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Abstract. Gregarious behavior of potential prey was explained by Hamilton (1971) on the
basis of risk-sharing: The probability of being picked up by a predator is small when one
makes part of a large aggregate of prey. This argument holds only if the predator chooses
its victims at random. It is not the case for herds of evasive prey in the open, where prey’s
gregarious behavior, favorable for the fast group members, makes it easier for the predator
to home in on the slowest ones. We show conditions under which gregarious behavior of
the relatively fast prey individuals leaves slowest prey with no other choice but to join the
group. Failing to do so would signal their vulnerability, making them a preferred target for
the predator. Analysis of an n + 1 player game of a predator and n unequal prey individuals
clarifies conditions for fully gregarious, partially gregarious, or solitary behavior of the prey.

1. Introduction

Animals’ gregarious behavior may result from various reasons as self defence,
mating behavior, or concentration of food. As has already been noticed by Lorenz
(1966), none of these causes seem applicable to evasive herds of ungulates in open
plains, to shoals of fish in the open sea, or to flocks of birds. Later explanations
as of vigilance (Bertram 1978, Motro and Cohen 1989, Elgar 1989, Lima 1994,
Bednekoff and Lima 1998) or of other sorts of information sharing (Ward and
Zahavi 1973, Clark and Mangel 1984, Turner and Pitcher 1986, Templeton and
Giraldeau 1995, Valone and Templeton 2002) may not be applicable to the com-
monly observed tendency of potential prey to aggregate in face of danger, and to
escape as a group. As has already been noticed by Hamilton (1971 and references
there), there is a body of evidence indicating that prey’s gregarious behavior often
facilitates predation (for more recent references see Hebblewhite and Pletscher
2002, Whitfield 2003).
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An already widely accepted explanation, suggested by Hamilton to this
phenomenon, was based on risk-sharing (see also Williams 1964): Even if a large
aggregate of prey facilitates the predation of one or few individuals out of it, the
chance of any of its member to be the chosen victim may still be small. More-
over, once such an aggregate is established, it becomes advantageous to any of
its members to push its way to the center, thereby decreasing its own predation
probability (Hamilton 1971, and later empirical evidences in Foster and Treherne
1981, Bumann et al 1997, James et al. 2004).

Hamilton’s model has shifted the focus of the problem from the two-player
game, played by a predator and a group of prey, to that of the n-player game,
played among individuals within the prey population. A tacite assumption of the
risk-sharing argument, however, concerns the role of the predator as a passive
nature-force, picking its prey at random, rather than an active, decision-making
player, attempting to choose the most vulnerable prey in group. This is a plausible
assumption for a gatherer type of a predator, and it was convincingly established
for various predators of fish (Bumann et al. 1997, Nonacs et al. 1998, James et al.
2004), tadpoles (Spieler 2003), crabs (Viscido and Wethey 2002), beetles (Romey
1995) or limpets (Coleman et al. 2004). It appears to be less applicable for predators
of evasive prey as flocking birds (Nishimura 2002; Cresswell and Quinn 2004 or
ungulates in the open (Fanshawe and Fitzgibbon 1993; Hebblewhite and Pletscher
2002). In these cases, it has been well established that the choice of a vulnerable
prey is a most crucial stage of the hunt. But when this is the case, the risk-sharing
effect becomes irrelevant to the most vulnerable, slowest individuals in the evasive
herd. On the contrary, being part of a large group, makes this prey more easy to
home in on. The question, in this case, is what prevents the dissolving of the herd
due to successive desertions by those of its members that find themselves, each at
a time, in its rear.

As has been suggested elsewhere (Eshel 1978), a key factor in the establish-
ment of gregarious behavior of evasive prey lies, quite paradoxically at first sight,
in the extra information this behavior reveals to the predator about the identity of
the slowest prey in herd. While this is obviously disadvantageous to the slowest
prey, it is advantageous to faster members of the herd, as it decreases the probability
that the predator will mistakenly home in on them. But then, not joining the herd
may as well mark the vulnerability of the slower prey, rendering it preferable target
for the predator. To analyze this situation, a model of an asymmetric n + 1-player
game, n unequal prey individuals and a decision-making predator, the Savannah
Model, was suggested (Eshel 1978). Contrary to Hamilton’s model, the Savannah
Model assumes that the predator has full information both about the location of the
prey, and about the identity of the slowest prey in any group it pursues. Under these
extreme conditions, fully gregarious behavior of the prey resulted as the only out-
come of the game. Note that, although deviating from the specific assumptions of
Hamilton’s risk-sharing model, the Savannah Model still follows Hamilton’s most
fundamental idea of a selfish prey, seeking to increase its own survival probability.

In the present work we further develop this idea under a rather general assump-
tion about the predator’s set of information. In section 2 we introduce a prey-preda-
tor game, of which Hamilton’s Selfish Herd and Eshel’s Savannah Model are special
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cases. While in environments close to these two, prey’s totally gregarious behavior
is shown to always be the outcome of the game, we also find conditions for partially
gregarious and solitary behavior of the prey. In section 3 we implicitly characterize
the equilibria and stable equilibria of the game. In section 4 we concentrate on an
important set of equilibria, regular ones, in which a herd is formed either by all prey
individuals, or by a subgroup of the fastest ones, and the predator always prefers to
pursue a solitary prey, if it detects one. For a range of environments, close to that of
the Savannah Model (the savannah environment, subsection 4.1), it is shown that a
regular equilibrium always exists, and it is generally stable. Under further assump-
tions, all equilibria are shown to be regular. Non regular equilibria (in addition to
regular ones) are shown to exist in environments close to that of Hamilton’s Model.

