Skip to main content

Advertisement

Log in

Strategies for reconstituting and boosting T cell-based immunity following haematopoietic stem cell transplantation: pre-clinical and clinical approaches

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Poor immune recovery is characteristic of bone marrow transplantation and leads to high levels of morbidity and mortality. The primary underlying cause is a compromised thymic function, resulting from age-induced atrophy and further compounded by the damaging effects of cytoablative conditioning regimes on thymic epithelial cells (TEC). Several strategies have been proposed to enhance T cell reconstitution. Some, such as the use of single biological agents, are currently being tested in clinical trials. However, a more rational approach to immune restoration will be to leverage the evolving repertoire of new technologies. Specifically, the combined targeting of TEC, thymocytes and peripheral T cells, together with the bone marrow niches, promises a more strategic clinical therapeutic platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kim DH, Sohn SK, Won DI, Lee NY, Suh JS, Lee KB (2006) Rapid helper T-cell recovery above 200 × 10 6/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transplant 37:1119–1128

    PubMed  CAS  Google Scholar 

  2. Berger M, Figari O, Bruno B, Raiola A, Dominietto A, Fiorone M, Podesta M, Tedone E, Pozzi S, Fagioli F, Madon E, Bacigalupo A (2008) Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality. Bone Marrow Transplant 41:55–62

    PubMed  CAS  Google Scholar 

  3. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Horowitz ME, Magrath IT, Shad AT, Steinberg SM et al (1995) Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 332:143–149

    PubMed  CAS  Google Scholar 

  4. Gordon J, Bennett AR, Blackburn CC, Manley NR (2001) Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev 103:141–143

    PubMed  CAS  Google Scholar 

  5. Blackburn CC, Augustine CL, Li R, Harvey RP, Malin MA, Boyd RL, Miller JF, Morahan G (1996) The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc Natl Acad Sci U S A 93:5742–5746

    PubMed  CAS  Google Scholar 

  6. Nehls M, Kyewski B, Messerle M, Waldschutz R, Schuddekopf K, Smith AJ, Boehm T (1996) Two genetically separable steps in the differentiation of thymic epithelium. Science 272:886–889

    PubMed  CAS  Google Scholar 

  7. Manley NR, Blackburn CC (2003) A developmental look at thymus organogenesis: where do the non-hematopoietic cells in the thymus come from? Curr Opin Immunol 15:225–232

    PubMed  CAS  Google Scholar 

  8. Blackburn CC, Manley NR (2004) Developing a new paradigm for thymus organogenesis. Nat Rev Immunol 4:278–289

    PubMed  CAS  Google Scholar 

  9. Hollander G, Gill J, Zuklys S, Iwanami N, Liu C, Takahama Y (2006) Cellular and molecular events during early thymus development. Immunol Rev 209:28–46

    PubMed  CAS  Google Scholar 

  10. Jenkinson WE, Rossi SW, Jenkinson EJ, Anderson G (2005) Development of functional thymic epithelial cells occurs independently of lymphostromal interactions. Mech Dev 122:1294–1299

    PubMed  CAS  Google Scholar 

  11. Suniara RK, Jenkinson EJ, Owen JJT (2000) An essential role for thymic mesenchyme in early T cell development. J Exp Med 191:1051–1056

    PubMed  CAS  Google Scholar 

  12. Jenkinson WE, Jenkinson EJ, Anderson G (2003) Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J Exp Med 198:325–332

    PubMed  CAS  Google Scholar 

  13. Revest JM, Suniara RK, Kerr K, Owen JJ, Dickson C (2001) Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol 167:1954–1961

    PubMed  CAS  Google Scholar 

  14. Blom B, Res PC, Spits H (1998) T cell precursors in man and mice. Crit Rev Immunol 18:371–388

    PubMed  CAS  Google Scholar 

  15. Itoi M, Kawamoto H, Katsura Y, Amagai T (2001) Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage. Int Immunol 13:1203–1211

    PubMed  CAS  Google Scholar 

  16. van Ewijk W, Shores EW, Singer A (1994) Crosstalk in the mouse thymus. Immunol Today 15:214–217

    PubMed  Google Scholar 

  17. Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211:144–156

    PubMed  CAS  Google Scholar 

  18. Min H, Montecino-Rodriguez E, Dorshkind K (2004) Reduction in the developmental potential of intrathymic T cell progenitors with age. J Immunol 173:245–250

    PubMed  CAS  Google Scholar 

  19. George AJ, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272

    PubMed  CAS  Google Scholar 

  20. Yung RL, Julius A (2008) Epigenetics, aging, and autoimmunity. Autoimmunity 41:329–335

    PubMed  CAS  Google Scholar 

  21. Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93

    PubMed  CAS  Google Scholar 

  22. Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, Patel DD, Haynes BF (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 164:2180–2187

    PubMed  CAS  Google Scholar 

  23. Kumar R, Langer JC, Snoeck HW (2006) Transforming growth factor-beta2 is involved in quantitative genetic variation in thymic involution. Blood 107:1974–1979

    PubMed  CAS  Google Scholar 

  24. Hauri-Hohl MM, Zuklys S, Keller MP, Jeker LT, Barthlott T, Moon AM, Roes J, Hollander GA (2008) TGF-beta signaling in thymic epithelial cells regulates thymic involution and postirradiation reconstitution. Blood 112:626–634

    PubMed  CAS  Google Scholar 

  25. Thoman ML, Weigle WO (1981) Lymphokines and aging: interleukin-2 production and activity in aged animals. J Immunol 127:2102–2106

    PubMed  CAS  Google Scholar 

  26. Chang MP, Utsuyama M, Hirokawa K, Makinodan T (1988) Decline in the production of interleukin-3 with age in mice. Cell Immunol 115:1–12

    PubMed  CAS  Google Scholar 

  27. Flurkey K, Miller RA, Harrison DE (1992) Cellular determinants of age-related decrements in the T-cell mitogen response of B6CBAF1 mice. J Gerontol 47:B115–120

    PubMed  CAS  Google Scholar 

  28. Kubo M, Cinader B (1990) Polymorphism of age-related changes in interleukin (IL) production: differential changes of T helper subpopulations, synthesizing IL 2, IL 3 and IL 4. Eur J Immunol 20:1289–1296

    PubMed  CAS  Google Scholar 

  29. Ernst DN, Hobbs MV, Torbett BE, Glasebrook AL, Rehse MA, Bottomly K, Hayakawa K, Hardy RR, Weigle WO (1990) Differences in the expression profiles of CD45RB, Pgp-1, and 3G11 membrane antigens and in the patterns of lymphokine secretion by splenic CD4+ T cells from young and aged mice. J Immunol 145:1295–1302

