvrt (cv, cs)

]
Pt

]
, (6)

Vt+1 (cv, cs) = (1 − δ)
[
Vt (cv, cs) (1 − βvrt (cv, cs) Pt ) + St (cv, cs)

× (
σv,t (cv, cs) + ρv,t (cv, cs) (1 − βv Pt )

)]
. (7)

The aggregate disease prevalence in period t , Pt , satisfies

Pt =
∞∫

0

∞∫

0

It (cv, cs) f (cv, cs) dcsdcv. (8)

In a steady state, σv,t (cv, cs) = σv (cv, cs), σn,t (cv, cs) = σn (cv, cs),
ρv,t (cv, cs) = ρv (cv, cs), ρn,t (cv, cs) = ρn (cv, cs), rt (cv, cs) = r (cv, cs),
St (cv, cs) = S (cv, cs), It (cv, cs) = I (cv, cs), and Vt (cv, cs) = V (cv, cs) for
all t , cv , and cs . Additionally, Pt = P for all t , where, using Eq. (8),

P =
∞∫

0

∞∫

0

I (cv, cs) f (cv, cs) dcsdcv. (9)
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By Eqs. (5)–(7), S (cv, cs), I (cv, cs), and V (cv, cs) solve

S (cv, cs) = (1 − δ) [σn (cv, cs) + ρn (cv, cs) (1 − β P)] S (cv, cs) + δ, (10)

I (cv, cs) = (1 − δ) [I (cv, cs) + [S (cv, cs) (βvρv (cv, cs) + βρn (cv, cs))

+V (cv, cs) βvr (cv, cs)] P] , (11)

V (cv, cs) = (1 − δ) [V (cv, cs) (1 − βvr (cv, cs) P) + S (cv, cs) (σv (cv, cs)

+ρv (cv, cs) (1 − βv P))] . (12)

Equations (3) and (4), respectively, yield

Wv (P) = max {w − cs + (1 − δ) Wv (P) , w + (1 − δ) (1 − βv P) Wv (P)}
= max

{
w − cs

δ
,

w

δ + (1 − δ) βv P

}
(13)

and

Wn (P) = max {Wv (P) − cv, w − cs + (1 − δ) Wn (P) ,

w + (1 − δ) (1 − β P) Wn (P)}
= max

{
Wv (P) − cv,

w − cs

δ
,

w

δ + (1 − δ) β P

}
. (14)

Note that, since Wn (P) ≥ (w − cs)/δ for all P , Wn (P) > (w − cs)/δ − cv for
all P . Therefore, in a steady state, no susceptible agent would choose to adopt the
self-protective action after being vaccinated, i.e. σv (cv, cs) = 0 for all cv and cs .
Consequently, Eq. (14) reduces to

Wn (P) = max

{
w

δ + (1 − δ) βv P
− cv,

w − cs

δ
,

w

δ + (1 − δ) β P

}
. (15)

Given P , define the functions γn (P) and γv (P), respectively, as follows:

w − γn (P)

δ
= w

δ + (1 − δ) β P
,

w − γv (P)

δ
= w

δ + (1 − δ) βv P
.

It is easy to see that both γn (P) and γv (P) are increasing in P . The benefit to a sus-
ceptible agent of vaccinating without self-protection given steady state prevalence
P is

B (P) ≡ w

δ + (1 − δ) βv P
− w

δ + (1 − δ) β P
.

Using Eqs. (13) and (15), the optimal behavior for type-(cv, cs) susceptible agents
in a steady state given prevalence P can be characterized as follows, assuming that,
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in the case of indifference, agents choose the action that carries the lowest risk of
infection:

r (cv, cs) =
{

1 if cs > γv (P)

0 otherwise,
(16)

σn (cv, cs) =
{

1 if cs ≤ γn (P) and cs ≤ γv (P) + δcv

0 otherwise,
(17)

ρn (cv, cs) =
{

1 if cs > γn (P) and cv > B (P)

0 otherwise,
(18)

ρv (cv, cs) =
{

1 if cs > γv (P) + δcv and cv ≤ B (P)

0 otherwise.
(19)

Figure 1 depicts the relationship between the optimal behavior of unvaccinated
susceptible agents and their costs of vaccination and self-protection.

