
REVIEW PAPER

A bond-topological approach to theoretical mineralogy:
crystal structure, chemical composition and chemical reactions

Frank C. Hawthorne

Received: 15 April 2012 / Accepted: 4 July 2012 / Published online: 27 September 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Here, I describe a theoretical approach to the

structure and chemical composition of minerals based on

their bond topology. This approach allows consideration of

many aspects of minerals and mineral behaviour that cannot

be addressed by current theoretical methods. It consists of

combining the bond topology of the structure with aspects

of graph theory and bond-valence theory (both long range

and short range), and using the moments approach to

the electronic energy density-of-states to interpret topo-

logical aspects of crystal structures. The structure hierarchy

hypothesis states that higher bond-valence polyhedra

polymerize to form the (usually anionic) structural unit, the

excess charge of which is balanced by the interstitial

complex (usually consisting of large low-valence cations

and (H2O) groups). This hypothesis may be justified within

the framework of bond topology and bond-valence theory,

and may be used to hierarchically classify oxysalt minerals.

It is the weak interaction between the structural unit and the

interstitial complex that controls the stability of the struc-

tural arrangement. The principle of correspondence of

Lewis acidity–basicity states that stable structures will form

when the Lewis-acid strength of the interstitial complex

closely matches the Lewis-base strength of the structural

unit, and allows us to examine the factors that control

the chemical composition and aspects of the structural

arrangements of minerals. It also provides a connection

between a structure, the speciation of its constituents in

aqueous solution and its mechanism of crystallization. The

moments approach to the electronic energy density-

of-states provides a link between the bond topology of a

structure and its thermodynamic properties, as indicated by

correlations between average anion coordination number

and reduced enthalpy of formation from the oxides for
[6]Mgm

[4]SinO(m?2n) and MgSO4(H2O)n.

Keywords Bond topology � Structure hierarchy
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Introduction

The last 50 years have seen an explosion in analytical

mineralogy as experimental techniques have allowed more

and more detailed characterization of smaller and smaller

samples. As a result of these capabilities, our factual

knowledge of chemical and structural variations in com-

mon minerals is now fairly comprehensive, and apart

from a few residual problems, it seems difficult to justify

working extensively on most groups of rock-forming

minerals at ambient conditions. We already know what

they are like, and we understand them at an empirical level.

What kind of theoretical framework have we been using to

interpret the data that we have accumulated over the past

50 years? We have been using crystal chemistry to sys-

tematize mineral properties and behaviour, classical ther-

modynamics to examine processes involving minerals, and

more recently, computational mineralogy to derive prop-

erties of minerals the stabilities of which are beyond the

reach of current experimental techniques. The strength of

thermodynamics is that we can do calculations and

understand things about minerals and mineral reactions

while having a high degree of ignorance about where the
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atoms are and what the atoms are doing. However, the

question arises as to why we have been deriving the atomic

arrangements in minerals if we are not using the results to

try and understand why minerals are the way they are and

why they behave the way they do. Crystal chemistry,

thermodynamics and computational mineralogy are very

powerful, but they have tended to dictate the questions that

we ask about minerals. We ask questions to which standard

theory can give us an answer. What about other questions of

scientific interest which are opaque to our current theoret-

ical approaches? These are neglected because they are seen

as intractable or even irrelevant to current issues of applied

science. Why do minerals have the chemical formulae

that they do? Why do they have their specific structural

arrangements? Why are minerals stable over specific ranges

of pH, Eh, temperature, pressure and activities of their

various constituents? What are the relations between crystal

structure and both enthalpy and Gibbs free energy of for-

mation? Many of these questions are fundamental to Min-

eralogy itself and yet have tended to be ignored in the past.

Here, I will examine how we can address such questions

from a theoretical perspective, and how we can incorporate

process (e.g., crystallization, dissolution) into these con-

siderations, as distinct from using purely descriptive vehi-

cles. My intent is to try and understand the atomic-scale

factors that control the chemical compositions and struc-

tural arrangements of (oxygen-based) minerals, and to

relate those atomic-scale factors to processes that affect

minerals (e.g., crystallization, dissolution). Although I

speak of ‘‘prediction’’ in the following text, it is not the

principal aim of this approach to predict things. I wish this

approach to impart some intuitive understanding to the

stability of minerals and their participation in geochemical

processes. Background material is given in Hawthorne

(2006). Much of the material discussed here has been given

elsewhere, but in a rather fragmentary fashion; here, I

attempt to integrate it into a more coherent scheme.

Mineral chemistry and structure

Why do minerals have the chemical and structural features

that they do? In considering the crystallization or stability

of a structure, I will presume that all the constituent ele-

ments are available to form that structure. Of course, the

geochemical evolution of various environments will often

prevent the association of specific elements in sufficient

concentration to form a mineral, but this is not the case for

synthesized materials.

First, consider simple minerals, such as halite and quartz,

in which the constituents have significant differences in

their electropositive character. The electroneutrality prin-

ciple fixes the chemical formulae of such minerals, and the

handshaking lemma of graph theory (Wilson 1979) requires

certain relations between the (average) coordination num-

bers of their different constituents. Thus, in NaCl, Na and Cl

must have the same coordination number, and in SiO2, the

coordination number of Si must be twice that of O, irre-

spective of the bond topologies of the longer-range struc-

tures. The latter will be affected by the conditions of

crystallization, and NaCl and SiO2 adopt various different

atomic arrangements as a function of these conditions. The

empirical rules of crystal chemistry tell us that Na and

Cl may have coordination numbers of [6], and then the

principle of maximum symmetry allows mapping of

[[6]Na[6]Cl]? onto the vertices of the F-centred cubic lattice

to produce the crystal structure of halite. The crystal

structures of SiO2 are more difficult to deal with, but are still

susceptible to such an analysis. There are other types of

approach to the issue of structural arrangements of simple

compounds. These often involve proposing a chemical

composition and then deriving a structural arrangement by

using a variational approach to minimize or optimize some

function of the structural arrangement. However, there is no

way to reliably assess the stability of such arrangements, or

even the stability of such a compound versus that of an

assemblage of its constituents. Moreover, all of these

approaches rapidly become intractable with increasing

chemical complexity of the system of interest.

Second, consider slightly more complicated minerals,

for example, the hydrated magnesium sulphate compounds,

Mg(SO4)(H2O)n where n = 0–7, 11: synthetic Mg(SO4);

kieserite, Mg(SO4)(H2O); sanderite, Mg(SO4)(H2O)2;

synthetic Mg(SO4)(H2O)3; starkeyite, Mg(SO4)(H2O)4;

cranswickite, Mg(SO4)(H2O)4; pentahydrite, Mg(SO4)

(H2O)5; hexahydrite, Mg(SO4)(H2O)6; epsomite, Mg(SO4)

(H2O)7; and meridianiite, Mg(SO4)(H2O)11. The electro-

neutrality principle fixes the Mg(SO4) part of the chemical

formulae, but some other factor controls the degree of

hydration of each mineral. With regard to the structures of

these minerals, there is a gradual depolymerization of the

(MgU6) and (SO4) polyhedra (U = O, H2O) with increas-

ing (H2O) content as the valence sum rule (Brown 2002)

prevents linkage of polyhedra through (H2O) ligands

(Hawthorne 1992; Hawthorne and Sokolova 2012).

Although we are aware that (H2O) has this effect on the

structures of minerals (and synthetic inorganic solids), we

have little idea of how such depolymerization generally

proceeds with increasing (H2O) content, what is the effect

of other (interstitial) cations in the structures, and what are

the bond topologies of the resulting structures.

Third, consider complicated minerals such as botryogen,

Mg2(H2O)14 [Fe2
3?(SO4)4]2, or metavoltine, K2Na6Fe2?

(H2O)6[Fe3
3?O(SO4)6(H2O)3]2(H2O)6. First, we know that

their chemical formulae are constrained by the electro-

neutrality principle. However, what dictates the rest of the

details of their chemical formulae? These minerals are not
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rare; they are found at many locations around the world

with the same chemical formulae. Why does botryogen

have Mg2 and not Ca2 or Na4 in its structure? Both Ca2 and

Na4 also satisfy electroneutrality requirements and are

common constituents in environments in which botryogen

occurs, but something does not allow them to be incorpo-

rated into the structure. It is not obviously the coordination

around Mg in the structure as Mg is coordinated by six

(H2O) groups in a very open structure. Why does botryo-

gen have 14 (H2O) groups in its formula? Why does not it

have (for example) 8 (H2O) groups? Why does botryogen

have any (H2O) groups at all and what are the roles of these

(H2O) groups in the structure? How do these aspects of

structure and chemistry relate to the stability of botryogen

as a function of Eh and pH?

Many of these questions cannot currently be addressed by

the usual methods of theoretical investigation, and for those

that can, we often must be satisfied with an explanation that

has little to do with any atomic-scale mechanism.

Mineral reactions

Why do minerals react with one another and with their

coexisting fluids? What are the atomic-scale driving

mechanisms that induce chemical reactions to occur?

Consider the following reaction:

Forsterite ¼ Periclaseþ Quartz:

What are the structural characteristics of forsterite that

make it more stable than a mixture of periclase and quartz

under certain conditions? Consider the following trend in

amphibole composition with increasing temperature of

metamorphism:

Tremolite! Pargasite� Sadanagaite

What are the structural characteristics of amphibole that

drive this continuous reaction with increasing temperature?

We need to seek answers to these questions in the bond

topologies and bond lengths of the constituent minerals.

How do we do this? We need to relate bond topology and

bond geometry to energetics to see what drives these pro-

cesses at the most basic level. We need to put a different

framework in place, a framework where our knowledge of

the energetics of minerals is related at an intuitive level to

the topology of chemical bonding. Here, I will outline an

approach by which this may be done.

Crystal structures as graphs

Crystal structures are commonly illustrated by drawings,

showing which atoms are bonded to which. Using this type

of representation, we can make qualitative arguments as to

the basic architecture of a structure, and qualitatively relate

different structure types to each other, but we do not have a

quantitative expression of the important features of the

structure. On the other hand, description of a structure via

its unit cell, symmetry and a table of atom coordinates

provides us with a quantitative description of a structure

(and allows us to do various structure–property calcula-

tions), but offers little intuitive insight into relations

between structures. Graph theory offers a potential solution

to this problem.

We may define a graph as a nonempty set of elements,

V(G), called vertices, and a nonempty set of unordered pairs

of these vertices, E(G), called edges (Wilson 1979). We

may colour the vertices, we may label the vertices, we may

assign a direction to the edges, and we may assign weights

to the edges. The result is a weighted labelled polychro-

matic digraph, illustrated pictorially in Fig. 1a. This graph

may be represented numerically as a matrix (Fig. 2). Each

column and row of the matrix is associated with a specific

(coloured labelled) vertex, and the corresponding matrix

entries denote whether (positive) or not (zero) two vertices

are adjacent, that is joined by an edge. If the matrix ele-

ments are the weight functions of the edge set, then this

matrix is called the adjacency matrix. The adjacency matrix

is thus a numerical representation of the graph.

Fig. 1 a A weighted polychromatic digraph with the coloured vertex

set {1, 2, 3, 4} and the directed weighted edge set {12, 32, 34, 14};

b a simple idealized square molecule consisting of four atoms labelled

1–4

Fig. 2 The adjacency matrix corresponding to the graph in Fig. 1a
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The degree of a vertex is the number of edges involving

that vertex, and the sum of the degrees of all vertices is

even as each edge contributes two degrees to that sum. This

relation is known as the handshaking lemma for obvious

reasons. In a digraph, the indegree of a vertex is the

number of edges incident at that vertex, and the outdegree

of a vertex is the number of edges exident at that vertex.

These relations are very useful in dealing with prob-

lems involving coordination number and connectivity in

structures.

Figure 1b shows a simple idealized molecule consisting

four atoms labelled 1–4, linked by chemical bonds that are

represented by lines between the atoms 1–4. This repre-

sentation, a set of points joined by lines, resembles the

pictorial representation of a graph. We may colour Fig. 1b

to denote the different types of atoms, we may label the

atoms, and we may assign a direction to the edges by

denoting the direction from the more electropositive atom

to the more electronegative atom. Note that I use the words

‘cation’ and ‘anion’ here to denote atoms of low and high

electronegativity, respectively; these terms are not intended

to denote ionic bonding. We may assign weights to the

edges, weights that correspond to the relative strengths of

the chemical bonds. Comparison of Fig. 1a, b shows that

there is a one-to-one mapping of the molecule in Fig. 1b

onto the graph of Fig. 1a. The graph in Fig. 1a and the

adjacency matrix in Fig. 2 are thus analogue and digital

representations of the structure, respectively. The graph

and the adjacency matrix do not preserve the geometrical

features of a structure: bond lengths and bond angles are

lost. However, it does preserve the topological features of

the bond network, and may carry additional information

concerning the strengths (or orders) of the chemical bonds.

Thus, graph theory provides us with a way of quantifying

the topological aspects of the bond network of a group of

atoms.

Topological aspects of molecular orbital theory

I will now briefly describe some of the relations between

topological (or graphical) aspects of structure and chemical

bonding, focusing on the similarity between energetics of

bonding and topological aspects of structure. The interested

reader is referred to Burdett (1980), Albright et al. (1985),

Hoffman (1988), Rohrer (2001) and Balaban (2002) for

more details.

Molecules

The electronic structure of a molecule may be considered

as the sum of the electronic properties of its constituent

atoms, as modified by the interactions between these

atoms. This may be done at various degrees of compre-

hensiveness (e.g., using all orbitals, or using just valence

orbitals), depending on the intent of the approach. Here, I

am looking for maximum transparency and hence will

construct the molecular orbital wavefunction as a linear

combination of atomic orbitals. These wavefunctions are

eigenstates of an effective one-electron Hamiltonian, Heff,

that may be written as Heffw = Ew where E is the energy

associated with w, and the molecular orbital wavefunction

is written as w = Riciui where {ui} are the valence orbitals

of the atoms and ci is the contribution of a specific atomic

orbital to a specific molecular orbital (e.g., Gibbs 1980).

The total electron energy of the state described by this

wave function may be written as

E ¼
Z

w�Heffwds

� �� Z
w�wds

� �

¼ w�Heffwds
� �� �	

w�wh ið Þ ð1Þ

in which the integration is over all space. Substituting for

w(=Rciui) gives

E ¼ RiRjcicj ui Heff


 

uj

� �� �	
RiRjcicj uijuj

� �� �
: ð2Þ

This equation may be simplified as follows: (a) uijuj

� �
is the overlap integral between atomic orbitals on different

atoms, denoted as Sij; it is always B1; where i = j,

uijuj

� �
¼ 1 for a normalized (atomic) basis set of orbitals.

(b) ui Heff


 

uj

� �
¼ Hii; this represents the energy of an

electron in orbital ui and can be approximated by the

orbital ionization potential. (c) ui Heff


 

uj

� �
¼ Hij; this is

the resonance integral. The molecular orbital energies may

be calculated from Eq. (2) by minimizing the energy with

respect to the coefficients ci. The eigenvalues (roots) of the

following secular determinant equation give the molecular

orbital energy levels:

Hij � SijE


 

 ¼ 0: ð3Þ

The topological content of this approach is best shown by

the Hückel approximation (Trinajstic 1983). For the pp
orbitals, all Hii values are set equal to a, all nonzero Hij are

set equal to b, and all Sij (i = j) are set equal to zero.

