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Abstract. The paper deals with information transmission in large systems of neurons. We
model the membrane potential in a single neuron belonging to a cell tissue by a non time-
homogeneous Cox-Ingersoll-Ross type diffusion; in terms of its time-varying expectation,
this stochastic process can convey deterministic signals.

We model the spike train emitted by this neuron as a Poisson point process compensated
by the occupation time of the membrane potential process beyond the excitation threshold.

In a large system of neurons 1 ≤ i ≤ N processing independently the same determin-
istic signal, we prove a functional central limit theorem for the pooled spike train collected
from the N neurons. This pooled spike train allows to recover the deterministic signal, up to
some shape transformation which is explicit.

1. Introduction

A neuron in a cell tissue receives synaptic input from a large number of other neu-
rons. The total number of synapses contacting a single neuron is ≈ O(104); most
of these are exciting synapses, contacting the dendrites of the receiving neuron, the
remaining smaller part (of the order of 10 %) are inhibitory synapses, concentrating
near the soma of the receiving neuron.

In a single synaptic connection, incoming spikes (action potentials generated
by other neurons) cause a release of transmitter molecules at the synaptic endpoint,
and create some small postsynaptic current.

A large number of synaptic connections being active at different locations and
at different times, according to a complex spatio-temporal pattern, a large num-
ber of small postsynaptic currents – decayed and delayed, with varying signs and
amplitudes – adds up in the soma of the receiving neuron, and decays at some rate.
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This corresponds to fluctuation in time of the membrane potential in the receiving
neuron. As a function of time, neurophysical recordings of the membrane potential
look very much like trajectories of stochastic processes of diffusion type.

When the membrane potential exceeds some excitation threshold, the neuron is
able to ‘fire’: in its axon, it generates spike trains (single spikes, sequences of spikes
with varying interspike intervals, spike bursts, ...) which transmit information to a
large number of other neurons.

In vivo, for a neuron in a cell tissue receiving information from a large number
of other neurons, there is a need for stochastic modelization of both membrane
potential and spike train generation. It has been observed e.g. in cortical neurons
that neuronal response is higly variable, ‘noisy’and irregular; in particular, identical
stimuli do not lead to identical responses on repeated trials (see e.g. [M 00], [S-
S-F 99], [S-N 98]). Shadlen and Newsome [S-N 98] have investigated in repeated
measurements spike trains in the visual cortex of an alert monkey in response to
some fixed visual stimulus (a certain moving picture): the same experiment being
repeated 200 times, there is evidence for a random structure in the observed 200
spike trains. This randomness is visible in particular (see [S-N 98, Fig 1]) in the
interspike intervals (ISI) over short time windows where histograms of observed
ISI’s fit surprisingly well to exponential distributions.

In a first part of this paper, we will view the membrane potential in the single
neuron belonging to a cell tissue as a continuous stochastic processes V = (Vt )t≥0,
solving some stochastic differential equation. Its structure has to be compatible
with two main features of a membrane potential, i.e. i) additivity with respect to the
input, and ii) exponential decay. These two requirements lead naturally to a Cox-
Ingersoll-Ross (CIR) type model for the membrane potential where incremental
variances are proportional to the present state of the process. Assumed non time-
homogeneous, the time-varying expectation of the CIR-type diffusion process plays
the role of a given ‘deterministic signal’, thus the stochastic process of membrane
potential can be understood as ‘random noise conveying a deterministic signal’.

We will view the spike train generated by the single neuron belonging to a cell
tissue as a random point measure. The exponential-like ISI histograms recorded
by [S-N 98, Fig 1] indicate that one should think first of Poisson random measure;
since the membrane potential is modelled by a stochastic process and since spikes
can be emitted when the membrane potential exceeds some excitation threshold,
we need a ‘doubly stochastic’ random measure. Hence we model the spike train
generated by the single neuron as Poisson random measure compensated by the
sojourn time of the membrane potential process above the excitation threshold (up
to multiplication with some parameter). This provides a powerful framework for
mathematical treatment of information transmission. In some aspects questionable
from a biological point of view (this model for spike generation does not take into
account the reduction of membrane potential after spike emission), it incorporates
however interesting features of observed spike trains such as the exponential-like
structure of observed ISI’s in short time windows (remark 3.4).

So far, we have considered a single neuron receiving synaptic input from a large
number of other neurons, and transmitting information to other neurons via a spike
train.
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In a second part of this paper, we consider a large number of stochastically inde-
pendent neurons i = 1, . . . , N processing the same deterministic signal, in form
of the time-varying expectation of their membrane potentials. Our main result is a
functional central limit theorem (theorem 3.5) for the collection of spike trains sent
out by the neurons i = 1, . . . , N . Comparable to the Glivenko-Cantelli theorem in
classical statistics, it shows that a weighted counting process for the pooled spike
train is close – up to terms of stochastic order OP (N−1/2) – to a certain determin-
istic function, the response, which represents a shape transformation of the signal.
Up to this transformation from signal to response which is explicit (remark 3.6),
the pooled spike train collected from neurons i = 1, . . . , N allows to recover the
deterministic signal asymptotically as N → ∞. Also subthreshold signals can be
transmitted in this way.

