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Abstract The epothilones and their analogs constitute a
novel class of antineoplastic agents, produced by the myxo-
bacterium Sorangium cellulosum. These antimicrotubule
agents act in a similar manner to taxanes, stabilizing micro-
tubules and resulting in arrested tumor cell division and
apoptosis. Unlike taxanes, however, epothilones and their
analogs are macrolide antibiotics, with a distinct tubulin
binding mode and reduced susceptibility to a range of com-
mon tumor resistance mechanisms that limit the effective-
ness of taxanes and anthracyclines. While natural
epothilones A and B show potent antineoplastic activity in
vitro, these effects were not seen in preclinical in vivo mod-
els due to their poor metabolic stability and unfavorable
pharmacokinetics. A range of epothilone analogs was syn-
thesized, therefore, with the aim of identifying those with
more favorable characteristics. Here, we describe the pre-
clinical characterization and selection of ixabepilone, a
semi-synthetic epothilone B analog, among many other
epothilone analogs. Ixabepilone demonstrated superior pre-
clinical characteristics, including high metabolic stability,
low plasma protein binding and low susceptibility to multi-
drug resistance protein-mediated efflux, all of which were
predictive of potent in vivo cell-killing activity. Ixabepilone
also demonstrated in vivo antitumor activity in a range of
human tumor models, several of which displayed resistance
to commonly used agents such as anthracyclines and taxanes.
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These favorable preclinical characteristics have since
translated to the clinic. Ixabepilone has shown promising
phase II clinical efficacy and acceptable tolerability in a
wide range of cancers, including heavily pretreated and
drug-resistant tumors. Based on these results, a randomized
phase III trial was conducted in anthracycline-pretreated or
resistant and taxane-resistant metastatic breast cancer to
evaluate ixabepilone in combination with capecitabine.
Ixabepilone combination therapy showed significantly supe-
rior progression-free survival and tumor responses over
capecitabine alone.
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Introduction

Since the clinical antitumor activity of the taxanes was dis-
covered in the 1990s, the rationale for using microtubule-
stabilizing agents in the treatment of cancer is undisputed
[1]. Taxanes are clinically active against a wide range of
tumor types, and play a key role in the treatment of both
primary and metastatic breast cancer [2]. However, resis-
tance to cytotoxic drugs (including taxanes) is common,
and results in reduced response rates and ultimate disease
progression in most patients with metastatic cancer [3].
While some tumors display intrinsic resistance to chemo-
therapeutic drugs, and thus show no response, others are
initially responsive to chemotherapy, but subsequently
develop acquired resistance. Both intrinsic and acquired
resistance lead to a requirement for alternative treatment
options [3].

A major mechanism by which tumors display resistance
to commonly used agents such as taxanes and anthracyclines

@ Springer



158

Cancer Chemother Pharmacol (2008) 63:157-166

is through overexpression of multidrug resistance (MDR)
proteins including P-glycoprotein (P-gp) and multidrug
resistance-associated protein (MRP)-1 [4]. Overexpression
of these efflux pump proteins causes retention of sub-thera-
peutic concentrations of drug in tumor cells, which results
in a lack of efficacy. In some tumors that are intrinsically
resistant to chemotherapy, expression of MDR proteins
reflects the constitutive expression of these proteins by the
tissues from which the tumors are derived (for example,
liver and kidney). However, in tumors derived from tissue
types that do not express MDR proteins physiologically,
treatment with chemotherapy can induce expression of
these proteins. This results in acquired resistance to the
chemotherapy agent used, in addition to drugs of the same
class and, on occasion, of different classes [3]. In the case
of the taxanes, at least one other mechanism of drug resis-
tance is known to exist: the overexpression of the SIII-tubu-
lin isoform in preference to the SII isoform reduces the
efficacy of taxanes, as these drugs specifically target the SII
isoform [5-8].