Consider the idealized square molecule shown in Fig. 1b;

the expanded secular determinant equation is as follows:

a� E b 0 b
b a� E b 0

0 b a� E b
b 0 b a� E




















¼ 0 ð4Þ

Compare the matrix entries in Eq. (4) with the structure of

Fig. 1b. In the absence of any off-diagonal b terms, there

are no chemical bonds present and the energies of the

electrons in the atomic orbitals are the roots of the equa-

tion. Where the atoms are bonded together, the energies are
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modified by the off-diagonal b terms. Where two atoms are

bonded together (i.e., atoms 1 and 2 in Fig. 1b), there is a

nonzero value at this particular (1, 2) entry in the secular

determinant; when two atoms are not bonded together (i.e.,

atoms 1 and 3 in Fig. 1b), then the corresponding deter-

minant entry (1, 3) is zero.

The roots of the secular determinant equation may be

shown as energy levels as in Fig. 3. In the H matrix, the

diagonal entries scale the absolute values of the energy

levels and the off-diagonal entries produce the splitting of

the energy levels. The description of the energetics of the

molecule via the H matrix is similar to the adjacency

matrix of the graph of the molecule (Fig. 2). In normalized

Hückel theory (Trinajstic 1983), b is the energy unit and a
is the zero-energy reference point, and the determinant of

the H matrix of Eq. (4) is identical to the analogous adja-

cency matrix of the graph of the molecule (Fig. 2). Hence,

it is the topological characteristics of a molecule, rather

than its geometrical details, that determine the form of the

Hückel molecular orbitals (Trinajstic 1983).

Crystals

If we were to solve Eq. (3) for a large number of atoms

(e.g., a crystal), we would obtain a large number of

molecular-orbital energies. Their representation solely as a

function of energy (Fig. 4a) is not useful; it is more

informative to express the electron occupancy of a specific

energy interval (band) as a function of orbital energy: a

density-of-states diagram (Fig. 4b).

So how do we deal with a crystal containing approxi-

mately Avogadro’s number of atoms? We cannot use the

same sort of calculation, as this is way beyond any fore-

seeable computational capability. We use translational

symmetry to reduce the problem to a reasonable size by

using Bloch orbitals (Ziman 1965), which constrain the

orbital content of the unit cell to the translational period-

icity of the crystal. This may be done using the special

points method, whereby the secular determinant is solved

at a representative set of points within the Brillouin zone.

This gives a representative sampling of the orbital energy

levels that may be smoothed to give a density-of-states

representation. Integrating the electronic energy density-of-

states up to the Fermi level gives the total orbital energy.

The differences between a molecule and a crystal may

be stated as follows: in a molecule, there is a set of discrete

orbital energy levels; in a crystal, these levels broaden into

bands, and the occupancies of these bands as a function of

energy are the electronic energy density-of-states.

The method of moments

There is little intuitive connection between the essential

features of a crystal structure, the relative positions of the

atoms and the disposition of the chemical bonds, and the

usual methods for deriving the electronic energy density-

of-states. Burdett et al. (1984) changed this situation by

developing a novel way of deriving the electronic energy

density-of-states using the method of moments. Here, I will

give only a brief outline of their method; the interested

reader should consult the original paper for mathematical

details, and also Burdett (1986, 1988) and Burdett and Lee

(1985) for further applications.

To solve the secular determinant in Eq. (4), we diago-

nalize the Hamiltonian matrix. The trace of this matrix may

be written as follows:

TrðHnÞ ¼
X

i

X
j;k;...;n

HijHjk. . .Hni ð5Þ

Figure 5 shows a topological interpretation of one term in

this sum. Each Hij term is the interaction integral between

orbitals i and j; Hij = b (if the atoms are bonded), Hij = 0

(if the atoms are not bonded, or if i = j when a = 0). Thus,

in Eq. (5), a single term {Hij Hik … Hln} is nonzero only if

all individual Hij terms are nonzero, for example, {H12 H23

H34 H41}. The last Hij term is the interaction between the

nth orbital and the first orbital, and hence the {Hij Hjk …
Hni} term represents a closed path in the graph of the orbitals

(molecule). If one of the terms in the closed path is zero

Fig. 3 The energy levels derived from solving the secular determi-

nant Eq. (4) for the molecule shown in Fig. 1b

Fig. 4 Representations of the energy levels of a crystal: a sketch of a

conventional energy-level diagram; b energy density-of-states

diagram
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(e.g., H31 in Fig. 5), the complete term in the sum is zero, that

is, {H12 H23 H31} = 0, and this term does not contribute to

the trace of the Hamiltonian matrix. Thus, the sum in Eq. (5)

represents all closed paths through the graph of (the orbital

structure of) the molecule. Under diagonalization, the trace

of the matrix remains invariant, and thus

TrðHnÞ ¼ TrðEnÞ ¼ ln ð6Þ

where E is the diagonal matrix of eigenvalues (energy

levels) and ln is the nth moment of E, formally denoted by

ln ¼
X

i

En
i ð7Þ

The density-of-states may be obtained by inverting the col-

lection of moments {ln} [see Burdett et al. (1984) for

details]. The result is that we can evaluate Tr(Hn) directly

from the topology of the orbital interactions (bond topology),

and hence can derive the electronic energy density-of-states

directly from the bond topology. We have already seen that

this is the case by showing the correspondence of the secular

determinant and the adjacency matrix of the molecule.

The method of moments generalizes to infinite systems

(i.e., crystals). If q(E) is the density-of-states of a crystal,

we may define the nth moment of E as

ln ¼
Z

EnqðEÞdE ð8Þ

In principle, the moments may be evaluated as above and

inverted to give the electronic energy density-of-states,

demonstrating the topological content of the electronic

energy density-of-states of a crystal.

The energy difference between two structures can be

expressed in terms of the first few disparate moments of

their electronic energy density-of-states (Burdett 1986).

Thus, the most important energetic differences between two

structures involve the most local topological differences

between those structures. Moreover, in structures with bonds

of different strengths, each edge of each closed path that

contributes to each moment will be weighted according to the

strength of the bond analogous to that edge. Thus, strongly

bonded closed paths through the structure will contribute more

to the electronic energy density-of-states than weakly bonded

closed paths.

Low-order moments and crystal chemistry

The number of steps in a closed path through the bonded

atoms in a structure is the moment of that path. Let us

examine the structural features corresponding to the lower-

order moments, those that are the more energetically

important in the structure. A zero-moment path has no steps

and corresponds to remaining still (a walk in place). Such a

path specifies the identity of the atom at that vertex of the

graph of the structure, and hence the complete set of zero-

moment paths defines the chemical composition of the

structure. A second-moment closed path has two edges and

is a walk from one vertex to an adjacent vertex and back.

The collection of second-moment closed paths from a single

vertex defines the coordination number of the atom corre-

sponding to that vertex. A fourth-moment closed path has

four edges and is a walk from an atom (e.g., a cation) to an

anion to another cation and back again, and hence specifies

the linkage of two coordination polyhedra. Higher-moment

closed paths will specify more complicated polyhedron

linkages, but these will be less energetically important than

the low-moment linkages. What this immediately tells us is

that traditional crystal chemistry is correct in focusing on

coordination number and local linkage between coordina-

tion polyhedra as the most important differences between

structures (apart from chemical composition), as the

moments approach tell us that these are the most energeti-

cally important of the linkages in a structure.

The most important energetic features of a structure are

thus chemical composition, coordination number and near-

est-neighbour polyhedron linkage. Furthermore, the local

connectivity of the strongly bonded coordination polyhedra

in the structure is more energetically important than the

connectivity of the weakly bonded coordination polyhedra as

they have larger Hij terms in Eq. (5). This provides energetic

justification for a hypothesis that we will introduce later,

the Structure Hierarchy Hypothesis, that structures may

be ordered according to the polymerization of the more

strongly bonded coordination polyhedra (Hawthorne 1983).

Bond topology and bond-valence theory

Brown (1981, 2002, 2009) has developed a simple but

quantitative approach to chemical bonding in inorganic

Fig. 5 Interpretation of paths through the molecule shown in Fig. 1b;

the path 1 ? 2 ? 3 ? 4 contains only nonzero Hij terms and

contributes to the trace of the matrix, whereas the path 1 ? 2 ? 4

contains a zero Hij term (H31) and does not contribute to the trace of

the matrix
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structures. Here, I shall briefly review these ideas and later

develop them further to deal with aspects of complex

inorganic structures that are intractable by other methods.

Network solids, electroneutrality and the valence-sum

rule

In dealing with oxide and oxysalt minerals, we are inter-

ested primarily in materials which have significant differ-

ences between the electronegativities of the bonded atoms; I

will refer to these atoms as cations and anions, with no

implication as to the character of their chemical bonding.

We may define a crystal, liquid or cluster as a network of

atoms connected by heteronuclear chemical bonds. Cations

and anions alternate along any path through this network,

and the network must conform to the law of electroneu-

trality: the total valence of the cations is equal to the total

valence of the anions. Bond valence is defined as the

strength of a chemical bond, and for any pair of bonded

atoms, the bond valence is inversely proportional to the

distance between those atoms: high bond valences are

associated with short bonds, and vice versa. Thus, the ratios

of the bond valences are a function of the ratios of the

associated bond lengths. In order to obtain numerical values

for the bond valences, each bond is assigned a bond valence

such that the valence-sum rule is satisfied (Brown 2002):

The sum of the bond valences at each atom is equal to

the magnitude of the atomic valence. [1]

Bond valences are scaled to the formal valences of the

cations and anions of the chemical bonds. Bond valences

can be calculated from the curves of Brown (2002) if the

relevant interatomic distances are known. If the interatomic

distances are not known, bond valences can be (1)

approximated by Pauling bond strengths (Pauling 1960) or

(2) calculated by the method described by Brown (2002,

Appendix 3).

Characteristic bond valences

An a priori approach to structure stability is needed if we

are to develop any predictive capability for crystal struc-

tures and chemical compositions. Brown (1981) introduced

a very important idea with regard to such a priori predic-

tion. The bond valences around a specific cation in all

crystal structures lie within *20 % of their mean value, a

value that is characteristic of that particular cation. If the

cation occurs only in one coordination, then the mean bond

valence for that cation will be equal to the Pauling bond

strength; thus, S6? always occurs in tetrahedral coordina-

tion to O in minerals, and hence will have a mean bond

valence of 6/4 = 1.5 v.u. (valence units). Where a cation

has two or more coordination numbers, then the mean bond

valence will be the weighted mean of the bond valences in

all observed structures. Thus, B3? occurs in various coor-

dinations from [2] to [5]; the tendency is for [3]- and

[4]-coordinations to be more common than [2]- and [5]-

coordinations, and the mean bond valence is 0.88 v.u. Table 1

shows typical values for cations of major geochemical

significance.

Lewis acid and base strengths

Electronegativity is a measure of the electrophilic strength

(electron-accepting capacity) of a cation, and a Lewis acid

is a species that can accept electron density from another

species. The characteristic bond valence of a cation cor-

relates strongly with its electronegativity (Fig. 6), and

hence the characteristic bond valence of a cation is a

Table 1 Lewis acid strengths (v.u.) for cations

Li 0.21 Ti4? 0.67 Ga 0.65

Be 0.50 V3? 0.50 Ge 0.89

B 0.87 V4? 0.71 As3? 0.98

C 1.35 V5? 1.20 As5? 1.13

N5? 1.67 Cr3? 0.50 Se6? 1.50

Na 0.16 Cr6? 1.50 Rb 0.12

Mg 0.33 Mn2? 0.34 Sr 0.23

Al 0.57 Mn3? 0.52 Sn2? 0.4–0.7

Si 1.00 Mn4? 0.67 Sn4? 0.68

P 1.25 Fe2? 0.34 Sb3? 0.43–0.75

S 1.50 Fe3? 0.54 Sb5? 0.83

Cl7? 1.75 Co2? 0.35 Te6? 1.00

K 0.13 Ni2? 0.34 Cs 0.11

Ca 0.27 Cu2? 0.45, 0.20 Ba 0.20

Sc 0.49 Zn 0.35 Pb2? 0.20

Values taken from Brown (2002, 2009), except V5? (from Schindler

et al. 2000a) and Pb2? (which was estimated from several oxysalt

mineral structures)

Fig. 6 The variation in electronegativity as a function of Lewis acid

strength various cations [from Brown (1981)]
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measure of the Lewis acid strength of that cation. This

gives rise to the following definition (Brown 1981):

The Lewis acid strength of a cation may be defined as

the characteristic (bond) valence = atomic (formal)

valence/mean coordination-number.

The Lewis base strength of an anion can be defined as the

characteristic valence of the bonds formed by the anion.

However, this is often not a very useful definition,

as variations in bond valence around anions are much

greater than variations in bond valence around cations.

Consider the valences of bonds to O2-; these may vary

between nearly zero and 2.0 v.u.; thus, in dravite, Na is [9]-

coordinated and the O atoms to which it is bonded receive

on average 0.11 v.u. from each Na–O bond. In CrO3

(Stephens and Cruickshank 1970), which consists of

pyroxene-like chains of [4]CrO3, one O is bonded only to

Cr6? and receives 2.00 v.u. from the Cr–O bond. With this

amount of variation, that is, 0.11–2.00 v.u., it is not useful

to define a Lewis base strength for O2-. However, the

situation changes when we consider heteronuclear oxya-

nions such as (SO4)2- (Fig. 7). Each O atom of the (SO4)2-

group receives 1.5 v.u. from S6? and requires an additional

0.5 v.u. from other neighbouring cations. If [n] is the

coordination number of O2-, the average valence of the

bonds to O2- (exclusive of the S–O bond) is 0.5/(n - 1)

v.u.; if n = 2, 3, 4 or 5, the mean bond valences to O are

0.50, 0.25, 0.17 or 0.11 v.u., respectively. The average

bond-valence received by the oxyanion is the same as the

average bond valence received by each individual O atom,

defining the Lewis basicity of the oxyanion. Note that for

the (SO4)2- oxyanion, the range of possible average bond

valences is quite tightly constrained (0.50–0.11 v.u.) and

we may calculate a useful Lewis basicity. Table 2 lists

Lewis basicities for geochemically common oxyanions.

The valence-matching principle

A criterion for chemical bonding results from the defini-

tions of Lewis acid and Lewis base strengths given above,

the valence-matching principle (Brown 2002, 2009):

Stable structures will form when the Lewis-acid

strength of the cation closely matches the Lewis-base

strength of the anion. [2]

The valence-matching principle is the most important and

powerful idea in bond-valence theory: instead of merely

interpreting known structures or compounds, we can test

the probability that stable compounds will form; thus, we

have moved from a posteriore to a priori analysis. I will

give three simple examples (taken from Hawthorne 1994)

to illustrate the operation of this principle.

Consider the chemical formula Na2SO4. The Lewis

basicity of the (SO4) group is 0.17 v.u. (Table 2) and the

Lewis acidity of Na is 0.17 v.u. (Table 1). The Lewis

acidity of the cation matches the Lewis basicity of the

anion, and the valence-matching principle is satisfied.