    PubMed  CAS  Google Scholar 

  30. Hobbs MV, Weigle WO, Noonan DJ, Torbett BE, McEvilly RJ, Koch RJ, Cardenas GJ, Ernst DN (1993) Patterns of cytokine gene expression by CD4+ T cells from young and old mice. J Immunol 150:3602–3614

    PubMed  CAS  Google Scholar 

  31. Paganelli R, Scala E, Quinti I, Ansotegui IJ (1994) Humoral immunity in aging. Aging (Milano) 6:143–150

    CAS  Google Scholar 

  32. Sempowski GD, Gooding ME, Liao HX, Le PT, Haynes BF (2002) T cell receptor excision circle assessment of thymopoiesis in aging mice. Mol Immunol 38:841–848

    PubMed  CAS  Google Scholar 

  33. Andrew D, Aspinall R (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 37:455–463

    PubMed  CAS  Google Scholar 

  34. Aspinall R, Andrew D (2000) Thymic atrophy in the mouse is a soluble problem of the thymic environment. Vaccine 18:1629–1637

    PubMed  CAS  Google Scholar 

  35. Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20:250–256

    PubMed  CAS  Google Scholar 

  36. Ortman CL, Dittmar KA, Witte PL, Le PT (2002) Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 14:813–822

    PubMed  CAS  Google Scholar 

  37. Li L, Hsu HC, Stockard CR, Yang P, Zhou J, Wu Q, Grizzle WE, Mountz JD (2004) IL-12 inhibits thymic involution by enhancing IL-7- and IL-2-induced thymocyte proliferation. J Immunol 172:2909–2916

    PubMed  CAS  Google Scholar 

  38. Leclercq G, Plum J (1996) Thymic and extrathymic T cell development. Leukemia 10:1853–1859

    PubMed  CAS  Google Scholar 

  39. Bloom ET, Horvath JA (1994) Cellular and molecular mechanisms of the IL-12-induced increase in allospecific murine cytolytic T cell activity. Implications for the age-related decline in CTL. J Immunol 152:4242–4254

    PubMed  CAS  Google Scholar 

  40. Erickson M, Morkowski S, Lehar S, Gillard G, Beers C, Dooley J, Rubin JS, Rudensky A, Farr AG (2002) Regulation of thymic epithelium by keratinocyte growth factor. Blood 100:3269–3278

    PubMed  CAS  Google Scholar 

  41. Min D, Taylor PA, Panoskaltsis-Mortari A, Chung B, Danilenko DM, Farrell C, Lacey DL, Blazar BR, Weinberg KI (2002) Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99:4592–4600

    PubMed  CAS  Google Scholar 

  42. Jiang Q, Coffield VM, Kondo M, Su L (2007) TSLP is involved in expansion of early thymocyte progenitors. BMC Immunol 8:11

    PubMed  Google Scholar 

  43. Kecha O, Brilot F, Martens H, Franchimont N, Renard C, Greimers R, Defresne MP, Winkler R, Geenen V (2000) Involvement of insulin-like growth factors in early T cell development: a study using fetal thymic organ cultures. Endocrinology 141:1209–1217

    PubMed  CAS  Google Scholar 

  44. Van der Ven LT, Roholl PJ, Reijnen-Gresnigt MG, Bloemen RJ, van Buul-Offers SC (1997) Expression of insulin-like growth factor II (IGF-II) and histological changes in the thymus and spleen of transgenic mice overexpressing IGF-II. Histochem Cell Biol 107:193–203

    PubMed  Google Scholar 

  45. Lamberts SW, van den Beld AW, van der Lely AJ (1997) The endocrinology of aging. Science 278:419–424

    PubMed  CAS  Google Scholar 

  46. Kecha O, Martens H, Franchimont N, Achour I, Hazee-Hagelstein MT, Charlet-Renard C, Geenen V, Winkler R (1999) Characterization of the insulin-like growth factor axis in the human thymus. J Neuroendocrinol 11:435–440

    PubMed  CAS  Google Scholar 

  47. Bruunsgaard H, Andersen-Ranberg K, Jeune B, Pedersen AN, Skinhoj P, Pedersen BK (1999) A high plasma concentration of TNF-alpha is associated with dementia in centenarians. J Gerontol Ser A Biol Sci Med Sci 54:M357–364

    CAS  Google Scholar 

  48. Paolisso G, Rizzo MR, Mazziotti G, Tagliamonte MR, Gambardella A, Rotondi M, Carella C, Giugliano D, Varricchio M, D'Onofrio F (1998) Advancing age and insulin resistance: role of plasma tumor necrosis factor-alpha. Am J Physiol 275:E294–E299

    PubMed  CAS  Google Scholar 

  49. Zubkova I, Mostowski H, Zaitseva M (2005) Up-regulation of IL-7, stromal-derived factor-1 alpha, thymus-expressed chemokine, and secondary lymphoid tissue chemokine gene expression in the stromal cells in response to thymocyte depletion: implication for thymus reconstitution. J Immunol 175:2321–2330

    PubMed  CAS  Google Scholar 

  50. Gui J, Zhu X, Dohkan J, Cheng L, Barnes PF, Su DM (2007) The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol 19:1201–1211

    PubMed  CAS  Google Scholar 

  51. Fabris N, Mocchegiani E (1985) Endocrine control of thymic serum factor production in young-adult and old mice. Cell Immunol 91:325–335

    PubMed  CAS  Google Scholar 

  52. Savino W, Dardenne M, Bach JF (1983) Thymic hormone containing cells. II. Evolution of cells containing the serum thymic factor (FTS or thymulin) in normal and autoimmune mice, as revealed by anti-FTS monoclonal antibodies. Relationship with Ia bearing cells. Clin Exp Immunol 52:1–6

    PubMed  CAS  Google Scholar 

  53. Bach JF, Papiernik M, Levasseur P, Dardenne M, Barois A, Le Brigand H (1972) Evidence for a serum-factor secreted by the human thymus. Lancet 2:1056–1058

    PubMed  CAS  Google Scholar 

  54. Fabris N, Mocchegiani E, Amadio L, Zannotti M, Licastro F, Franceschi C (1984) Thymic hormone deficiency in normal ageing and Down's syndrome: is there a primary failure of the thymus? Lancet 1:983–986

    PubMed  CAS  Google Scholar 

  55. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE (1997) Involution of the mammalian thymus, one of the leading regulators of aging. In Vivo 11:421–440

    PubMed  CAS  Google Scholar 

  56. Hirokawa K, McClure JE, Goldstein AL (1982) Age-related changes in localization of thymosin in the human thymus. Thymus 4:19–29

    PubMed  CAS  Google Scholar 

  57. Dixit VD, Yang H, Sun Y, Weeraratna AT, Youm YH, Smith RG, Taub DD (2007) Ghrelin promotes thymopoiesis during aging. J Clin Invest 117:2778–2790