Definition 1. A steady state equilibrium is given by functions σn, ρv , ρn, r , S, I ,
V , and aggregate prevalence P satisfying Eqs. (9)–(12) and (16)–(19). If P > 0,
then the equilibrium is endemic.

Remark 2. Note that a no-disease steady state equilibrium in which P = 0 always
exists.

3. The results

The set of endemic equilibria is now characterized. The analysis begins by estab-
lishing the conditions under which an endemic equilibrium exists.

Fig. 1. The relationship between the optimal behavior of unvaccinated susceptible agents
and their costs of vaccination and self-protection given steady state prevalence P
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3.1. Existence of an endemic equilibrium

Using Eqs. (9)–(12) and (16)–(19), it is straightforward to show that, given steady
state prevalence P ,

I (cv, cs) =




0 if cs ≤ γn (P) and cs ≤ γv (P) + δcv

(1−δ)βv P
δ+(1−δ)βv P if cs > γv (P) + δcv and cv ≤ B (P)

(1−δ)β P
δ+(1−δ)β P if cs > γn (P) and cv > B (P) .

(20)

By Eqs. (9) and (20), an equilibrium prevalence P must satisfy

P = (1 − δ) β P

δ + (1 − δ) β P
λn (P) + (1 − δ) βv P

δ + (1 − δ) βv P
λv (P) , (21)

where λn (P) ≡ ∫ ∞
B(P)

∫ ∞
γn(P)

f (cv, cs) dcsdcv and λv (P) ≡ ∫ B(P)

0

∫ ∞
γv(P)+δcv

f (cv, cs) dcsdcv . In particular, Eq. (21) implies that an endemic equilibrium exists
if there is an equilibrium prevalence P > 0 such that

1 = (1 − δ) β

δ + (1 − δ) β P
λn (P) + (1 − δ) βv

δ + (1 − δ) βv P
λv (P) . (22)

For convenience, let g (P) denote the function on the right-hand side of Eq. (22).
Proposition 3 below gives the necessary and sufficient condition for the existence
of an endemic equilibrium.

Proposition 3. An endemic equilibrium exists if and only if (1 − δ) β/δ > 1.

Proof. Note that g (1) < 1 and that g (0) > 1 if (1 − δ) β/δ > 1. Therefore, by
continuity, there exists P ∈ (0, 1) such that g (P) = 1 if (1 − δ) β/δ > 1. Now,
g (P) < (1 − δ) β/δ for all P > 0. Consequently, no endemic equilibrium can
exist if (1 − δ) β/δ ≤ 1. ��

The quantity (1 − δ) β/δ is the reproductive number of the disease in the model,
and it measures the expected number of secondary infections that can be caused
by an infected agent over the agent’s lifetime without the vaccine if no susceptible
agent adopts self-protective behavior. Notice that the reproductive number does not
depend on βv , so that, with voluntary vaccinations, whether an endemic equilibrium
exists or not is entirely independent of vaccine efficacy.

3.2. Number of endemic equilibria

An endemic equilibrium of this model is unique in the absence of a vaccine. To see
this, note that, when a vaccine is not available, a susceptible agent of type-(cv, cs)

would choose to adopt the self-protective action in a steady state with prevalence
P if cs ≤ γn (P). Therefore, P > 0 is an endemic equilibrium prevalence in the
absence of a vaccine if it satisfies

1 = (1 − δ) β

δ + (1 − δ) β P

∞∫

0

∞∫

γn(P)

f (cv, cs) dcsdcv. (23)
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Since the right-hand side of Eq. (23) is decreasing in P , uniqueness obtains. How-
ever, the availability of a vaccine in general can lead to multiple endemic equilibria
which differ in disease prevalence and vaccine coverage.

Example 4. Suppose w = 10, δ = 1/10, β = 2/3, βv = 1/3, and

f (cv, cs) =
{

1 if cv ∈ [12, 13] and cs ∈ [9, 10]

0 otherwise
.

The reproductive number of the disease is 6. With the given model specification,
the following endemic equilibria exist (see the Appendix for details).

• Low vaccine coverage equilibrium: In this equilibrium, no agent chooses to
adopt the self-protective action or to be vaccinated. The disease prevalence is
0.833, which is also the unique endemic equilibrium prevalence when the vac-
cine is not available.