2. The herd formation model

A prey population � consists of n unrelated individuals within the territory of a
single predator. The individuals within the prey population are distinguished by
their probability of being caught by a predator, when it pursues them, p1 < p2 <

..... < pn. Individual 1, the fastest prey, has the lowest probability of being caught.
Each of the individuals chooses whether to join the (single) herd or to hide as a
solitary individual. Let H ⊆ � be the set of individuals that form the herd, and
let S = � − H be the set of solitary individuals. Note that either H or S may be
empty if all individuals (or none) join the herd. Let h be the number of individuals
in the herd, and let s be the number of solitary individuals, with h + s = n.

The (single) predator surveys the terrain and tries to locate a prey. The predator
aims to catch a single prey. Once it catches one prey, the chase ends.

A herd of size h escapes the predator’s attention with probability qh. We assume
that it is more difficult for a larger herd to pass undetected by the predator, i.e.
qh+1 < qh (This assumption may not be valid for cases in which sharing of informa-
tion helps large herds to avoid predators, e.g. Turner and Pitcher 1986. The present
model, however, suggests an alternative explanation to prey’s gregarious behav-
ior). A solitary individual will escape the attention of the predator with probability
q1 = q < 1, hiding solitarily does not guarantee safety. Detecting prey, whether
solitary individuals or a herd, are assumed to be independent events.

If the predator detects only the herd (but fails to detect any solitary prey), it will
pursue the herd. If it fails to observe the herd but detects some solitary prey, it will
pursue one of the solitaries it detected. The predator’s strategy specifies what it will
do if it detected both the herd and some solitary individuals. The predator may use
a pure strategy or a mixed one: It will pursue the herd with probability 1 − x, and
one of the solitary individuals with probability x.

The main difference between the herd and the group of solitary prey is the
information the predator receives about the prey it pursues. When pursuing one
of the solitary individuals, it receives no signal about their speed, and it therefore
homes in on one of those it detected with equal probabilities. In contrast, when the
predator pursues the herd, it is more likely to home in on a slow individual.

Let θi,H be the probability that, pursuing the herd H, the predator will home in
on individual i. We assume that θi,H satisfies the following three assumptions:
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1. When pursuing a herd, the predator will eventually home in on one of its mem-
bers:

∑

η∈H

θη,H = 1.

2. The predator homes in on a faster prey individual with lower probability than
on a slower one: If i, j ∈ H, i < j, then θi,H ≤ θj,H .

3. If a faster individual joins the herd, its probability of being pursued by the pred-
ator is lower than that of a slower individual that joins the herd: If i, j /∈ H,

i < j then θi,H∪{i} ≤ θj,H∪{j}.

The following is an example of a function θi,H that satisfies the above 3 assump-
tions:

Example:

θi,H = p
ρ
i∑

η∈H

p
ρ
η

,

where ρ ≥ 0. The parameter ρ measures the precision of the information the
predator receives when pursuing the herd. For ρ = 0, the predator receives no
information and will home in on any of the individuals with equal probabilities.
For the limit case ρ = ∞, the predator makes no mistake and homes in on the
slowest individual in the herd. These two extreme cases correspond to Hamilton’s
(1971) selfish herd model (ρ = 0), and Eshel’s (1978) savannah model (ρ = ∞) .

The assumptions given above define a Herd Formation Game, in which each
prey individual chooses whether to join the herd, and the predator chooses whom
to pursue when it observes both the herd and some solitaries. The payoff of each
prey individual is its probability of not being caught, and the predator’s payoff is
its probability of catching a prey.

An equilibrium of this game consists of a strategy of the predator plus a partition
of the prey population into a herd and solitary individuals, such that no individual
can gain by deviating from its strategy. The strategies of the players in this game
can be described by the pair 〈H, x〉 , where 0 ≤ x ≤ 1 is the predator’s strategy (the
probability with which it will pursue a solitary individual in the case that it detected
both the herd and some solitaries), and H ⊆ � is the herd (formed by those prey
individuals that choose to join the herd). S = � − H is the corresponding set of
solitary individuals.

Being interested in the formation and stability of herds, we restrict our analysis
to equilibria with pure prey’s strategies. This will sometime require the consider-
ation of the predator’s mixed strategies.

Definition.

(i) The pair 〈H, x〉 is an equilibrium if each prey individual plays a best response
to the strategies of all the others (prey and predator), and the predator’s strat-
egy x is a best response to the partition of the prey population.

(ii) The pair 〈H, x〉 is a stable equilibrium if the strategy of each prey individual
is the unique best response to the strategies of all others, and the predator’s
strategy x is the unique best response to the partition of the prey population.
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3. Best responses and equilibria

In this section we analyze the best response of the predator to each partition formed
by the prey population, and the best response of each prey individual to both the
predator’s strategy and the partition formed by all other prey. Consequently we
characterize the equilibria and stable equilibria of the game.