There are error terms of stochastic order OP (N−1/2) between the observed
quantity – the weighted counting process for the pooled spike train from N neu-
rons – and the response. We have a limiting Gaussian process for these. Two
independent sources of error appear in the limit: first a Brownian motion time-
changed by the response function, and second some Gaussian process whose
covariance kernel measures dependency in the CIR type process of membrane
potential.

The paper is organized as follows: in section 2, we present the CIR-type
model for the membrane potential in the single neuron (from [B-H 04]). In sec-
tion 3.1, we formulate a simple ‘doubly stochastic’ Poisson model for the spike
train emitted by one neuron. Section 3.2 contains the main result (theorem 3.5)
on signal transmission in large systems of neurons; this theorem is proved in sec-
tion 5. Finally, section 4 proposes some methods for model check and parameter
estimation.

2. A stochastic model for the membrane potential

We discuss a time-inhomogenous diffusion process of Cox-Ingersoll-Ross (CIR)
type modelling two important properties of membrane potentials: i) additivity
in the input, and ii) exponential decay. In subsection 2.1, we recall the clas-
sical CIR diffusion (no biologically relevant scaling, time-constant input only),
see [C-I-R 85], [I-W 89, p. 235], and e.g. [O-R 97], [O 98]. Biologically rele-
vant scaling and the effects of time-varying input will be the topic of subsection
2.2.

In neuronal models, CIR diffusions appear already in [L-L 87, (4.12) and Thm.
4], [G-L-N-R 88, (3.10), (3.27), Sect. 4], [L-S-T 95, (18)]; initially, the feature of re-
stricted state space seemed to be of main interest. With unbounded state space, Orn-
stein-Uhlenbeck (OU) models have been widely used for the membrane potential,
see [D-L 05], [L-S 01], [S-S-F 99], [L-S 99], [L-L 87] and the literature quoted there.
OU models map well the property ii) (exponential decay) of membrane potentials,
but are questionable with respect to property i) (additivity in the input): synaptic
input from a large number of stochastically active sources should imply that incre-
mental variances of the membrane potential are proportional to the present state.
CIR diffusions realize both requirements i) and ii).
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2.1. Preliminaries

Consider some time constant τ > 0, and parameters a > 0, σ 2 > 0 such that

2a

σ 2 > 1. (1)

For constants f ≥ 0 representing some time-constant level of ‘input’, we write
ξ = ξf for the real-valued stochastic process (ξ

f
t )t solution to the stochastic

differential equation (SDE)

dξ
f
t =

[
a + f − ξ

f
t

]
(τdt) + σ

[
ξ

f
t ∨ 0

] 1
2
(
τ

1
2 dWt

)
(2)

on some time interval [0, T ], with driving standard Brownian motion W . We pre-
scribe some deterministic starting point ξ

f
0 > 0, or some initial law concentrated

on (0, ∞). Up to the somewhat unusual parametrization, (2) is the well known
CIR (or mean reverting) diffusion. See [M 82] and [K-S 91] for background on
stochastic processes and SDE’s.

We recall known properties of this process. Under (1), trajectories of ξf are
continuous functions [0, T ] → (0, ∞) (cf. [I-W 89, p. 235–237]), and we sup-
press truncation by 0 in the diffusion coefficient of (2). Viewed on the time interval
[0, ∞), the process (ξ

f
t )t≥0 is ergodic; the invariant law is the Gamma distribution

�

(
2

σ 2 (a + f ),
2

σ 2

)
on (0, ∞) (3)

(see e.g. the first pages of [K 03]). Mean and variance of (3)

(a + f ),
σ 2

2
(a + f )

are linear in the input f . We think of the case f = 0 (no input) as remaining
randomness in a system at rest. For constant f ≥ 0, we will always consider the
CIR diffusion (ξ

f
t )t in (2) as a stationary process, taking as initial condition the

invariant law (3).
Note that the invariant law (3) is free of the time constant τ . Large values of

τ correspond to rapid oscillations in the trajectory of (ξ
f
t )t . As a rate of decay, τ

represents a backdriving force reorienting trajectories towards (a + f ). Note that
a time constant τ for the process ξ – solving a Wiener driven SDE – must affect
both dt and the angle brackett d〈Mξ 〉t of the martingale part Mξ of ξ . The inverse
of τ is the membrane time constant in the biological sense.

2.2. Time-inhomogeneous CIR diffusion as a model for the membrane potential

Commonly, the potential difference at the membrane KR in a neuron ‘at rest’ is
put to −70 mv, and the excitation threshold KE to −50 mv. In fact, there exists a
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broad variety of values according to different types of neurons and different exper-
imental conditions (e.g., levels of pharmaka administrated to a cell tissue under
observation). Hence we start from constants

KR < KE

for a resting level and an excitation threshold.