• Medium vaccine coverage equilibrium: In this equilibrium, no agent adopts the
self-protective action, and, in each period, 42.3% of all unvaccinated susceptible
agents choose to be vaccinated. The disease prevalence is 0.769.

• High vaccine coverage equilibrium: In this equilibrium, no agent adopts the
self-protective action, and, in each period, all unvaccinated susceptible agents
choose to be vaccinated. The disease prevalence is 0.667.

To understand how and when multiple endemic equilibria can arise, notice that,
when the efficacy of the vaccine is sufficiently low, the benefit of vaccination as
measured by B (P) is small when the disease prevalence is either very low or very
high. To see this, differentiate B (P):

B ′(P) = w (1 − δ) (β − βv)
(
δ2 − (1 − δ)2 ββv P2

)

(δ + (1 − δ) β P)2 (δ + (1 − δ) βv P)2 .

This derivative is positive for small P , while it is negative for sufficiently high prev-
alence if δ2 < (1 − δ)2 ββv . Therefore, when this inequality holds, the benefit of
vaccination is higher for “intermediate” levels of prevalence, and B (P) reaches its
maximum at prevalence level δ/ (1 − δ)

√
ββv . This implies that when the disease

prevalence is high, the benefit of vaccination may be sufficiently low relative to its
cost cv that susceptible agents would choose not to be vaccinated even if vaccina-
tion is chosen at lower prevalence levels. This property of the benefit function B
creates a positive feedback loop which can generate multiple endemic equilibria
given a low efficacy vaccine. To see why, suppose, for instance, that agents expect
the disease prevalence P to be so high that the cost of vaccination exceeds its
benefit B(P). If, in addition, the cost of self-protection is sufficiently high, then
the proportion of susceptible agents who engage in risky behavior without prior
vaccination will be sizable. With a suitably large reproductive number (1 − δ) β/δ,
the disease prevalence will be high enough to render the option of vaccination sub-
optimal, thus confirming agents’ beliefs. On the other hand, if agents expect the
disease prevalence to be lower so that obtaining a vaccination is optimal, then, by
their actions, the disease prevalence can be driven down to a level at which the
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benefit of being vaccinated does exceed its cost, thereby establishing this outcome
as an equilibrium. Notice that, through the positive feedback mechanism inherent
in the system given a low efficacy vaccine, agents’ beliefs concerning the disease
prevalence can be self-fulfilling, and this is the source for the existence of multiple
endemic equilibria. The self-confirmatory nature of agents’ beliefs implies that, in
general, the impact of a vaccine on disease prevalence depends not only on vaccine
efficacy but also on how the availability of the vaccine affects agents’ expectations
concerning future prevalence. As Example 4 shows, the introduction of a vaccine
may have little effect if agents believe that to be the case, or it can lower prevalence
significantly if agents are sufficiently optimistic about the impact of the vaccine.

Proposition 6 below gives a condition on the model parameters that guarantees
the uniqueness of an endemic equilibrium for any distribution function F . More
specifically, Proposition 6 shows that an endemic equilibrium is unique if the effi-
cacy of the vaccine is sufficiently high. Before stating this uniqueness result, the
following lemma is first established.

Lemma 5. If P2 > P1 and B (P2) > B (P1), then λn (P1) ≥ λn (P2) and λn (P1)−
λn (P2) ≥ λv (P2) − λv (P1).

Proof. Now, given P2 > P1 and B (P2) > B (P1),

λn (P2) =
∞∫

B(P2)

∞∫

γn(P2)

f (cv, cs) dcsdcv

≤
∞∫

B(P2)

∞∫

γn(P1)

f (cv, cs) dcsdcv

≤
∞∫

B(P1)

∞∫

γn(P1)

f (cv, cs) dcsdcv

= λn (P1) .