In recent years, there has been a great deal of interest
among the oncology community in targeted agents. It is
now widely acknowledged that agents such as trastuzumab
(which targets HER2 in breast cancer) and bevacizumab
(which targets VEGF to inhibit angiogenesis in a range of
solid tumors) have the potential benefits of at least compa-
rable efficacy and reduced side-effects compared with cyto-
toxic agents. However, targeted therapies are only effective
in subsets of patients with tumors expressing the target
molecule, hence it is likely that cytotoxic agents will
remain important in the treatment of cancer, either in com-
bination with other agents [as seen clinically with paclitaxel
in combination with bevacizumab in trials of non-small cell
lung carcinoma (NSCLC)] or second-line to other therapies
[9, 10]. There is, therefore, a pressing need for the develop-
ment of novel antineoplastic agents that are able to over-
come major mechanisms of tumor drug resistance.

Natural epothilones and their analogs are a novel class of
antineoplastic agents, produced by the myxobacterium
Sorangium cellulosum [11, 12]. Like the taxanes, epothil-
ones promote tumor cell death by stabilizing microtubules
and inducing apoptosis [13]. However, as macrolide antibi-
otics, the epothilones are structurally unrelated to taxanes
and have a distinct tubulin-binding mode. Moreover, unlike
taxanes and anthracyclines, epothilones have low suscepti-
bility to multiple mechanisms of tumor cell resistance,
including MDR, pIII-tubulin overexpression and f-tubulin
mutations [8, 14, 15].

The potential for reduced susceptibility to common
mechanisms of tumor resistance led to preclinical and
clinical evaluation of natural epothilones A-F (Fig. la),
and a wide range of synthetic and semi-synthetic analogs of
these agents. This review will describe the preclinical
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development and selection of a particular epothilone
analog, BMS-247550 (ixabepilone), a semi-synthetic analog
of natural epothilone B that has shown phase II clinical activ-
ity in a wide range of tumor types, including those heavily
pretreated with, and/or resistant to, prior therapies [16-26].

Epothilones and their analogs: a novel class
of antineoplastic agents

Epothilones are 16-member macrolides with unique anti-
bacterial and antifungal activity. Preclinical experiments
have shown that natural epothilones A and B have potent
antineoplastic activity against a wide range of tumor cell
lines in vitro [14, 27]. This is particularly true for epothi-
lone B, which showed greater in vitro activity when com-
pared with epothilone A [28, 29]. However, this promising
in vitro activity of these natural epothilones did not trans-
late into robust in vivo preclinical antitumor efficacy [30].
This was due to the poor metabolic stability and unfavor-
able pharmacokinetic properties of natural epothilones seen
in rodent models. Synthetic and semi-synthetic epothilone
analogs were, therefore, developed, with the aim of yield-
ing more favorable preclinical characteristics that would
lead to improved in vivo activity [31, 32]. This was possi-
ble due to the fact that epothilones have a structure of only
moderate complexity, and are amenable to total and semi-
synthesis. A range of semisynthetic analogs was developed
and tested by Bristol-Myers Squibb in order to identify
candidates with a superior efficacy and safety profile versus
epothilone B. Of these, ixabepilone is an analog rationally
designed for high in vivo efficacy, good metabolic stability,
low protein binding and increased water solubility. The lac-
tone oxygen is replaced with nitrogen, resulting in the lac-
tam compound (Fig. 1b). Significantly, this lactam ring is
not susceptible to hydrolysis by esterases, conferring meta-
bolic stability on ixabepilone. Because of its improved
water solubility, ixabepilone has a reduced requirement in
its formulation for the solubilizing agent cremophor, an
agent that has been associated with hypersensitivity
reaction in patients.

Preclinical evaluation of ixabepilone

In order to be of clinical value, an epothilone analog must:
(1) be efficacious, resulting in clinically meaningful
responses at practical concentrations; (2) have an accept-
able safety profile; and (3) be readily available through
scalable synthesis.