Consider first the case f ≡ 0 (no input) in SDE (2).A neuron belonging to a cell
tissue will always remain exposed to some network activity ‘at rest’. We introduce
a linear scaling

S(y) = s0 + s1y, s0 ∈ IR, s1 > 0 (4)

with coefficients such that the stationary process
(
S
(
ξ0
t

))
t

with f ≡ 0 is a reason-
able model for the membrane potential in a neuron ‘at rest’, i.e.

i) some left endpoint s0 for the support of L (S (ξ0
t

))
is specified;

ii) the constant KR is understood as expected value of L (S (ξ0
t

))
:

E
(
S
(
ξ0
t

))
= s0 + s1a

!= KR; (5)

iii) the variance is adapted to realistic fluctuations of a membrane potential ‘at
rest’:

V ar
(
S
(
ξ0
t

))
= s2

1
σ 2

2
a

!= some empirically assessed quantity. (6)

As an example, having observed a (stationary process of) membrane potential ‘at
rest’ over a long time interval, almost continuously in time (i.e. on some fine grid
of time points), we dispose of an occupation time measure whose support, mean
and variance correspond to i)–iii).

We turn to time-varying input f in SDE (2). Consider a function f : [0, T ] →
[0, ∞), right-continuous and piecewise Lipschitz. This allows e.g. for input of type
‘on/off’ like

f (t) := c if ton ≤ t < toff , f (t) := 0 else,

f (t) := c · sin

(
π

t − ton

toff − ton

)
if ton ≤ t ≤ toff , f (t) := 0 else.

The following has been proposed in [B-H 04] as a model for the membrane potential
in a neuron belonging to a cell tissue under time-varying input.

Definition 2.1. For f : [0, T ] → [0, ∞) right-continuous and piecewise Lipschitz,
the CIR model for the membrane potential under input f is the stochastic process

V f =
(
V

f
t

)
t∈[0,T ]

, V
f
t := S

(
ξ

f
t

)
(7)
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with S(·) of (4), where
(
ξ

f
t

)
t

is solution to the SDE with time-varying coefficients

dξ
f
t =

[
a + f (t) − ξ

f
t

]
(τdt) + σ

[
ξ

f
t

] 1
2
(
τ

1
2 dWt

)
on [0, T ] (8)

with initial law

L
(
ξ

f
0

)
= �

(
2

σ 2 (a + f (0)),
2

σ 2

)
.

The processes
(
V

f
t

)
0≤t≤T

are strongly Markov, time-inhomogeneous, and

(s0, ∞)-valued. Up to now, by (7) + (8), the membrane potential at rest V 0 is
parametrized by s0, s1a, s1

σ 2

2 , τ, and time-varying input f (·) appears in the SDE
for V f in the form s1f (·). There are no intrinsic norming constants for the input
functions, hence we may reparametrize and put

s1 := 1 (9)

in all equations of this subsection, and in the sequel: then S(·) in (4)–(6) is a shift,
V f solves

dV
f
t =

[
KR + f (t) − V

f
t

]
(τdt)

+σ
[
V

f
t − s0

] 1
2
(
τ

1
2 dWt

)
on [0, T ], (10)

and the law of the process
(
V

f
t

)
0≤t≤T

is uniquely determined from

s0, a,
σ 2

2
, τ and f (·). (11)

Remark 2.2. We speak of a fast diffusion V f if the time constant τ is large com-
pared to 1 + L, L some Lipschitz constant for f (·) on its continuity intervals. In
fast diffusions, we observe locally at continuity points of f a close-to-stationary
behaviour of the process V f , in the sense of good approximations

E
(
V

f
t

)
≈ S(a + f (t)) = KR + f (t), V ar

(
V

f
t

)
≈ σ 2

2
(a + f (t)),

P
(
V

f
t ∈ A

)
≈ �

(
2

σ 2 (a + f (t)),
2

σ 2

)
(A − s0), A ∈ B(IR),

at continuity points t of f (·). Simulated trajectories of V f will allow to judge the
accuracy of such approximations; an illustration is in [B-H 04, Fig. 2–3].

Definition 2.3. We call the function

I
f
1 : [0, T ] � t −→ E

(
V

f
t

)
∈ [KR, ∞)
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signal contained in the membrane potential
(
V

f
t

)
0≤t≤T

. A signal I
f
1 is called

subthreshold if

sup
0≤t≤T

E
(
V

f
t

)
< KE,

with KE the excitation threshold as in the beginning of this subsection.

A subthreshold signal corresponds to some input f not strong enough to lift
the expected value of the membrane potential beyond the excitation threshold. The
membrane potential itself – as a stochastic process V f according to (7)–(8) – will
always spend with positive probability some amount of time beyond the excitation
threshold. Even the system at rest – case f (·) ≡ 0 – will produce from time to time
(perhaps extremely rarely) some spikes. This is the reason why stochastic neu-
ron models – in contrast to deterministic models – are able to explain information
transmission in large systems of neurons, even for signals which are subthreshold.

3. Spike generation and information transmission: a Poisson model

The spike trains recorded by [S-N 98, Fig. 1] in the visual cortex – repeated mea-
surements of spike trains in response to the same stimulus, evaluated in small time
windows where a spike density per time unit seems locally homogeneous – yield
histograms of interspike intervals (ISI) which are close to an exponential distri-
bution. This motivates to study a simple Poisson model for spike generation. This
model is certainly questionable from a biological point of view (for example, it does
not take into account the reduction of membrane potential after spike emission, see
[G-L-N-R 88], [L-S-T 95], or e.g. [T 89, Ch. 5.3.2] [S-S-F 99, section 4], [D-L 05]
in OU-framework). However, it provides a framework for mathematical study of
information transmission in large systems of neurons.