3.1. The predator’s best response

Given the prey’s choices, a herd H of size h has been formed (s = n − h is the
size of the group of solitaries). The predator’s strategy 0 ≤ x ≤ 1 determines the
predator’s action when detecting both the herd and some solitary prey. In this case,
the predator pursues a random solitary in probability x, and pursues the herd in
probability 1 − x. In all other cases, the predator pursue the only group of prey it
detected, independently of its strategy. This means that when all prey individuals
took the same decision, either to form a single herd, or to remain solitary, the pred-
ator is indifferent between its strategies, each of them leads to the same action and
is, therefore, a best response to the prey’s choice.

Assume that neither the herd H , nor the group S of solitaries is empty. The
predator’s best response to the prey’s choice, in this case, is the strategy that will
provide it with the highest probability of success when detecting both the herd and
some solitaries. Pursuing the herd, the predator has a probability θη,H to home in on
its member η ∈ H, with a conditional probability pη of success. Its total probability
of success is then

∑

η∈H

θη,H pη. On the other hand, pursuing a solitary, the predator

has equal probabilities both to detect and to pursue, if it detected, each of the s

solitaries, hence it has a probability 1/s to home in on any solitary. Homed in on
the specific solitary σ ∈ S, it has a conditional probability pσ of success. Its total
probability of success, if pursuing a solitary, is therefore 1

s

∑

σ∈S

pσ .

Proposition 1. Assume that neither the herd H , nor the group S of solitaries is
empty, then:

(i) If

∑

η∈H

θη,H pη >
1

s

∑

σ∈S

pσ , (1)

then the predator’s unique best response is to pursue the herd, whenever de-
tected (x = 0).

(ii) If the reverse of (1) holds as a strict inequality, then the predator’s unique best
response is to pursue a solitary prey, whenever it detect one (x = 1).

(iii) A (non unique) best response of the predator can be a mixed strategy only if
inequality (1) is replaced by an equality. This is possible only for a zero-mea-
sure set of parameters.
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3.2. The prey’s best response

We now calculate one prey individual’s best response to the predator’s strategy
0 ≤ x ≤ 1 and to all other prey individuals’ choices, i.e. to their partition into herd
and solitaries. We first find a condition for a prey individual i that is currently in the
herd, to be better off remaining there. For this we have to compare its probability
to be caught if staying in herd, with its probability to be caught if leaving it.

Staying in herd, the probability that it will be caught is θi,H pi times the prob-
ability that the predator will pursue the herd. The predator will pursue the herd for
sure if it detects the herd and no solitary prey. This occurs in probability (1 − qh) qs .
It will pursue the herd in probability 1 − x if it detects both the herd and some sol-
itaries. This occurs in probability (1 − qh) (1 − qs). Summing up, the probability
of i to be caught, if remaining in herd, is:

[
(1 − qh) qs + (1 − x) (1 − qh)

(
1 − qs

)]
θi,H pi.

To calculate its probability to be caught if leaving the herd, we distinguish
between the cases where h ≥ 3, and the one in which h = 2. In the first case, if
prey i deserts the herd and joins the solitaries, the herd shrinks to H ′ = H − {i} ,

and the set of solitaries expands to S′ = S ∪ {i}. In this case, the probability that
individual i will be caught is pi/ (s + 1) times the probability that the predator will
pursue a solitary (as there are now s+1 of them). The predator will pursue a solitary
for sure if it only detects the solitaries. This occurs in probability qh−1

(
1 − qs+1

)
.

It will pursue a solitary in probability x if it detects both the herd and some solitar-
ies. This occurs in probability (1 − qh−1)

(
1 − qs+1

)
. Thus the probability of prey

i to be caught if leaving the herd is:

[
qh−1

(
1 − qs+1

)
+ x (1 − qh−1)

(
1 − qs+1

)] 1

s + 1
pi.

Individual i is therefore better off in the herd than hiding as a solitary iff:
[
(1 − qh) qs + (1 − x) (1 − qh)

(
1 − qs

)]
θi,H pi

<
[
qh−1

(
1 − qs+1

)
+ x (1 − qh−1)

(
1 − qs+1

)] 1

s + 1
pi.

By a simple manipulation, denoting the right hand side of the following inequal-
ity by τh (x) , individual i is better off staying in the herd iff:

θi,H <

(
1 − qs+1

) [
(1 − x) qh−1 + x

]

(s + 1) (1 − qh) [xqs + 1 − x]
= τh (x) h ≥ 3 (2)

In the case that the herd has only 2 members (h = 2), if prey i abandons it, the
herd dissolves and all individuals become solitaries. The condition for being better
off when remaining in the herd in this case is:

θi,{i,j} <
(1 − qn)

n (1 − q2)
[
xqn−2 + 1 − x

] = τ2 (x) . (3)
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The right hand sides of the last two conditions, τh (x) , are independent of i,

they depend only on the size of the herd (h) and on the predator’s strategy (x) .

Note that if condition (3) holds for some i, j, then the situation in which all indi-
viduals hide solitarily is not an equilibrium. The slowest of the two individuals i, j ,
assume it is i, will join j to form a herd, and since prey j is faster, θj,{i,j} < θi,{i,j},
and prey j will be better off staying in this herd of size two rather than dissolve it.

In an analogous way, prey i, that is currently solitary, will be better off staying
as a solitary iff:

θi,H∪{i} >
(1 − qs) [(1 − x) qh + x]

s (1 − qh+1)
[
xqs−1 + 1 − x

] = τh+1(x). (4)

Note that all the above inequalities will be strict inequalities for almost all sets
of parameters, equalities hold for a set of parameters of measure zero.