    PubMed  CAS  Google Scholar 

  58. Burgess W, Liu Q, Zhou J, Tang Q, Ozawa A, VanHoy R, Arkins S, Dantzer R, Kelley KW (1999) The immune-endocrine loop during aging: role of growth hormone and insulin-like growth factor-I. Neuroimmunomodulation 6:56–68

    PubMed  CAS  Google Scholar 

  59. Chen BJ, Cui X, Sempowski GD, Chao NJ (2003) Growth hormone accelerates immune recovery following allogeneic T-cell-depleted bone marrow transplantation in mice. Exp Hematol 31:953–958

    PubMed  CAS  Google Scholar 

  60. Aloe L, Micera A, Bracci-Laudiero L, Vigneti E, Turrini P (1997) Presence of nerve growth factor in the thymus of prenatal, postnatal and pregnant rats. Thymus 24:221–231

    PubMed  CAS  Google Scholar 

  61. Turrini P, Zaccaria ML, Aloe L (2001) Presence and possible functional role of nerve growth factor in the thymus. Cell Mol Biol (Noisy-le-grand) 47:55–64

    CAS  Google Scholar 

  62. Maroder M, Bellavia D, Meco D, Napolitano M, Stigliano A, Alesse E, Vacca A, Giannini G, Frati L, Gulino A, Screpanti I (1996) Expression of trKB neurotrophin receptor during T cell development. Role of brain derived neurotrophic factor in immature thymocyte survival. J Immunol 157:2864–2872

    PubMed  CAS  Google Scholar 

  63. Tokuda N, Hamasaki K, Mizutani N, Adachi Y, Sawada T, Funahashi H, Shioda S, Fukumoto T (2004) Expression of PAC1 receptor in rat thymus after irradiation. Regul Pept 123:167–172

    PubMed  CAS  Google Scholar 

  64. Garcia-Suarez O, Perez-Perez M, Germana A, Esteban I, Germana G (2003) Involvement of growth factors in thymic involution. Microsc Res Tech 62:514–523

    PubMed  CAS  Google Scholar 

  65. Brock N (1996) The history of the oxazaphosphorine cytostatics. Cancer 78:542–547

    PubMed  CAS  Google Scholar 

  66. Trobaugh FE Jr, Husseini S (1973) Effects of radiation on hematopoietic tissue. Am J Med Technol 39:119–131

    PubMed  Google Scholar 

  67. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73

    PubMed  CAS  Google Scholar 

  68. Mackall CL, Fleisher TA, Brown MR, Magrath IT, Shad AT, Horowitz ME, Wexler LH, Adde MA, McClure LL, Gress RE (1994) Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 84:2221–2228

    PubMed  CAS  Google Scholar 

  69. Krenger W, Hollander GA (2008) The thymus in GVHD pathophysiology. Best Pract Res Clin Haematol 21:119–128

    PubMed  CAS  Google Scholar 

  70. Rizzi M, Ferrera F, Filaci G, Indiveri F (2006) Disruption of immunological tolerance: role of AIRE gene in autoimmunity. Autoimmun Rev 5:145–147

    PubMed  CAS  Google Scholar 

  71. Sakaguchi S, Sakaguchi N (1988) Thymus and autoimmunity. Transplantation of the thymus from cyclosporin A-treated mice causes organ-specific autoimmune disease in athymic nude mice. J Exp Med 167:1479–1485

    PubMed  CAS  Google Scholar 

  72. Wang H, Zhao L, Sun Z, Sun L, Zhang B, Zhao Y (2006) A potential side effect of cyclosporin A: inhibition of CD4(+)CD25(+) regulatory T cells in mice. Transplantation 82:1484–1492

    PubMed  CAS  Google Scholar 

  73. Storek J, Witherspoon RP, Storb R (1995) T cell reconstitution after bone marrow transplantation into adult patients does not resemble T cell development in early life. Bone Marrow Transplant 16:413–425

    PubMed  CAS  Google Scholar 

  74. Weinberg K, Annett G, Kashyap A, Lenarsky C, Forman SJ, Parkman R (1995) The effect of thymic function on immunocompetence following bone marrow transplantation. Biol Blood Marrow Transplant 1:18–23

    PubMed  CAS  Google Scholar 

  75. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Magrath IT, Wexler LH, Dimitrov DS, Gress RE (1997) Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89:3700–3707

    PubMed  CAS  Google Scholar 

  76. Fagnoni FF, Lozza L, Zibera C, Zambelli A, Ponchio L, Gibelli N, Oliviero B, Pavesi L, Gennari R, Vescovini R, Sansoni P, Da Prada G, Robustelli Della Cuna G (2002) T-cell dynamics after high-dose chemotherapy in adults: elucidation of the elusive CD8+ subset reveals multiple homeostatic T-cell compartments with distinct implications for immune competence. Immunology 106:27–37

    PubMed  CAS  Google Scholar 

  77. Sfikakis PP, Gourgoulis GM, Moulopoulos LA, Kouvatseas G, Theofilopoulos AN, Dimopoulos MA (2005) Age-related thymic activity in adults following chemotherapy-induced lymphopenia. Eur J Clin Invest 35:380–387

    PubMed  CAS  Google Scholar 

  78. Li F, Jin F, Freitas A, Szabo P, Weksler ME (2001) Impaired regeneration of the peripheral B cell repertoire from bone marrow following lymphopenia in old mice. Eur J Immunol 31:500–505

    PubMed  CAS  Google Scholar 

  79. Gardner RV, McKinnon E, Astle CM (2001) Analysis of the stem cell sparing properties of cyclophosphamide. Eur J Haematol 67:14–22

    PubMed  CAS  Google Scholar 

  80. Meng A, Wang Y, Brown SA, Van Zant G, Zhou D (2003) Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and -independent mechanisms. Exp Hematol 31:1348–1356

    PubMed  CAS  Google Scholar 

  81. Meng A, Wang Y, Van Zant G, Zhou D (2003) Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res 63:5414–5419

    PubMed  CAS  Google Scholar 

  82. Offner F, Kerre T, De Smedt M, Plum J (1999) Bone marrow CD34 cells generate fewer T cells in vitro with increasing age and following chemotherapy. Br J Haematol 104:801–808

    PubMed  CAS  Google Scholar 

  83. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D (2006) Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107:358–366

    PubMed  CAS  Google Scholar 

  84. Mizutani N, Fujikura Y, Wang YH, Tamechika M, Tokuda N, Sawada T, Fukumoto T (2002) Inflammatory and anti-inflammatory cytokines regulate the recovery from sublethal X irradiation in rat thymus. Radiat Res 157:281–289