Thus, Na2SO4 is a stable structure, thenardite.

Consider the chemical formula Na4SiO4. The Lewis

basicity of the (SiO4) group is 0.33 v.u. (Table 2) and the

Lewis acidity of Na is 0.17 v.u. The Lewis acidity of the

cation is not equal to the Lewis basicity of the anion, and

the valence-matching principle is not satisfied. Hence,

there is no stable structure that corresponds to the com-

position Na4SiO4.

Consider the chemical formula Na[AlSiO4]. The Lewis

basicity of the [AlSiO4] group is 0.13 v.u. and the Lewis

acidity of Na is 0.17 v.u. The Lewis acidity of the cation is

approximately equal to the Lewis basicity of the anion, and

the valence-matching principle is satisfied. Nepheline,

Na AlSiO4, is a stable structure. However, nepheline

shows incommensurate behaviour (e.g., Angel et al. 2008),

Fig. 7 The bond-valence structure of the (SO4) oxyanion in thenar-

dite, with the individual bond valences shown in valence units [after

Hawthorne (1994)]

Table 2 Lewis basicities (v.u.) for selected oxyanions

(BO3)3- 0.33 (AsO4)3- 0.25

(BO4)5- 0.42 (CO3)2- 0.22

(SiO4)4- 0.33 (CO2(OH))1- 0.17

(AlO4)5- 0.42 (NO3)1- 0.11

(PO4)3- 0.25 (VO4)3- 0.25

(PO3OH)2- 0.22 (SO4)2- 0.17

(PO2(OH)2)1- 0.17 (CrO4)2- 0.17

Values from Brown (2009), except for values for Al, As, V and Cr

which are given as part of the present work
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perhaps reflecting the slight mismatch between the Lewis

basicity and acidity of its constituents.

The valence-matching principle is a simple way in

which we can evaluate the possible stability of specific

cation–anion interactions of interest. This is an a priori

analysis; it is important to recognize that we need no

crystal-structure information to evaluate the stability of the

putative compound.

Bond-valence theory as an ionic theory

Preiser et al. (1999) presented a justification of bond-

valence theory in terms of an ionic model of chemical

bonding. They wrote the energy, W, of an inorganic solid as

the sum of the classical electrostatic energy, Welectrostatic,

and the quantum–mechanical repulsion, WFermi:

W ¼ Welectrostatic þWFermi ð9Þ

The term Welectrostatic can be derived, in principle, from the

sum of the electrostatic fields of each atom, Eatom, where

Eatom ¼ Emono þ Emult þ Elocal ð10Þ

The following points are important (Preiser et al. 1999): (1)

Elocal represents the field inside the atom and is zero

outside the atom; (2) Emult represents point-multipole terms

for atoms with non-spherically symmetric electron density.

These multipole terms are commonly small and decrease

rapidly with distance from the atom, and Preiser et al.

(1999) combined Emult and Elocal into a short-range term,

leaving only Emono to contribute to long-range effects. The

energy can thus be written as

W ¼ WMadelung þWshort range ð11Þ

where WMadelung is the Madelung energy resulting from

Emono.

The Coulomb field

Preiser et al. (1999) note that the set of ‘‘all lines joining

two charges defines a region in space that represents the

electrostatic link between them’’ and that ‘‘every point in

space…must belong to one of these link regions. Thus

EMadelung directly partitions space into a collection of

localized link regions separated by zero-flux boundaries’’

(compare Bragg 1930, pp. 296–297). This situation is

shown for rutile in Fig. 8.

Where two atoms i and j are connected by a link region

with an electrostatic flux, Uij, we may write

Uij ¼
Z

EMadelungdA ð12Þ

where the integration is over the cross-section of the link

region. In Eq. (12), the terms Uij obey Gauss’s law, which

relates the flux of the electric-field intensity through a

closed surface to the total net charge within that surface:

X
j

Uij ¼
I

EMadelungdA ¼ Qi ð13Þ

where the sum is over all links connected to Qi and the

integration is over any closed surface surrounding Qi. The

fluxes can be calculated for any crystal structure (e.g.,

rutile as in Fig. 8). The partition of the electrostatic field

into link regions implies that these link regions are syn-

onymous with chemical bonds, and Preiser et al. (1999)

propose that ‘‘The fluxes linking atoms in the electrostatic

model are the same as the bond valences assigned using

the bond valence method’’.

Preiser et al. (1999) calculated the fluxes for many

structures and compared them with the analogous bond

valences (Fig. 9). The agreement is very close, supporting

the relation between electrostatic flux and bond valence.

Preiser et al. (1999) emphasize that the long-range Cou-

lombic interactions are transmitted inductively through a

crystal by the operation of Gauss’s law on the Coulomb

field at each atom.

Bond-valence theory as a molecular-orbital theory

Burdett and Hawthorne (1993) used the one-electron model

to examine the interaction of two orbitals on directly

bonded atoms using the secular-determinant method

Fig. 8 The Madelung field for rutile in the (1 1 0) plane. The light
lines represent the field lines, and the heavy lines show the zero-flux

boundary that partitions space into link (bond) regions [from Preiser

et al. (1999)]
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(Burdett 1980). This method focuses on the interaction of

atomic orbitals to produce molecular orbitals. The secular

determinant for such systems (e.g., the AB system of

Fig. 10a) has diagonal elements of the form Hii - E, where

Hii is the energy of an electron in orbital i, and off-diagonal

elements of the form Hij, where Hij is the interaction

between orbitals i and j; note that ui is an orbital of a cation

and uj is an orbital of an O atom. The energy of an electron

in orbital j is labelled Hjj. The secular determinant for the

system in Fig. 10a is

Hjj � E Hij

Hij Hii � E










 ¼ 0 ð14Þ

The determinant of Eq. (14) may be expanded to give the

molecular orbital energies: Eb is the energy of the bonding

orbital (wb in Fig. 10a) and Ea is the energy of the antibonding

orbital (wa in Fig. 10a). In a system with two electrons in wb,

the stabilization energy is 2estab (Fig. 10a) (i.e., the anion-

centred orbitals are full and the cation-centred orbitals are

empty). Expansion of Eq. (14) gives the following:

estab ¼
H2

ij

DE
þ

H4
ij

ðDEÞ3
þ � � � ð15Þ

There needs to be a nonzero energy gap between inter-

acting orbitals on anion and cation, and this is generally the

case for oxide and oxysalt minerals.

In the system AB2 (Fig. 10b), the secular determinant

equation is as follows:

Hii � E Hij Hij

Hij Hjj � E 0

Hij 0 Hjj � E















 ¼ 0 ð16Þ

This equation has three roots, corresponding to the bonding,

non-bonding and antibonding orbitals, respectively. The

root for the bonding orbital gives the following stabilization

energy:

estab ¼
2H2

ij

DE
�

4H4
ij

ðDEÞ3
þ � � � ð17Þ

Second-moment scaling

In Eqs. (15) and (17), Hii and Hjj are first-moment terms

and define the energies of the electrons in the ith and jth

orbitals (here, they set the zero of the energy scale). Hij are

second-moment terms, and the second moment is the sum

of the squares of the interaction integrals linking one

orbital to its neighbour. Variation in interatomic distances

may be well described by simple one-electron models if the

second moment of the electron-energy density-of-states is

kept constant (e.g., Pettifor and Podlucky 1984; Hoistad

and Lee 1991; Lee 1991). Consider an atom with C bonded

atoms at equal distances from the central atom; we may

write the second moment as Cb2 which we may set equal to

a constant Q. The overlap integral b may be written as

b = A/rm, where A is a constant (Harrison 1983). We may

incorporate the constant second moment into this expres-

sion to give the equilibrium separation, re, as

r2m
e ¼ C

A2

Q
ð18Þ

Equation (18) may be rewritten as:

re

ro

� ��2m

¼ 1

C

� �
Q

A2

� �
1

r�2m
o

� �
ð19Þ

For a specific atomic arrangement, (Q/A2)(1/ro
-2m) is fixed,

and we set it equal to some constant V:

Fig. 9 Flux versus experimental bond valence for unstrained struc-

tures [from Preiser et al. (1999)]

Fig. 10 a Interaction of two atomic orbitals ui and uj on A and B to

give two molecular orbitals wa and wb; the stabilization energy of the

lower (filled) orbital is estab. b Interaction of three atomic orbitals for

the AB2 case to give three molecular orbitals; wb, wa and wn are

bonding, antibonding and nonbonding orbitals, respectively [from

Burdett and Hawthorne 1993]
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re

ro

� ��2m

¼ 1

C

� �
V ð20Þ

Summing over all bonds in the coordination polyhedron

gives

X re

ro

� ��2m

¼ V ð21Þ

Brown and Shannon (1973) and Brown and Altermatt

(1985) define bond valence, s, with several different

expressions. However, the following form is the most

useful in the present circumstances:

s ¼ re

ro

� ��N

ð22Þ

where ro and N are dependent on which cations and anions

are involved in the bond. Summing over all bonds in the

coordination polyhedron gives

X
s ¼

X re

ro

� ��N

¼ V ð23Þ

if 2m in Eq. (21) is associated with N in Eq. (23), with the

result that these simple orbital and bond-valence descrip-

tions are algebraically identical.

Bond-valence theory, ionicity and covalence

Brown and Shannon (1973) stressed the difference between

the ionic model and bond-valence theory. In bond-valence

theory, a series of atomic cores are held together by valence

electrons that are associated with chemical bonds between

atoms. The valence electrons may be associated with

chemical bonds in a symmetric (covalent) or asymmetric

(ionic) manner. Moreover, the electron distribution is

quantitatively derived from application of the bond-valence

curves to the observed structure. Preiser et al. (1999) gave an

ionic justification of the bond-valence model (see above),

and Burdett and Hawthorne (1993) showed that the bond-

valence bond-length relation may be derived algebraically

from a molecular orbital description of a solid (see above).

One may conclude that bond-valence theory is not a theory

of ‘‘ionic’’ bonds or ‘‘covalent’’ bonds; it is not a theory of

types of chemical bond at all. So what is bond-valence

theory? I will address this issue in the following section.

Bond topology and bond-valence theory

There are two important theorems in bond-valence theory:

(1) the valence-sum rule (statement [1] above), and (2) the

valence-matching principle (statement [2] above). Let us

examine each of these theorems in terms of the above

discussion of bond-valence theory.

The valence-sum rule

Bragg (1930) noted that the lines representing the electric

field will emanate from an atom and then converge at the

closest point (i.e., atom) of opposite charge. Preiser et al.

(1999) note that EMadelung partitions space into a set of link

regions separated by zero-flux boundaries, suggesting that

these link regions can be identified as chemical bonds. The

electrostatic flux, Uij, is between atoms i and j within a link

region; Preiser et al. (1999) proposed that the fluxes linking

atoms in the electrostatic model are the same as the bond

valences assigned in the bond-valence method, and provide

numerous correlations to illustrate this point. As noted

above, the terms Uij are constrained to obey Gauss’s law,

which relates the flux of the electric field intensity through

a closed surface to the total net charge enclosed within that

surface [(Eq. (12)]. This being the case, the valence-sum

rule is a corollary of Gauss’s theorem. Preiser et al. (1999)

also emphasize that long-range Coulombic interactions are

transmitted inductively through a crystal by the operation

of Gauss’s law on the Coulombic field at each atom:P
j Uij ¼

H
EMadelungdA ¼ Qi. Thus, there are i equations

corresponding to the vertex set of the graph of the struc-

ture, and the summation at each atom (vertex) is over the

bonds (edges) incident at that atom (vertex). Thus, the

magnitudes of the fluxes (bond valences) are functions of

the formal charges of each atom (at each vertex) and the

numbers of chemical bonds (edges) incident at each atom

(vertex). The valence-sum rule derives from the operation

of Gauss’s law on the pattern of flux associated with the

graph representing the bond topology of the structure.

The valence-matching principle

Stable structures will form when the Lewis acid strength of

the cation closely matches the Lewis base strength of the

anion (Brown 2002). Lewis acidity is a measure of the

electron-attracting capacity of the cation, and Lewis basi-

city is a measure of the electron-donating capacity of the

anion. As a chemical bond involves both a cation and an

anion, then the electron-attracting capacity of the cation

must match the electron-donating capacity of the anion for

a chemical bond to form (Fig. 11). The valence-matching

Fig. 11 The valence-matching principle
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principle is the chemical analogue of the handshaking

lemma in graph theory (see above).

Bond topology as an approach to the chemical

composition, structure and stability of minerals

It is apparent from the above discussion that the quantita-

tive aspects of bond-valence theory arise from the topo-

logical (or graphical) characteristics of structures as

arrangements of atoms and chemical bonds. We also saw

that the moments approach to the energetics of crystal

structures allows us to associate the most important ener-

getic differences between different structural arrangements

with the lowest-moment differences in their bond topolo-

gies. Thus, the bond-topological approach can provide us

with a quantitative method of dealing with questions of

chemical composition and structure that have hitherto been

intractable. Below, I will give several examples, but

emphasize that these are by no means exhaustive.

The structure hierarchy hypothesis

A structural hierarchy is a classification of atomic

arrangements ranked according to their constituent cation

coordination polyhedra and the connectivity of those

polyhedra. An adequate structural hierarchy of minerals

should provide an epistemological basis for the interpre-

tation of the role of minerals in Earth processes (Haw-

thorne 1985). In principle, the physical, chemical and

paragenetic characteristics of a mineral should arise as

natural consequences of its crystal structure and the

interaction of that structure with the environment in which

it occurs. We have not yet reached this stage for any major

class of minerals, but significant advances have been

made.

As knowledge of the crystal structures of silicate min-

erals developed in the early part of the twentieth century,

Matchatski (1928) proposed that aluminosilicate minerals

be classified according to the linkage of the aluminosilicate

groups, and Bragg (1930) produced the neso (ortho-), soro-

(pyro-), cyclo- (ring-), ino- (chain-), phyllo- (sheet-), tecto-

(framework) silicate classification that we still teach

today. Bowen (1928) developed his reaction series, which

describes the sequence in which silicate minerals crystal-

lize from a parent basaltic magma: olivine ? pyroxene ?
amphibole ? mica ? feldspar ? quartz. The parallels

between the Matchatski–Bragg–Liebau classification of

silicates (i.e., the bond topology of the structures) and

Bowen’s reaction series cannot be accidental. There is a

gradual condensation of the aluminosilicate tetrahedra in

the crystallizing minerals with progressive crystallization,

indicating that the bond topology of the resultant minerals

is closely related to the crystallization process in basaltic

magmas. In borate minerals, B may occur as (Bu3) and

(Bu4) groups (u = O2-, OH), and classifications by

Edwards and Ross (1960), Ross and Edwards (1967),

Christ (1960), Tennyson (1963) and Heller (1970) took into

account the polymerization of these two different types of

polyhedra. In structures such as sulphates, phosphates,

arsenates and vanadates, systematic classifications were

slower to arise. Moore (1973) proposed classifying phos-

phate minerals according to the polymerization of their

constituent divalent metal octahedra, and showed a relation

between structural arrangement and paragenesis in peg-

matite phosphate minerals. However, the infrequency or

complete absence of polymerization of the principal oxy-

anion group has been a major factor in inhibiting the

development of hierarchical classifications of other mineral

groups.

