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Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown promising results in patients with hematological malignancies. 
However, many patients still have poor prognoses or even fatal outcomes due to the life-threatening toxicities associated 
with the therapy. Moreover, even after improving the known influencing factors (such as number or type of CAR-T infusion) 
related to CAR-T cell infusion, the results remain unsatisfactory. In recent years, it has been found that endothelial cells 
(ECs), which are key components of the organization, play a crucial role in various aspects of immune system activation 
and inflammatory response. The levels of typical markers of endothelial activation positively correlated with the severity of 
cytokine release syndrome (CRS) and immune effector cell-associated neurotoxic syndrome (ICANS), suggesting that ECs 
are important targets for intervention and toxicity prevention. This review focuses on the critical role of ECs in CRS and 
ICANS and the intervention strategies adopted.
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Introduction

Chimeric antigen receptor (CAR)-T cell therapy is a rapidly 
advancing tumor immunotherapy approach that has been 
widely used and shown to be effective in the treatment of 
hematologic malignancies, including acute lymphoblastic 
leukemia [1, 2], non-Hodgkin’s lymphoma [3–5], and mul-
tiple myeloma [6, 7]. A certain amount of cytokine release 
is a marker of efficacy; however, excessive cytokine release 
leads to treatment-related toxicity. Cytokine release syn-
drome (CRS) and immune effector cell-associated neuro-
toxic syndrome (ICANS), which most treatment-related 
deaths are attributed to, are the most common and severe 
toxicities that require early intervention and standardized 
management [8–10].

The development and severity of CRS cannot be effec-
tively predicted and attenuated by adjusting the relevant 
factors affecting its growth and severity, such as the num-
ber and type of CAR-T infusions [11, 12]. Simultaneously, 
treatment with interleukin (IL)-6 inhibitors is effective 
only during the early stages of CRS. This may cause severe 
ICANS due to binding to IL-6R, which allows high lev-
els of serum IL-6 to cross the blood-brain barrier (BBB). 

Key pointsIn this review, we highlight the critical role endothelial 
cells play in intervening CAR-T cell-related toxicity and promoting 
the broader application of CAR-T cell therapy. We believe that 
our study makes a significant contribution because it emphasizes 
the role endothelial cells play in cytokine release syndrome and 
immune effector cell-associated neurotoxic syndrome, which 
most treatment-related deaths are attributed to and are the most 
common and severe toxicities that require early intervention and 
standardized management.
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CAR-T cell therapy releases cytokines during endothelial 
cell (EC) stimulation, suggesting that the patient’s fac-
tors is as essential as those factors of CAR-T infusion for 
the associated toxicity. As the first line of defense against 
inflammatory stress, EC dysfunction and activity can affect 
disease severity and progression. The elevated biomark-
ers associated with endothelial activation, hemodynamic 
instability, capillary leakage, and coagulopathy observed 
in severe CRS further corroborated that CRS and ICANS 
may be mediated by endothelial activation and malfunc-
tion to a certain extent [13–18].

In this review, we aimed to highlight the role ECs play in 
intervening CAR-T cell-related toxicity and promoting the 
broader application of CAR-T cell therapy.

Cytokine release syndrome and immune 
effector cell‑associated neurotoxic 
syndrome

Studies using autologous anti-CD19 CAR-T cells have 
shown that CRS occurs in 42%–93% of patients and ICANS 
in 30%–67% [3, 19]. CRS is a systemic inflammatory 
response caused by CAR-T cell activation and proliferation 
and significant concomitant elevations of multiple serum 
cytokines [20], with the most pronounced peaks being 
IL-6, IL-1, interferon (IFN)-γ, and tumor necrosis factor-α 
(TNF-α), followed by IL-8, IL-10, monocyte chemotactic 
protein-1, and granulocyte-macrophage colony-stimulating 
factor [18, 21–23], leading to capillary leakage, elevated 
transaminases, and coagulation disorders [24–26]. Some of 
the clinical manifestations include fever, malaise, hypoten-
sion, shock, multiorgan dysfunction, and death [27, 28]. It 
can also result in severe CRS (grade ≥ 3) in up to 46% of 
patients [27–29].