Therefore,

λn (P1) − λn (P2) ≥
B(P2)∫

B(P1)

∞∫

γn(P1)

f (cv, cs) dcsdcv ≥ 0. (24)

In addition, since

B(P1)∫

0

∞∫

γv(P2)+δcv

f (cv, cs) dcsdcv ≤
B(P1)∫

0

∞∫

γv(P1)+δcv

f (cv, cs) dcsdcv = λv (P1) ,

it is the case that

λv (P2) ≤ λv (P1) +
B(P2)∫

B(P1)

∞∫

γv(P2)+δcv

f (cv, cs) dcsdcv. (25)



A susceptible-infected epidemic model with voluntary vaccinations 263

It is straightforward to verify that γv (P2) + δcv > γn (P1) for all cv ∈ [B(P1),

B(P2)]. Therefore, using Eq. (25),

λv (P2) − λv (P1) ≤
B(P2)∫

B(P1)

∞∫

γn(P1)

f (cv, cs) dcsdcv. (26)

Together, Eqs. (24) and (26) give λn (P1) − λn (P2) ≥ λv (P2) − λv (P1). ��
Assume henceforth that (1 − δ) β/δ > 1, so that an endemic equilibrium exists.

Proposition 6. If (1 − δ)2 ββv/δ
2 ≤ 1, then an endemic equilibrium is unique.

Proof. The restriction (1 − δ)2 ββv/δ
2 ≤ 1 implies that B (P) is strictly increas-

ing in P over the interval [0, 1). By Lemma 5, this gives λn (P1) ≥ λn (P2) and
λn (P1) − λn (P2) ≥ λv (P2) − λv (P1) for all P2 > P1. Now, (1 − δ) β/[δ +
(1 − δ) β P] is strictly decreasing in P , and (1 − δ) βv/[δ+(1 − δ) βv P] is weakly
decreasing in P . Therefore, if P2 is an endemic equilibrium prevalence, i.e. g (P2) =
1, then g (P1) > g (P2) for all P1 < P2 and g (P3) < g (P2) for all P3 > P2, so
that any solution to Eq. (22) must be unique. ��

3.3. Vaccine availability and disease prevalence

As shown in Example 4, although the availability of a vaccine has the potential
to reduce disease prevalence, depending on parameter values and the distribution
function F , the introduction of a vaccine can also lead to a perverse outcome in
which the prevalence is higher than that in the absence of a vaccine.

Example 7. Suppose w = 4, δ = 1/10, β = 2/3, βv = 1/2, and

f (cv, cs) =
{

1
3 if cv ∈ [0, 1] and cs ∈ [0, 3]

0 otherwise.

Without the vaccine, the endemic equilibrium prevalence, which can be found using
Eq. (23), is 0.167, and the proportion of susceptible agents who choose to self-pro-
tect in each period is 2/3. When the vaccine is available, the disease prevalence in
the unique endemic equilibrium is 0.175 (see the Appendix for details).

To gain some intuition for the conditions under which an endemic equilibrium
prevalence with the vaccine being available can exceed the disease prevalence in the
absence of the vaccine, consider Fig. 2. The unique endemic equilibrium prevalence
without the vaccine is denoted by Pn . In the absence of the vaccine, a susceptible
agent of type-(cv, cs) will choose the risky action if (cv, cs) falls in region I or II,
and the agent will adopt the self-protective action otherwise. If the vaccine is made
available, then, given disease prevalence Pn , a type-(cv, cs) unvaccinated suscep-
tible agent will choose the risky action without vaccination if (cv, cs) is in region
I, and the agent will choose to be vaccinated (without subsequently taking the self-
protective action) if (cv, cs) is in regions II and III. Notice that if the proportion of
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Fig. 2. Given steady state prevalence Pn , susceptible agents with (cv, cs) in regions I or
II engage in risky behavior whether or not the vaccine is available. All agents in region II
and none from region I choose to be vaccinated when the vaccine is introduced. Susceptible
agents in regions III and IV adopt self-protective behavior in the absence of the vaccine.
When the vaccine is available, agents in region III choose to be vaccinated and engage in
risky behavior

susceptible agents in region III is sufficiently large and if the proportion in region
II is sufficiently small, then, as long as βv 
= 0,

g (Pn) >
(1 − δ) β

δ + (1 − δ) β Pn

∞∫

0

∞∫

γn(Pn)

f (cv, cs) dcsdcv = 1, (27)

where the equality follows from the definition of Pn . Since g (1) < 1, Eq. (27)
implies by continuity that there exists Pv ∈ (Pn, 1) such that g (Pv) = 1, i.e. given
Eq. (27), there is an endemic equilibrium when the vaccine is available in which
the disease prevalence exceeds Pn .