3.1. The single neuron: a simple Poisson model for spike generation

We consider a single neuron belonging to a cell tissue, and take its membrane

potential as a CIR type diffusion
(
V

f
t

)
t∈[0,T ]

as in (7)–(11), for some fixed input

function f : [0, T ] → [0, ∞). A spike train generated by the neuron in the time
interval [0, T ] is a random sequence

0 < T1 < · · · < TM ≤ T

of time points in [0, T ], of random length M ∈ IN0, written equivalently as a
random measure

µ(dy) :=
M∑

j=1

ε(Tj )(dy) on ([0, T ], B([0, T ])) . (12)
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Definition 3.1. µ in (12) is called a Poisson spike train if

µ is Poisson random measure (PRM) with intensity λ·1{V f ≥KE}(s)ds on [0, T ]

with KE the excitation threshold, for some parameter λ > 0.

In a Poisson spike train, spikes are generated at the jump times of a Poisson
process whose compensator is (up to multiplication with the parameter λ > 0) the
occupation time of the membrane potential V f beyond the excitation threshold.

Definition 3.2. We call the function

I
f
2 : [0, T ] � t −→ P

(
V

f
t ≥ KE

)
∈ (0, 1)

response of a neuron with membrane potential V f .

Remark 3.3. In fast diffusions and at continuity points t of f (·), the value I
f
2 (t) of

the response is close to the proportion of time per time unit which a trajectory of
V f is expected to spend beyond the excitation threshold near time t ; we have an
approximation by remark 2.2

I
f
2 (t) ≈ �

(
2

σ 2 (a + f (t)),
2

σ 2

)
([KE − s0, ∞)) .

Remark 3.4. In Poisson spike trains emitted by a single neuron, interspike intervals
(ISI) generated conditionally on a ‘fast’ or on a ‘slow’ diffusion V f will exhibit a
remarkable difference. We think of a signal I

f
1 which remains subthreshold or at

the threshold.

a) Slow diffusions: a substantial amount of excursions of V f beyond the excitation
threshold will be ‘long’ excursions during which several spikes can be emitted.
The corresponding ISI’s are exponentially distributed with parameter λ. In con-
trast to these, ISI’s intersecting different excursions of V f tend to be essentially
longer. In repeated measurements from the same neuron, with same input f

and independent realizations of the pair (µ, V f ), ISI’s recorded in some fixed
time window (as in [S-N 98, fig. 1]) will correspond statistically to a mixture
model which delivers with some probability 0 < q < 1 exponentially-λ-dis-
tributed waiting times, and with probability 1 − q waiting times of a different
structure. Among ISI’s observed in a short time window, the first ones tend to
be predominant.

b) Fast diffusions: excursions of the membrane potential V f above the excitation
threshold will be extremely short and will alternate rapidly with visits below. In
this case, by definition of I

f
2 and by 3.3, the empirical distribution function of

ISI’s collected near t will be close to an exponential law with parameter λ ·If
2 (t).
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3.2. Signal processing by a large number of neurons: a functional central limit
theorem for pooled Poisson spike trains

Consider stochastically independent neurons i processing the same input f . Write
V i,f for the membrane potential in neuron i, and µi for the spike train emitted by
neuron i. With fixed values of the parameters which are common to all neurons
under consideration, we thus have iid pairs

(
V f,i, µi

)
, i ≥ 1

defined on some (�, A, P ). We introduce a weighted counting process

	N(t, ω) := 1

N

N∑
i=1

µi(ω, [0, t]), ω ∈ �, 0 ≤ t ≤ T

for the pooled spike train collected from neurons 1 ≤ i ≤ N , and introduce pro-
cesses

Ai,f (t, ω) :=
∫ t

0
1[KE,∞)

(
V

i,f
s (ω)

)
ds, 1 ≤ i ≤ N

�N(t, ω) := 1

N

N∑
i=1

Ai,f (t, ω)

�f (t) := E
(
A

1,f
t

)
=
∫ t

0
I

f
2 (s)ds.

With λλ the Lebesgue measure, we will work on the (Polish) path space

IL := L2 ([0, T ], B([0, T ]), λλ) with Borel σ -field denoted by B(IL)

of measurable functions h : [0, T ] → IR with ‖h‖ :=
(∫ T

0 |h|2(t)dt
)1/2

< ∞.

All processes above are measurable in (t, ω), and their paths are bounded functions
[0, T ] → IR. This implies that ω → 	N(·, ω), ω → �N(·, ω) etc. are random
variables on (�, A) taking values in (IL, B(IL)).

The following – a Glivenko-Cantelli type theorem for weighted counting pro-
cesses of pooled spike trains – is the main result of this paper.

Theorem 3.5. We have
√

N
(
	N − λ�f

)
−→ W (weak convergence in IL, as N → ∞)

where W = (Wt )t∈[0,T ] is a Gaussian process with covariance kernel

K(t1, t2) := λ · �
f
t1∧t2

+ λ2 ·
∫ t1

0

∫ t2

0
dr1dr2Ǩ

f (r1, r2),

Ǩf (r1, r2) := P
(
V

f
ri ≥ KE, i = 1, 2

)
−

2∏
i=1

P
(
V

f
ri ≥ KE

)
.
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The proof of theorem 3.5 will be given in section 5.
The covariance kernel of W in 3.5 is a sum of two terms. The first one is the

covariance kernel of
√

λ · B time-changed by t → �f (t), where B is standard
Brownian motion. Standing alone, this would be the limiting process if instead
of the pooled spike train from N neurons, N independent Poisson processes with
deterministic intensity λ · I

f
2 (·) were observed (see e.g. [K 98]).