It follows (as is shown in Proposition 2) that if the slowest individual in H is
better off staying in the herd, then all other individuals in the herd will also be better
off in the herd than hiding as solitarily.

Proposition 2. For any predator strategy 0 ≤ x ≤ 1 :
(i) If an individual in the herd is better off in the herd than being solitary, then

all faster individuals in the herd are also better off being in the herd.
(ii) If a solitary individual is better off as solitary than in the herd, then all

slower solitary individuals are better off being solitary than joining the herd.

Proof. (i) Let individual i ∈ H be better off staying in the herd than hiding sol-
itarily, and let η ∈ H be a faster prey than i. In this case θη,H ≤ θi,H , and by
inequality (2), θi,H < τh (x) , hence θη,H < τh (x) . But this is the condition
for individual η to be better off staying in the herd.

(ii) Let individual i be a solitary individual. If its best response is to stay sol-
itary, then by inequality (4): θi,H∪{i} > τh+1 (x) . Let η be a solitary prey
slower than i. By our assumptions on the homing in probabilities: θi,H∪{i} ≤
θη,H∪{η} (when a slower individual joins a herd its probability of being pur-
sued is higher than that of a faster individual that joins the herd). It follows
that θη,H∪{η} > τh+1 (x) , which implies that individual η′s best response is
to remain solitary.


�
Conclusion: Given a partition of the prey population into a herd and a group of

solitaries, it suffices to test whether the slowest individual in the herd and the fastest
solitary individual play their best response. If these two individuals play their best
response, then all other individuals necessarily play their best response.

3.3. Equilibria and stable equilibria

From Proposition 2 and inequalities (1) - (4) we get:

Proposition 3. The pair 〈H, x〉 is an equilibrium iff the three following conditions
are satisfied:
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i) θi,H ≤ τh(x), where i is the slowest member of H , τh(x) being defined in (2)
and (3).

ii) θj,H∪{j} ≥ τh+1(x), where j is the fastest solitary prey, if there is a solitary
prey.

iii) x is a predator’s best response to the formation of the herd H .
〈H, x〉 is a stable equilibrium iff inequalities (i) - (ii) are strict, and x is the
unique predator’s best response to the formation of the herd H .

4. Regular herds

Proposition (2) introduces some regularity into the equilibrium partitions of the
prey population. It suggests that herds, in which the slowest member is faster than
all solitary individuals, are reasonable candidates for equilibrium. We show con-
ditions under which such equilibria exist, and conditions under which only such
equilibria exist.

Definition. A (non empty) herd H is a regular herd if its slowest member is faster
than any solitary prey. We denote by Rh the regular herd of size h, (h = 2, 3, ...n),

consisting of the fastest h prey individuals.
Note that the grand herd Rn = � , corresponding to the fully gregarious behav-

ior of the prey, is regular.

Proposition 4. The strategy x = 1 (pursuing a solitary prey whenever it is detected)
is always a predator’s best response to a regular herd. It is the unique predator’s
best response to any regular herd Rh, where h ≤ n − 1.

Proof. We already know that, once the grand herd was formed, the predator is
indifferent between all its strategies, all of them amount to pursuing the herd, if it
was detected. In this case any predator’s strategy, x = 1 included, is a predator’s
best response to �.

Assume a regular herd Rh with 2 ≤ h ≤ n − 1, then any solitary individual
σ ∈ � − Rh is slower than any member η ∈ Rh of the herd, hence pη < pσ .
It follows that any weighted average of the values pη over all η ∈ Rh is smaller
than any average (weighted or not) of the values pσ over all σ ∈ � − Rh, and as a
special case

∑

η∈Rh

θη,Rh
pη <

1

s

∑

σ∈�−Rh

pσ .

From part (ii) of Proposition 1 it follows that the predator’s unique best response
to Rh is to pursue a solitary prey, whenever it is detected. 
�

From the propositions 4 and Proposition 3 it follows that the pair 〈Rh, 1〉 is an
equilibrium iff θh,Rh

≤ τh(x) and, when h < n, if θh+1,Rh+1 ≥ τh+1(x).
We now show that either a large size of the prey population or a low probability

of escaping the attention of the predator are sufficient to ensure the existence of an
equilibrium with a regular herd.
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Proposition 5. If the prey population is sufficiently large, and the prey’s probability
q to hide is sufficiently small, so as to satisfy

nqn−2 < 1 − qn, (5)

then there exists an equilibrium 〈Rh, 1〉, with a regular herd Rh, regardless of the
homing in probabilities

{
θi,H

}
.