    PubMed  CAS  Google Scholar 

  85. Greenberg DB, Gray JL, Mannix CM, Eisenthal S, Carey M (1993) Treatment-related fatigue and serum interleukin-1 levels in patients during external beam irradiation for prostate cancer. J Pain Symptom Manage 8:196–200

    PubMed  CAS  Google Scholar 

  86. Abdul-Hai A, Ben-Yehuda A, Galsky H, Slavin S, Or R (2006) Interleukin 2 regulation following semi-allogeneic bone marrow transplantation in mice. Cancer Immunol Immunother 55:1330–1336

    PubMed  CAS  Google Scholar 

  87. Xia YJ, Gao QP, Wan CC, Cheng FJ, Wang WM, Guo RC (2005) [Effects of HGF on GVHD and Th1/Th2-related cytokines in ALL mice after allo-BMT]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 13:35–38

    PubMed  CAS  Google Scholar 

  88. Yang YC, Wang KL, Su TH, Liao HF, Wu MH, Chen TC, Huang MC, Chen YJ (2006) Concurrent cisplatin-based chemoradiation for cervical carcinoma: tumor response, toxicity, and serum cytokine profiles. Cancer Invest 24:390–395

    PubMed  CAS  Google Scholar 

  89. Gridley DS, Bonnet RB, Bush DA, Franke C, Cheek GA, Slater JD, Slater JM (2004) Time course of serum cytokines in patients receiving proton or combined photon/proton beam radiation for resectable but medically inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 60:759–766

    PubMed  CAS  Google Scholar 

  90. Chung B, Barbara-Burnham L, Barsky L, Weinberg K (2001) Radiosensitivity of thymic interleukin-7 production and thymopoiesis after bone marrow transplantation. Blood 98:1601–1606

    PubMed  CAS  Google Scholar 

  91. Uchimura E, Watanabe N, Niwa O, Muto M, Kobayashi Y (2000) Transient infiltration of neutrophils into the thymus in association with apoptosis induced by whole-body X-irradiation. J Leukoc Biol 67:780–784

    PubMed  CAS  Google Scholar 

  92. Garncarek D (1978) Short time and prolonged low dose X radiation in human immunity. Arch Immunol Ther Exp (Warsz) 26:905–911

    CAS  Google Scholar 

  93. Brennan BM, Rahim A, Mackie EM, Eden OB, Shalet SM (1998) Growth hormone status in adults treated for acute lymphoblastic leukaemia in childhood. Clin Endocrinol (Oxf) 48:777–783

    CAS  Google Scholar 

  94. Chen W, Frank ME, Jin W, Wahl SM (2001) TGF-beta released by apoptotic T cells contributes to an immunosuppressive milieu. Immunity 14:715–725

    PubMed  CAS  Google Scholar 

  95. Kenins L, Gill JW, Boyd RL, Hollander GA, Wodnar-Filipowicz A (2008) Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation. J Exp Med 205:523–531

    PubMed  CAS  Google Scholar 

  96. Chklovskaia E, Jansen W, Nissen C, Lyman SD, Rahner C, Landmann L, Wodnar-Filipowicz A (1999) Mechanism of flt3 ligand expression in bone marrow failure: translocation from intracellular stores to the surface of T lymphocytes after chemotherapy-induced suppression of hematopoiesis. Blood 93:2595–2604

    PubMed  CAS  Google Scholar 

  97. Mantovani G, Madeddu C, Gramignano G, Lusso MR, Mocci M, Massa E, Ferreli L, Astara G, Maccio A, Serpe R (2003) Subcutaneous interleukin-2 in combination with medroxyprogesterone acetate and antioxidants in advanced cancer responders to previous chemotherapy: phase II study evaluating clinical, quality of life, and laboratory parameters. J Exp Ther Oncol 3:205–219

    PubMed  CAS  Google Scholar 

  98. Tsavaris N, Kosmas C, Vadiaka M, Kanelopoulos P, Boulamatsis D (2002) Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br J Cancer 87:21–27

    PubMed  CAS  Google Scholar 

  99. Sato M, Kasai C, Takeuchi S, Takemura M, Shimokawa K, Noma A (1992) [Changes in serum cytokine levels in patients with malignant bone and soft tissue tumors in the course of chemotherapy]. Gan To Kagaku Ryoho 19:1449–1452

    PubMed  CAS  Google Scholar 

  100. Kanabrocki EL, Hermida RC, Haseman MB, Bettis K, Young RM, Mathew JP, Potkul R, Hrushesky WJ (2006) Chronotherapy of ovarian cancer: effect on blood variables and serum cytokines. A case report. Clin Ter 157:349–354

    PubMed  CAS  Google Scholar 

  101. Wood LJ, Nail LM, Perrin NA, Elsea CR, Fischer A, Druker BJ (2006) The cancer chemotherapy drug etoposide (VP-16) induces proinflammatory cytokine production and sickness behavior-like symptoms in a mouse model of cancer chemotherapy-related symptoms. Biol Res Nurs 8:157–169

    PubMed  CAS  Google Scholar 

  102. Pedersen LM, Klausen TW, Davidsen UH, Johnsen HE (2005) Early changes in serum IL-6 and VEGF levels predict clinical outcome following first-line therapy in aggressive non-Hodgkin's lymphoma. Ann Hematol 84:510–516

    PubMed  CAS  Google Scholar 

  103. Benicchi T, Ghidini C, Re A, Cattaneo C, Casari S, Caimi L, Rossi G, Imberti L (2005) T-cell immune reconstitution after hematopoietic stem cell transplantation for HIV-associated lymphoma. Transplantation 80:673–682

    PubMed  Google Scholar 

  104. Sirohi B, Powles R, Morgan G, Treleaven J, Kulkarni S, Horton C, Saso R, Rolfe D, Cook G, Shaw C, Wass J (2007) Use of physiological doses of human growth hormone in haematological patients receiving intensive chemotherapy promotes haematopoietic recovery: a double-blind randomized, placebo-controlled study. Bone Marrow Transplant 39:115–120

    PubMed  CAS  Google Scholar 

  105. Haylock DN, Williams B, Johnston HM, Liu MC, Rutherford KE, Whitty GA, Simmons PJ, Bertoncello I, Nilsson SK (2007) Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 25:1062–1069

    PubMed  CAS  Google Scholar 

  106. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97:2293–2299

    PubMed  CAS  Google Scholar 

  107. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    PubMed  CAS  Google Scholar 

  108. Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301

    PubMed  CAS  Google Scholar 

  109. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    PubMed  CAS  Google Scholar 

  110. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264

    PubMed  CAS  Google Scholar 

  111. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    PubMed  CAS  Google Scholar 

  112. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239

    PubMed  CAS  Google Scholar 

  113. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR, Scadden DT (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201:1781–1791