The second term in the covariance kernel is due to the ‘doubly stochastic’charac-
ter of the model in subsection 3.1. It integrates Ǩf (·, ·) as a measure of dependency
between variables V

f
ri , r1, r2 ∈ [0, T ]. In the limit of fast diffusions, this second

contribution will disappear.

Remark 3.6. a) As a consequence of theorem 3.5, large systems of stochastically
independent neurons – processing the same time-dependent input f via a pair
(µi, V f,i) – are able to transmit (subthreshold) signals. In this transmission,
the signal undergoes some structural deformation of its shape, described by the
passage from the function I

f
1 to the function λ · If

2 . The pooled spike train from

neurons 1 ≤ i ≤ N allows to recover I
f
2 in integrated form, multiplied by λ, up

to error terms of stochastic order 1/
√

N .
b) Comparing 3.5 and 3.4 a), a remarkable consequence arises. In case of slow diffu-

sions V f – which seems to be the more relevant case for biological observations
– interspike times obtained from repeated measurements in a single neuron in
restriction to some small time window (data sets as in [S-N 98, fig. 1] or as in
[S-S-F 99, fig. 2]) will not allow to recover the function I

f
2 in this time window,

hence will not allow to recover the signal I
f
1 . This is possible only through the

pooled spike train from a large number of neurons, in virtue of 3.5.

4. Methods for model check

This is a discussion section devoted to methods for model check and parameter
estimation related to subsections 2.2 and 3.1. Suppose we observe a neuron which
in successive experiments is exposed artificially (e.g. by administration of suitable
pharmaka or by injection of current) to different regimes of time-constant input
such that the main characteristics of the cell, in particular the value of its excitation
threshold, remain unaffected.

Measuring in K different regimes the membrane potential at n discrete time
points with small step size �, we dispose of a data set

Xk
0, X

k
�, Xk

2�, . . . , Xk
n�, 1 ≤ k ≤ K. (13)

For 1 ≤ k ≤ K , introduce empirical means and variances

mk
n := 1

n

n∑
i=1

Xk
i�, dk

n := 1

n

n∑
i=1

(
Xk

i� − mk
n

)2
,

occupation measures (with notation εa for Dirac measure sitting in a)

1

n

n∑
i=1

ε(Xk
i�) (14)
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and relative frequencies for visits beyond the excitation threshold

ek
n := 1

n

n∑
i=1

1[KE,∞)(X
k
i�).

If the model of subsection 2.2 for the membrane potential is appropriate, the fol-
lowing holds:

Model hypothesis (H): For every k, the data set Xk
0, X

k
�, . . . , Xk

n� stems from

a stationary process
(
V

f
t

)
t

observed at times t = �, 2�, . . . , n� where n� = T ,

for some value of a time-constant input f (·) ≡ f ≥ 0 which varies with k. The
parameters s0, a, σ 2

2 , τ in (11) as well as the value KE of the excitation threshold
do not change with k.

Under (H), by stationarity of V f , the following quantites do not depend on
0 ≤ t ≤ T :

E
(
V

f
t

)
≡ s0 + (a + f ) = KR + f, V ar

(
V

f
t

)
≡ σ 2

2
(a + f ), (15)

P
(
V

f
t ∈ A

)
≡ �

(
2

σ 2 (a + f ),
2

σ 2

)
(A − s0) , A ∈ B(IR), (16)

(
E
(
V

f
t

)
, P

(
V

f
t ≥ KE

))
≡: (i

f
1 , i

f
2 ) (17)

which is the pair signal-response of 2.3 and 3.2 for time-constant input f . In the
simple setting of (H), we can sharpen remark 3.6: there is a transfer function T :
[KR, KE] → (0, 1), smooth and strictly increasing, with the property T (i

f
1 ) = i

f
2

for arbitrary constant f ≥ 0; it is given by

T (x) = �

(
2

σ 2 (x − s0),
2

σ 2

)
([KE − s0, ∞)) , KR ≤ x ≤ KE. (18)

Of course, for n sufficiently large, all occupation measures (14) taken sepa-
rately should be close to suitably shifted Gamma densities. The following allows to
validate (or to invalidate) the model of subsection 2.2 for the membrane potential
in the subthreshold domain.