4. Policy implications

Using the results presented in Sect. 3, some policy implications of the model can
be derived.

4.1. Promoting behavioral changes

To analyze the effect of intervention programs aimed at promoting safer forms of
behavior, consider public health policies that lower the cost of self-protection so
that the distribution function of agent-types is shifted from F = F1 with density
function f1 to F = F2 with density function f2, where

x∫

0

f2 (cv, cs) dcs ≥
x∫

0

f1 (cv, cs) dcs (28)
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for all cv > 0 and x > 0. Let Pi denote an endemic equilibrium prevalence given
the distribution function Fi , i = 1, 2. It can be shown that if P1 or P2 is unique,
then a shift of the distribution function from F1 to F2 cannot result in a higher
equilibrium prevalence.

Proposition 8. If P1 or P2 is unique, then P2 ≤ P1.

Proof. Let gi (P) denote the function g (P) given F = Fi , i = 1, 2. If P1 is the
unique endemic equilibrium prevalence given the distribution function F1, then
g1 (P) � 1 as P � P1. Condition (28) implies that g2 (P) ≤ g1 (P) for all
P ∈ [0, 1]. Therefore, g2 (P) < 1 for all P ∈ (P1, 1]. Since g2 (P2) = 1, this
implies that P2 ≤ P1. An analogous argument can be used when P2 is unique. ��

When multiple endemic equilibria exist given F1 and F2, then, as Fig. 3 shows,
shifting the distribution function from F1 to F2 can, depending on which equilib-
rium is reached, increase disease prevalence.

4.2. Subsidizing vaccinations

The effect of public policies that reduce the cost of vaccination is now considered.
Analogous to the analysis of the impact of promoting behavioral changes, suppose
the distribution function of agent-types shifts from F = F1 with density function
f1 to F = F3 with density function f3, where

x∫

0

f3 (cv, cs) dcv ≥
x∫

0

f1 (cv, cs) dcv

for all cs > 0 and x > 0. As Example 9 below shows, a subsidy for vaccination, by
increasing the proportion of agents who choose to be vaccinated and by decreasing
the level of safe behavior, can increase disease prevalence.

Fig. 3. When multiple endemic equilibria coexist given F1 and F2, public health policies
that lower the cost of safe behavior and shift the distribution function from F1 to F2 can
worsen the epidemic
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Example 9. Suppose w = 4, δ = 1/10, β = 2/3, βv = 1/2,

f1 (cv, cs) =
{

1
3 if cv ∈ [ 1

2 , 3
2

]
and cs ∈ [0, 3]

0 otherwise,

and

f3 (cv, cs) =
{

1
3 if cv ∈ [0, 1] and cs ∈ [0, 3]

0 otherwise.

The unique endemic equilibrium prevalence given the density function f1 is 0.169.
With the density function f3, the unique endemic equilibrium prevalence is 0.175
(see the Appendix for details).

Although a subsidy, all else being equal, gives agents a greater incentive to be
vaccinated, its impact on the equilibrium disease prevalence depends crucially on
agents’ costs of adopting the self-protective action. Among agents who have a high
cost of self-protection and who therefore engage in risky behavior, a subsidy for
vaccination, by increasing the proportion of susceptible agents who are vaccinated
and less likely to become infected, can lower the prevalence of the disease. On the
other hand, a subsidy for vaccination gives agents with a low cost of self-protection
less incentive to adopt the safe behavior and, by making the vaccine more accessi-
ble, encourages risky behavior. Therefore, all else being the same, a subsidy tends
to increase the prevalence level among agents with a low cost of self-protection.
Consequently, depending on the distribution of agent-types, a subsidy that makes
vaccines more accessible does not necessarily result in a lower prevalence of the
disease.