Proof. We already know that the strategy x = 1 is a predator’s best response to
any regular herd Rh. From and the definition of τ2 (1) (see (3)) it follows that, if
(5) holds, then τ2 (1) = (1 − qn) /nqn−2 (1 − q2) > (1 − qn) /nqn−2 > 1, hence
θ2,R2 ≤ 1 < τ2 (1). In this case it follows from ( 3) that, given the predator’s strat-
egy x = 1, the slowest member of the regular herd R2 would be better off staying in
it. If, in addition, θ3,R3 ≥ τ3 (1), then it follows from inequality (2) that individual
3 is better off staying solitary. From Proposition 3 it follows that 〈R2, 1〉 is then
an equilibrium. If, on the contrary, θ3,R3 < τ3 (1), then the slowest member of the
regular herd R3 would be better off staying in it. Repeating this argument, either
there is a regular herd Rh, with 2 ≤ h ≤ n−1, for which 〈Rh, 1〉 is an equilibrium,
or else, θn,Rn < τn (1), which, implies that 〈�, 1〉 is an equilibrium. 
�

Note that the condition (5), guaranteeing the existence of a regular herd, is
satisfied under quite moderate requirement on n and on q. Thus, any probability
q ≤ 0.2 to hide as solitary is sufficient to guarantee the existence of an equilibrium
with a regular herd for any prey population of a size larger than two. Even when the
probability of hiding solitary increases to a level as high as q = 0.8, the condition
(5 ) guarantees the existence of such an equilibrium for any prey population larger
than 16.

We now concentrate on two important environments in which the condition of
Proposition 5 is likely to be satisfied, and for which we shall be able to be more
specific about the type of herd that will be formed in equilibrium.

1. The first is the Savannah Environment, in which the predator can detect any
prey with high probability. For this environment we show that if the predator is
not as efficient in homing in on the slowest member of a pursued herd as it is
in detecting prey, then, for values of x sufficiently close to one, the pair 〈�, x〉
is an equilibrium, and no other regular equilibria can possibly exist. If, on the
contrary, the predator is more efficient in identifying the slowest member of any
herd than in detecting a solitary prey, we shall see that no equilibrium 〈H, x〉
can exist, in which H is a not regular herd, nor can there be equilibria of the
form 〈�, x〉. Yet if, in this case, the population is not too small, then there exist
an equilibrium 〈Rh, 1〉, with a regular herd smaller than �.

2. The second environment is Hamilton’s regime of the Selfish Herd. Here, the
predator has low probabilities of detecting any prey, whether solitary or in group,
and when detecting a group of prey, the predator receives little information about
its various members; it then homes in on any one of them with almost equal
probabilities. Under these assumptions, our model yields the original Hamil-
ton’s condition for the formation and stability of the grand herd. We further find
conditions under which stable equilibria 〈H, x〉 exist, where H is a partial herd.
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In this case we show that stable equilibria exist, both with regular and irregular
herds.

4.1. The Savannah environment

Under the title of the Savannah Environment, we study the Herd Formation Game
when the probability q of hiding as solitary (and hence the probability qh < q that
a herd of size h > 1 will escape the attention of the predator) is small.

Proposition 6. i) If the predator’s probability θn,� to home in on the slowest
member of the grand herd � is smaller than its probability 1 − q to detect a
solitary prey, then for a sufficiently small value of q , and for x sufficiently close
to one, 〈�, x〉 is an equilibrium.

ii) If for any herd H , the predator’s probability θi,H of homing in on its slowest
member is smaller than 1 − q, then, for a sufficiently small q, all the regular
equilibria are of the form 〈�, x〉.

iii) If, on the other hand, θn,� > 1 − q , then there is no equilibrium of the form
〈�, x〉; but if, in addition, q is still sufficiently small and the prey population is
sufficiently large, then there exists an equilibrium 〈Rh, 1〉, with a regular herd
Rh such that h < n.

iv) If for any herd H , the predator’s probability θi,H of homing in on its slowest
member is larger than 1 − q, and q is sufficiently small, then all equilibria of
the model have a regular herd. Recall that in this case, if the size of the prey
population is sufficiently large, we know that such an equilibrium exists.

Proof. i) If θn,� < 1 − q, then indeed θn,� < (1 − q) / (1 − qn) = τn(1),
and from continuity argument it follows that for x sufficiently close to one,
θn,� < τn(x). Since any predator’s strategy is best response to �, it follows
from Proposition 3 that 〈�, x〉 is an equilibrium.

ii) Assume now that for any herd H and its slowest member i, θi,H < 1 − q, and
let 〈Rh, 1〉 be an equilibrium with h < n. Since the individual h + 1 is the
slowest in Rh+1, we know that θh+1,Rh+1 < 1 − q. But for all q, qh < 1 and
for all s :

(s + 1) (1 − qh) qs < (s + 1) qs <

s∑

i=0

qi = 1 − qs+1

1 − q
,

hence for s = n − h

θh+1,Rh+1 < 1 − q <
1 − qs

s (1 − qh+1) qs−1 = τh+1 (1) , (6)

and it follows from (2) that, given the predator strategy x = 1, 〈Rh, 1〉 cannot
be an equilibrium: The solitary h+1 will then be better off joining the herd. But
since, as a special case, θn,� < 1 − q, we already know that for x sufficiently
close to one, 〈�, x〉 is an equilibrium
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iii) If θn,� > 1 − q, then

qn < q < 1 − (1 − q) /θn,�.

