Skip to main content
Log in

Effects of Disodium Fumarate on In Vitro Rumen Fermentation, The Production of Lipopolysaccharide and Biogenic Amines, and The Rumen Bacterial Community

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The effect of disodium fumarate (DF) on the ruminal fermentation profiles, the accumulation of lipopolysaccharide (LPS) and bioamines, and the composition of the ruminal bacterial community was investigated by in vitro rumen fermentation. The addition of DF increased the total gas production; the concentrations of propionate, valerate, total volatile fatty acids, and ammonia–nitrogen; and the rumen pH after a 24 h fermentation. By contrast, DF addition decreased the ratio of acetate to propionate and the concentrations of lactate, lipopolysaccharide, methylamine, tryptamine, putrescine, histamine, and tyramine (P < 0.05). Principal coordinates analysis and molecular variance analysis showed that DF altered the ruminal bacterial community (P < 0.05). At the phylum level, DF decreased the proportion of Proteobacteria, and increased the proportions of Spirochaetae and Elusimicrobia (P < 0.05). At the genus level, DF decreased the percentage of Ruminobacter, while increasing the percentage of Succinivibrio and Treponema (P < 0.05). Overall, the results indicate that DF modified rumen fermentation and mitigated the production of several toxic compounds. Thus, DF has great potential for preventing subacute rumen acidosis in dairy cows and for improving the health of ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Fernando SC, Purvis HT 2nd, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76(22):7482–7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hattori K, Matsui H (2008) Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches. Anaerobe 14(2):87–93

    Article  CAS  PubMed  Google Scholar 

  3. Alzahal O, Rustomo B, Odongo NE, Duffield TF, McBride BW (2007) Technical note: a system for continuous recording of ruminal pH in cattle. J Anim Sci 85(1):213–217

    Article  CAS  PubMed  Google Scholar 

  4. Plaizier JC, Krause DO, Gozho GN, McBride BW (2008) Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 176(1):21–31

    Article  CAS  PubMed  Google Scholar 

  5. Mao S, Zhang R, Wang D, Zhu W (2012) The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet Res 8:237

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gozho GN, Krause DO, Plaizier JC (2007) Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows. J Dairy Sci 90(2):856–866

    Article  CAS  PubMed  Google Scholar 

  7. Hespell RB (1979) Efficiency of growth by ruminal bacteria. Fed Proc 38(13):2707–2712

    CAS  PubMed  Google Scholar 

  8. Mackie R, Gilchrist FM, Robberts AM, Hannah P, Schwartz HM (1978) Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J Agric Sci 90(02):241–254

    Article  CAS  Google Scholar 

  9. Russell JB, DiezGonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 39:205–234

    Article  CAS  PubMed  Google Scholar 

  10. Nocek JE (1997) Bovine acidosis: implications on laminitis. J Dairy Sci 80(5):1005–1028

    Article  CAS  PubMed  Google Scholar 

  11. Liu JH, Xu TT, Liu YJ, Zhu WY, Mao SY (2013) A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats. Am J Physiol Regul Integr Comp Physiol 305(3):R232–R241

    Article  CAS  PubMed  Google Scholar 

  12. Castillo C, Benedito JL, Méndez J, Pereira V, López-Alonso M, Miranda M, Hernández J (2004) Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Technol 115(1):101–116

    Article  CAS  Google Scholar 

  13. Nagaraja TG, Avery TB, Bartley EE, Roof SK, Dayton AD (1982) Effect of lasalocid, monensin or thiopeptin on lactic acidosis in cattle. J Anim Sci 4(3):649–658

    Article  Google Scholar 

  14. Newbold CJ, Wallace RJ, McIntosh FM (1996) Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Brit J Nutr 76(2):249–261

    Article  CAS  PubMed  Google Scholar 

  15. Callaway TR, Martin SA (1996) Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J Anim Sci 74(8):1982–1989

    Article  CAS  PubMed  Google Scholar 

  16. Mao SY, Zhang G, Zhu WY (2007) Effect of disodium fumarate on in vitro rumen fermentation of different substrates and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Asian Austral J Anim 20(4):543–549

    Article  CAS  Google Scholar 

  17. Martínez-Fernández G, Abecia L, Arco A, Cantalapiedra-Hijar G, Martín-García AI, Molina-Alcaide E, Kindermann M, Duval S, Yáñez-Ruiz DR (2014) Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J Dairy Sci 97:3790–3799