    PubMed  CAS  Google Scholar 

  114. Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11–21

    PubMed  CAS  Google Scholar 

  115. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    PubMed  CAS  Google Scholar 

  116. Xing Z, Ryan MA, Daria D, Nattamai KJ, Van Zant G, Wang L, Zheng Y, Geiger H (2006) Increased hematopoietic stem cell mobilization in aged mice. Blood 108:2190–2197

    PubMed  CAS  Google Scholar 

  117. Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106:1479–1487

    PubMed  CAS  Google Scholar 

  118. Min H, Montecino-Rodriguez E, Dorshkind K (2006) Effects of aging on the common lymphoid progenitor to pro-B cell transition. J Immunol 176:1007–1012

    PubMed  CAS  Google Scholar 

  119. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102:9194–9199

    PubMed  CAS  Google Scholar 

  120. Guerrettaz LM, Johnson SA, Cambier JC (2008) Acquired hematopoietic stem cell defects determine B-cell repertoire changes associated with aging. Proc Natl Acad Sci U S A 105:11898–11902

    PubMed  CAS  Google Scholar 

  121. Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL (1996) The aging of hematopoietic stem cells. Nat Med 2:1011–1016

    PubMed  CAS  Google Scholar 

  122. El-Badri NS, Wang BY, Cherry, Good RA (1998) Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp Hematol 26:110–116

    PubMed  CAS  Google Scholar 

  123. Nilsson SK, Dooner MS, Weier HU, Frenkel B, Lian JB, Stein GS, Quesenberry PJ (1999) Cells capable of bone production engraft from whole bone marrow transplants in nonablated mice. J Exp Med 189:729–734

    PubMed  CAS  Google Scholar 

  124. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    PubMed  Google Scholar 

  125. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    PubMed  Google Scholar 

  126. Chen X, Armstrong MA, Li G (2006) Mesenchymal stem cells in immunoregulation. Immunol Cell Biol 84:413–421

    PubMed  CAS  Google Scholar 

  127. Hince M, Sakkal S, Vlahos V, Dudakov J, Boyd R, Chidgey A (2008) The role of sex steroids and gonadectomy in the control of thymic involution. Cell Immunol 252(1–2):122–138

    PubMed  CAS  Google Scholar 

  128. Wang J, Zhou F, Dong M, Wu R, Qian Y (2006) Prolonged gonadotropin-releasing hormone agonist therapy reduced expression of nitric oxide synthase in the endometrium of women with endometriosis and infertility. Fertil Steril 85:1037–1044

    PubMed  CAS  Google Scholar 

  129. Dondi D, Festuccia C, Piccolella M, Bologna M, Motta M (2006) GnRH agonists and antagonists decrease the metastatic progression of human prostate cancer cell lines by inhibiting the plasminogen activator system. Oncol Rep 15:393–400

    PubMed  CAS  Google Scholar 

  130. Vottero A, Pedori S, Verna M, Pagano B, Cappa M, Loche S, Bernasconi S, Ghizzoni L (2006) Final height in girls with central idiopathic precocious puberty treated with gonadotropin-releasing hormone analog and oxandrolone. J Clin Endocrinol Metab 91:1284–1287

    PubMed  CAS  Google Scholar 

  131. Pritchard K (2005) Endocrinology and hormone therapy in breast cancer: endocrine therapy in premenopausal women. Breast Cancer Res 7:70–76

    PubMed  CAS  Google Scholar 

  132. Blumenfeld Z (2002) Preservation of fertility and ovarian function and minimalization of chemotherapy associated gonadotoxicity and premature ovarian failure: the role of inhibin-A and -B as markers. Mol Cell Endocrinol 187:93–105

    PubMed  CAS  Google Scholar 

  133. Fitzpatrick FT, Kendall MD, Wheeler MJ, Adcock IM, Greenstein BD (1985) Reappearance of thymus of ageing rats after orchidectomy. J Endocrinol 106:R17–R19

    Article  PubMed  CAS  Google Scholar 

  134. Greenstein BD, Fitzpatrick FT, Adcock IM, Kendall MD, Wheeler MJ (1986) Reappearance of the thymus in old rats after orchidectomy: inhibition of regeneration by testosterone. J Endocrinol 110:417–422

    PubMed  CAS  Google Scholar 

  135. Greenstein BD, Fitzpatrick FT, Kendall MD, Wheeler MJ (1987) Regeneration of the thymus in old male rats treated with a stable analogue of LHRH. J Endocrinol 112:345–350

    PubMed  CAS  Google Scholar 

  136. Marchetti B, Guarcello V, Morale MC, Bartoloni G, Farinella Z, Cordaro S, Scapagnini U (1989) Luteinizing hormone-releasing hormone-binding sites in the rat thymus: characteristics and biological function. Endocrinology 125:1025–1036

    PubMed  CAS  Google Scholar 

  137. Nabarra B, Andrianarison I (1996) Ultrastructural study of thymic microenvironment involution in aging mice. Exp Gerontol 31:489

    PubMed  CAS  Google Scholar 

  138. Utsuyama M, Hirokawa K (1989) Hypertrophy of the thymus and restoration of immune functions in mice and rats by gonadectomy. Mech Ageing Dev 47:175–185

    PubMed  CAS  Google Scholar 

  139. Windmill KF, Meade BJ, Lee VW (1993) Effect of prepubertal gonadectomy and sex steroid treatment on the growth and lymphocyte populations of the rat thymus. Reprod Fertil Dev 5:73–81

    PubMed  CAS  Google Scholar 

  140. Kendall MD, Fitzpatrick FT, Greenstein BD, Khoylou F, Safieh B, Hamblin A (1990) Reversal of ageing changes in the thymus of rats by chemical or surgical castration. Cell Tissue Res 261:555–564

    PubMed  CAS  Google Scholar 

  141. Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, Blazar BR, Millar JL, Malin MA, Chidgey AP, Boyd RL (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:2741–2753

    PubMed  CAS  Google Scholar 

  142. Roden AC, Moser MT, Tri SD, Mercader M, Kuntz SM, Dong H, Hurwitz AA, McKean DJ, Celis E, Leibovich BC, Allison JP, Kwon ED (2004) Augmentation of T cell levels and responses induced by androgen deprivation. J Immunol 173:6098–6108

    PubMed  CAS  Google Scholar 

  143. Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL (2005) Effects of castration on thymocyte development in two different models of thymic involution. J Immunol 175:2982–2993

    PubMed  CAS  Google Scholar 

  144. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    PubMed  CAS  Google Scholar 

  145. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC (2003) Aire regulates negative selection of organ-specific T cells. Nat Immunol 4:350–354