This implies that

τn (1) = 1 − q

1 − qn

< θn,�,

and 〈�, 1〉 is not an equilibrium.
Since τn (x) is an increasing function of x, it follows that 〈�, x〉 cannot be
an equilibrium for any 0 ≤ x ≤ 1. But Proposition 5 implies that if the prey
population is sufficiently large, then there exists an equilibrium 〈Rh, 1〉 with
a regular herd. Since 〈�, 1〉 is not an equilibrium, we know that h < n.

iv) Assume now that for any herd H , if i is its slowest member, then θi,H > 1−q.
If 〈H, x〉 is an equilibrium, and i is the slowest member in H , then i should then
be better off staying in herd, hence from (2) and the assumption θi,H > 1 − q

we get:

1 − q < θi,H ≤ τh(x) =
(
1 − qs+1

) [
(1 − x) qh−1 + x

]

(s + 1) (1 − qh) [xqs + 1 − x]
. (7)

But for q sufficiently small (it is enough, in this case, to require q ≤ 1/2),
inequality (7) can only be satisfied if the predator’s strategy x is bounded away
from 0, since when x = 0, the right-hand side of (7) is

τh(0) = qh−1
(
1 − qs+1

)

(s + 1) (1 − qh)
<

1

s + 1
<

1

2
≤ 1 − q,

which contradicts inequality (7) .

We now show that H cannot be an irregular herd. Suppose it is, then there exists
a solitary individual j which is faster than individual i. The condition for individual
j to remain solitary is (inequality (4)):

θj,H∪{j} ≥ τh+1(x).

But j , if it joins the herd H , would not be the slowest member in the newly
created herd H ∪ {j}. Individual i would then still be the slowest in the herd. As
the slowest individual, it will be chosen by the predator with probability of at least
1 − q, hence individual j will be homed in on with probability of at most q. This,
together with the previous inequality, implies:

q ≥ θj,H∪{j} ≥ τh+1(x) = (1 − qs) [(1 − x) qh + x]

s (1 − qh+1)
[
xqs−1 + 1 − x

] . (8)

From inequalities (7) and (8) we obtain:

q >(1 − q)
(1 − qh)

(1 − qh+1)

(1 − qs)
(
1 − qs+1

)
[(1 − x) qh + x]

[
(1 − x) qh−1 + x

]
(s + 1)

s

[
xqs + 1 − x

]

[
xqs−1 + 1 − x

]

(9)
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For a sufficiently small q, the first three terms of the right-hand-side of (9) can
be made arbitrarily close to 1. Since, as we observed, x is bounded away from 0,

the fourth term can also be made close to 1, by making q, and therefore qh, qh−1
sufficiently close to 0. The next term (s + 1) /s is clearly greater than 1, while the
last term is greater than q. Thus, by choosing q sufficiently small, the right hand
side of (9) can be made greater than q, contrary to inequality (9) , hence H cannot
be a non regular herd.

Finally, from Proposition 5 we know that if the size of the prey population is
sufficiently large, then an equilibrium 〈Rh, 1〉, where Rh is a regular herd, exists. 
�

Indeed, if there is a sufficiently large number of solitaries around, then a pred-
ator with a strategy x = 1 of pursuing solitary prey, if detected, will very rarely
pursue the regular herd, and even the slowest member in this herd will be better off
staying in it. Proposition 5 guarantees, in this case, the existence of an equilibrium
〈Rh, 1〉 with a regular herd. Proposition 6 characterize conditions under which no
other sort of an equilibrium exists.

4.2. Hamilton’s regime of the selfish herd

We now analyze the second environment, Hamilton’s regime of the Selfish Herd. In
Hamilton’s original model the gatherer-predator’s main difficulty is in finding the
prey. Once it found one, it has no difficulty in catching it. It is also assumed that,
once the predator detected a group, it does not distinguish between the prey indi-
viduals in the group, and it homes in on one of them with equal probabilities. In the
terminology of our model, this means that q, qh are close to 1, and that θi,H = 1/h.

We generalize Hamilton’s model, and refer to it as Hamilton’s Regime by assuming
that the homing in probabilities θi,H are close to 1/h, with θi,H ≥ θj,H whenever
i is slower than j.

Hamilton’s original results can be re-stated as following:

Proposition 7. (Hamilton’s Theorem) Assume that the homing in probability θi,�

on any prey individual i ∈ � is sufficiently close to 1/n. If the probability 1 − qn

that the predator will detect the grand herd is less than n times the probability
1−q that it will detect a solitary prey, (1 − q) / (1 − qn) > 1/n, then, for a hiding
probability q sufficiently close to one, the grand herd � is stable for all of the
predator’s strategies. That is, for each of the predator’s strategies 0 ≤ x ≤ 1, the
unique best response of each prey individual is to remain in the herd �.

If, on the other hand, (1 − q) / (1 − qn) < 1/n, then there is no equilibrium in
which the grand herd � forms.

Proof. (i) From (2) and the requirement (1 − q) / (1 − qn) > 1/n it follows
that for q (and therefore for qn, qn−1 ≥ q) sufficiently close to one, τn (0) =
qn−1 (1 − q) / (1 − qn) > 1/n, hence for θn,� sufficiently close to 1/n,
τn (0) > θn,�. Recall that τn (x) is an increasing function of x, hence for
any predator’s strategy x, θn,� < τn (x). From (2) it thus follows that for any
predator’s strategy x, any prey n is strictly better off staying in herd.
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(ii) Since the prey individual n, being the slowest in a herd of n members, has
a probability larger than average to be chosen by the predator, we know that
θn,� ≥ 1/n. Together with the inequality (1 − q) / (1 − qn) < 1/n, this
implies θn,� > (1 − q) / (1 − qn) = τn (1) ≥ τn (x) for all 0 ≤ x ≤ 1,
hence no equilibrium 〈�, x〉 can exist.