4.1. Model check

Under (H), for � small and n large,

a) a plot of empirical variances against empirical means in the data set (13)
(
mk

n, d
k
n

)
, 1 ≤ k ≤ K (19)

should present a convincing close-to-linear structure, cf. (15);
b) by linear regression in (19) – explaining the empirical variances by the empir-

ical means – we estimate σ 2

2 by the slope of the regression line ̂n, and s0 by
the zero of ̂n;
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c) we estimate the time constant τ by the solution of

1

2

K∑
k=1

n∑
i=1

[
Xk

i� − Xk
(i−1)�

]2 != τ
σ 2

2
T

K∑
k=1

[
mk

n − s0

]
(20)

with estimated values from b) plugged in for s0 and σ 2

2 (note that the inverse 1
τ

should represent a biologically plausible value for a membrane time constant);
d) a plot of relative frequencies of visits beyond KE against empirical means in

the data set (13)
(
mk

n, e
k
n

)
, 1 ≤ k ≤ K

should be close to the graph of the transfer function, with estimated values
from b) replacing the parameters s0 and σ 2

2 in (18);
e) from a given value of KR = s0 + a, we estimate by b) all three parameters

s0, a, σ 2

2 determining the stationary law of the membrane potential at rest.

Sketch of proof. Assertions a) and c) require some comments.

a) For constant f , the discrete-time processes
(
V

f
i�

)
i=0,1,...

are ergodic with

invariant law given by (16). By the strong law of large numbers for ergodic Markov

chains, the quantities 1
n′
∑n′

i=1 V
f
i� and 1

n′
∑n′

i=1

(
V

f
i�

)2
converge a.s. as n′ → ∞

to the first and second moment of L(V
f
t ), independent of t by the stationarity

assumption.

With notation (x) = σ 2

2 (x − s0) we have V ar(V
f
t ) = 

(
E(V

f
t )
)

in (15), for

arbitrary values of constant f ≥ 0. Hence under (H), for every fixed value of � and
for 1 ≤ k ≤ K , we will have good approximations dk

n ≈ 
(
mk

n

)
for the empirical

quantites when n is large.
c) i) Under (H) and continuous-time observation, the quadratic variation pro-

cess
[
ξf
]

of the semimartingale ξf solving (2) is compensated by the predictable
quadratic variation 〈ξf 〉

〈ξf 〉t = τσ 2
∫ t

0
ξ

f
s ds, t ∈ [0, T ].

In terms of V f , this reads

1

2
〈V f 〉t = τ

σ 2

2

∫ t

0

[
V

f
s − s0

]
ds, t ∈ [0, T ].

For � tending to 0 and n tending to ∞ such that T = �n remains fixed, the
quadratic variation

[
V f
]

can be approximated by a sum of quadratic increments,
and the last integral by a discrete sum; hence we solve an approximate martingale
estimating equation

1

2

n∑
i=1

[
Xk

i� − Xk
(i−1)�

]2 != τ
σ 2

2
T

[
1

n

n∑
i=1

Xk
(i−1)� − s0

]
(21)
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with estimated values - from b) - plugged in for s0 and σ 2

2 .
ii) Up to now, we have used any one of the data sets

(
Xk

i�

)
i=0,...,n

. (20) is
obtained in the same way as (21), working for 1 ≤ k ≤ K on all data sets simulta-
neously. ��

In 4.1, we never need explicit values for the constants f ≥ 0 in equation (2);
it is sufficient to have data under different regimes f . Any specification of a value
corresponding to a particular regime and its biophysical background may remain
unknown as long as (H) holds.

The following allows to check the Poisson spike train model considered in
subsection 3.1.

4.2. Model check

Assume (H) validated for the membrane potential. In addition to data (13), suppose
we have counted in every measurement 1 ≤ k ≤ K the total number Mk

T of spikes
emitted by the neuron over the time interval [0, T ].

Under (H), for fixed � and n large (hence also T = n� large), the set of points
(
mk

n, M
k
T /T

)
1≤k≤K

(22)

should allow for a convincing fit with respect to the one-parameter family
(
mk

n, λ · ek
n

)
1≤k≤K

: λ > 0; (23)

we estimate λ through a best approximation (least squares, or some minimum dis-
tance approach).

Sketch of proof. Using the model for spike generation in subsection 3.1 with con-
stant f on [0, ∞), the strong law of large numbers for (V

f
t )t≥0 gives with notation

of (17)

1

t
Af (t) −→ λ · i

f
2 a.s. as t → ∞.

In measurement 1 ≤ k ≤ K , write Mk(r) for the total number of spikes counted
up to time r . The martingale convergence theorem applied to the sequence of mar-
tingales

(
1√
t

(
Mk(st) − λAf (st)

))

s≥0
, t → ∞

(with f associated to k) shows weak convergence in ID as t → ∞ to
√

λi
f
2 · B

with standard Brownian motion B. Hence for large t , 1
t
Mk(t) will be close to

1
t
Af (t) – and thus close to λi

f
2 – up to terms of stochastic order 1/

√
t . It remains

to replace i
f
2 by the empirical quantity ek

n discussed in 4.1 d). ��
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5. Proof of theorem 3.5

Write E = IRd , for some d ≥ 1, and ILE = L2
E([0, T ], B([0, T ]), λλ) for the space

of all measurable functions h : [0, T ] → E such that ‖h‖ =
(∫ T

0 |h|2(s)ds
)1/2

is

finite. Let Xn, n ≥ 1, X be E-valued processes on (�, A, P ), measurable in (t, ω),
with paths in ILE . Then

Xn −→ X (weak convergence in ILE , as n → ∞) (24)

is implied (see [C-K 86, theorem 2 and remark], or [G 76, theorem 3] in case
E = IR) by the following two conditions i) and ii):

i) there is a Borel set N ⊂ [0, T ] of Lebesgue measure 0 such that

L ((Xn
t1
, . . . , Xn

tl
) | P

) −→ L ((Xt1 , . . . , Xtl ) | P
)

(weak convergence in El , as n → ∞)

for all l ≥ 1 and arbitrary t1, t2, . . . , tl in [0, T ]\N ;
ii) there is some functionf ∈ L1

IR([0, T ], B([0, T ]), λλ) such that for t ∈ [0, T ]\N

sup
n≥1

E
(∣∣Xn

t

∣∣2) ≤ f (t) and lim
n→∞ E

(∣∣Xn
t

∣∣2) = E
(
|Xt |2

)
.