While the in vitro cytotoxicity/activity of the drug may
give some indication of how potent the drug will be in vivo,
this is not always the case (as seen for natural epothilones B
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Fig. 1 a Structures of natural a
epothilones A—F and b the semi-

synthetic epothilone B analog

ixabepilone 21

Epothilone A R=H
B R=Me

Epothilone C R=H
D R=Me

Epothilone E R=H
F R=Me

and A). This is because many confounding factors exist
in the in vivo environment that are not present in simple in
vitro systems, resulting in unpredictable differences in
efficacy when a drug initially evaluated in vitro is tested
in vivo. For example, even though a drug may have very
potent in vitro activity, it will not be clinically effective
unless it is metabolically stable in vivo, allowing therapeutic
concentrations to be maintained for the required time. Deter-
mination of metabolic stability during preclinical develop-
ment is, therefore, of great importance. Minimal plasma
protein binding is another important factor related to in vivo
efficacy. If plasma protein binding is too high, effective
concentrations of the drug will not be distributed to the target
tumor tissues. Due to the clinical significance of MDR in
many current chemotherapy treatments, low susceptibility
to MDR-mediated efflux is an important characteristic for a
novel agent to possess. However, too low a susceptibility to
MDR could lead to gastrointestinal toxicity, since gastroin-
testinal cells normally are protected from the toxic effects
of drugs through expression of P-gp. It is important,
therefore, that a level of MDR susceptibility of a given
drug allows effective drug concentrations to be maintained
within cells, while minimizing gastrointestinal toxicity.

In order to evaluate properties that may be predictive of
clinical efficacy, a range of preclinical characteristics was
determined for 15 semi-synthetic epothilone analogs syn-
thesized by Bristol-Myers Squibb, including ixabepilone.
Results of these assays (with brief methodologies) are
described below, and summarized in Table 1.

Preclinical in vivo efficacy

As a measure of antitumor efficacy, log cell kill (LCK) was
determined for the 15 epothilone analogs and compared
with that for the natural epothilones, using the patient-
derived Pat-7 ovarian carcinoma model (established from
an ovarian cancer patient who had acquired resistance to
standard of care chemotherapy, including TAXOL and
platinum). Tumor xenografts demonstrated overexpression
of P-gp (MDR) and multidrug resistance related protein
(MRP) [14]. Tumor fragments approximately 50 mg in size
were implanted subcutaneously and animals treated with
the natural epothilones or the analogs. Tumor response to
treatment was determined as previously described [14].
Statistical evaluations of the data were performed using
Gehan’s generalized Wilcoxon test [33].
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Table 1 Preclinical characteristics of natural epothilones and 15 semi-synthetic analogs

Epothilone/analog Analog related Efficacy ICy, (nM) ECy (LM) Metabolic stability Plasma protein MDR
to epothilone (LCK) [nmol/(min mg)] binding (%) (CsyR/S)

Epothilone A - 0.1 4.25 2.00 0.50 76.6 0.82
Epothilone B - 0.4 0.41 1.80 1.02 92.0 1.48
Epothilone C - ND 6.30 3.65 2.40 ND ND
Epothilone D - 0 6.00 0.60 1.20 99.9 0.98
Epothilone E - ND 6.60 15.50 0.10 90.9 ND
Epothilone F - 1.4 0.28 1.70 0.30 91.0 3.86
BMS-247550 B 2.1 2.60 2.00 0.01 79.4 7.77
BMS-260807 B 0.3 3.40 1.50 0.20 98.0 0.88
BMS-264083 B 2.3 1.00 3.90 0.06 59.0 1.70
BMS-273266 B 0.1 0.70 2.10 0.63 99.3 0.71
BMS-273645 A 0.2 2.60 1.15 1.44 92.0 0.88
BMS-276026 A 0.8 2.70 14.1 0.26 78.6 2.52
BMS-298209 A 0 1.40 1.40 1.60 99.1 1.00
BMS-310656 B 0.2 4.10 2.50 0.27 89.2 1.24
BMS-310704 B 0.4 0.29 1.00 0.27 83.8 1.50
BMS-310705 B 2.4 0.93 7.40 0.06 57.5 16.8
BMS-340475 A 1.0 5.70 1.60 0.10 71.8 2.86
BMS-349145 D 0.1 130 88.9 1.75 97.0 2.45
BMS-357575 B 1.8 1.78 6.60 0.21 87.4 9.29
BMS-362993 A 0.9 59.9 611 0.01 89.2 3.27
BMS-363008 B 1.6 0.94 2.10 0.58 68.4 9.11
Efficacy correlation (r) 0.22 0.0009 0.62 0.76 0.77
P value (2-tailed)* 0.37 0.97 0.004 0.0002 0.0001