Hawthorne (1983, 1994) introduced the Structure

Hierarchy Hypothesis: structures may be ordered hierar-

chically according to the polymerization of coordination

polyhedra of higher bond valence. The absence of self-

polymerization of the principal oxyanion in many mineral

groups is avoided by considering the polymerization of

different coordination polyhedra (e.g., tetrahedra and

octahedra) that comprise higher mean bond-valences

(usually C 0.33 v.u.) in these structures. Higher bond-

valence polyhedra polymerize to form homo- or hetero-

polyhedron clusters; these may be considered as the

fundamental building block (FBB) of the structure. The FBB

is repeated (often polymerized) by symmetry to form the

structural unit, a complex (usually anionic) polyhedron

array (not necessarily connected), the excess charge of

which is balanced by the presence of interstitial species,

usually large low-valence cations (Hawthorne 1985). The

clusters may polymerize in the following ways: (1)

unconnected polyhedra; (2) finite clusters; (3) infinite

chains; (4) infinite sheets; (5) infinite frameworks. This

approach has been used extensively to develop hierarchi-

cal classifications for a range of oxysalt minerals, for

example, phosphates, arsenates and vanadates (Kostov and

Breskovska 1989), phosphates (Huminicki and Hawthorne

2002), sulphates (Sabelli and Trosti-Ferroni 1985;

Hawthorne et al. 2000a), borates (Burns et al. 1995;

Hawthorne et al. 1996a; Grice et al. 1999). In addition,

other approaches have attempted to span several traditional

chemical groups of minerals (e.g., Lima-de-Faria 1978,

1983, 1994; Hawthorne 1985, 1986, 1990, 1997a; Burns

1999, 2005; Burns et al. 1996; Filatov et al. 1992;

Krivovichev 2008; Krivovichev et al. 1998). I will illus-

trate this procedure below on a subset of the hydroxy-

hydrated borate minerals, and the ensuing hierarchy will

provide a basis for further exegesis.
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Structural hierarchy of borate minerals

B3? is small ([3]r = 0.01, [4]r = 0.11 Å; Shannon 1976),

and both triangular and tetrahedral coordination by oxygen,

(Bu3) and (Bu4) (u = O2-, OH), are common in borate

minerals. In a (Bu3) group, the mean bond-valence is

3/3 = 1.00 v.u., and in a (Bu4) group, the mean bond-

valence is 3/4 = 0.75 v.u. Polymerization of borate poly-

hedra results in incident bond-valence sums B2.0 v.u. at

the linking anion; as interstitial cations in the structure can

provide additional bond-valence to the linking anions, the

valence-sum rule (Brown 2002) may be satisfied, and such

polymerization is common in borate minerals. Early clas-

sifications were reviewed by Christ and Clark (1977) who

produced a scheme in general use for 20 years, until

superseded by the scheme of Burns et al. (1995), Haw-

thorne et al. (1996a) and Grice et al. (1999).

B–B graphs and algebraic descriptors

When considering topological aspects of complicated

crystal structures, particularly in the form of nets, it is

common practice to omit the anions from the graphical

representation of structure (e.g., Smith 1977, 1978, 1988;

Hawthorne 1983, 1990; Burns et al. 1995). We may rep-

resent the FBBs of the borate structures as graphs, with the

vertices corresponding to B atoms (which are denoted as D
or h, depending on their coordination number; where the

coordination number is not specified, B is used) and the

edges corresponding to B–u–B linkages (with u, the linking

anion, omitted). We may write an algebraic descriptor of the

cluster (Burns et al. 1995) that contains information on (1)

the number of borate polyhedra; (2) the number of (Bu3)

triangles and the number of (Bu4) tetrahedra; (3) the con-

nectivity of the polyhedra; (4) the presence of rings of

polyhedra in the cluster; (5) the connectivity of those rings

within the cluster. The descriptor has the general form A:B,

where A is the number of (Bu3) triangles and (Bu4) tetra-

hedra in the cluster, and B is a character string that contains

the connectivity information of those polyhedra. I will now

consider the types of polyhedron linkage that can occur and

show how we may represent them as both graphs and

algebraic descriptors.

Linkage of polyhedra

The simplest clusters consist of a (Bu3) triangle

(A:B = 1D:D) or a (Bu4) tetrahedron (1h:h) (Fig. 12a, b).

Borate polyhedra self-polymerize by sharing corners, and

hence more than one polyhedron in the descriptor indicates

that the polyhedra polymerize by sharing corners. Thus, the

cluster 1D1h:Dh contains one (Bu3) triangle and one

(Bu4) tetrahedron, and these link by sharing a corner

(Fig. 12c). In the B string of the descriptor, adjacent

polyhedra are linked; hence graphical isomers (Hawthorne

1983) can be distinguished, for example, for the clusters

1D2h:hDh and 1D2h:Dhh (Fig. 12d, e). Rings of

polyhedra are very common in borate structures. Such rings

are denoted by enclosing the polyhedra of the ring by hi in

the B string of the descriptor; thus a three-membered ring

of one (Bu3) triangle and two (Bu4) tetrahedra (Fig. 12f) is

denoted by 1D2h : D2hh i. We can thus distinguish

between the decorated three-membered ring 2D2h :
D2hh iD (Fig. 12g) and the four-membered ring 2D2h :

DhDhh i (Fig. 12h). Where rings of polyhedra polymerize,

the number of polyhedra common to both rings is denoted

by the symbols -, = and : for one, two and three poly-

hedra, respectively. Thus, the cluster 2D2h : D2hh i ¼
D2hh i consists of two D2hh i rings with two borate

polyhedra in common (Fig. 12i).

Linking anions do not bond to more than two B atoms in

most borate FBBs. However, there are exceptions; in

tunnellite (Burns and Hawthorne 1994), one oxygen atom

is bonded to three B atoms, the local structure accommo-

dating this linkage by lengthening the B–O bonds in accord

with the valence-sum rule. To denote such a linkage, [] are

used to indicate any three- or higher-connected anion (u),

polyhedron (D or h) or ring of polyhedra (e.g., D2hh i),
and the polyhedra or rings connected to the central linking

unit follow the []. Discrete clusters that connect to the

central linking unit are separated by the symbol |. Thus, the

symbol 3h:[u]h|h|h| denotes three (Bu4) polyhedra

linked by a common anion u (Fig. 12j) in which the anion

u links to three separate (Bu4) tetrahedra. Consider a

central anion linked to three (Bu4) tetrahedra, all of which

link to (Bu3) triangles to form two D2hh i rings (Fig. 12k).

The descriptor for this cluster is 2D3h : ½u� D2hh i D2hh ij j;
although the sharing of one (Bu4) tetrahedron between the

two rings is not indicated explicitly in the descriptor, it is

implicit in the A string.

Selected borate minerals and their algebraic descriptors

are listed in Table 3. A complete description of structural

variation in borate minerals is too long to be feasible here.

However, I will briefly describe some of the structural

variations in these minerals in order to give a flavour of the

information contained in a structural hierarchy, and later,

we will see how this information can be used to understand

aspects of the behaviour of these minerals.

Structures based on isolated polyhedra

There are two possible FBBs here, D and h, and we can

divide the constituent minerals into two groups on this basis.

We may also divide each group into two subgroups on the

basis of the anions coordinating B: O2- or (OH)-, as the type

of anion is important, both structurally and paragenetically.
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FBB = D, u = O2- There is a dominant structural

theme in the minerals of this subgroup, encapsulated in the

name 3Å wallpaper structures (Moore and Araki 1974).

These structures are based on infinite [Mu4] chains of

edge-sharing octahedra, cross-linked perpendicular to their

length by (Bu3) triangles and (Bu4) tetrahedra, and by

Fig. 12 Common borate clusters, their corresponding B–B graphs and algebraic descriptors [after Burns et al. (1995)]

Table 3 Selected borate

minerals and their structural

descriptors

Name Formula Descriptor

Isolated polyhedra

Hexahydroborite Ca[B(OH)4]2(H2O)2 h

Suanite Mg2[B2O5] 2D

Clusters

Szaibelyite Mg2(OH)[B2O4(OH)] 2D

Kurnakovite Mg[B3O3(OH)5](H2O)5 D2hh i
Ameghnite Na[B3O3(OH)4] 2Dhh i
Hungchaoite Mg[B4O5(OH)4](H2O)7 D2hh i ¼ D2hh i
Chains

Colemanite Ca[B3O4(OH)3](H2O) D2hh i
Kernite Na2[B4O6(OH)2](H2O)3 D2hh i � D2hh i � D2hh i
Aristarainite Na2Mg[B6O8(OH)4]2(H2O)4 ½u� D2hh ij D2hh ij D2hh i
Sheets

Biringuccite Na2[B5O8(OH)](H2O) 2Dhh i � D2hh i
Tunellite Sr[B6O9(OH)2](H2O)3 ½u� D2hh ij 2Dhh ij
Fabianite Ca2[B6O10(OH)2] D2hh i ¼ 4hh i ¼ D2hh i
Frameworks

Hilgardite Ca2[B5O9]Cl(H2O) D2hh i � D2hh i
Pringleite Ca9[B20O28(OH)18][B6O6(OH)6]Cl4(H2O)13 Dh�h i ¼ D2hh iD
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sharing edges and vertices with adjacent chains. The [Mu4]

chain has an intrinsic repeat distance of *3 Å along its

length, hence the name. If ordering along the length of the

chains is ignored, the topological aspects of these structures

may be idealized as colourings of the plane net 36. Selected

frameworks are shown in Fig. 13. The structures show

intriguingly similar linkages, and some quantitative struc-

tural relations have been derived (Cooper and Hawthorne

1998), but no general quantitative algebraic description of

these structures has yet been developed.

FBB = h, u = OH- In this group, isolated tetrahedra

are linked most commonly by alkali and alkaline-earth

cations (primarily Na and Ca). The extended cohesion of

the structure is provided by linkage of the larger polyhedra

and by hydrogen bonding. This is the case in hexahyd-

roborite (Table 3) where chains of edge-sharing (Cau8)

polyhedra are decorated by [B(OH)4] tetrahedra, and link

in the other two dimensions by hydrogen bonding.

It is important to note here that the division of the iso-

lated D and h groups into two subgroups on the basis of

the identity of u is quite significant from a paragenetic

viewpoint. All minerals in the u = O2- subgroups are

from metamorphic or igneous (pegmatite) parageneses,

whereas the minerals in the u = (OH)- subgroups are

from sedimentary (usually evaporite) environments.

Structures based on finite clusters of polyhedra

These may be divided into seven sets:

(1) 2B; (2) 3Bh i; (3) 3Bh i ¼ 3Bh i; (4) 3Bh iB; (5)

3Bh i � 3Bh i; (6) ½u� 3Bh ij 3Bh ij 3Bh ij; (7) 3Bh i � 3Bh if g
In these minerals, there are twelve distinct clusters, ten

of which involve three-membered rings of polyhedra.

FBB = 2D Two of this group are 3Å wallpaper struc-

tures. Suanite (Table 3; Fig. 13g) consists of ribbons of

octahedra, four octahedra wide, that are cross-linked by

[B2O5] groups. Szaibelyite (Fig. 13h) consists of 1 9 2

ribbons of edge-sharing octahedra that link by sharing

vertices to form corrugated octahedron sheets that are

cross-linked into a framework by [B2O5] groups.

Fig. 13 Selected wallpaper

borate structures; a fluoborite;

b warwickite; c ludwigite;

d pinakiolite; e karlite;

f wightmanite; g suanite;

h szaibelyite. Orange: (BO3);

green: (MgO6); yellow: (FeO6);

turquoise circles: Cl; yellow
circles: (H2O)
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FBB ¼ D2hh i In kurnakovite, the D2hh i ring (Table 3)

links to two symmetrically equivalent (Mgu6) octahedra to

form chains that (Fig. 14a) have the same stoichiometry as

the cluster in inderite. The chains are linked via direct

hydrogen bonding and also by hydrogen bonding involving

the single interstitial (H2O) group.

FBB ¼ 2Dhh i In ameghnite, 2Dhh i clusters (Table 3;

Fig. 14b) are linked by [Na2u10] dimers to form a frame-

work, with extensive hydrogen bonding providing further

linkage.

FBB ¼ D2hh i ¼ D2hh i Hungchaoite consists of

D2hh i ¼ D2hh i clusters (Table 3; Fig. 14c) that link by

corner sharing to {Mg(OH)(H2O)5} octahedra, forming a

Mg[B4O5(OH)4](H2O)5 cluster. This cluster is neutral and

links to other identical clusters by direct hydrogen bonding

and through a hydrogen-bond network involving two

interstitial (H2O) groups.

Structures based on infinite chains of polyhedra

These may be divided into six sets:

(1) B; (2) 3Bh i; (3) 3Bh i � 3Bh i; (4) 3Bh i � 3Bh iB; (5)

3Bh i � 3Bh i � 3Bh i; (6) ½u� 3Bh ij 3Bh ij 3Bh ij
There are seven distinct clusters, all but one of which

involve three-membered rings of polyhedra.

FBB ¼ D2hh i In colemanite (Table 3; Fig. 14d), D2hh i
rings share two vertices between triangles and tetrahedra of

adjacent rings to form a chain. The Cau8 polyhedra share

corners to form chains that cross-link the borate chains into

a heteropolyhedral framework.

Fig. 14 Selected cluster, chain,

sheet and framework borate

structures; a kurchatovite;

b ameghinite; c hungchaoite;

d colemanite; e kernite;

f aristarainite; g biringuccite;

h tunellite; i fabianite;

j hilgardite-1A; k pringleite
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FBB ¼ D2hh i � D2hh i � D2hh i In kernite (Table 3;

Fig. 14e), D2hh i rings polymerize to form chains via

sharing of common tetrahedra between adjacent rings.

These chains are linked by Na atoms and a complex net-

work of hydrogen bonds.

FBB¼ ½u� D2hh ij D2hh ij D2hh i In aristarainite (Table 3;

Fig. 14f), three D2hh i rings link to a central anion ([u] in

the FBB descriptor). This cluster links to other clusters

through (Bu3) and (Bu4) groups to form chains. These

chains are cross-linked into sheets, and these sheets link in

three dimensions through (Nau5) polyhedra and a network

of hydrogen bonds.

Structures based on infinite sheets of polyhedra

These may be divided into seven sets:

(1) 3Bh i � 3Bh i; (2) ½u� 3Bh ij 3Bh ij 3Bh ij; (3) ½u� 3Bh ij
3Bh ij 3Bh ij2B; (4) ½u� 3Bh ij 3Bh ij 3Bh ij � ½u� 3Bh ij 3Bh ij
3Bh ij2B; (5) 3Bh i ¼ 4Bh i ¼ 3Bh i; (6) 6Bh i ¼ 4Bh i; (7)

B 3Bh i � 3Bh i � 3Bh i � 3Bh iB
There are eight distinct clusters, all but one of which

involve three-membered rings of polyhedra.

FBB ¼ 2Dhh i � D2hh i In biringuccite (Table 3;

Fig. 14g), the 2Dhh i � D2hh i FBB polymerizes to form

[B5O8(OH)] sheets that are cross-linked by interstitial Na

cations.