The proof of theorem 3.5 – via some auxiliary results – will be completed in
5.3; all notations and assumptions are as subsection 3.2.

Proposition 5.1. We have
√

N
(
�N − �f

)
−→ W̃ (weak convergence in ILIR , as N → ∞)

where W̃ = (W̃t )t∈[0,T ] is a Gaussian process with covariance kernel

K̃(t1, t2) =
∫ t1

0

∫ t2

0
dr1dr2Ǩ

f (r1, r2), t1, t2 ∈ [0, T ].

Proof. 1) Since (t1, t2) → K̃(t1, t2) is symmetric and continuous on [0, T ] ×
[0, T ], a real-valued (centred) Gaussian process W̃ = (W̃t )t∈[0,T ] with covari-
ance kernel K̃(·, ·) exists (see [L 63, p. 478], [G-S 74, chapter IV.3], [Z 75]).

2) We prove convergence as N → ∞ of finite-dimensional distributions of

W̃N :=
√

N
(
�N − �f

)
= 1√

N

N∑
i=1

(
Ai,f − �f

)

to those of W̃ . Consider arbitrary l ≥ 1, t1, . . . , tl in [0, T ]; write � :=(
K̃(tr , tr ′)

)
1≤r,r ′≤l

. Using Cramér-Wold, we have to prove for all α =
(α1, . . . , αl) ∈ IRl :

L
(

l∑
r=1

αrW̃
N
tr

)
−→ N

(
0, α��α

)
= L

(
l∑

r=1

αrW̃tr

)
, N → ∞. (25)
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Define

Ri :=
∫ T

0
ds

(
l∑

i=1

αr1[0,tr ](s)

)(
1[KE,∞)(V

f,i
s ) − P(V

f
s ≥ KE)

)
, i ≥ 1.

Then Ri , i ≥ 1, are iid, bounded and centred, so the classical central limit
theorem shows

l∑
r=1

αrW̃
N
tr

= 1√
N

N∑
i=1

Ri −→ N (0, V ar(R1)) (weakly in IR, as N → ∞)

where

V ar(R1) =
∫ T

0

∫ T

0
dsds′

(
l∑

r=1

αr1[0,tr ]

)
(s)Ǩf (s, s′)

(
l∑

r ′=1

αr ′1[0,tr′ ]

)
(s′)

=
l∑

r,r ′=1

αrK̃(tr , tr ′)αr ′ = α��α.

Hence (25) is proved, and convergence of finite dimensional distributions fol-
lows.

3) The function f (t) := K̃(t, t) is bounded on [0, T ]. As a particular case of the
calculation of V ar(R1) in step 2), we have

E
((

W̃t

)2) = K̃(t, t) = E

((
W̃N

t

)2
)

for all N. (26)

With (25) and (26), all conditions of [C-K 86, theorem 2] or [G 76, theorem 3]
are satisfied, and proposition 5.1 is proved. ��

Proposition 5.2. We have
√

N (	N−λ�N)−→
√

λ · B ◦ �f=:˜̃W (weak convergence in ILIR , as N → ∞)

where B = (Bt )t≥0 is a standard Brownian motion independent of the limit process
W̃ appearing in 5.1, and where B◦�f denotes B time-changed by the deterministic
function t → �f (t).

Proof. 1) Note that t → �f (t) is continuous and stricly increasing on [0, T ].
The covariance kernel of ˜̃W = ( ˜̃Wt)t∈[0,T ] is

˜̃K(t1, t2) = λ�f (t1 ∧ t2), t1, t2 ∈ [0, T ].

2) Prepare a new probability space (�1, A1, P1) supporting a Poisson random
measure µ̂ with constant intensity λ on [0, ∞). Consider processes

BN(t) := 1√
N

(µ̂ ([0, t · N ]) − λ · t · N) , t ≥ 0
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on (�1, A1, P1), and filtrations

ÎF
N =

(
F̂N

t

)
t≥0

, F̂N
t := σ (BN(s) : 0 ≤ s ≤ t)

= σ (µ̂([0, s]) : 0 ≤ s ≤ t · N)

in A1, for N ≥ 1. For every N , BN is an ÎF
N

-martingale with deterministic
angle brackett

〈BN 〉t = λ · t, t ≥ 0 (27)

and with jumps bounded by 1√
N

. It is well known that by the martingale con-
vergence theorem (Jacod and Shiryaev [J-Sh 87, VIII.3.11])

BN −→
√

λ · B (weak convergence in ID, as n → ∞) (28)

where B is standard Brownian motion. ID is the Skorohod space of càdlàg
functions [0, ∞) → IR, see [J-Sh 87, Ch. 6].