    PubMed  CAS  Google Scholar 

  146. Goldberg GL, Alpdogan O, Muriglan SJ, Hammett MV, Milton MK, Eng JM, Hubbard VM, Kochman A, Willis LM, Greenberg AS, Tjoe KH, Sutherland JS, Chidgey A, van den Brink MR, Boyd RL (2007) Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation. J Immunol 178:7473–7484

    PubMed  CAS  Google Scholar 

  147. Goldberg GL, Sutherland JS, Hammet MV, Milton MK, Heng TS, Chidgey AP, Boyd RL (2005) Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 80:1604–1613

    PubMed  Google Scholar 

  148. Sutherland JS, Spyroglou L, Muirhead JL, Heng TS, Prieto-Hinojosa A, Prince HM, Chidgey AP, Schwarer AP, Boyd RL (2008) Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade. Clin Cancer Res 14:1138–1149

    PubMed  CAS  Google Scholar 

  149. Viselli SM, Olsen NJ, Shults K, Steizer G, Kovacs WJ (1995) Immunochemical and flow cytometric analysis of androgen receptor expression in thymocytes. Mol Cell Endocrinol 109:19–26

    PubMed  CAS  Google Scholar 

  150. Olsen NJ, Viselli SM, Fan J, Kovacs WJ (1998) Androgens accelerate thymocyte apoptosis. Endocrinology 139:748–752

    PubMed  CAS  Google Scholar 

  151. Olsen NJ, Viselli SM, Shults K, Stelzer G, Kovacs WJ (1994) Induction of immature thymocyte proliferation after castration of normal male mice. Endocrinology 134:107–113

    PubMed  CAS  Google Scholar 

  152. Olsen NJ, Watson MB, Kovacs WJ (1991) Studies of immunological function in mice with defective androgen action. Distinction between alterations in immune function due to hormonal insensitivity and alterations due to other genetic factors. Immunology 73:52–57

    PubMed  CAS  Google Scholar 

  153. Olsen NJ, Olson G, Viselli SM, Gu X, Kovacs WJ (2001) Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 142:1278–1283

    PubMed  CAS  Google Scholar 

  154. Batticane N, Morale MC, Gallo F, Farinella Z, Marchetti B (1991) Luteinizing hormone-releasing hormone signaling at the lymphocyte involves stimulation of interleukin-2 receptor expression. Endocrinology 129:277–286

    PubMed  CAS  Google Scholar 

  155. Ellis TM, Moser MT, Le PT, Flanigan RC, Kwon ED (2001) Alterations in peripheral B cells and B cell progenitors following androgen ablation in mice. Int Immunol 13:553–558

    PubMed  CAS  Google Scholar 

  156. de Mello-Coelho V, Gagnerault MC, Souberbielle JC, Strasburger CJ, Savino W, Dardenne M, Postel-Vinay MC (1998) Growth hormone and its receptor are expressed in human thymic cells. Endocrinology 139:3837–3842

    PubMed  Google Scholar 

  157. De Mello-Coelho V, Savino W, Postel-Vinay MC, Dardenne M (1998) Role of prolactin and growth hormone on thymus physiology. Dev Immunol 6:317–323

    PubMed  Google Scholar 

  158. Napolitano LA, Schmidt D, Gotway MB, Ameli N, Filbert EL, Ng MM, Clor JL, Epling L, Sinclair E, Baum PD, Li K, Killian ML, Bacchetti P, McCune JM (2008) Growth hormone enhances thymic function in HIV-1-infected adults. J Clin Invest 118:1085–1098

    PubMed  CAS  Google Scholar 

  159. Xue HH, Kovanen PE, Pise-Masison CA, Berg M, Radovich MF, Brady JN, Leonard WJ (2002) IL-2 negatively regulates IL-7 receptor alpha chain expression in activated T lymphocytes. Proc Natl Acad Sci U S A 99:13759–13764

    PubMed  CAS  Google Scholar 

  160. Alpdogan O, Muriglan SJ, Eng JM, Willis LM, Greenberg AS, Kappel BJ, van den Brink MR (2003) IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation. J Clin Invest 112:1095–1107

    PubMed  CAS  Google Scholar 

  161. Bolotin E, Smogorzewska M, Smith S, Widmer M, Weinberg K (1996) Enhancement of thymopoiesis after bone marrow transplant by in vivo interleukin-7. Blood 88:1887–1894

    PubMed  CAS  Google Scholar 

  162. Alpdogan O, Schmaltz C, Muriglan SJ, Kappel BJ, Perales MA, Rotolo JA, Halm JA, Rich BE, van den Brink MR (2001) Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease. Blood 98:2256–2265

    PubMed  CAS  Google Scholar 

  163. Toraldo G, Roggia C, Qian WP, Pacifici R, Weitzmann MN (2003) IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells. Proc Natl Acad Sci U S A 100:125–130

    PubMed  CAS  Google Scholar 

  164. Aspinall R, Pido-Lopez J, Imami N, Henson SM, Ngom PT, Morre M, Niphuis H, Remarque E, Rosenwirth B, Heeney JL (2007) Old rhesus macaques treated with interleukin-7 show increased TREC levels and respond well to influenza vaccination. Rejuvenation Res 10:5–17

    PubMed  CAS  Google Scholar 

  165. Rosenberg SA, Sportes C, Ahmadzadeh M, Fry TJ, Ngo LT, Schwarz SL, Stetler-Stevenson M, Morton KE, Mavroukakis SA, Morre M, Buffet R, Mackall CL, Gress RE (2006) IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 29:313–319

    PubMed  CAS  Google Scholar 

  166. Sportes C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Fleisher TA, Krumlauf MC, Babb RR, Chow CK, Fry TJ, Engels J, Buffet R, Morre M, Amato RJ, Venzon DJ, Korngold R, Pecora A, Gress RE, Mackall CL (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205:1701–1714

    PubMed  CAS  Google Scholar 

  167. De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal–epithelial signalling during mouse organogenesis. Development 127:483–492

    PubMed  Google Scholar 

  168. Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL, Yin S, Hill DC, Wiemann B, Starnes CO, Havill AM, Lu ZN, Aukerman SL, Pierce GF, Thomason A, Potten CS, Ulich TR, Lacey DL (1998) Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 58:933–939

    PubMed  CAS  Google Scholar 

  169. Finch PW, Cunha GR, Rubin JS, Wong J, Ron D (1995) Pattern of keratinocyte growth factor and keratinocyte growth factor receptor expression during mouse fetal development suggests a role in mediating morphogenetic mesenchymal–epithelial interactions. Dev Dyn 203:223–240

    PubMed  CAS  Google Scholar 

  170. Finch PW, Rubin JS, Miki T, Ron D, Aaronson SA (1989) Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245:752–755

    PubMed  CAS  Google Scholar 

  171. Mason IJ, Fuller-Pace F, Smith R, Dickson C (1994) FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelial-mesenchymal interactions. Mech Dev 45:15–30