FBB ¼ ½u� D2hh ij 2Dhh ij In tunellite, three 2Dhh i rings

link by sharing tetrahedra. Three tetrahedra link through a

common vertex, denoted by [u] in the FBB descriptor

(Table 3), to form a cluster involving three triangles and

three tetrahedra. Three peripheral triangle-vertices link to

apical vertices of tetrahedra from adjacent clusters to form

sheets (Fig. 14h) that are cross-linked by Sr and a network

of hydrogen bonds.

FBB ¼ D2hh i ¼ 4hh i ¼ D2hh i In fabianite, a four-

membered ring of tetrahedra, 4hh i, shares two trans edges

with two three-membered rings, D2hh i; the resulting

cluster consists of four tetrahedra and two triangles

(Table 3). Two tetrahedra- and two triangle-vertices are

shared with adjacent clusters to form sheets (Fig. 14i) that

are cross-linked by chains of (Cau8) polyhedra.

Structures based on infinite frameworks of polyhedra

These may be divided into six sets:

(1) 3Bh i; (2) 3Bh i ¼ 3Bh i; (3) 3Bh i � 3Bh i; (4) ½u�
3Bh ij 3Bh ij 3Bh ijB; (5) ½u�4Bj; (6) 3Bh iB

There are six distinct types of FBB, all but one of which

involves a three-membered ring of polyhedra.

FBB ¼ D2hh i � D2hh i The three polymorphs of hil-

gardite have the FBB D2hh i � D2hh i (Table 3). The FBBs

share corners to form chains that cross-link by sharing

corners between (Bu3) and (Bu4) groups (Fig. 14j). Inter-

stitial Ca, Cl and (H2O) groups occupy the interstices of the

framework, and polymorphism results from different link-

ages of the two types of stereoisomer of the FBB.

FBB ¼ Dh�h i ¼ D2hh iD This FBB is a twelve-mem-

bered ring of alternating (Bu3) triangles and (Bu4) tetrahedra

(Fig. 14k) that is linked to a decorated three-membered

ring of one (Bu3) triangle and two (Bu4) tetrahedra. It occurs

in the structures of the dimorphs pringleite (space group

P1) and ruitenbergite (space group P21), both of which

have the composition Ca9[B20O28(OH)18][B6O6(OH)6]

Cl4(H2O)13. In both structures, the FBBs link directly to

form a mixed-borate framework of twelve- and three-

membered rings (Fig. 14k), and polymorphism arises from

subtle topological differences in the polymerization of the

FBBs.

Justification of the structure hierarchy hypothesis

Why should we be concerned with such hierarchical clas-

sifications? First, there is the (rather trivial) reason that

they give us an orderly arrangement of our knowledge of

minerals, and this arrangement makes it easier to ‘‘do’’

mineralogy. Second, such structural classifications tend to

order other characteristics of minerals that are dependent

on structure. In particular, there is a strong relation between

sequences of minerals in a hierarchical classification and

their paragenesis. The classic example is the parallel

between the Bragg classification of (alumino)silicate min-

erals (Bragg 1930) and Bowen’s reaction series (Bowen

1928). Other correlations have been briefly discussed in the

literature (e.g., Moore 1973; Schindler and Hawthorne

2001c; Schindler et al. 2000b), but the difficulties of

developing comprehensive paragenetic schemes for large

assemblages of minerals in the field have hindered such

work in the past.

There are several additional advantages to the structure

hierarchy hypothesis. In particular, we may justify this idea

within the framework of Bond Topology and Bond-Valence

Theory in the following manner (Hawthorne 1983). In a

structure, the bond-valence requirements of the cations

give rise to the formation of coordination polyhedra of

anions around the cations. As the net charge of the coor-

dinating anions generally exceeds the charge of the central

cation, we can think of the structure as an array of complex

oxyanions. In order to satisfy the (simple) anion bond-

valence requirements of these oxyanions according to the
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valence-sum rule, the oxyanions polymerize, thereby pro-

viding more bond valence to their ligands. This formulation

suggests that the most important polymerizations in a

structure involve those coordination polyhedra of higher

bond valence, subject to the constraint that the valence-sum

rule is not exceeded, as these linkages most easily satisfy

the valence-sum rule. Minor bond-valence requirements

and overall electroneutrality of the structure are satisfied by

the incorporation of weakly bonded interstitial cations.

Polymerization of the principal coordination polyhedra in

a structure is another way of expressing the topology of the

bond network, and we can consider this approach via the

Method of Moments introduced above. In structures with

bonds of different strength, each edge of each closed path

that contributes to each moment is weighted according to the

value of the strength of the bond corresponding to that edge.

Thus, strongly bonded closed paths through the structure

will contribute more to the electronic energy density-of-

states than weakly bonded closed paths. The most important

energetic features of a structure are thus not only the local

connectivity, but the local connectivity of the strongly

bonded coordination polyhedra in the structure. Thus, we

may recognize an energetic basis for the hierarchical orga-

nization of crystal structures according to the polymeriza-

tion of their strongly bonded coordination polyhedra.

Physical aspects of the structure hierarchy hypothesis

Inspection of the crystal structures of the hydroxy-hydrated

borate minerals shows that their structures may be con-

structed from the six borate clusters shown in Fig. 15. Of

course, all borate structures may be constructed from the

[B(OH)3] and [B(OH)4] clusters, but this is not a useful

way to proceed. We may combine [B(OH)3] and [B(OH)4]

to form many clusters that we do not find in borate minerals

(Burns 1995). On the other hand, the small number of

polynuclear clusters in Fig. 15 can be used to form all

borate structures. This fact is of major significance as these

six clusters are also the principal borate complexes

occurring in aqueous solution (Fig. 16). This correspon-

dence shows us that the clusters identified as principal

FBBs of the hydroxy-hydrated borate minerals are real

physical entities in geological processes and not just mental

constructs that we have abstracted from structures in an

attempt to understand the patterns of atoms in these crys-

tals. This is a very important point; it suggests that these

clusters are coherent objects that can retain their identity

through geological processes such as crystallization and

dissolution.

The existence of these clusters embedded both in aque-

ous solution and in crystal structures suggests that crystal-

lization of these minerals proceeds by condensation of the

hydrated cations and oxysalt species in solution. This seems

fairly evident for borate structures containing isolated

clusters of borate polyhedra, as we can identify the isolated

cluster directly in the structure itself and in the chemical

formula of the mineral. This situation is illustrated for

inderite in Fig. 17. The structure of inderite is based on the

[B3O3(OH)5] cluster, illustrated in yellow [BO3] and brown

[BO4] in Fig. 17, and which corresponds to the yellow and

purple tetrahedra in the structure itself. Moreover, the

cluster [B3O3(OH)5] can be identified in the chemical for-

mula of inderite, Mg[B3O3(OH)5](H2O)5, in which it is

shown in square brackets. For non-cluster structures, this

process is only slightly more complicated. Consider the

framework-structure borate-mineral hilgardite: Ca2[B5O9]

Cl(H2O), the structure of which is illustrated in Fig. 18.

The framework can be envisioned as consisting of three of

Fig. 15 The six borate clusters

from which all borate minerals

are constructed

Fig. 16 The distribution of B species in aqueous solution of 0.40

molar on total B(OH)3 [after Christ et al. (1967) from the data of Ingri

(1963)]
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the six clusters shown in Fig. 15: [B3O3(OH)5], B(OH)4 and

B(OH)3. Moreover, one can write a crystallization reaction

(Fig. 18) whereby these clusters polymerize to form the

[B5O9] framework and release (H2O) to the aqueous

solution.

Inspection of Fig. 16 shows that the pH at which each

cluster has its maximum concentration increases from left to

right in the sequence shown in Fig. 15. We may use bond-

valence theory to calculate the Lewis basicity of these

clusters (Hawthorne et al. 1996a). As is apparent in Fig. 19,

the aggregate average basicity (a proxy for the Lewis basi-

city, Hawthorne and Schindler 2008) correlates with the pH

of the nascent aqueous solution. Here, we see a direct con-

nection between conditions in aqueous solution and the

atomic arrangements in the minerals crystallizing from that

solution, as these arrangements are formed by condensation

of the clusters existing in solution. In turn, this relation

suggests that the atomic arrangements of these borate min-

erals contain a record of the pH of the solution from which

they crystallized through the aggregate Lewis basicity of the

clusters from which they formed. This relation deserves to be

pursued in more detail as it is the first indication of a quan-

titative relation between the details of chemical bonding and

the physical conditions at which a mineral crystallized.

Bond-topological controls on the structure

and chemical composition of oxysalt minerals

Above, I introduced the problem of understanding the

controls on the chemical compositions of minerals, par-

ticularly complicated oxysalt minerals such as botryogen,

Mg2(H2O)14[Fe2
3?(SO4)4]2, and metavoltine, K2Na6Fe2?

(H2O)6[Fe3
3?

3O(SO4)6(H2O)3]2(H2O)6. What controls the

details of their chemical formulae? What are the reasons

why botryogen has (1) Mg rather than Ca or Ba as its

divalent interstitial cation; (2) divalent interstitial cations,

Mg2, rather than monovalent interstitial cations, Na4 or K4;

(3) 14 (H2O) groups in its formula; why does not it have

(for example) 12 (H2O) groups; (4) (H2O) groups at all;

what is the role of these (H2O) groups in the structure? How

do the chemical formula and structural arrangement of

botryogen relate to its stability as a function of Eh and pH?

In complex oxysalt minerals, there are many different

atom interactions, the topological, chemical and geometri-

cal characteristics of which are important. The situation is

Fig. 17 A sketch of the crystal structure of inderite showing the

[B3O3(OH)5] cluster from Fig. 15 (yellow and orange) and its

presence in the crystal structure of inderite (yellow and purple) and in

the chemical formula of inderite (orange)

Fig. 18 A sketch of the structure of the framework borate hilgardite,

showing how the [B5O9] framework is built up of [B(OH)3],

{B(OH)4] and [B3O3(OH)5] clusters, and how crystallization of the

framework can be envisioned as a reaction between these three

aqueous species

Fig. 19 Variation in aggregate average basicity as a function of pH

for the borate clusters in the aqueous solution shown in Fig. 16
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somewhat analogous to that of an atom: in an atom, there is a

nucleus surrounded by electrons in a series of orbitals, all

interacting in a very complicated manner. Nonetheless, an

atom can still be usefully considered as a discrete entity with

simple properties such as size and charge; this is the basis of

crystal chemistry. Let us adopt a similar approach to com-

plicated crystal structures (Hawthorne 1983, 1985), dividing

them into two components (Fig. 20). The structural unit is

defined as the strongly bonded part of the structure (oxya-

nions and low coordination number cations), and the inter-

stitial complex is defined as the weakly bonded part of a

structure [an assemblage of (usually monovalent and diva-

lent) cations, (H2O) and, less commonly, (OH)] that controls

the stability of the structure. In order to take full advantage

of this type of structural representation, we need a quanti-

tative way to look at the weak interactions that bind the

structural unit and interstitial complex into a complete

structure. The important issue is the following: it is the weak

interaction between the interstitial complex and the struc-

tural unit that controls the stability of the arrangement

(Fig. 21). When a structure breaks down, it generally does

so by breaking the weakest bonds, which allows the struc-

ture to disaggregate into component fragments that can then

recombine to produce other structural arrangements. To

summarize, this binary representation of complex structure

gives a simple but quantitative model of even the most

complicated mineral, and provides insight into the weak

interactions that control the stability of its structure.

The principle of correspondence of Lewis

acidity–basicity

How do we examine the interaction between the structural

unit and the interstitial complex? In simple minerals, we

have used the valence-matching principle (Brown 2002)

for this purpose (see above). For complicated hydroxy-

hydrated oxysalt minerals, the situation is somewhat more

involved as we are not dealing with one type of interaction,

but the aggregate of several different types of interaction.

Let us consider botryogen, {Mg2(H2O)10}[Fe3þ
2(SO)4

(H2O)2]2, from this perspective (Fig. 22). We have parti-

tioned the structure into a structural unit, a cluster of Fe3?

octahedra and sulphate tetrahedra, and an interstitial com-

plex, Mg cations together with their associated (H2O)

groups. We may define a Lewis basicity for the structural

unit and a Lewis acidity for the interstitial complex as

aggregate properties of these two units. The interaction

between the structural unit and the interstitial complex may

now be examined in a manner similar to the application of

the valence-matching principle to simple chemical com-

positions using the principle of correspondence of Lewis

acidity-basicity (Hawthorne and Schindler 2008):

Stable structures will form when the Lewis-acid

strength of the interstitial complex closely matches the

Lewis-base strength of the structural unit (Fig. 11).

The principle of correspondence of Lewis acidity–basicity

is thus the mean-field equivalent of the valence-matching

principle.

Fig. 20 Partitioning of the complex crystal structure of botryogen,

Mg2(H2O)10 [Fe2
3?(SO4)4(H2O)2]2, into two units, the strongly

bonded structural unit (shown as coloured polyhedra) and the weakly

bonded interstitial complex (shown as individual atoms and chemical

bonds)

Fig. 21 A sketch showing how the interaction between the structural

unit and the interstitial complex controls the stability of a mineral,

particularly those minerals stable at the surface of the Earth
Fig. 22 The principle of correspondence of Lewis acidity–basicity,

the mean-field equivalent of the valence-matching principle
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Bond-valence controls on interstitial cations

The factors that govern the identity of interstitial cations are

obscure. For most minerals, the chemical system from

which they formed was often extremely large and the

crystallizing structures had access to many possible con-

stituents. However, a specific structure type can have

extreme selectivity in the incorporation of interstitial cations

despite its occurrence in a wide variety of chemical envi-

ronments and geographical locations. Let us consider min-

erals with chain structural units of the form [M2?

(T5?O4)2(H2O)2] and [M2?,3?(T5?O4)2(H2O)] (Table 4).

Both structure types contain interstitial divalent cations and

yet there is virtually no commonality between the types of

interstitial cation in the two structure types (note that this is

not a geochemical feature; both types of cation were often

available to the crystallizing minerals). The [M2?(T5?O4)2

(H2O)2] minerals are dominated by interstitial Ca, whereas

the [M2?,3?(T5?O4)2(H2O)] minerals are dominated by

interstitial Pb2?, Sr and Ba (differences in charge of the

high-valence cation can result in interstitial cations of dif-

ferent charge, for example, Na in kröhnkite and REE in

tornebohmite).

The principle of correspondence of Lewis acidity–basi-

city requires that the Lewis acidity of the interstitial com-

plex matches the Lewis basicity of the structural unit. Let us

examine the identity of the interstitial cations in brandtite

and arsenbrackebuschite (Table 4). I shall assign the coor-

dination number [4] to all O anions and [3] to all (H2O)

groups (i.e., two H cations and one additional cation); this is

not required for this calculation (see Hawthorne and

Schindler 2008) but it does make the procedure much more

transparent. Hydrogen has a coordination number of [2]; the

O(donor)–H bond is part of the structural unit whereas the

H���O(acceptor) bond is not part of the structural unit. Using

the cation coordination numbers indicated in Table 5, there

are 18 bonds within the structural unit of brandtite, leaving

an additional 20 bonds needed to attain the requisite anion

coordination numbers. There are four hydrogen bonds

incident to the structural unit (generally from adjacent

structural units), which leaves 16 bonds needed from

interstitial cations. The structural unit has a residual charge

of 4- (per [Mn2?(AsO4)2(H2O)2] unit) and hence the Lewis

basicity of the structural unit is the aggregate charge divided

by the number of bonds required: 4/16 = 0.25 v.u. Table 1

shows that Ca has a Lewis acidity of 0.27 v.u., in close

accord with the Lewis basicity of the structural unit. Hence,

the principle of correspondence of Lewis acidity–basicity is

satisfied, and brandtite is a stable structure.