�

Inequality (1 − q) / (1 − qn) < 1/n, as we see, does not preclude the existence
of an equilibrium with a smaller herd than �.

Proposition 8. Assume that there exists an integer h, 2 ≤ h < n, for which

1 − qh

h
< 1 − q <

1 − qh+1

h + 1
, (10)

then for values of q (and hence qh and qh−1) sufficiently close to 1, any herd of
size h is a part of an equilibrium 〈H, x〉 .

Proof. Let H be any herd with h members, and let x be the predator’s best response
to the herd H. By (2) , individual i ∈ H is better off staying in the herd if:

θi,H < τh (x) =
(
1 − qs+1

)

(s + 1)

[
(1 − x) qh−1 + x

]

(xqs + 1 − x)

1

(1 − qh)
. (11)

By choosing q sufficiently close to 1, the first term of the right hand side of

(11) can be made to be close to 1 − q
(

since 1 − qs+1 = (1 − q)
∑s

k=0
qk

)
, and

the second term close to 1. The right hand side of (11) then becomes as close as we
wish to (1 − q) / (1 − qh) hence, choosing, in addition, θi,H sufficiently close to
1/h, the left hand part of condition (10), (1 − qh) /h < 1 − q, guarantees (11) ,

which implies that all individuals in the herd H are better off staying in the herd.
Similarly, the right hand part of requirement (10), 1−q < (1 − qh+1) / (h + 1),

ensures that θi,H∪{i} > τh+1(x), hence all prey individuals that are not in H are
better off staying solitaries. It follows that 〈H, x〉 is an equilibrium. 
�

The last Proposition implies the possible existence of irregular herds: If for
some 2 ≤ h < n, condition (10) holds, then all herds of size h are stable. There

are

(
n

h

)

such herds, but only one of them is regular. Note, moreover, that except

for a zero-measure set of parameters, all these equilibria are stable, with a predator
strategy either x = 1 or x = 0.

4.3. Stability and weak stability of the prey’s fully gregarious behavior

We have seen that, except for a zero-measure set of parameters, an equilibrium
〈H, x〉 with 2 ≤ h < n is stable, with either x = 1 or x = 0. This is not the case
for H = �. When the grand herd � forms, the predator never observes a solitary
prey, and therefore all of its strategies are best responses to �. The condition for
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〈�, x〉 to be an equilibrium is that the slowest prey individual n is better off in the
herd:

θn,� < τn (x) = 1 − q

1 − qn

[
(1 − x) qn−1 + x

]
. (12)

The right hand side of (12), τn (x) , is an increasing function of x, hence if this
condition is satisfied for some x, it must hold for all larger x, and in particular for
x = 1,

θn,� < τn (1) = 1 − q

1 − qn

. (13)

i.e. 〈�, 1〉 is an equilibrium. If inequality (12) holds for x = 0 as a strict inequality,
namely if

θn,� < τn (0) = 1 − q

1 − qn

qn−1, (14)

then 〈�, x〉 is an equilibrium for all 0 ≤ x ≤ 1.

In that case, moreover, the set {〈�, x〉 |0 ≤ x ≤ 1} is stable: The predator may
use any of its strategies, but it is always strictly beneficial for all prey individuals
to remain in the herd.

The stability condition (14) is satisfied in Hamilton’s environment, whenever
(1 − q) / (1 − qn) ≥ 1/n and q is close to 1. It is never satisfied in the Savannah
environment, where q is close to 0, even if condition (13) is satisfied and 〈�, 1〉 is
therefore an equilibrium. The fully gregarious behavior � cannot then be stable.

If the fully gregarious behavior is an equilibrium, but not a stable one, i.e. if:

τn (0) = 1 − q

1 − qn

qn−1 ≤ θn,� <
1 − q

1 − qn

= τn (1) ,

then there exists a unique solution x0, 0 ≤ x0 < 1, to the equation θn,� = τn (x) .

For all x > x0, θn,� < τn (x) , hence the grand herd � is stable as long as the
predator’s strategy is in (x0, 1]. But as long as all prey individuals are in the herd,
there is no reason why the predator’s strategy should remain within this interval.
Thus, there is no stable equilibrium 〈�, x〉, nor a set of equilibria which is stable.

However, a weaker concept of stability was suggested for a similar model by
Binmore and Samuelson (1999). This was based on the assumption that if a player
is indifferent between strategies, he may drift between them, but the change in
its strategy will then be slow, whereas when an individual does not play its best
response, there is more pressure in the direction of the best response, and the
adjustment in this direction will be much faster. Applying this assumption to the
case τn (0) ≤ θn,� < τn (1) in our model, the grand herd � remains stable as long
as the predator’s strategy drifts within the interval (x0, 1], but as it first crosses x0,
the best response of the slowest prey individual n will be to leave the herd. This will
happen faster than any additional change in the predator’s strategy, which might
enable also the prey individual n − 1 to leave the herd. But we already know that,
once the herd Rn−1 is formed, it is the predator’s best response to play x = 1, and
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then it becomes the best response of the slower prey to return to the herd, this way
we return to 〈�, 1〉 .

In such a case, following Binmore and Samuelson, we speak of weak stabil-
ity of the fully gregarious behavior of the prey, predicting that the herd � will be
observed most of the time, with occasional deviations of the slowest prey, while
the predator’s strategy will drift at the vicinity (x0, 1] of x = 1.