EC,,: effective concentration, defined as the interpolated concentration of drug capable of inducing an initial tubulin turbidity slope of 0.01 A280
nm/min rate and calculated using the formula—EC, ,; = concentration/slope. Values expressed as means from three different concentrations; 1Cs:

the concentration of drug required to kill 50% of HCT-116 tumor cells

LCK log cell kill; MDR multidrug resistance susceptibility, as determined by the ratio of ICs, values in MDR resistant versus sensitive cell lines

(MDR R/S); ND not determined

* Pearson correlation

The LCK for ixabepilone (2.10) was at the upper end of
the range obtained for the 15 analogs (0-2.4; Table 1).
Furthermore, the LCK for ixabepilone was significantly
higher than that for natural epothilone B (LCK = 0.4;
Fig. 2; P < 0.0017), suggesting greater in vivo antitumor
efficacy for ixabepilone; this was reflected by a more rapid
reduction in tumor weight following ixabepilone treatment
compared with natural epothilone B.

In vitro evaluations of ixabepilone potency

In vitro cytotoxicity

Having determined this higher in vivo antitumor activity
for ixabepilone versus natural epothilone B and most of the
14 other analogs, in vitro characteristics were compared to

determine whether these were predictive of in vivo efficacy.
In vitro antitumor potency was assessed on the basis of ICy,

@ Springer

values against HCT-116 cells (HCT-116 is a non-P-gp
expressing cell line chosen for this purpose in order to
avoid susceptibility to MDR as a confounding factor). The
ICj, values for the 15 analogs ranged from 0.29 to 130 nM.
Encouragingly, ixabepilone retained a very low IC, value
(2.60 nM), suggesting high cytotoxicity of this analog.
However, the I1Cs, for ixabepilone was comparable to that
of natural epothilone B (0.41 nM), and the ICy, values did
not correlate with in vivo efficacy as measured by LCK
(Pearson correlation r = 0.22; P = 0.37).

Tubulin polymerization

Although ICs is a valuable pharmacologic parameter for
any drug, the high speed of tubulin polymerization induced
by epothilones and their analogs makes the measurement of
this end point difficult. The rate of change in the propor-
tion of polymerized tubulin is, therefore, a more accurate
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Fig. 2 Median tumor weight against days post-tumor implantation for
ixabepilone and epothilone B in the Pat-7 breast carcinoma model

determinant of potency. In order to evaluate tubulin-
polymerizing activity, spectrophotometric analyses of turbidity
following addition of each drug to a solution of tubulin
were performed as previously described [34]. Effective
concentration (EC,,,) was defined as the interpolated
concentration capable of inducing an initial slope of 0.01
A280 nm/min rate, and was calculated using the formula:
EC,(; = concentration/slope.

EC,(; values obtained for the 15 analogs ranged from
1.0 to 611 pM. Ixabepilone displayed potent tubulin-poly-
merizing activity, with an EC,,, value of just 2.0 pM. This
is consistent with the potent cytotoxicity of ixabepilone as
demonstrated by its low ICs,. However, like ICs,, EC(,;
was not a significant predictor of in vivo efficacy as
measured by LCK (» = 0.009; P = 0.97).

Metabolic stability of ixabepilone

As mentioned above, poor metabolic stability of natural
epothilone B was one major reason why its promising pre-
clinical antitumor activity did not translate into preclinical
in vivo efficacy. Although human plasma does not contain
esterases (unlike mouse plasma), esterases in human liver
would, nevertheless, be able to degrade epothilones. It was,
therefore, important to establish the metabolic stabilities of
the natural epothilones and the 15 analogs in order to select
those with the greatest stability in mice, particularly in light
of the fact that in vitro activity did not appear to be predic-
tive of in vivo activity.