CAR-T cell therapy–associated neurotoxicity, on the 
other hand, is due to high levels of systemic inflamma-
tory cytokines (IL-6, TNF-γ, and TNF-β), leading to EC 
activation, BBB destruction, and infiltration of peripheral 
cytokines and immune cells into the central nervous system 
(CNS) [15, 16, 27, 29–35], which subsequently initiates a 
feedback loop that continuously activates the endothelium, 
making toxic events irreversible. The most distinct risk fac-
tors for ICANS include systemic cytokine release and CRS 
severity [36]. The American Society for Transplantation and 
Cellular Therapy Consensus Panel on Toxicity [37] named 
this novel neurological syndrome “immune effector cell-
associated neurotoxic syndrome,” and it can occur after or 
alone with CRS or can develop concurrently with CRS [28] 
and manifests as delirium, somnolence, coma, cognitive 
impairment, dysphagia, tremor, ataxia, myoclonus, sensory 
deficits, seizures, and cerebral edema [26] (Fig. 1).

Biological behaviors of endothelial 
activation

Vascular ECs are essential for the activation of the coagu-
lation system and the maintenance of vascular homeosta-
sis. Healthy ECs naturally express substances that cause 
vasodilation, improve blood flow, decrease platelet (PLT) 
aggregation, and enhance fibrinolysis, whereas dysfunc-
tional ECs lead to vasoconstriction and thrombosis. EC 
activation results in sequential activation of intracellular 
angiopoietin (Ang), TIE-2, JAK-STAT, PI3K-AKT, NF-
kappa B, and other pathways, leading to the initiation of 
self-DNA damage apoptosis and the large-scale release 
of cytokines, such as IL-6 and IFN-γ, to participate in the 
“cytokine storm” while significantly upregulating a variety 
of adhesion molecules; promoting lymphocyte adhesion 
and infiltration into the organ interior [38], recruiting mac-
rophages, neutrophils, and NK cells and promoting their 
activation; and releasing inflammatory mediators to join 
the inflammatory response [39].

EC activation has two outcomes: adaptive changes, which 
may be beneficial, and tissue-specific expression of vascu-
lar and secretory factors, which can facilitate organ repair 
and regeneration [40]. By contrast, excessive activation 
can lead to 1) damaged barrier function, which could allow 
soluble effectors to pass (such as TNF-α) and cause edema, 
damaging the endothelium; 2) an increased risk of throm-
bosis, which could lead to vascular thrombotic events (such 
as ischemia or stroke), and increased shear effects, which 
may result in erythrocyte fragmentation, anemia, throm-
bocytopenia, and neurological dysfunction; 3) increased 
expression of cell adhesion molecules (such as endothelial 
intercellular adhesion molecule-1 [ICAM-1], selectins, and 
integrins), leading to leukocyte migration and vascular adhe-
sion, thus facilitating an inflammatory response and further 
exacerbating edema; and 4) upregulation of proinflammatory 
mediators. The upregulation of proinflammatory mediators 
is triggered by NF-κB translocation and Toll-like receptors. 
Inflammatory mediators enhance the expression of procoag-
ulant tissue factors while inhibiting the anticoagulant system 
and indirectly activating the renin-angiotensin system [15, 
40, 41]. In conclusion, inflammatory mediators created dur-
ing EC activation continuously boost the activation process, 
resulting in a positive feedback loop and cytokine storms.

Role of EC in CRS and ICANS

ECs are the first line of defense against inflammatory 
stress and are central regulators of cytokine storms [42]. 
In capillary leak syndromes (such as acute respiratory 
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distress syndrome and severe burns), alternative markers 
of endothelial injury, such as IL-6, IL-8, and fibrinogen 
activator inhibitor-1, are elevated [43], suggesting a link 
between inflammation and endothelial dysfunction. Many 
prevalent and serious infectious diseases can be distin-
guished based on EC activation caused by inflammation. 
The degree of EC activation and subsequent dysfunction 
affect the severity and progression of the disease [44] .