3) On the probability space (�, A, P ) which supports the iid pairs (V f,i , µi),
i ≥ 1, of subsection 3.2, we focus on the membrane potential processes
(A

f,i
t )t∈[0,T ]. Introduce filtrations in A

IGN =
(
GN

t

)
t∈[0,T ]

, GN
t =

⋂
r>t

σ
(
A

i,f
s : s ≤ r, 1 ≤ i ≤ N

)
, t ∈ [0, T ]

related to neurons 1 ≤ i ≤ N .
4) We lift all processes, sub-σ -fields ... considered so far to the product space

(�̃, Ã, P̃ ), �̃ := �×�1, Ã := A⊗A1, P̃ := P⊗P1.

We will use the following filtrations IFN in Ã:

IFN =
(
FN

t

)
t≥0

, FN
t = GN

T

∨
F̂N

t , t ≥ 0.

Thus on (�̃, Ã, P̃ ), for every N , the martingale properties of BN hold with
respect to IFN , and all variables �N(r), r ∈ [0, T ], are IFN -stopping times.
Write E := IR2 and consider on (�̃, Ã, P̃ ) the sequence of E-valued processes

XN :=
(
BN ◦ �f , W̃N

)
, N ≥ 1

with W̃N = √
N
(
�N − �f

)
as in 5.1. Since by construction on (�̃, Ã, P̃ ) the

processes BN and �N are independent, since �f is a deterministic function,
we have

BN ◦ �f and W̃N are independent under P̃ , for every N. (29)

Combining (28), (29) and step 2) of the proof of proposition 5.1, we have con-
vergence of finite dimensional distributions of XN to those of the E-valued
process

X :=
(√

λ · B ◦ �f , W̃
)

, with B and W̃ independent
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where B is the standard Brownian motion of (28), and W̃ the Gaussian limit
process of 5.1. Also we get from (27), (29) and step 3) of the proof of propo-
sition 5.1

E
(
|XN(t)|2

)
= λ · �f (t) + K̃(t, t) = E

(
|X(t)|2

)
, N ≥ 1.

So all assumptions of [C-K 86, theorem 2] are satisfied, and we get

Xn −→ X (weak convergence in ILE , as N → ∞).

5) We turn to the processes
√

N (	N − λ�N) in the assertion of proposition 5.2.
For every N ≥ 1,

(√
N (	N − λ�N) , �N, W̃N

)
on (�, A, P )

is equal in law to
(
BN ◦ �N, �N, W̃N

)
on (�̃, Ã, P̃ ).

We will work on (�̃, Ã, P̃ ). Fix some t ∈ [0, T ]. With �N(t) also

σN := �N(t) ∧ �f (t), τN := �N(t) ∨ �f (t)

are IFN -stopping times. BN is a square integrable IFN -martingale, hence on
(�̃, Ã, P̃ )

E

(
sup

r∈[[σN ,τN ]]
|BN(r) − BN(σN)|2

)
≤ cE

(〈BN 〉τN
− 〈BN 〉σN

)

= cλ · E(τN − σN)

for some constant c > 0. The last expectation vanishes as N → ∞, by domi-
nated convergence: first, the strong law of large numbers gives

�N(t) −→ �f (t) P̃ -a.s. as N → ∞, for every t ∈ [0, T ],

second, by definition of the processes Ai,f , one has

τN − σN =
∣∣∣�N(t) − �f (t)

∣∣∣ ≤ T , for all N ≥ 1 and all t ∈ [0, T ].

Thus we have proved that for arbitrary t ∈ [0, T ] fixed

BN ◦ �N(t) = BN ◦ �f (t) + oP̃ (1), N → ∞.

6) As a consequence of the last assertion, finite-dimensional distributions of the
processes BN ◦ �N and BN ◦ �f coincide asymptotically as N → ∞. Pro-
ceeding now in analogy to step 4) above, we obtain
(
BN ◦ �N, W̃N

)
−→X=

(√
λ · B ◦ �f , W̃

)
(weakly in ILE , as N →∞).

(30)

Using again the beginning of step 5), (30) implies the assertion of proposition
5.2. The proof ist finished. ��
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5.1. Proof of theorem 3.5

With notations of the preceeding proof, for every N , the process

√
N
(
	N − λ�f

)
=

√
N (	N − λ�N) + λ ·

√
N
(
�N − �f

)
on (�, A, P )

is equal in law to

BN ◦ �N + λ · W̃N on (�̃, Ã, P̃ ).

For E = IR2, the mapping ILE � (g1, g2) → g1 + g2 ∈ ILIR is continuous. So the
continuous mapping theorem combined with (30) gives

BN ◦ �N +λ · W̃N−→W :=
√

λ · B ◦ �f +λ · W̃ (weakly in ILIR , as N → ∞)

with B and W̃ independent. Hence weak convergence in ILIR

√
N
(
	N − λ�f

)
−→ W, N → ∞

is proved. This concludes the proof of theorem 3.5.
We remark that we do have convergence of finite-dimensional distributions, i.e.

exceptional set N = ∅ in i)+ii) following (24), as a consequence of (29) and step
5) of the proof of 5.2. ��
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