Metabolic stability was assessed by incubating each drug
with mouse S9 liver fraction, obtained by standard methods
[35] at 37°C and sampling at 1, 15, and 45 min. Metabolic
stability was expressed as the rate of hydrolysis. The results
showed that the metabolic stability of the epothilone ana-
logs tested ranged from 0.01 to 1.75 nmol/(min mg pro-
tein). Importantly, those analogs susceptible to metabolic

breakdown were ineffective in terms of antitumor activity; a
Pearson correlation showed that reduced metabolic stability
was a significant predictor of poor in vivo antitumor
efficacy as measured by LCK (Fig. 3a; r=0.76; P < 0.004).
Natural epothilones A and B were significantly degraded,
with hydrolysis rates of 0.5 and 1.02 nmol/(min mg),
respectively. Ixabepilone, however, showed very high met-
abolic stability, with a hydrolysis rate of 0.01 nmol/(min
mg). Thus, the metabolic stability of ixabepilone was supe-
rior to all natural epothilones and analogs tested, with a rate
of hydrolysis 100-fold lower than that of its parent com-
pound, epothilone B. Further nonclinical metabolic studies
indicate that ixabepilone is metabolized primarily by cyto-
chrome P450 (CYP) 3A4/5 to many metabolites (but no
active metabolites had been identified). Ixabepilone is
neither a CYP inhibitor nor a CYP inducer at clinically
relevant concentrations (BMS unpublished data).

Plasma protein binding

Since plasma protein binding is an important determinant
of in vivo drug potency (as discussed above) the plasma
protein binding characteristics were determined in mouse
plasma. Briefly, after determining non-specific binding in
blank serum ultrafiltrate, serum samples of test compounds
were centrifuged to obtain ultrafiltrates. The percentage
protein binding was determined by measuring the concen-
trations in serum and ultrafiltrate by HPLC-UV assay.

80 Paclitaxel t

60

Resistant tumor

40 Sensitive tumor
Ixabepilone

20

Relative resistance (%)

-20

0 1 2 3 4
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Fig. 3 Development of resistance to paclitaxel, but not ixabepilone, in
the human ovarian carcinoma xenograft model A2780. The drug resis-
tance induction protocol employed is as follows: mice bearing the
A2780 xenografts were treated with maximum-tolerated dose (MTD)
regimens of either paclitaxel (36 mg/kg IV, Q2D x 5) or ixabepilone
(10 mg/kg, IV, Q4D x 3). Treated tumors underwent a typical re-
sponse pattern of regression followed by regrowth, resulting in tumor
responses of 2.4 and 3.5 LCK for paclitaxel and ixabepilone, respec-
tively. A regrown tumor was re-implanted into another group of mice
which were then treated again with each drug at their MTDs. This pro-
cedure was repeated during the course of over 3 years. For paclitaxel,
resistance developed readily with sensitivity decreased by 75% at the
end of 1 year (LCK = 0.6). For ixabepilone, resistance developed more
slowly and less completely with responsiveness at 40% of initial at
approximately 3 years (LCK = 1.4)
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Percentage of free compound was expressed as 100 x
(Chirae)(Cyorum)- As was the case with low metabolic sta-
bility, high plasma protein binding was significantly predic-
tive of poor in vivo efficacy, as measured by LCK (Fig. 3b;
r=0.76; P <0.0002). Plasma protein binding of the 15 ana-
logs ranged from 57.5 to 99.3%, with natural epothilone B
at the upper end of this range, at 92.0%. Importantly, how-
ever, the plasma protein binding of ixabepilone was lower
than that of natural epothilone B, at 79.4. It should be noted
that the degree of binding of the tubulin agents to plasma
protein is unrelated to binding potency to the tubulin target
itself (e.g. ixabepilone is more potent than paclitaxel in this
regard [14], whereas paclitaxel is more plasma protein
bound at 96%).