CRS and ICANS have similar characteristics to the 
endothelial injury syndrome that occurs after hematopoietic 
cell transplantation (HCT) [26]. Vascular endothelial activa-
tion due to high levels of inflammatory cytokines is believed 
to favor the development of CRS and ICANS after CAR-T 
treatment. Cytokines such as IL-1 and IL-6 inhibit the natu-
ral anticoagulant pathway [45] and lead to the activation of 
ECs’ MAPK/NF-κB pathway [46–48], producing and releas-
ing procoagulant granules, such as Weibel-Palade vesicles, 

while the cytoskeleton of ECs is recombined [49] and tight 
junctions are lost [50]. Brain microvascular ECs are critical 
regulators of systemic inflammatory signaling into the CNS; 
brain ECs mediate central febrile responses; express IL-1β, 
IL-6, and TNF receptors; and locally produce cytokines that 
enhance pro-inflammatory responses, altering endothelial 
transporter protein function [16, 40]. Clinical evidence sup-
porting strong endothelial activation and enhanced BBB per-
meability has been found in patients with CRS and ICANS, 
including inflammation, impaired coagulation, and enhanced 
vascular permeability [15, 16, 18, 26]. Correlations between 
EC activation biomarkers, the development and severity of 
CRS, and the degree of liver, renal, and hematopoietic dys-
function also confirm that endothelial activation is one of the 
mechanisms for CAR-T cell immune-mediated toxicity after 
CAR-T cell therapy [51, 52].

Fig. 1  The clinical manifesta-
tions of CRS and ICANS
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The Ang-TIE-2 system may explain the association 
between endothelial activation, systemic cytokine release, 
and microvascular dysfunction [16]. TIE-2 is expressed 
on the EC surface [53], and Ang-1, produced mainly by 
perivascular cells and PLTs [16], binds to TIE-2 on the EC 
surface and activates downstream pathways to maintain 
EC stability. Ang-2, stored in endothelial Weibel-Palade 
vesicles, is released from EC upon EC activation, displac-
ing Ang-1 and inhibiting TIE-2 signaling [54–57], thereby 
impairing EC-cell junctions, inducing expression of pro-
inflammatory adhesion molecules (including ICAM-1 
and vascular cell adhesion molecule-1 [VCAM-1]) and 
epithelial procoagulant protein levels [58–61]. The com-
bination of high serum cytokine levels and endothelial 
activation leads to a cascade response that progressively 
amplifies endothelial activation and injury. Biomarkers 
of endothelial activation, such as Ang-2, Ang-2/Ang-1 
ratio, and von Willebrand factor, are elevated in patients 
with severe CRS and severe neurotoxicity (grades 3–4) 
[16, 18, 30], and the Ang-2/Ang-1 ratio is elevated before 
lymphatic depletion in patients with grade 4 and 5 ICANS 
[16]. Patients with endothelial activation before CAR-T 
cell infusion are more prone to develop CRS and ICANS 
[18]. Furthermore, as PLTs produce Ang-1, changes in the 
Ang-2/Ang-1 ratio may be driven by thrombocytopenia 
alone, and patients with severe thrombocytopenia before 
or immediately following CAR-T cell infusion may be 
more susceptible to developing CRS and ICANS-related 
endothelial activation and damage. This is because PLTs 
are one of the limited sources of endothelium-stabilizing 
cytokines (Ang-1) [54] (Fig. 2).

EC activation is closely associated with immune-medi-
ated inflammatory responses and organ damage; however, 
because the degree of EC activation varies among states, 
endothelial activation, a necessary step after initiation, 
is of great importance in intervening or mitigating the 
degree of endothelial activation in response to toxicity 
associated with CAR-T cell therapy.

How to predict CRS and ICANS 
by endothelial related indexes

Lactate dehydrogenase (LDH), a surrogate marker of tumor 
infiltration, and the general inflammatory markers C-reac-
tive protein (CRP) and ferritin all shared a connection with 
severe CRS and/or ICANS [18, 19, 62–66]. They could 
potentially be applied to predict CRS and ICANS risks in 
patients; however, the reliability of a single index is low. 
The endothelial activation and stress index (EASIX) score 
(LDH [U/L] × creatinine [mg/dL]/PLTs  [109 cells/L]) is a 
surrogate indicator of systemic endothelial activation that 
has been validated in the allogeneic hematopoietic stem cell 
transplantation [51, 67–73]; however, it is also applicable 
to other complex endothelial activation or injury situations, 
such as coronavirus disease 2019 [67–74]. It is significantly 
correlated with various endothelial dysfunction and comple-
ment activation biomarkers [75]. Higher EASIX score before 
CAR-T cell infusion parallels a significant elevation of mul-
tiple endothelial serum markers [17]. A study demonstrated 
that EASIX correlates with the incidence rate and serious-
ness of CRS and ICANS in axi-cel-treated large B-cell 
lymphoma patients [51]. This suggested that EASIX is also 
a useful prognostic marker of endothelial dysfunction in 
CAR-T cell therapy, with lateral evidence of EC involvement 
in the pathogenesis of CRS/ICANS. Modification of EASIX 
to remove creatinine (s-EASIX) or to replace creatinine with 
CRP (m-EASIX) was found to improve the predictive power 
[76, 77], and combining EASIX with inflammatory markers 
(CRP and ferritin) enhanced the prediction effect [51].