4.3. Mass vaccination programs

Suppose now that, instead of vaccinations being voluntary, a mandatory vaccination
program is implemented whereby a proportion µ ∈ (0, 1] of the new susceptible
agents in each period is vaccinated. As before, every susceptible agent, whether
vaccinated or not, has the option of adopting the self-protective action in each
period. The decision problem of a vaccinated susceptible agent is still given by
Eq. (3), while, for an unvaccinated susceptible agent, the optimality equation (4)
reduces to

Wn (Pt ) = max {w − cs + (1 − δ) Wn (Pt+1) ,

w + (1 − δ) (1 − β Pt ) Wn (Pt+1)} . (29)

The disease prevalence among type-(cv, cs) agents evolves according to the system
of equations

St+1 (cv, cs) = (1 − δ) [St (cv, cs) (1 − βρt (cv, cs) Pt )] + δ (1 − µ) , (30)

It+1 (cv, cs) = (1 − δ) [It (cv, cs) + [St (cv, cs) βρt (cv, cs)

+Vt (cv, cs) βvrt (cv, cs)] Pt ] , (31)

Vt+1 (cv, cs) = (1 − δ) [Vt (cv, cs) (1 − βvrt (cv, cs) Pt )] + δµ, (32)
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where ρt (cv, cs) is the proportion of type-(cv, cs) unvaccinated susceptible agents
who choose the risky behavior, and rt (cv, cs) denotes the proportion of type-(cv, cs)

vaccinated susceptible agents who choose the risky behavior.
In a steady state, ρt (cv, cs) = ρ (cv, cs), rt (cv, cs) = r (cv, cs), St (cv, cs) =

S (cv, cs), It (cv, cs) = I (cv, cs), Vt (cv, cs) = V (cv, cs), and Pt = P for all t ,
cv , and cs . Using Eqs. (30)–(32), S (cv, cs), I (cv, cs), and V (cv, cs) satisfy

S (cv, cs) = (1 − δ) [S (cv, cs) (1 − βρ (cv, cs) P)] + δ (1 − µ) , (33)

I (cv, cs) = (1 − δ) [I (cv, cs) + [S (cv, cs) βρ (cv, cs)

+V (cv, cs) βvr (cv, cs)] P] , (34)

V (cv, cs) = (1 − δ) [V (cv, cs) (1 − βvr (cv, cs) P)] + δµ, (35)

and the aggregate steady state prevalence P solves Eq. (9). The optimization prob-
lem of a vaccinated susceptible agent in a steady state is given by the optimality
equation (13), while, for an unvaccinated susceptible agent, Eq. (29) yields

Wn (P) = max {w − cs + (1 − δ) Wn (P) , w + (1 − δ) (1 − β P) Wn (P)}
= max

{
w − cs

δ
,

w

δ + (1 − δ) β P

}
. (36)

Given P , Eqs. (13) and (36), respectively, imply that r (cv, cs) satisfies Eq. (16)
and

ρ (cv, cs) =
{

1 if cs > γn (P)

0 otherwise,
(37)

where it is assumed in Eq. (37) that agents choose the action with the lower prob-
ability of infection in the case of indifference.

Definition 10. A steady state equilibrium with mandatory vaccine coverage µ is
given by functions ρ, r , S, I , V and aggregate prevalence P satisfying Eqs. (9),
(33)–(35), (37), and (16).

Using Eqs. (33)–(35), (37), and (16), it is straightforward to show that, given
steady state prevalence P ,

I (cv, cs) =




µ(1−δ)βv P
δ+(1−δ)βv P + (1−µ)(1−δ)β P

δ+(1−δ)β P if cs > γn (P)

µ(1−δ)βv P
δ+(1−δ)βv P if γv (P) < cs ≤ γn (P)

0 if cs ≤ γv (P)

. (38)

Equations (9) and (38) imply that, in equilibrium, the steady state prevalence P
solves

P = µ (1 − δ) βv P

δ + (1 − δ) βv P

∞∫

0

γn(P)∫

γv(P)

f (cv, cs) dcsdcv

+
(

µ (1 − δ) βv P

δ + (1 − δ) βv P
+ (1 − µ) (1 − δ) β P

δ + (1 − δ) β P

) ∞∫

0

∞∫

γn(P)

f (cv, cs) dcsdcv. (39)
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The following result shows that if vaccine efficacy and coverage are sufficiently
high, then the disease can be eradicated in equilibrium.

Proposition 11. Given mandatory vaccine coverage µ, a unique endemic equilib-
rium exists if and only if (1 − δ) (µβv + (1 − µ) β) /δ > 1.