Multidrug resistance susceptibility

Susceptibility to MDR is an important characteristic that is
related not only to drug resistance, but also tolerability in
the in vivo setting. To establish the susceptibility of each
agent to MDR, ICs, values against HCT116/VM46 (MDR
resistant) and HCT116 (sensitive) colon cancer cell lines
were obtained. The ratio of ICs, values in MDR resistant
versus sensitive lines (MDR R/S) was used as an expres-
sion of the relative susceptibility of each drug to MDR;
smaller ratios represent lower susceptibility to MDR.

Multidrug resistance R/S ratios for the 15 analogs ranged
from 0.88 to 16.8; ratios for epothilones A and B were 0.82
and 1.48, respectively. Tolerability was evaluated by using
different doses of each analog to determine maximum toler-
ated dose and weight loss. Not unexpectedly, lower relative
MDR susceptibility was a significant predictor of reduced
in vivo efficacy, as measured by LCK (Fig. 3¢c; r = 0.77;
P < 0.0001). Notably, of all the measures performed, rela-
tive MDR susceptibility was most predictive of in vivo
efficacy, suggesting that it is very important to select com-
pounds with a favorable MDR profile if preclinical results
are to be translated to the clinic.

The MDR susceptibility ratios were lower with all the
epothilone analogs tested compared with the taxanes paclit-
axel and docetaxel [14], for which the MDR R/S ratio was
>100 in a head-to-head comparison. Ixabepilone had an
MDR susceptibility ratio of 7.77, which was substantially
lower than that of paclitaxel, but slightly higher than that of
most of the other epothilone analogs, thus minimizing the
chances of gastrointestinal toxicity.

Further preclinical development of ixabepilone
The above measures show that ixabepilone has potent

in vivo antitumor efficacy, robust metabolic stability, low
(but not completely absent) susceptibility to MDR, potent
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tubulin-polymerizing activity and low plasma protein bind-
ing. Since three of these features were found to be signifi-
cant predictors of in vivo efficacy in mice as measured by
LCK, the profile of ixabepilone described above was
encouraging. On this basis, ixabepilone was selected from
all of the analogs tested for further development. Therefore,
a number of additional in vitro and in vivo evaluations were
conducted for this agent.

In these additional studies, ixabepilone was found to
have high preclinical antineoplastic activity in a range of
tumor cell lines and in vivo xenografts [14, 36]. In agree-
ment with the data presented here, the in vitro activity of
ixabepilone matched that of natural epothilone B in terms
of cytotoxicity and microtubule-polymerizing ability.
Moreover, the in vivo activity of ixabepilone was superior
to that of epothilone B, likely due to the higher metabolic
stability and lower protein binding of ixabepilone, as
described above. Importantly, this in vitro and in vivo
activity extended to cell lines and xenograft models
displaying acquired resistance to currently available drugs
[14, 36], consistent with the favorable MDR profile of ixab-
epilone in the above experiments. Further evaluation of
ixabepilone revealed that, whereas taxanes induce apopto-
sis through upregulation of caspase-9 activity [37], ixabepi-
lone affects multiple apoptotic pathways [38]. Ixabepilone
results in enhancement of caspase-2 activity [37] and
causes tumor suppressor protein p53 to activate the death
effector Bax through induction of expression of the
BH3-only protein PUMA [4, 39, 40]. Additionally, a tran-
scription-independent pathway may be involved in Bax
activation in response to ixabepilone [41].

Overcoming drug resistance with ixabepilone

As described above, drug resistance (either intrinsic or
acquired) limits the use of cancer chemotherapies such as
taxanes and anthracyclines [15]; in such cases, other treat-
ment options must be found if disease progression is to be
prevented. In the case of ixabepilone, therapeutic concen-
trations of drug are theoretically maintained within tumor
cells due to the reduced susceptibility of ixabepilone to
MDR-mediated efflux [15]. Moreover, ixabepilone does not
readily induce tumor cells to overexpress P-gp or MRP-1
[15], suggesting that therapy with ixabepilone would not
lead to development of resistance to other drug classes.
Indeed, passage of the human ovarian carcinoma xenograft
A2780 for more than 3 years in the presence of ixabepilone
has not resulted in emergence of resistance. In contrast,
resistance to paclitaxel had developed in this model within
<6 months of continuous paclitaxel exposure (Fig. 3).