Intervention strategies targeting 
the endothelium

Intervention strategies to reduce endothelial activation and 
endothelial injury include statins, defibrillated polynucleo-
tides, angiotensin-converting enzyme (ACE) inhibitors, 
angiotensin II receptor blockers, and a new type of p38/
MAPK inhibitors [78] (Fig. 3).

Fig. 2  Simple schematic 
diagram of Ang-TIE-2 system. 
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Statins

Statins regulate immunological responses at various levels, 
including immune cell adhesion and migration, antigen pres-
entation, and cytokine production [79], and exert endothe-
lial protection against inflammation and oxidative stress. 
Antagonizing Ang2 through the angiopoietin/Tie-2 signal-
ing axis [80] exerts its endothelial protective function and 
maintains endothelial cell quiescence, which antagonizes the 
pathological process characteristic of endothelial dysfunc-
tion associated with hematopoietic stem cell transplantation 
and CAR-T cell therapy [81], and there is a clinical trial 
investigating the use of simvastatin and intrathecal dexa-
methasone for the prevention of neurotoxicity after treatment 
with axicabtagene-ciloleucel (NCT04514029) [81]. In addi-
tion, statins may help reduce oxidized low-density lipopro-
tein levels and nicotinamide adenine dinucleotide phosphate 
oxidase activity, thereby decreasing reactive oxygen species 
(ROS), impacting either directly or indirectly NF-κB tran-
scription, or strengthening endothelial nitric oxide synthase 
coupling [41]; statins should be studied further as potential 
targets for the prevention and therapy of endothelial damage.

Defibrillated polynucleotides

Defibrillated polynucleotides (DF) is a unique, naturally 
derived EC protector with potential effects on angiogen-
esis, EC activation, and endothelial inflammation, reducing 

EC activation through antithrombosis, anti-inflammatory, 
antioxidant, and antiadhesion activities [82], and restoring 
thrombolysis-fibrinolysis balance, with broad potential in a 
range of serious diseases based on EC injury and inflamma-
tion. The reduced release of inflammatory mediators mani-
fests the anti-inflammatory effects, reduced production of 
ROS and nitric oxide synthase levels during oxidative stress 
[83, 84], and significant inhibition of heparanase expression 
and activity [85], promoting repair of endothelial integrity 
and function. DF significantly improved survival in patients 
with hepatic sinusoidal obstruction syndrome (SOS) and 
small hepatic vein occlusive disease (VOD) by stabilizing 
the endothelium [86, 87]. It has also been authorized to treat 
VOD/SOS in both adults and kids [88, 89], demonstrating 
effectiveness as well as safety. It is well tolerated and is rea-
sonably presumed to be used to prevent or treat CAR-T cell 
immune-related toxicity. An in vitro study using endothe-
lial cell lines revealed that defibrillating peptides inhibited 
endothelial proliferation in a dose-dependent manner and 
suppressed serum-induced endothelial activation and angio-
genesis in graft-versus-host disease (GVHD) patients, and 
that DF had a significant positive effect on endothelial bio-
logical properties during aGVHD [83]. Another study found 
that adding defibrillating peptides reduced the alterations 
associated with endothelial dysfunction [90]. The adminis-
tration of DF regulates EC injury in models of acute respira-
tory distress syndrome and idiopathic pneumonia syndrome 
[91]. A clinical trial showed that DF therapy slightly reduced 
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the rate of CAR-T-associated neurotoxicity/high-grade event 
duration compared to previous data [92]. More research is 
required in the future to validate its efficacy.

Complement inhibitors

The complement system is linked to EC activation, inflam-
mation, leukocyte recruitment, PLT activation, and coagu-
lation. All three pathways (classical, alternative, and lectin 
pathways) trigger proximal complement activation, leading 
to C3 activation and C3 convertase formation. Activation of 
C3 via the alternative complement route also amplifies this 
effect, ultimately leading to the deposition of C3 fragments 
on target cells. When sufficient C3b is deposited, the termi-
nal cleavage pathway is triggered, leading to the formation 
of a membrane attack complex (MAC) on the surface of the 
target cells [26]. CAR-T cell-related toxicity can also lead 
to these changes, and endothelial damage continues to occur 
through the activation of a variety of complement pathways 
and interactions between complements and interferons.