5. Discussion

5.1. The model - motivation and justification

The present work attempts to explain the commonly observed tendency of potential
prey to aggregate in face of danger, and to escape in group. Contrary to other situa-
tions of gregarious behavior of a potential prey, this phenomenon is hard to explain
on the basis of sharing information (e.g. Valone and Templeton 2002, and refer-
ences there) or group vigilance (e.g. Bednekoff and Lima 1998, and references
there), especially in face of recent findings (e.g.Hebblewhite and Pletscher (2002),
Whitfield 2003) that gregarious behavior often facilitates rather than hinder pre-
dation. Moreover, gregarious behavior of evasive prey is hard to be explained, as
we have seen, by Hamilton’s argument of risk-sharing (1971), since a crucial tacit
assumption in this argument is that members of the aggregate share more or less
the same risk of predation. This is not the case with evasive herds, in which slowest
members take big share of the risk of predation. A crucial question in this case is
what keeps such herds from being repeatedly abandoned by their slowest members.

As we suggest here, a key factor in the answer to this question lies in the func-
tion of group escaping as a test of speed, exposing the slow prey as a preferred
target for the predator. Not participating in such a test may, under certain condi-
tions, be even more revealing (see, for comparison, Zahavi 1977). This does not
mean that staying in herd is, under any circumstances, the best strategy for all prey
individuals. To characterize the exact conditions for the maintenance of various
forms of prey groups, we studied an n + 1 player game: A predator, seeking to
increase its probability of a successful hunt, and n prey individuals, different from
one another in speed, each seeking to decrease its own probability to be caught by
the predator. The term "predator", in this context, may well be represented by a
pack of predator’s, provided one prey, at the most, is hunted at a time.

5.2. Main results and interpretation

In section 3 we have presented characterization of equilibria and stable equilib-
ria of the game. Conditions for the formation of fully gregarious behavior of the
prey were demonstrated in 4.3. Given all other parameters, it was shown that the
predator’s inefficiency in detecting the slowest member in herd, and its efficiency
in detecting solitary prey, are crucial prerequisites for the formation of fully gre-
garious behavior. The first of the two is typical to Hamilton’s regime of the model
(section 4.2), the latter is typical to the savannah environment, in which shelter is
rare (section 4.1). Conditions for partially gregarious behavior of the prey were
also demonstrated throughout section 4. In the case of a predator’s high efficiency
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in detecting solitary prey, characterizing the savannah environment, it was further
shown that all partial herds, maintained at equilibrium, are regular in the sense
that they consist of the fastest prey individuals. The predator’s behavior, in such
equilibria, was characterized by its preference for solitary prey, whenever it detects
one.

The establishment of a regular herd, either total or partial (in comparison to sol-
itary behavior of the prey), was shown to always be in the advantage of the fastest
prey individuals, and in the disadvantage of the slowest ones. It decreases the prob-
ability that the predator will home in on a fast prey, and increases the probability
that it will home in on a slow one, either if solitary or in the herd. Consequently,
the formation of a regular herd is always in the advantage of the predator. As such,
it can be interpreted as a stable coalition between the predator and the fast prey
individuals.

Quite interesting is the fact that the formation of a regular herd is not neces-
sarily in the advantage of even all members of the herd. Certainly it is not in the
advantage of the slowest member of the grand herd, but similar examples can be
easily demonstrated also for partial herds. In such a case, the formation of a single
group by some fastest prey individuals may force the next fastest ones to participate
in a coalition that is harmful for them. Not doing so may then be even more harmful
for them. As we have shown, this process may either end up with the establishment
of a partial regular herd, or continue till the grand herd is formed, depending on
environmental parameters.

The present model generalize both Hamilton’s model of the selfish herd (1971),
and Eshel’s savannah model (1977).

5.3. Supporting evidence and comparison with alternative models

The prediction that predators in open plains prefer to attack solitary prey, and that
by doing so they reach their highest rate of success, is supported by a bulk of field
observations (e.g.Hebblewhite and Pletscher 2002; Whitfield 2003, and references
there), yet this finding is not indicative, as it stands as well in agreement with the
predictions of both the vigilance and the information-sharing models.

The predicted favorable effect of low availability of shelter on prey’s gregari-
ousness stands in agreement with the observations of Hebblewhite and Pletscher
(2002) that elks, mainly dwellers of open plains, tend to escape in group, while
mule deer, whitetail deer and moose, often bush dwellers, tend to spread off when
attacked. The same difference is well documented between the tendency of the
open plain dwellers, gnu and zebras, to escape in group, and the tendency of bush
dwelling antelopes to spread off.

The predicted negative effect of recognizable differences among individuals
within a group of prey on its coherence may be supported by the apparent size-
homogeny of shoals of fish or of groups of small birds, even when of different
species.

The prediction that gregarious behavior of evasive prey increases the total pre-
dation probability is already well supported by a bulk of field observations (Hebble-
white and Pletscher 2002, Whitfield 2003, but see also references in Lorenz 1966;
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Hamilton 1971). This finding is more difficult to explain on the basis of theories as
of vigilance or information-sharing, that attempt to explain gregarious behavior on
its effect to decrease the predation probability.

We are well aware of the fact that supporting evidence to our model is too mea-
gre to rule out alternative explanations, but it is by no means our intention to rule
them out.
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