In brackebuschite (Table 5), there are 16 bonds within

the structural unit, leaving an additional 19 bonds needed

to attain the requisite anion coordination numbers. Two of

these bonds are hydrogen bonds from adjacent structural

units, and 17 bonds must come from the interstitial cations.

The structural unit has a residual charge of 4-, and hence

the basicity of the structural unit is 4/17 = 0.23 v.u. This

value matches up quite well with the Lewis basicity of

Pb2? (0.20 v.u., see Table 1), the principle of correspon-

dence of Lewis acidity–basicity is satisfied and bracke-

buschite is a stable structure. Thus, Ca can form the

brandtite-type structure as its Lewis acidity (0.27 v.u.)

matches the Lewis basicity of the brandtite-type structural

unit, whereas Pb2? (also Ba and Sr) cannot form brandtite-

type structures as their Lewis acidities (*0.20 v.u.) do not

Table 4 Minerals with chain

units of stoichiometry

[M2?(T5?O4)2(H2O)2] and

[M2?(T5?,6?O4)2(H2O,OH)]

a The different valence cations

in the structural units of

kröhnkite and tornebohmite

force different-valence

interstitial cations for these two

minerals

[M2?(T5?O4)2(H2O)2] [M2?(T5?,6?O4)2(H2O,OH)]

Brandtite Ca2[Mn(AsO4)2(H2O)2] Arsenbrackebuschite Pb2[Fe2?(AsO4)2(H2O)]

Kröhnkitea Na2[Cu(SO4)2(H2O)2] Arsentsumebite Pb2[Cu(SO4)(AsO4)(OH)]

Roselite Ca2[Co(AsO4)2(H2O)2] Bearthite Ca2[Al(PO4)2(OH)]

Wendwilsonite Ca2[Mg(AsO4)2(H2O)2] Brackebuschite Pb2[Mn(VO4)2(H2O)]

Zincoroselite Ca2[Zn(AsO4)2(H2O)2] Bushmakinite Pb2[Al(PO4)(VO4)(OH)]

Calderónite Pb2[Fe3?(VO4)2(OH)]

Cassidyite Ca2[Ni(PO4)2(H2O)2] Feinglosite Pb2[Zn(AsO4)(SO4)(OH)]

Collinsite Ca2[Mg(PO4)2(H2O)2] Gamagarite Ba2[(Fe3?,Mn)(VO4)2(OH,H2O)]

Gaitite Ca2[Zn(AsO4)2(H2O)2] Goedkenite Sr2[Al(PO4)2(OH)]

Hillite Ca2Zn(PO4)2(H2O)2 Tokyoite Ba2[Mn3?(VO4)2(OH)]

Nickeltalmessite Ca2[Ni(AsO4)2(H2O)2] Tsumebite Pb2[Cu(PO4)(SO4)(OH)]

Parabrandtite Ca2[Mn2?(AsO4)2(H2O)2]

Roselite-beta Ca2[Co(AsO4)2(H2O)2] Fornacite Pb2[Cu(AsO4)(CrO4)(OH)]

Talmessite Ca2[Mg(AsO4)2(H2O)2] Molybdofornacite Pb2[Cu(AsO4)(MoO4)(OH)]

Tornebohmitea (RE)2[Al(SiO4)2(OH)]

Fairfieldite Ca2[Mn(PO4)2(H2O)2]

Messelite Ca2[Fe2?(PO4)2(H2O)2] Vauquelinite Pb2[Cu(PO4)(CrO4)(OH)]
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match the Lewis basicity of the brandtite-type structural

unit. Similarly, Pb2?, Ba and Sr form brackebuschite-type

structures, whereas Ca does not for the same reason.

The nature of the interstitial cation(s) is controlled by

the principle of correspondence of Lewis acidity–basicity:

the Lewis acidity of the interstitial cation must match the

Lewis basicity of the structural unit. Some very interesting

questions now emerge concerning the nature of the crys-

tallization process. Does the availability of a particular

interstitial cation dictate the form of the structural unit or

does the form of the structural unit dictate the identity of

the interstitial cations? Does the pH of the environment

have a strong effect on the form of the structural unit or the

amount of (H2O) incorporated into the structure? Are there

synergetic interactions between these factors? We can

begin to investigate some of these questions using binary

structural representation and the principle of correspon-

dence of Lewis acidity–basicity in conjunction with the

bond-topological characteristics of the structural unit.

The role of H2O in crystal structures

Hawthorne (1992) showed that that there are several dif-

ferent major roles for hydrogen (H) in structures, all of

them deriving from the common asymmetry of O–H bonds.

Of principal terrestrial importance are the (OH) and (H2O)

groups, primarily because of their polar nature: on one side

(the O side), each group acts like an anion, whereas on the

other side (the H side), the group acts as a cation that

generally has a very soft interaction with its associated

anions. The importance of this effect is difficult to over-

emphasize. It moderates a large number of biological

interactions that are integral to life, and it imparts a subtlety

and diversity to inorganic mineralogical interactions that

would otherwise be absent.

Let us focus on (H2O). There are two principal roles of

(H2O) in minerals (Hawthorne 1992, 1997a): (1) as a

moderator of Lewis acidity and Lewis basicity; (2) as a

control on the dimensional polymerization of structural

units.

(H2O) as a moderator of bond valence

Here, I examine the possible stereochemical arrangements

adopted by (H2O), and following Schindler and Hawthorne

(2004) and Hawthorne and Schindler (2008), consider their

effect in moderating the Lewis acidity of the interstitial

complex and the Lewis basicity of the structural unit.

(H2O) bonded to one cation

A cation, M, bonds to an anion S with a bond valence of v

v.u. (Fig. 23a). A cation, M, bonds to an (H2O) group, and

the (H2O) group bonds to an anion, S (Fig. 23b). In the first

case, the anion receives one bond of bond valence v v.u. In

the second case, the O atom of the (H2O) group receives a

bond strength of v v.u. from the cation M, and the valence-

sum rule at the central O atom is satisfied by two short O–H

bonds of strength (1 - v/2) v.u. In turn, each H forms at

least one hydrogen bond with its neighbouring anions in

order to satisfy its own bond-valence requirements. As a

result, the S anion receives a bond valence one half of what

it received where it was bonded directly to the M cation.

The (H2O) group is acting as a bond-strength transformer,

splitting one bond (bond strength = v v.u.) into two bonds

of (on average) half the strength (bond valence = v/2 v.u.);

Table 5 Calculation of structural-unit basicity for brandtite and

brackebuschite

Brandtite = Ca2[Mn2?(AsO4)2(H2O)2] Structural

unit = [Mn[6](As[4]O4)2(H2
[2]O)2]

Number of bonds in structural

unit = 1 9 [6] ? 2 9 [4] ? 4 9 [1] = 18

Number of bonds needed for [4]-coordination of all simple anions

(except (H2O) for which

[3]-Coordination is assigned) = 8 9 [4] ? 2 9 [3] = 38

Number of additional bonds to structural unit to achieve this

coordination = 38 - 18 = 20

Number of hydrogen bonds to structural unit = 2 9 2 = 4

Therefore the number of bonds required from interstitial

cations = 20 - 4 = 16

Charge on the structural unit [Mn2?(AsO4)2(H2O)2]

in brandtite = 4-

Lewis basicity of structural unit = charge/bonds = 4/16 = 0.25

v.u.

This basicity matches most closely with the Lewis acidity of Ca

at 0.27 v.u.

Thus the formula of brandtite is Ca2[Mn(AsO4)2(H2O)2]

Brackebuschite = Pb2[Mn2?(VO4)2(H2O)] Structural

unit = [Mn[6](V[4]O4)2(H2
[2]O)]

Number of bonds in structural

unit = 1 9 [6] ? 2 9 [4] ? 2 9 [1] = 16

Number of bonds needed for [4]-coordination of all simple anions

(except (H2O) in this structural unit) = 8 9 [4] ? 1 9 [3] = 35

Number of additional bonds to structural unit to achieve this

coordination = 35 - 16 = 19

Number of hydrogen bonds to structural unit = 2

Number of bonds required from interstitial cations = 17

Charge on the structural unit [Mn2?(VO4)2(H2O)]

in brackebuschite = 4-

Lewis basicity of structural unit = charge/bonds = 4/17 = 0.23

v.u.

This basicity matches most closely with the Lewis acidity of Pb

at 0.20 v.u.

Thus the formula of brackebuschite is Pb2[Mn(VO4)2(H2O)]
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this type of (H2O) is designated transformer (H2O), and is

denoted by the subscript d: (H2O)d.

(H2O) bonded to two cations

Where two cations, M, bond to an (H2O) group which

bonds to two anions S (Fig. 23c), the O atom receives a

bond valence of 2v v.u. from the two cations, and the

valence-sum rule is satisfied by two short O–H bonds, each

of strength (1 - v) v.u., and each H atom forms at least one

hydrogen bond with its neighbouring anions. In Fig. 23c,

one of these hydrogen bonds involves the S anion, which

thus receives the same bond strength (v v.u.) as where it is

bonded directly to one M cation (Fig. 23b). In this case, the

(H2O) group does not act as a bond-valance transformer; I

refer to this type of (H2O) group as non-transformer (H2O)

and denote it by the subscript e: (H2O)e.

(H2O) not bonded to any cation

Where (H2O) is involved only in a hydrogen-bond network,

its O atom is usually [4]-coordinated, and the (H2O) group

participates in two O–H (donor-hydrogen) bonds and

two H_O (hydrogen_acceptor) bonds, called hydrogen

bonds. In this case, two hydrogen bonds of strength v v.u.

are incident at the O atom of the (H2O) group. The

bond-valence requirements of the central O atom (i.e., the

operation of the valence-sum rule at the central O atom) are

satisfied by two O–H bonds of strength (1 - v) v.u. Each H

atom forms a hydrogen bond of strength v v.u. to another

anion, and an (H2O) group not bonded to any cation(s)

normally does not modify the strengths of its exident

chemical bonds; it merely propagates them through space,

similar to the case where the (H2O) group is bonded to two

cations (Fig. 23c). I refer to this type of (H2O) group as non-

transformer (H2O) and denote it by the subscript g: (H2O)g.

(H2O) as a component of the interstitial complex

There are two principal roles for interstitial (H2O) groups

in a structure: (1) to satisfy the bond-valence requirements

around an interstitial cation when there are insufficient

adjacent anions to do so from neighbouring structural units.

We may also state this in a somewhat different way: to

propagate bond valence from the interstitial cation to a

distant unsatisfied anion via a hydrogen bond. (2) To act as

a bond-valence transformer between interstitial cations and

the structural unit. In the first case, the (H2O) groups are

merely propagating bond valence through space, and hence

will be non-transformer (H2O) groups. In the second case,

the transformer (H2O) groups will moderate the Lewis

acidity of the interstitial complex and play a crucial role in

affecting the stability of a chemical composition through

the operation of the principle of correspondence of Lewis

acidity–basicity. These are qualitative descriptions of the

role of (H2O) in crystal structures. However, we want a

quantitative understanding of the role of (H2O) in struc-

tures and this approach can give it to us. As an example, I

will examine the role of interstitial (H2O) from a bond-

topological perspective and develop a quantitative under-

standing of its presence in complex oxysalt minerals.

(H2O) and the principle of correspondence of Lewis

acidity–basicity

Above, we saw how the valence-matching principle allows

us to assess the possible stability of any simple chemical

formula, and we have developed the principle of corre-

spondence of Lewis acidity–basicity to have a similar role

with regard to complex oxysalt structures: Stable structures

will form when the Lewis-acid strength of the interstitial

complex closely matches the Lewis-base strength of the

structural unit. The Lewis basicity of the structural unit is

the average bond valence of bonds to that structural unit

from surrounding interstitial complexes and neighbouring

structural units. The electroneutrality principle requires

that the bonds to the structural unit neutralize the charge

of the structural unit, and hence we can define the

Lewis basicity of the structural unit as the charge on the

Fig. 23 The bond-valence structure around (H2O) as a function of

local bond topology; a a cation, C (green) bonded to an anion, S

(yellow) with bond valence v v.u.; b a cation bonded to an (H2O)

group (O: orange; H: black) with bond valence v v.u.; the H atoms

hydrogen bond to the anion S with bond valence v/2 v.u.; (c) two

cations bonded to an (H2O) group with bond valence v v.u.; the H

atoms hydrogen bond to the anion S with bond valence v v.u
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structural unit divided by the number of bonds to the

structural unit. Here, I will not discuss how to calculate the

range in Lewis basicity of the structural unit; the calcula-

tion is complicated but not difficult, and full details are

given by Hawthorne and Schindler (2008). Instead, I will

focus on the interstitial complex and show how we can

graphically represent the variation in Lewis acid strength of

an interstitial complex as a function of chemical compo-

sition and structure, and then use the principle of corre-

spondence of Lewis acidity–basicity to examine the

interaction between the structural unit and interstitial

complex as a function of varying chemical composition of

each component of a structure.

We may write the chemical formula of a generalized

interstitial complex as

n
½m�Mþa

½n�M2þ
b
½l�M3þ

c ðH2OÞdðH2OÞeð½q�OHÞf ðH2OÞg
oZþ

where M are interstitial cations of different charge and with

coordination numbers [m], [n] and [l], d = the amount of

transformer (H2O), e = the amount of non-transformer

(H2O) and g = the amount of (H2O) not bonded to any

interstitial cation (Schindler and Hawthorne 2001a). The

requirement of electroneutrality determines the formal

charge of the interstitial complex, Z?; we wish to under-

stand what determines the constitution of the rest of the

interstitial complex, particularly a to g, l to n, and q. The

Lewis acidity of the interstitial complex may be calculated

as a function of the variables a to g, l to n, q and Z in the

above expression, and represented graphically as shown in

Fig. 24: the curved lines show the variation in Lewis

acidity (shown on the ordinate) as a function of the number

of transformer (H2O) groups per cation (shown on the

abscissa) for interstitial cations of different formal charge

and coordination number (shown by families of curves; the

corresponding cation charges and coordination numbers are

shown to the left of the curves). Hawthorne and Schindler

(2008) describe how to incorporate the monovalent anions

(OH, Cl) into this formalism.

The operation of the principle of correspondence of

Lewis acidity–basicity is shown schematically in Fig. 22.

However, rather than compare two single-valued quantities

as we do with the valence-matching principle, we compare

two expressions that vary as a function of chemical com-

position and structure. How we do this is shown in Fig. 25.