In addition to MDR, expression of SIII-tubulin is associ-
ated with clinical resistance to taxanes [5—8]. However, the
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tubulin-binding mode of ixabepilone affects the microtubule
dynamics of multiple -tubulin isoforms, including pIII-
tubulin [8]. Unlike paclitaxel, which does not target
pUI-tubulin containing microtubules, ixabepilone preferen-
tially suppresses dynamic instability of SIII-tubulin con-
taining microtubules compared with SII-tubulin containing
microtubules. Preclinical data also suggest that ixabepilone
has activity in models resistant to paclitaxel due to expres-
sion of mutant f-tubulins [14, 42].

Collectively, these preclinical results suggest that ixab-
epilone may be clinically active against disease which is
already resistant to a number of prior therapies. As such,
ixabepilone may represent an important potential therapy
for cancer patients who have limited treatment options.

Ixabepilone clinical development and future directions

Following its preclinical assessment and selection for fur-
ther development, ixabepilone has been evaluated in a large
number of clinical trials and has demonstrated promising
activity in a broad range of tumor types, including breast
cancer, NSCLC, hormone-refractory prostate cancer, renal
cancer, advanced pancreatic cancer and relapsed non-
Hodgkin’s lymphoma [16-26]. Particularly striking activity
had been observed in metastatic breast cancer (MBC) both
in the first-line setting and in patients who were refractory
to or had developed resistance to multiple classes of stan-
dard chemotherapeutic agents, including importantly taxanes
(paclitaxel or docetaxel), anthracyclins and capecitabine
(Table 2). These promising activities were confirmed in a
randomized, multinational, phase III study in 752 patients
with metastatic breast cancer that was resistant to and had

Table 2 Ixabepilone clinical development program in breast cancer

progressed after prior anthracyclins and taxane therapy
[43]. Based on the results of these pivotal trials (Table 2),
the US Food and Drug Administration (FDA) approved
ixabepilone for injection (Ixempra™) for the treatment of
two breast cancer indications: (1) in combination with
capecitabine for the treatment of patients with metastatic or
locally advanced breast cancer resistant to treatment with
an anthracycline and a taxane, or whose cancer is taxane
resistant and for whom further anthracycline therapy is con-
traindicated. (2) As monotherapy for the treatment of meta-
static or locally advanced breast cancer in patients whose
tumors are resistant or refractory to anthracyclines, taxanes,
and capecitabine.

As mentioned above, efficacy of ixabepilone has also
been demonstrated in chemoresistant renal [17, 44] and
pancreatic carcinomas [24] and drug-resistant lung cancer
[45]. Moreover, clinical trials in breast cancer patients have
demonstrated that ixabepilone shows comparable activity
in patients with ER— PR— HER2-negative (triple-negative)
tumors [46], a disease subgroup with a poor prognosis due
to the unsuitability of targeted treatment options (such as
hormonal therapies and trastuzumab) [47]. In all cases,
ixabepilone had an acceptable and manageable safety pro-
file. Sensory neuropathy, a common side-effect associated
with many current antineoplastics including taxanes, did
occur with ixabepilone treatment, but in most cases was
mild-to-moderate and generally reversible.