    Article  PubMed  Google Scholar 

  18. Theodorou MK, Williams BA, Dhanoa MS, Mcallan AB, France J (1994) A simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Tech 48(3–4):185–197

    Article  Google Scholar 

  19. Jin W, Meng Z, Wang J, Cheng Y, Zhu W (2017) Effect of nitrooxy compounds with different molecular structures on the rumen methanogenesis, metabolic profile, and methanogenic community. Curr Microbiol 74(8):891–898

    Article  CAS  PubMed  Google Scholar 

  20. Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39(8):971–974

    Article  CAS  Google Scholar 

  21. Barker SBS, Summerson WH (1941) The colorimetric determination of lactic acid in biological material. J Biol Chem 138:535–554

    CAS  Google Scholar 

  22. Wang DS, Zhang RY, Zhu WY, Mao SY (2013) Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the rumen of dairy cows. Livest Sci 155(2–3):262–272

    Article  Google Scholar 

  23. Liu J, Zhang M, Zhang R, Zhu W, Mao S (2016) Comparative studies of the composition of bacterial microbiota associated with the ruminal content, ruminal epithelium and in the faeces of lactating dairy cows. Microb Biotechnol 9(2):257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  27. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26(2):266–267

    Article  CAS  PubMed  Google Scholar 

  28. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mao SY, Zhang G, Zhu WY (2008) Effect of disodium fumarate on ruminal metabolism and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. Anim Feed Sci Technol 140(3–4):293–306

    Article  CAS  Google Scholar 

  32. Asanuma N, Iwamoto M, Hino T (1999) Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci 82(4):780–787

    Article  CAS  PubMed  Google Scholar 

  33. Lopez S, Valdes C, Newbold CJ, Wallace RJ (1999) Influence of sodium fumarate addition on rumen fermentation in vitro. Br J Nutr 81(1):59–64

    CAS  PubMed  Google Scholar 

  34. Nisbet DJ, Martin SA (1990) Effect of dicarboxylic acids and Aspergillus oryzae Fermentation extract on lactate uptake by the ruminal bacterium Selenomonas ruminantium. Appl Environ Microbiol 56(11):3515

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nisbet DJ, Martin SA (1993) Effects of fumarate, l-malate, and an Aspergillus oryzae fermentation extract on d-Lactate utilization by the ruminal bacterium Selenomonas ruminantium. Curr Microbiol 26:133–136

    Article  CAS  Google Scholar 

  36. Khafipour E, Krause DO, Plaizier JC (2009) A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci 92(3):1060–1070

    Article  CAS  PubMed  Google Scholar 

  37. Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W, Kunin V, Sun H, Lapidus A, Hugenholtz P, Brune A (2009) Genomic analysis of “Elusimicrobium minutum”, the first cultivated representative of the phylum “Elusimicrobia” (formerly termite group 1). Appl Environ Microbiol 75(9):2841–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng H, Dietrich C, Radek R, Brune A (2016) Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)—an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environ Microbiol 18(1):191–204

    Article  CAS  PubMed  Google Scholar 

  39. Bailey SR, Baillon ML, Rycroft AN, Harris PA, Elliott J (2003) Identification of equine cecal bacteria producing amines in an in vitro model of carbohydrate overload. Appl Environ Microbiol 69:2087–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Herrin SM, Kenealy WR (1993) Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Appl Environ Microbiol 59(3):748–755

    PubMed  PubMed Central  Google Scholar 

  41. Mao S, Zhang M, Liu J, Zhu W (2015) Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: membership and potential function. Sci Rep UK 5:16116

    Article  CAS  Google Scholar 

  42. Stanton TB (1984) Glucose metabolism of Treponema bryantii, an anaerobic rumen spirochete. Can J Microbiol 30(5):526–531

    Article  CAS  PubMed  Google Scholar 

  43. Anderson KL (1995) Biochemical analysis of starch degradation by Ruminobacter amylophilus 70. Appl Environ Microbiol 61(4):1488–1491

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Natural Science Foundation of Jiangsu Province of China (BK20151431) and the Natural Science Foundation of China (31372339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyong Mao.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 169 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Xue, C., Liu, J. et al. Effects of Disodium Fumarate on In Vitro Rumen Fermentation, The Production of Lipopolysaccharide and Biogenic Amines, and The Rumen Bacterial Community. Curr Microbiol 74, 1337–1342 (2017). https://doi.org/10.1007/s00284-017-1322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1322-y

Navigation