    PubMed  CAS  Google Scholar 

  172. Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, Givol D, Lonai P (1993) Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 158:475–486

    PubMed  CAS  Google Scholar 

  173. Rubin JS, Bottaro DP, Chedid M, Miki T, Ron D, Cunha GR, Finch PW (1995) Keratinocyte growth factor as a cytokine that mediates mesenchymal–epithelial interaction. Exs 74:191–214

    PubMed  CAS  Google Scholar 

  174. Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA (1989) Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci U S A 86:802–806

    PubMed  CAS  Google Scholar 

  175. Yi ES, Williams ST, Lee H, Malicki DM, Chin EM, Yin S, Tarpley J, Ulich TR (1996) Keratinocyte growth factor ameliorates radiation- and bleomycin-induced lung injury and mortality. Am J Pathol 149:1963–1970

    PubMed  CAS  Google Scholar 

  176. Miki T, Bottaro DP, Fleming TP, Smith CL, Burgess WH, Chan AM, Aaronson SA (1992) Determination of ligand-binding specificity by alternative splicing:two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci U S A 89:246–250

    PubMed  CAS  Google Scholar 

  177. Alpdogan O, Hubbard VM, Smith OM, Patel N, Lu S, Goldberg GL, Gray DH, Feinman J, Kochman AA, Eng JM, Suh D, Muriglan SJ, Boyd RL, van den Brink MR (2006) Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 107:2453–2460

    PubMed  CAS  Google Scholar 

  178. Min D, Panoskaltsis-Mortari A, Kuro OM, Hollander GA, Blazar BR, Weinberg KI (2007) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109:2529–2537

    PubMed  CAS  Google Scholar 

  179. Seggewiss R, Lore K, Guenaga FJ, Pittaluga S, Mattapallil J, Chow CK, Koup RA, Camphausen K, Nason MC, Meier-Schellersheim M, Donahue RE, Blazar BR, Dunbar CE, Douek DC (2007) Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood 110:441–449

    PubMed  CAS  Google Scholar 

  180. Takeoka M, Ward WF, Pollack H, Kamp DW, Panos RJ (1997) KGF facilitates repair of radiation-induced DNA damage in alveolar epithelial cells. Am J Physiol 272:L1174–L1180

    PubMed  CAS  Google Scholar 

  181. Spielberger R, Stiff P, Bensinger W, Gentile T, Weisdorf D, Kewalramani T, Shea T, Yanovich S, Hansen K, Noga S, McCarty J, LeMaistre CF, Sung EC, Blazar BR, Elhardt D, Chen MG, Emmanouilides C (2004) Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med 351:2590–2598

    PubMed  CAS  Google Scholar 

  182. Stiff PJ, Emmanouilides C, Bensinger WI, Gentile T, Blazar B, Shea TC, Lu J, Isitt J, Cesano A, Spielberger R (2006) Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J Clin Oncol 24:5186–5193

    PubMed  CAS  Google Scholar 

  183. Panoskaltsis-Mortari A, Lacey DL, Vallera DA, Blazar BR (1998) Keratinocyte growth factor administered before conditioning ameliorates graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood 92:3960–3967

    PubMed  CAS  Google Scholar 

  184. Panoskaltsis-Mortari A, Taylor PA, Rubin JS, Uren A, Welniak LA, Murphy WJ, Farrell CL, Lacey DL, Blazar BR (2000) Keratinocyte growth factor facilitates alloengraftment and ameliorates graft-versus-host disease in mice by a mechanism independent of repair of conditioning-induced tissue injury. Blood 96:4350–4356

    PubMed  CAS  Google Scholar 

  185. Rossi S, Blazar BR, Farrell CL, Danilenko DM, Lacey DL, Weinberg KI, Krenger W, Hollander GA (2002) Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 100:682–691

    PubMed  CAS  Google Scholar 

  186. Kelly RM, Highfill SL, Panoskaltsis-Mortari A, Taylor PA, Boyd RL, Hollander GA, Blazar BR (2008) Keratinocyte growth factor and androgen blockade work in concert to protect against conditioning regimen-induced thymic epithelial damage and enhance T-cell reconstitution following murine bone marrow transplantation. Blood 111(12):5734–5744

    PubMed  CAS  Google Scholar 

  187. Finch PW, Rubin JS (2006) Keratinocyte growth factor expression and activity in cancer: implications for use in patients with solid tumors. J Natl Cancer Inst 98:812–824

    Article  PubMed  CAS  Google Scholar 

  188. Moore TA, Zlotnik A (1997) Differential effects of Flk-2/Flt-3 ligand and stem cell factor on murine thymic progenitor cells. J Immunol 158:4187–4192

    PubMed  CAS  Google Scholar 

  189. Ceredig R, Rauch M, Balciunaite G, Rolink AG (2006) Increasing Flt3L availability alters composition of a novel bone marrow lymphoid progenitor compartment. Blood 108:1216–1222

    PubMed  CAS  Google Scholar 

  190. Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG (2003) Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J Exp Med 198:305–313

    PubMed  CAS  Google Scholar 

  191. Lyman SD, Jacobsen SE (1998) c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91:1101–1134

    PubMed  CAS  Google Scholar 

  192. Ramsfjell V, Borge OJ, Veiby OP, Cardier J, Murphy MJ Jr, Lyman SD, Lok S, Jacobsen SE (1996) Thrombopoietin, but not erythropoietin, directly stimulates multilineage growth of primitive murine bone marrow progenitor cells in synergy with early acting cytokines: distinct interactions with the ligands for c-kit and FLT3. Blood 88:4481–4492

    PubMed  CAS  Google Scholar 

  193. Veiby OP, Lyman SD, Jacobsen SE (1996) Combined signaling through interleukin-7 receptors and flt3 but not c-kit potently and selectively promotes B-cell commitment and differentiation from uncommitted murine bone marrow progenitor cells. Blood 88:1256–1265

    PubMed  CAS  Google Scholar 

  194. Wodnar-Filipowicz A (2003) Flt3 ligand: role in control of hematopoietic and immune functions of the bone marrow. News Physiol Sci 18:247–251

    PubMed  CAS  Google Scholar 

  195. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR (1995) Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3:147–161

    PubMed  CAS  Google Scholar 

  196. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B, Roux ER, Teepe M, Lyman SD, Peschon JJ (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497

    PubMed  CAS  Google Scholar 

  197. Streeter PR, Dudley LZ, Fleming WH (2003) Activation of the G-CSF and Flt-3 receptors protects hematopoietic stem cells from lethal irradiation. Exp Hematol 31:1119–1125