Proof. Using Eq. (39), an endemic equilibrium prevalence P > 0 solves

1 = µ (1 − δ) βv

δ + (1 − δ) βv P

∞∫

0

γn(P)∫

γv(P)

f (cv, cs) dcsdcv

+
(

µ (1 − δ) βv

δ + (1 − δ) βv P
+ (1 − µ) (1 − δ) β

δ + (1 − δ) β P

) ∞∫

0

∞∫

γn(P)

f (cv, cs) dcsdcv. (40)

Let h (P) denote the function on the right-hand side of Eq. (40). Now, h (0) =
(1 − δ) (µβv + (1 − µ) β) /δ and h (1) < 1 for all µ ∈ (0, 1]. Therefore, if (1 − δ)

(µβv + (1 − µ) β) /δ > 1, then, by the continuity of h, there must exist P ∈ (0, 1)

such that Eq. (40) holds. Note that h (P) < 1 for all P > 0 if (1 − δ) (µβv+
(1 − µ) β) /δ ≤ 1. Therefore, an endemic equilibrium does not exist if (1 − δ)

(µβv + (1 − µ) β) /δ ≤ 1.
To establish uniqueness, suppose P1 ∈ (0, 1) and P2 ∈ (P1, 1) both solve

Eq. (40). Since γv (P) and γn (P) are increasing in P , it follows that

h (P1) ≥ µ (1 − δ) βv

δ + (1 − δ) βv P1

∞∫

0

γn(P2)∫

γv(P1)

f (cv, cs) dcsdcv

+
(

µ (1 − δ) βv

δ + (1 − δ) βv P1
+ (1 − µ) (1 − δ) β

δ + (1 − δ) β P1

) ∞∫

0

∞∫

γn(P2)

f (cv, cs) dcsdcv

≥ µ (1 − δ) βv

δ + (1 − δ) βv P1

∞∫

0

γn(P2)∫

γv(P2)

f (cv, cs) dcsdcv

+
(

µ (1 − δ) βv

δ + (1 − δ) βv P1
+ (1 − µ) (1 − δ) β

δ + (1 − δ) β P1

) ∞∫

0

∞∫

γn(P2)

f (cv, cs) dcsdcv

≥ h (P2) .

It is straightforward to show that the last inequality must be strict. Therefore,
h (P1) 
= h (P2), so that P1 and P2 cannot both satisfy Eq. (40). ��

5. Summary and concluding remarks

In this paper, a rational choice SI epidemic model is presented to analyze the impact
of a preventive vaccine on disease prevalence. It is assumed in the model that agents



A susceptible-infected epidemic model with voluntary vaccinations 269

choose their behavior by comparing the cost and benefit of different actions and
picking the one that yields the highest net benefit. It is shown that, with volun-
tary vaccination, whether an endemic equilibrium exists or not does not depend
on vaccine efficacy or the distribution of agent-types (Proposition 3). By compar-
ison, in epidemic models of vaccines which treat agents’ behavior as exogenous
and therefore make no distinction between voluntary and mandatory vaccination,
the condition for disease eradication depends critically on vaccine coverage, vac-
cine efficacy, and risk behavior [see, for example, 16]. Moreover, in the model
presented here, multiple endemic equilibria that differ in disease prevalence and
vaccine coverage can coexist (Example 4), unless the vaccine is sufficiently effi-
cacious (Proposition 6). This implies that individuals’ expectations concerning the
impact of a vaccine can be self-fulfilling and determine which outcome results
from the introduction of a vaccine. Note that this multiplicity result concerning
the potential impact of a low efficacy vaccine cannot be derived from epidemic
models which treat agents’ behavior as exogenous since these models take vaccine
coverage as given and fixed. In the rational choice SI model, the introduction of
a vaccine (Example 7) or, if one is available, a subsidy for vaccination (Example
9) can increase disease prevalence by inducing more risky behavior. On the other
hand, unless multiple equilibria coexist, public health policies that promote safer
forms of behavior and lower the cost of self-protective activities have the effect
of decreasing disease prevalence (Proposition 8), although such behavioral inter-
vention programs cannot result in the eradication of the disease. The analysis here
also shows that if a vaccine is sufficiently efficacious and if the vaccine coverage
is sufficiently high, then the disease can be eradicated using a mandatory vaccina-
tion program. Furthermore, the condition for eradication is independent of agents’
preferences for risky behavior (Proposition 11). Taken together with Proposition 3,
this result implies that whether eradication can be achieved depends critically on
the type of vaccination policy that is implemented.