Given that synergy between the targeted agent trast-
uzumab and a number of chemotherapy agents (such as cis-
platin, docetaxel, thiotepa and etoposide) have been
demonstrated [48-50], it would be a very welcome advance
in chemotherapy to demonstrate synergy of targeted agents
with antineoplastic agents with lower susceptibility to

Trial type Disease, characteristics Dose and schedule Number Response  Publication
of patients (%)*
Breast
Phase I  MBC, first line 6 mg/m2 IVQD x 5 23 57 Denduluri et al. [54]
Phase I MBC, resistant to anthracyclines 40 mg/m2 IVQ21D 65 41.5 Roche et al. [25]
Phase I MBC, resistant to taxanes 40 mg/m2 IVQ21D 49 12 Thomas et al. [55]
Phase II  Invasive BC, neoadjuvant 40 mg/m> IV Q 21 D 164 21% pCR  Llombart et al. [56]
Phase I  MBC, resistant to anthracyclines, 40 mg/m2 IVQ21D 126 18.3 Perez et al. [57]
taxanes, and capecitabine
Phase Il MBC, anthracycline, Ixabepilone—40 mg/m? IV Q 21 D 375 35 Thomas et al. [43]
taxane resistant + Capecitabine—2,000 mg/(m? day) PO D1-14
Capecitabine—2,500 mg/(m* day) PO D1-14 371 14
Phase II MBC, anthracycline, Ixabepilone—40 mg/m* IV Q 21 D ~1,200 NA Not yet published
taxane resistant + Capecitabine—2,000 mg/(m? day) PO D1-14
Capecitabine—2,500 mg/(m? day) PO D1-14 NA

% ORR (overall response rate), unless otherwise stated, pCR, pathological complete response
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Table 3 Status of clinical development of other epothilones and epothilone analogs

Epothilone/epothilone analog Clinical trial results Toxicities profiles References
Epothilone B (EPO-906; Phase II: activity seen in breast, lung, Diarrhea (DLT), fatigue, [58-61]
patupilone) prostate, ovarian and renal cancers nausea, vomiting
Phase III trials ongoing
Epothilone D (KOS-862) Phase II: activity seen in metastatic breast Neuropathy (DLT), impaired [62, 63]
cancer pretreated with or progressing gait and cognitive/perceptual
after treatment with anthracycline and taxane abnormalities (DLT), chest pain
(DLT), fatigue, nausea and vomiting
ZK-EPO (third generation Phase I: activity seen in solid tumors, Neuropathy, nausea and ataxia [64, 65]
synthetic epothilone B analog) including taxane-pretreated breast cancer DLT unknown
Phase II: activity in platinum-resistant
ovarian cancer
KOS-1584 (epothilone D analog) Phase I: disease stabilization in a range Fatigue, diarrhea, fatigue and anorexia [66, 67]

of advanced solid malignancies, DLT unknown
and one partial response seen
in non-small cell lung cancer
ABJ879 (C20-desmethyl-C20- Currently in Phase I development Unknown Results yet
methylsulfanyl-epothilone B) to be published
DLT dose-limiting toxicity
common tumor resistance mechanisms. Trials are ongoing References

and planned, therefore, to investigate the efficacy of ixabepi-
lone in combination with targeted agents, such as trastuzumab
[51] and bevacizumab, following promising preclinical
results [52, 53]. Additionally, pilot studies in mice suggest
that although ixabepilone is very sensitive to pH, its oral
administration in a buffering solution results in comparable
efficacy to that seen with intravenous administration.

A number of other epothilones are currently in clinical
development; a brief overview of these studies is provided
in Table 3.

Conclusions

The epothilones are a promising new class of antineoplas-
tic agents that have the ability to overcome a variety of
tumor resistance mechanisms, a limiting factor with cur-
rently used chemotherapeutic agents. Ixabepilone, an epo-
thilone B analog, was selected for further development
from among other epothilone analogs due to its promising
spectrum of preclinical characteristics and predictors of
clinical efficacy. Ixabepilone has demonstrated efficacy
and tolerability across a spectrum of tumor types, includ-
ing difficult to treat patients with extremely limited treat-
ment options. Ixabepilone also has the potential for
clinically significant activity in combination with a range
of other agents, such as trastuzumab and bevacizumab.
The process of rational design and selection of ixabepilone
has led to efficacy and safety in the clinical setting, includ-
ing promising efficacy in patients with multidrug-resistant
disease.
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