    PubMed  CAS  Google Scholar 

  198. MacDonald KP, Rowe V, Filippich C, Thomas R, Clouston AD, Welply JK, Hart DN, Ferrara JL, Hill GR (2003) Donor pretreatment with progenipoietin-1 is superior to granulocyte colony-stimulating factor in preventing graft-versus-host disease after allogeneic stem cell transplantation. Blood 101:2033–2042

    PubMed  CAS  Google Scholar 

  199. Fry TJ, Sinha M, Milliron M, Chu YW, Kapoor V, Gress RE, Thomas E, Mackall CL (2004) Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution. Blood 104:2794–2800

    PubMed  CAS  Google Scholar 

  200. Wils EJ, Braakman E, Verjans GM, Rombouts EJ, Broers AE, Niesters HG, Wagemaker G, Staal FJ, Lowenberg B, Spits H, Cornelissen JJ (2007) Flt3 ligand expands lymphoid progenitors prior to recovery of thymopoiesis and accelerates T cell reconstitution after bone marrow transplantation. J Immunol 178:3551–3557

    PubMed  CAS  Google Scholar 

  201. Sambandam A, Maillard I, Zediak VP, Xu L, Gerstein RM, Aster JC, Pear WS, Bhandoola A (2005) Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 6:663–670

    PubMed  CAS  Google Scholar 

  202. Sitnicka E, Bryder D, Theilgaard-Monch K, Buza-Vidas N, Adolfsson J, Jacobsen SE (2002) Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17:463–472

    PubMed  CAS  Google Scholar 

  203. Schwarz BA, Sambandam A, Maillard I, Harman BC, Love PE, Bhandoola A (2007) Selective thymus settling regulated by cytokine and chemokine receptors. J Immunol 178:2008–2017

    PubMed  CAS  Google Scholar 

  204. Bertho JM, Chapel A, Loilleux S, Frick J, Aigueperse J, Gorin NC, Gourmelon P (2000) CD135 (Flk2/Flt3) expression by human thymocytes delineates a possible role of FLT3-ligand in T-cell precursor proliferation and differentiation. Scand J Immunol 52:53–61

    PubMed  CAS  Google Scholar 

  205. Kikushige Y, Yoshimoto G, Miyamoto T, Iino T, Mori Y, Iwasaki H, Niiro H, Takenaka K, Nagafuji K, Harada M, Ishikawa F, Akashi K (2008) Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol 180:7358–7367

    PubMed  CAS  Google Scholar 

  206. Mitsiadis TA, Barrandon O, Rochat A, Barrandon Y, De Bari C (2007) Stem cell niches in mammals. Exp Cell Res 313:3377–3385

    PubMed  CAS  Google Scholar 

  207. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885

    PubMed  CAS  Google Scholar 

  208. Carlson ME, Conboy IM (2007) Loss of stem cell regenerative capacity within aged niches. Aging Cell 6:371–382

    PubMed  CAS  Google Scholar 

  209. Chidgey A, Dudakov J, Seach N, Boyd R (2007) Impact of niche aging on thymic regeneration and immune reconstitution. Semin Immunol 19:331–340

    PubMed  CAS  Google Scholar 

  210. Mayhall EA, Paffett-Lugassy N, Zon LI (2004) The clinical potential of stem cells. Curr Opin Cell Biol 16:713–720

    PubMed  CAS  Google Scholar 

  211. Ryu BY, Orwig KE, Oatley JM, Avarbock MR, Brinster RL (2006) Effects of aging and niche microenvironment on spermatogonial stem cell self-renewal. Stem Cells 24:1505–1511

    PubMed  CAS  Google Scholar 

  212. Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and characterization of thymic epithelial progenitor cells. Immunity 16:803–814

    PubMed  CAS  Google Scholar 

  213. Gill J, Malin M, Hollander GA, Boyd R (2002) Generation of a complete thymic microenvironment by MTS24(+) thymic epithelial cells. Nat Immunol 3:635–642

    PubMed  CAS  Google Scholar 

  214. Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441:988–991

    PubMed  CAS  Google Scholar 

  215. Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441:992–996

    PubMed  CAS  Google Scholar 

  216. Godfrey DI, Izon DJ, Tucek CL, Wilson TJ, Boyd RL (1990) The phenotypic heterogeneity of mouse thymic stromal cells. Immunology 70:66–74

    PubMed  CAS  Google Scholar 

  217. Depreter MG, Blair NF, Gaskell TL, Nowell CS, Davern K, Pagliocca A, Stenhouse FH, Farley AM, Fraser A, Vrana J, Robertson K, Morahan G, Tomlinson SR, Blackburn CC (2008) Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells. Proc Natl Acad Sci USA 105(3):961–966

    PubMed  CAS  Google Scholar 

  218. Rossi SW, Chidgey AP, Parnell SM, Jenkinson WE, Scott HS, Boyd RL, Jenkinson EJ, Anderson G (2007) Redefining epithelial progenitor potential in the developing thymus. Eur J Immunol 37:2411–2418

    PubMed  CAS  Google Scholar 

  219. Gillard GO, Farr AG (2006) Features of medullary thymic epithelium implicate postnatal development in maintaining epithelial heterogeneity and tissue-restricted antigen expression. J Immunol 176:5815–5824

    PubMed  CAS  Google Scholar 

  220. Clark RA, Yamanaka K, Bai M, Dowgiert R, Kupper TS (2005) Human skin cells support thymus-independent T cell development. J Clin Invest 115:3239–3249

    PubMed  CAS  Google Scholar 

  221. Poznansky MC, Evans RH, Foxall RB, Olszak IT, Piascik AH, Hartman KE, Brander C, Meyer TH, Pykett MJ, Chabner KT, Kalams SA, Rosenzweig M, Scadden DT (2000) Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat Biotechnol 18:729–734

    PubMed  CAS  Google Scholar 

  222. Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM (2007) An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. Faseb J 21:511–522

    PubMed  CAS  Google Scholar 

  223. Mian R, Morrison WA, Hurley JV, Penington AJ, Romeo R, Tanaka Y, Knight KR (2000) Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng 6:595–603

    PubMed  CAS  Google Scholar 

  224. Chidgey AP, Layton D, Trounson A, Boyd RL (2008) Tolerance strategies for stem-cell-based therapies. Nature 453:330–337

    PubMed  CAS  Google Scholar 

  225. Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588

    PubMed  CAS  Google Scholar 

  226. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge generous research support from the Australian Stem Cell Centre, the National Health and Medical Research Council of Australia and Norwood Immunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann P. Chidgey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chidgey, A.P., Seach, N., Dudakov, J. et al. Strategies for reconstituting and boosting T cell-based immunity following haematopoietic stem cell transplantation: pre-clinical and clinical approaches. Semin Immunopathol 30, 457–477 (2008). https://doi.org/10.1007/s00281-008-0140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-008-0140-5

Keywords

Navigation