While epidemic models which treat agents’ behavior as exogenous also pre-
dict that the introduction of an imperfect vaccine accompanied by increases in risky
behavior can lead to higher disease prevalence [2,4,9,15], the rational choice model
presented here, by focusing explicitly on individuals’ incentives to engage in risky
behavior or to be vaccinated, provides more specific predictions of the conditions
under which behavioral disinhibition caused by the availability of a vaccine can
increase prevalence [condition (27)]. In particular, the analysis here indicates that
the introduction of a vaccine is likely to increase prevalence if there is a large
proportion of people with low vaccination cost and moderate cost of adopting the
self-protective action, since they are the people who are most likely to be vaccinated
and to increase their risk behavior when a vaccine is available. Therefore, the model
here identifies the segment of the population that can be targeted by policy-makers
when designing vaccination policies and prevention programs so as to minimize
the likelihood that the availability of a vaccine will lead to a perverse outcome in
which prevalence is higher.

A key topic for future research is to determine how robust these results and
policy implications are with respect to the model assumptions. In particular, future
work can consider alternative specifications of self-protective behavior and patterns
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of mixing. There are a number of means by which individuals can reduce the risk
of infection, including altering the pattern or rate of partner acquisition. Encom-
passing these choices into the model allows for a richer analysis of the trade-offs
between different forms of self-protective behavior and how these are affected by
the availability of a prophylactic vaccine.

Appendix

Example 4. With the specified parameter values and distribution of agent-types, the
functions g and B, respectively, are given by

g (P) =




6
6P+1 if P ∈

[
0, 8−√

46
18

)
∪

[
8+√

46
18 , 1

]

6
(
54P3+153P2−84P+7

)
(6P+1)2(3P+1)2 if P ∈

[
8−√

46
18 , 61−√

2369
156

)
∪

[
61+√

2369
156 , 8+√

46
18

)

3
3P+1 if P ∈

[
61−√

2369
156 , 61+√

2369
156

)

and B (P) = 300P/ (6P + 1) (3P + 1). The equation g (P) = 1 has three solu-
tions in [0, 1]: 0.667, 0.769, and 0.833. In the medium vaccine coverage equilib-
rium, the proportion of unvaccinated susceptible agents who choose to be vaccinated
in each period is given by

∫ B(0.769)

12

∫ 10
9 dcsdcv = 0.423.

Example 7. With the specified parameter values and distribution of agent-types,
Eq. (23) is

1 =
{

6(1−2P)

(6P+1)2 if P ∈ [
0, 1

2

)

0 if P ∈ [ 1
2 , 1

]
,

which yields the solution P = 1/6. The proportion of susceptible agents who

choose to self-protect in each period is
∫ 1

0

∫ γn

(
1
6

)

0
1
3 dcsdcv = 2/3, where γn (P) =

24P/(6P + 1). The function g is given by

g (P) =




6
(−8748P5−2916P4+4617P3+882P2+20P+8

)
(6P+1)3(9P+2)3 if P ∈

[
0, 33−√

1041
36

)

3(118−189P)

20(9P+2)2 if P ∈
[

33−√
1041

36 , 58
99

)

135(2−3P)2

(9P+2)3 if P ∈
[

58
99 , 2

3

)

0 if P ∈
[

2
3 , 1

]
.

(41)

The equation g (P) = 1 has one solution in [0, 1]: 0.175.
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Example 9. With the specified parameter values, the function g given the density
function f1 is

g1 (P) =




6(1−2P)

(6P+1)2 if P ∈
[
0, 73−√

5281
36

)

3
(−1382184P5−644436P4+654210P3+133521P2+4428P+1444

)
80(6P+1)3(9P+2)3

if P ∈
[

73−√
5281

36 , 59−√
3049

108

)

3(58−99P)

10(9P+2)2 if P ∈
[

59−√
3049

108 , 38
69

)

3(118−189P)2

80(9P+2)3 if P ∈
[

38
69 , 118

189

)

0 if P ∈
[

118
189 , 1

]
.

The equation g1 (P) = 1 has a unique solution in [0, 1]: 0.169. With the density
function f3, the function g is given by Eq. (41), and the unique endemic prevalence
in this case is 0.175.
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