The range in Lewis basicity of the structural unit is plotted

on the same graph as the Lewis acidity function. Where the

properties of the structural unit (the yellow bands in

Fig. 25) and the interstitial complexes (the family of

curved lines in Fig. 25) intersect, structures of those par-

ticular compositions are in accord with the principle of

correspondence of Lewis acidity–basicity, and may be

stable. Where the properties of the structural unit and

interstitial complexes do not intersect (i.e., outside the

yellow bands in Fig. 25), structures of those compositions

are in not accord with the principle of correspondence of

Lewis acidity–basicity, and are not expected to be stable.

Thus, the principle of correspondence of Lewis acidity–

basicity allows us to examine the interaction between the

structural unit and interstitial complex as a function of

varying chemical composition of each component. Let us

now look at what we can do with this approach for a subset

of the hydroxy-hydrated borate minerals considered above.

[B4O5(OH)4]2-

The effective charge (Hawthorne and Schindler 2008) of

this structural unit is (2 ? 0.2 9 4)- = 2.8-. To calculate

the Lewis basicity of the structural unit, we need to know

the number of bonds to the structural unit. Schindler and

Hawthorne (2004) showed that there is a relation between

the CDA (Charge Deficiency per Anion: the effective

charge divided by the number of simple anions) of

the structural unit and NBh iin the number of bonds to the

structural unit (per anion of the structural unit) from the

interstitial complex and adjacent structural units. This

relation is shown for borate minerals in Fig. 26. For [B4O5

(OH)4]2-, the number of O atoms in the structural unit is 9;

hence, the CDA of the structural unit is 2.8/9 = 0.31 v.u.

and the corresponding range in NBh iin from Fig. 26 is

1.30–1.80. As there are nine anions in the structural unit,

the range in the total number of bonds to the structural unit

is 9 9 (1.3–1.8) = 11.7–16.2. For this structural unit, the

range in Lewis basicity is equal to the effective charge

divided by the range in the number of bonds to the struc-

tural unit, NBh iin: 2.8/11.7 and 2.8/16.2 = 0.17–0.24 v.u.

Fig. 24 Variation in Lewis acidity of a general interstitial complex as

a function of the number of transformer (H2O) groups per cation. The

lines shown are for interstitial cations with different formal charges

and coordination numbers shown to the left of the plot [after

Hawthorne and Schindler (2008)]
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The range in chemical composition for possible inter-

stitial complexes may be predicted from Fig. 25a. For

monovalent interstitial cations, only the coordination

numbers [5] and [6] are possible, and these have 0–1 and 0

transformer (H2O) groups, respectively (Table 6). Inter-

stitial [6]- and [8]-coordinated divalent cations, [6]M2? and

[8]M2?, are possible with 2–5 and 0–3 transformer (H2O)

groups. For trivalent interstitial cations, there are two

possibilities, depending on the presence or absence of

interstitial (OH). Interstitial [6]M3? and [8]M3? are possible

with 6 transformer (H2O) and 4–8 transformer (H2O)

groups, and also with one (OH) group and 4 transformer

(H2O) groups. The structural unit [B4O5(OH)4]2- occurs in

borax: Na2(H2O)8[B4O5(OH)4]; tincalconite: Na2(H2O)2.67

[B4 O5 (OH)4]; and hungchaoite: Mg(H2O)5[B4O5(OH)4]

(H2O)2. In borax, the interstitial complex is {[6]Na

(H2O)0…}? (predicted: {[6]Na(H2O)0…}?), in hungchao-

ite, the interstitial complex is {[6]Mg(H2O)4…}2? (pre-

dicted: {[6]Mg(H2O)2–6…}2?). In tincalconite, the interstitial

complex has cations in two different coordinations

{[5]Na1:33
½6�Na0.67(H2O)0…}; combining predictions for

[5]M? and [6]M? results in an aggregate predicted inter-

stitial complex of {[5]Na1:33
½6�Na0.67(H2O)0–1…}.

[B3O3(OH)5]2-

This structural unit has an effective charge of (2 ? 0.2 9

5)- = 3.0-, the number of O atoms in the structural unit is

8, the CDA of the structural unit is 3.0/8 = 0.38 v.u., and the

range in the number of bonds per anion to the structural unit

NBh iin is 1.55–2.00 (Fig. 26). The resultant range in Lewis

basicity is 3/8 9 2.00 - 2/8 9 1.55 = 0.19–0.24 v.u.

Interstitial monovalent cations cannot occur for coordi-

nation numbers of [6] and above, and can occur with a

coordination number of [5] only with zero transformer

(H2O) groups (Table 6). Divalent interstitial cations are

possible only for [6]-coordination with 2–4 transformer

(H2O) groups, for [7]-coordination with 1–3 transformer

(H2O) groups and for [8]-coordination with 0–2 trans-

former (H2O) groups. Trivalent interstitial cations are

possible for coordination numbers [6], [7] and [8] with 5–6,

4–7 and 3–7 transformer (H2O) groups, respectively. This

structural unit occurs in inyoite: Ca(H2O)3[B3O3(OH)5]

(H2O); inderite: Mg(H2O)4[B3O3(OH)5](H2O); kurnako-

vite: Mg(H2O)4[B3O3(OH)5](H2O); meyerhofferite: Ca

(H2O)[B3O3(OH)5]; and inderborite: CaMg(H2O)4 [B3O3

(OH)5]2(H2O)2. The interstitial complexes in inderite

and kurnakovite are {[6]Mg(H2O)4…}2? (predicted:

{[6]Mg(H2O)2–4…}2?), in inyoite and meyerhofferite are

{[8]Ca(H2O)1…}2? (predicted: {[8]Ca(H2O)0–2…}2?), and

in inderborite are [8]Ca and [6]Mg: {[6]Mg[8]Ca(H2O)2…}4?

(predicted: {[6]Mg[8]Ca(H2O)2–6…}4?).

[B6O7(OH)6]2-

This structural unit has an effective charge of (2 ?

0.2 9 6)- = 3.2-, the number of O atoms in the structural

unit is 13, the CDA of the structural unit is 3.2/13 = 0.25

v.u., and the range in the number of bonds per anion to the

Fig. 25 Variation in Lewis acidity as a function of the number of

transformer (H2O) groups per cation for different interstitial-cation

charges and coordination numbers for a general interstitial complex;

the range in Lewis basicity of the structural units of selected borate

minerals is shown by the yellow fields: a [B4O5(OH)4]2-;

b [B3O3(OH)5]2-; c [B6O7(OH)6]2- [from Schindler and Hawthorne

(2001b)]
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structural unit NBh iin is 1.0–1.5 (Fig. 26). The resultant

range in Lewis basicity of the [B6 O7 (OH)6]2- structural

unit is 0.16–0.25 v.u.

Interstitial monovalent cations can occur for [6]-coor-

dination only with 0 transformer (H2O) groups, and [7]M?

(not shown in Fig. 25c) and [8]M? are not possible

(Table 6). Divalent interstitial cations are possible for

[6]-coordination with 2–5 transformer (H2O) groups, for

[7]-coordination (not shown in Fig. 25c) with 1–4 trans-

former (H2O) groups and for [8]-coordination with 0–3

transformer (H2O) groups. This structural unit occurs in

mcallisterite: Mg(H2O)3[B6O7(OH)6] (H2O)1.5; admontite:

Mg(H2O)3[B6O7(OH)6](H2O); aksaite: Mg(H2O)2 [B6O7

(OH)6](H2O); and rivadavite: Na6Mg(H2O)10[B6O7(OH)6].

Mcallisterite and admontite have interstitial complexes

{[6]Mg(H2O)3…}2? (predicted: {[6]Mg(H2O)2–5…}2?),

and aksaite has an interstitial complex {[6]Mg(H2O)1…}2?,

(predicted: {[6]Mg (H2O)2–5…}2?).

Prediction of interstitial complexes for Cl-free

hydroxy-hydrated borate minerals

The above calculations show that we can predict aspects of

the interstitial complex of a mineral reasonably well, given

its structural unit. Figure 27 shows that the coordination

Fig. 26 Variation in NBh iin, the number of bonds (per anion of the

structural unit) from the interstitial complex and adjacent structural

units, as a function of CDA (Charge Deficiency per Anion) for structural

units of borate minerals [after Hawthorne and Schindler (2008)]

Table 6 The [B3O3(OH)5]2-,

[B4O4(OH)4]2- and

[B6O7(OH)6]2- structural units:

predicted and observed

interstitial complexes

Structural unit Lewis basicity

(v.u.)

Predicted interstitial

complex

Observed interstitial

complex

Mineral

[B4O5(OH)4]2- 0.17–0.24 {[5]M? (H2O)0–1} {[6]Na1.33
[5] Na0.67

(H2O)0}3?
Tincalconite

{[6]M? (H2O)0} {[6]Na2(H2O)0}2? Borax

{[7],[8]M}: not possible None observed

{[6]M2? (H2O)2–6} {[6]Mg(H2O)4}2? Hungchaoite

{[7]M2? (H2O)1–5}

{[8]M2? (H2O)0–4}

{[6]M3? (H2O)6 (OH)1}

{[8]M3? (H2O)4–8}

[B3O3(OH)5]2- 0.19–0.24 {[6]–[8]M?…}: not

possible

None observed

{[6]M2? (H2O)2–4} {[6]Mg(H2O)4}2? Inderite

{[7]M2? (H2O)1–3} {[8]Ca[6]Mg(H2O)2}4? Inderborite

{[8]M2? (H2O)0–2} {[8]Ca(H2O)1}2? Inyoite

{[8]Ca(H2O)1}2? Meyerhofferite

{[6]M3? (H2O)5–6}

{[6]M3? (H2O)3–4 (OH)1}

{[7]M3? (H2O)4–7}

{[8]M3? (H2O)3–7}

[B6O7(OH)6]2- 0.17–0.25 {[6]M? (H2O)0–1} {[6]Na6
[6]Mg1(H2O)0}8? Rivadavite

{[7]M?}: not possible

{[8]M}: not possible

{[6]M2? (H2O)1–6} {[6]Mg(H2O)3}2? Mcallisterite

{[7]M2? (H2O)0–6} {[6]Mg(H2O)3}2? Admontite

{[8]M2? (H2O)0–5} {[6]Mg(H2O)1}2? Aksaite
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numbers of interstitial cations (from [4] to [11]) in borate

minerals are predicted quite accurately.

This approach also predicts the number of transformer

(H2O) groups in the interstitial complex reasonably well. In

most (95 %) of the hydroxyl-hydrated borate minerals, the

observed amount of transformer (H2O) is within the pre-

dicted range (not considering microporous structures such

as pringleite). The structural unit has a range in Lewis

basicity (reflecting its stability over a range of pH), and

hence there is a range in the predicted number of trans-

former (H2O) groups. Factors that affect the amount of

transformer (H2O) within the predicted range are not yet

understood, but presumably relate to the stereochemical

details of the interaction between the interstitial complex

and the structural unit.

Other oxysalt minerals

Above, I have focused on hydroxy-hydrated borate min-

erals, and have shown that many aspects of their structure,

chemical composition and stability are susceptible to

understanding using this approach based on the bond

topology of the crystal structure. This approach has also

been used to examine the structure, chemical composition

and stability of the vanadate (Schindler et al. 2000a, b),

sulphate (Schindler et al. 2006) and uranyl-oxysalt miner-

als (Schindler and Hawthorne 2004, 2008), and has the

potential to be applied to other low-temperature oxysalt

minerals. An important aspect of the approach described

here is the fact that it attempts to relate bond topology and

bond valence to processes involved in crystallization (e.g.,

Figs. 15, 16, 17, 18, 19). This does make this approach

more difficult to apply to minerals that crystallized from

magmas, as the structures of the latter are much less well

understood than those of aqueous solutions. However, it

does encourage us to learn more about the details of

crystallization processes at the atomic scale in magmatic

systems.

(H2O) and (OH) as controls on dimensional

polymerization of the structural unit

On the anion side of the (H2O) and (OH) groups, the

bonding interaction is commonly relatively strong [*0.40

v.u. for (H2O); 0.80 v.u. for (OH)], and on the cation side

of these groups, the bonding interaction is much weaker

[*0.20 v.u. for both (H2O) and (OH)]. Hence, the anion

interaction is part of the structural unit, whereas the cation

interaction is not part of the structural unit (Hawthorne

1985). The result of this is illustrated for the structure of

newberyite, Mg3(PO3OH) (H2O)3, in Fig. 28. Consider first

the acid phosphate group, (PO3OH). Each tetrahedron links

to three (Mgu6) octahedra, forming a sheet in the ac plane.

The remaining vertex of the tetrahedron points in the

±b direction, forming a potential point of linkage (poly-

merization) in this direction. However, H is attached to the

O anion occupying this vertex, and the valence-sum rule

prevents further linkage to another tetrahedron or octahe-

dron (i.e., preventing polymerization of the structural unit

in the b direction through the phosphate group). Consider

next the {MgO3(H2O)3} octahedron. This is linked by the

tetrahedron into a sheet, as noted above, by sharing three

vertices with neighbouring tetrahedra. The remaining three

vertices of the octahedron can potentially link in the third

dimension to form a framework structure. However, the

anions occupying these three vertices also link to two H

atoms, satisfying their bond-valence requirements and

preventing any polymerization in the b direction.

Thus, (OH) and (H2O) groups can limit the dimensional

polymerization of a structural unit in one or more direc-

tions. It is difficult to overemphasize the importance of this

role, as this capability to control the polymerization of the

structural unit is a major cause of structural diversity in

oxygen-based minerals. Moreover, the geochemical distri-

bution of H throughout the Earth, together with the

anharmonic nature of the hydrogen bond, is a major factor

in accounting for the systematic distribution in mineral

species from the core to the surface of the Earth.

Mineral reactions

Above, I emphasized that when comparing two structures,

the important energetic terms are the most local topological

Fig. 27 Comparison of the observed and predicted coordination

numbers of interstitial cations in borate minerals; the sizes of the

circles are proportional to the number of data defining each point

[from Schindler and Hawthorne (2001b)]
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differences between the structures. Let us consider briefly

what this means in terms of mineral reactions. Here, we

look at the lowest-moment changes, gradually increasing

the order of the moment.

Zero-moment changes

Zero-moment changes involve changes in chemical com-

position; that is, a chemical reaction in which the constit-

uents are not conserved. Such a reaction shows open-

system behaviour and is a metasomatic reaction.