Complement inhibition is safe and effective in patients 
with endothelial dysfunction syndromes (such as transplant-
associated thrombotic microangiopathy) [26]. Complement 
inhibitors are currently approved by the Food and Drug 
Administration for the treatment of paroxysmal nocturnal 
hemoglobinuria, blocking terminal complement activation 
by binding to C5 so that the process of producing pro-inflam-
matory C5a molecules and MAC scleral complex formation 
is stopped. Complement inhibitors at the C3 and C5 levels 
reduced whole blood-induced endothelial cell activation by 
89% and eliminated TNF release [93]; complement inhibi-
tion may be a viable new strategy to control the systemic 
complement-mediated inflammatory response.

Adalimumab in combination with anti‑IL‑1β 
antibodies

During CAR-T cell treatment, vascular ECs are exposed to 
several stimuli in the bloodstream. Central cytokines that 
cause endothelial activation include IL-1β, which is released 
by activated myeloid cells, and TNF-α, which is produced by 
CAR-T cells when they recognize tumors. These cytokines 
highly activate EC by upregulating the expression of adhe-
sion molecules (E-selectin, VCAM-1, and ICAM-1), while 
focal adhesion kinase (FAK) process, NF-кB process, and 
MAPK process are activated.

TNF receptor 1 (TNFR1), the primary TNF-α receptor 
on the endothelial membrane, is involved in the inflam-
matory process. By deleting TNFR1 in human ECs, the 
degree of CAR-T cell-induced endothelial activation was 
reduced. Endothelial activation was also prevented by selec-
tive small-molecule inhibitors of the TNFR1, NF-кB, and 
MAPK signaling pathways [94]. Adalimumab, anti-IL-1β, 

and FAK inhibitors effectively blocked TNF-α, IL-1β, and 
reduced FAK activity; improved endothelial dysfunction 
caused by CAR-T cells, malignant cells, and myeloid cells 
in CAR-T cells treatment; and reduced endothelial leakage 
caused by CAR-T and other cells. Moreover, the combina-
tion of adalimumab and anti-IL-1β antibodies showed syn-
ergistic effects [94]. As a result, the above drugs may have 
therapeutic potential for immunotoxicity associated with 
CAR-T therapy.

Others

Corticosteroids are frequently used to regulate proinflam-
matory states linked to endothelium-related HCT complica-
tions, such as interstitial pneumonia syndrome, because they 
have anti-inflammatory properties that can reduce endothe-
lial damage. However, they are only anti-inflammatory and 
not endothelial-specific. In order to combat endothelial acti-
vation and coagulation impairment, other strategies includ-
ing increasing Ang-1 or PLT transfusions can be included 
[16, 55]. Symptomatic treatment with ACE inhibitors, angio-
tensin receptor blockers (ARBs), and cytokine inhibitors, 
such as IL-6 receptor antibodies, may be used for the dif-
ferent steps of the cascade response. ACE inhibitors [95, 
96] and ARBs [97] are important strategies with endothelial 
protective potential because they have anti-inflammatory 
effects and improve endothelial dysfunction. As antagonists 
of the Ang-2 pathway, ACE inhibitors and ARB inhibit the 
p38/MAPK activation signal cascade reaction of endothe-
lial cells, which is triggered by a high level of Ang-2 [78]; 
therefore, direct p38/MAPK inhibitors [98] might provide 
immediate and long-term protection of the endothelium by 
affecting the Ang-2 and p38/MAPK signaling axes, thus fur-
ther improving patient outcomes.

Conclusions and future directions

CAR-T cell therapy has achieved excellent results in patients 
with hematological malignancies. Its use has also been 
extended to other fields such as solid tumors; however, its 
response varies significantly among patients after infu-
sion. ECs, an essential link in the role of CAR-T cells, are 
expected to be a target for intervening in CAR-T cell-related 
toxicity and promoting the broader application of CAR-T 
cell therapy. In the future, the relationship between EC dys-
function and the efficacy of CAR T-cell therapy should be 
investigated further.
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