Second-moment changes

A second-moment change involves changes in coordination

number, and hence such reactions are characterized by

changes in one or more coordination numbers in the con-

stituent phases. A change in coordination number usually

involves a first-order phase transition, and such a reaction

is a discontinuous reaction. For example, consider the

following reaction:

Forsterite ¼ Periclaseþ Quartz

½6�Mg2
½4�Si½4�O4 ¼ ½6�Mg½6�Oþ ½4�Si ½2�O2

in which the coordination numbers of all the constituent

atoms are noted. The coordination numbers of Mg and Si

are conserved in the reaction, but the coordination numbers

of O are not conserved. The moments considerations

(discussed above) indicate that it is the change in

coordination number of O that is the major driver of this

reaction, as these are the lowest-moment differences

between each side of the reaction. The driving force of

this reaction may also be expressed as the enthalpy of

reaction, DH, suggesting that there should be a correlation

between the change in coordination numbers and the

enthalpy of reaction. Let us consider the reactions

½6�Mgm
½4�SinOðmþ2nÞ ¼ mMgOþ nSiO2

for m, n = 2, 1; 3, 2; 1, 1; 1, 2; 2, 5; 1, 3. We may calculate

DH of reaction with the model of Aja et al. (1992), using

fictive enthalpies of formation from their Table 3. How-

ever, before we can relate anion coordination numbers to

these enthalpies of formation, we must take into account

the fact that change in coordination number is an intensive

variable, whereas enthalpy of formation is an extensive

variable. We must transform the enthalpies of formation

into an intensive variable. We may do this by dividing the

enthalpy of formation by the molecular weight of the

reactant to produce the intensive variable DH/MW which I

will call the reduced enthalpy of formation. Figure 29

shows the variation in DH/MW as a function of mean anion

coordination number of the reactant; there is a strong

correlation between these two variables, in accord with the

strong influence of coordination number on the energetics

of reaction indicated by the arguments given above.

We may consider a slightly more complicated reaction

involving some minerals mentioned above, the hydrated

magnesium sulphate compounds, Mg(SO4)(H2O)n where

n = 0–7, 11: synthetic Mg(SO4); kieserite, Mg(SO4)(H2O);

sanderite, Mg(SO4)(H2O)2; synthetic Mg(SO4)(H2O)3;

starkeyite, Mg(SO4)(H2O)4; cranswickite, Mg(SO4)(H2O)4;

pentahydrite, Mg(SO4)(H2O)5; hexahydrite, Mg(SO4)

(H2O)6; epsomite, Mg(SO4)(H2O)7 and meridianiite,

Mg(SO4)(H2O)11, the bond-topological characteristics of

which have been considered recently by Hawthorne and

Sokolova (2012). We may write the following general

reaction:

MgSO4ðH2OÞn ¼ MgOþ SO3 þ nðH2OÞ

Fig. 28 The crystal structure of newberyite, Mg3(PO3OH)(H2O)3,

projected onto (010), showing how the presence of H prevents

polymerization of the P and Mg polyhedra; Mg octahedra: green; P

tetrahedra: yellow; H atoms: red

Fig. 29 Variation in reduced enthalpy of formation (from the oxides)

of [6]Mgm
[4]SinO(m?2n) versus mean anion coordination number of the

reactant
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Figure 30 shows the variation in the reduced enthalpy of

formation as a function of the mean anion coordination

number. There is a linear relation between the two vari-

ables similar to that exhibited in Fig. 29 for the Mg sili-

cates, in accord with our contention that anion coordination

number is a driving force of these reactions. However,

there are two significant deviations from linearity in

Fig. 30 for n = 1 and 3. These differences are far greater

than the uncertainties in the enthalpies of formation and

may relate to bond-topological differences within this

series of minerals. Hawthorne and Sokolova (2012) showed

that the anion coordination numbers for MgSO4 and

kieserite (n = 1) are significantly different from those of

the rest of the series: if there are a anions of coordination

[2] and b anions of coordination [3], combination of the

handshaking lemma (Wilson 1979) for a digraph with the

valence-sum rule of bond-valence theory shows that

a ? 2b = 6 for the Mg(SO4)(H2O)n structures. There are

four possible integer solutions to this equation and there are

(4 ? n - a - b) [4]-coordinated anions in these struc-

tures. For n = 0–1, a = b = 2 and there are no [4]-coor-

dinated anions in these structures; for n = 2–11, a = 0,

b = 6 and there are [4]-coordinated anions in these struc-

tures. Thus, it is not unexpected to find that kieserite

(n = 1) is nonlinear with the n = 2–11 structures. The

n = 3 structure also deviates somewhat from the linear

relation; this structure is unknown and hence we cannot

evaluate any effects of differing anion coordination

number.

In summary, the general correlation between anion

coordination number and reduced enthalpy of formation

from the oxides is in accord with the moments approach to

the electronic energy density-of-states that suggests that

such reactions should be driven primarily by changes in

coordination number. Moreover, this approach may allow

us to evaluate the effects of differing bond topology, as

expressed in differing anion coordination numbers, on

changes in the (reduced) enthalpy of formation.

Fourth-moment changes

A fourth-moment change involves changes in next-nearest-

neighbour atoms while maintaining chemical composition

and both cation- and anion coordination numbers. Such

changes involve the identities of next-nearest-neighbour

cations and/or anions, and hence involve the nature of local

(short-range) clusters of ions. Such changes in SRO (short-

range order) are common in amphiboles (e.g., Hawthorne

et al. 1996b, c, 1997, 2000b; Della Ventura et al. 1999;

Hawthorne and Della Ventura 2007), and the short-range

version of the valence-sum rule (Hawthorne 1997b) indi-

cates that such short-range order–disorder should be com-

mon in all minerals with polyvalent substitutions. Major

chemical variations in amphiboles in metabasic rocks

involve the following change:

Tremolite! Sadanagaite

hCa2Mg5Si8O22ðOHÞ2 ! NaCa2ðMg3Al2ÞðSi5Al3ÞO22ðOHÞ2

This change involves a continuous reaction which pro-

gresses to the right with increasing grade of metamor-

phism. What are the structural characteristics of amphibole

involved in this continuous reaction with increasing tem-

perature and pressure? In such a reaction, the bond topol-

ogy of the amphibole is conserved, and any energetic

differences with regard to the amphiboles involve only

atom identities and their relative locations; this is short-

range order–disorder and we know that this is ubiquitous in

amphiboles. End-member tremolite is completely ordered,

whereas end-member sadanagaite must show extensive

short-range order/disorder and the short-range order/dis-

order in tremolite-sadanagaite solid-solution must have a

major effect on the energetics of the resulting minerals and

their reactions with other phases.

The reaction principle

A mineral crystallizes from a prior assemblage of atoms,

and this prior assemblage of atoms has structure, that of an

aqueous fluid or a magma or a pre-existing assemblage of

minerals (and commonly a coexisting fluid). The valence-

sum rule (see above) has been used extensively for atoms

in crystals, and to a lesser extent for atoms in glasses and

aqueous fluids. It seems logical to propose that atoms in

transition between these various states of matter also obey

the valence-sum rule (although probably to a lesser degree

than in a crystal). This leads to the Reaction Principle

which we may define as follows:

Fig. 30 Variation in reduced enthalpy of formation (from the oxides)

of MgSO4(H2O)n versus mean anion coordination number of the

reactant
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The Reaction Principle: During a chemical reaction,

atoms move relative to each other such that they

continually minimize local deviations from the

valence-sum rule.

This being the case, the initial arrangement of atoms in a

system will commonly have an influence on the initial

product of any reaction. Above, we have already used this

idea when considering the crystallization of borate miner-

als as a condensation of the molecular species in aqueous

solution (Figs. 16, 17, 18, 19). A similar argument can be

made for minerals crystallizing from magmas. For exam-

ple, Gaskell et al. (1991) showed that a glass of compo-

sition CaSiO3 has a local structure very similar to that of

wollastonite. Assuming that the structure of the glass is

somewhat similar to that of CaSiO3 melt close to the

liquidus, the initial reactant in the crystallization of

wollastonite (a CaSiO3 ‘‘magma’’) is already templated

with much of the wollastonite structure, and many of the

atoms in the system will obey the Reaction Principle,

resulting in the crystallization of wollastonite.

In reactants that have weak bonds and little extended

structure (e.g., NaCl in aqueous solution), one expects little

in the way of influence of the reactant structure on the

product structure, and direct crystallization of the product

with the lowest free energy. Where the structure of the

reactant is defined by strong bonds and possibly more

extended structure (e.g., SiO2 in aqueous solution), there is

the potential for the structure of the reactant to influence

the structure of the initial product phase via the Reaction

Principle. If the structure of the reactant is far from that of

the lowest-energy product phase, it is easy to see that the

Reaction Principle may give rise to a product phase that is

not the lowest-energy product phase but one whose struc-

ture is more strongly related to the structure of the reactant.

In turn, the product phase may transform, again under the

constraint of the Reaction Principle, into another product

phase and work its way toward the lowest-energy product

phase via a series of steps that accord with the Reaction

Principle. Alternatively, the initial product phase, or one of

the later ‘‘intermediate’’ product phases, may be suffi-

ciently stable (although not the phase with the lowest

energy) that this sequence of reactions terminates in a

metastable product.

The Reaction Principle leads naturally to Ostwald’s Step

Rule (Ostwald 1897). This may be stated as follows: ‘‘If a

reaction can result in several products, it is not the most

stable state with the least amount of free energy that is

initially obtained, but the least stable one, lying nearest to

the original state in free energy’’ (Morse and Casey 1988).

This rule is not followed all the time, but sufficient systems

are in accord with this rule that one must pay attention to it,

and rationale has been given for the rule in terms of irre-

versible thermodynamics and kinetic theory (e.g., van

Santen 1984; Morse and Casey 1988; Nývit 1996; ten

Wolde and Frenkel 1999). From a bond-topological per-

spective, we may examine the operation of this rule, not in

terms of the stability or metastability of the products, but in

terms of the mechanism(s) of the reaction and its possible

influence on the structure(s) of the product(s). The Reac-

tion Principle accounts for the observations encompassed

by Ostwald’s rule. As noted above, in reactants that have

weak bonds and very local structure, one expects little in

the way of influence of the reactant structure on the product

structure, and direct crystallization of the product with the

lowest free energy, in accord with the observation that

Ostwald’s step rule ‘‘does not work all the time’’. In

reactants with strong bonds and more extended structures,

one expects the structure of the reactant to influence that of

the product via the Reaction Principle, and a series of

product phases may result in accord with Ostwald’s step

rule.

In regard to Ostwald’s step rule, it is interesting to

further examine the example of wollastonite given above.

The product of the reaction CaSiO3 (magma) ? wollas-

tonite with the ‘‘least amount of energy’’ will be a single

crystal of wollastonite. Of course, this will never occur; the

actual product will be an assemblage of crystals of wol-

lastonite in different orientations, presumably the result of

the magma consisting of regions of wollastonite-like

structure in different orientations. Thus, we can think of the

product phase according to the Ostwald step rule as con-

sisting of an assemblage of mineral grains instead of one

large crystal.

Coda

I have described a theoretical approach to the structure and

chemical composition of minerals based on their bond

topology, aspects of graph theory and bond-valence theory,

and the moments approach to the electronic energy density-

of-states. The above description is rather complicated, and

to give an overview, below I identify the principal features

of this approach in point form, and also what has been done

thus far in its application to the structure, chemical com-

position and stability of minerals:

[1] An arrangement of atoms and chemical bonds may

be represented by a weighted polychromatic

digraph, and the handshaking lemma may be used

to examine many aspects of atom coordination and

the linkage of coordination polyhedra, which is an

expression of the bond topology.
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[2] The method-of-moments approach to the electronic

energy density-of-states provides a bond-topological

interpretation of the energetics of structure.

[3] When comparing structures, the most important

structural differences involve the first few disparate

moments of the electronic energy density-of-states.

[4] We may classify chemical reactions according to the

lowest-order moment of the electronic energy

density-of-states that is conserved.

[5] This allows us to identify the principal structural

changes that drive chemical change: (a) coordination

number for discontinuous reactions and (b) short-

range order for continuous reactions.

[6] The algebraic form of bond-valence theory may be

derived from both ionic and covalent models of the

chemical bond.

[7] It may be shown that the quantitative aspects of

bond-valence theory arise from the topological (or

graphical) characteristics of structures as arrange-

ments of atoms and chemical bonds.

[8] Binary Representation: A crystal structure may be

divided into two components, the structural unit, a

strongly bonded part of the structure, and the

interstitial complex, an assemblage of (usually mono-

valent and divalent) cations, anions and neutral groups

that weakly bind the structural units into a continuous

crystal structure. It is the weak interaction between the

structural unit and the interstitial complex that

controls the stability of the structural arrangement.

[9] The Structure Hierarchy Hypothesis states that higher

bond-valence polyhedra polymerize to form the

(usually anionic) structural unit, the excess charge

of which is balanced by the interstitial complex

(usually consisting of large low-valence cations and

(H2O) groups). This hypothesis may be justified

within the framework of bond topology and bond-

valence theory.

[10] The possible modes of polymerization are (1)

unconnected polyhedra, (2) isolated clusters, (3)

infinite chains, (4) infinite sheets and (5) infinite

frameworks.

[11] The Structure Hierarchy Hypothesis may be used to

hierarchically classify oxysalt minerals, and the

degree of connectedness can be used to hierarchically

classify minerals within each of these major groups.

[12] Borate minerals are made of six polyhedron clusters

that are also the clusters that occur in aqueous borate

solutions, and the Lewis basicity of the clusters scale

with the pH of the solution at the maximum

concentration of each cluster, providing a link

between the conditions in the nascent aqueous

solution and the minerals which crystallize from it.

[13] The Principle of Correspondence of Lewis Acidity–

Basicity states that stable structures will form when

the Lewis-acid strength of the interstitial complex

closely matches the Lewis-base strength of the

structural unit.

[14] The Principle of Correspondence of Lewis Acidity–

Basicity provides a connection between a structure,

the speciation of its constituents in aqueous solution

and its mechanism of crystallization, and allows us

to examine the factors that control the chemical

composition and aspects of the structural arrange-

ment of minerals.

[15] (H2O) groups in the structural unit limit the poly-

merization of the structural unit in one or more

directions, controlling the dimensional polymeriza-

tion of the structural unit. This is a major cause of

structural diversity in oxygen-based minerals, and

accounts for the systematic distribution in mineral

species from the core to the surface of the Earth.

[16] Interstitial (H2O) groups may (1) satisfy the bond-

valence requirements around an interstitial cation

where there are insufficient adjacent anions to do so

from neighbouring structural units, or (2) moderate

the Lewis acidity of the interstitial complex and

affect the stability of a chemical composition

through the operation of the principle of correspon-

dence of Lewis acidity–basicity.

[17] Discontinuous chemical reactions are driven primar-

ily by second-moment changes in bond topology; that

is, changes in coordination numbers; in many mineral

reactions, cation coordination numbers are conserved

and it is the change in anion coordination numbers

that are the important driver of these reactions.

[18] In accord with [17], the variation in the reduced

enthalpy of formation from the oxides for the
[6]Mgm

[4]SinO(m?2n) structures is a monotonic function

of the mean anion coordination number in the latter.

[19] Continuous chemical reactions are driven primarily

by fourth-moment changes in bond topology; that is,

changes in next-nearest-neighbour ions, indicating

that the energetics of such reactions should be

affected strongly by changes in short-range order/

disorder.

[20] The Reaction Principle: During a chemical reaction,

atoms move relative to each other such that they

continually minimize local deviations from the

valence-sum rule.

[21] The Reaction Principle leads to Ostwald’s Step Rule: If

a chemical reaction can result in several products, it is

not the most stable state with the least amount of free

energy that is initially obtained, but the least stable one,

lying nearest to the original state in free energy.
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My prime motivation in developing this approach to

minerals and their behaviour is to try and understand the

atomic-scale factors that control the chemical compositions

and structural arrangements of (oxygen-based) minerals,

and to relate these factors to the behaviour of minerals in

geochemical processes.
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