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Abstract

Background Tools to assist clinicians in predicting pneumonia could lead to a significant decline in morbidity.

Therefore, we sought to develop a model in combat trauma patients for identifying those at highest risk of

pneumonia.

Methods This was a retrospective study of 73 primarily blast-injured casualties with combat extremity wounds.

Binary classification models for pneumonia prediction were developed with measurements of injury severity from the

Abbreviated Injury Scale (AIS), transfusion blood products received before arrival at Walter Reed National Military

Medical Center (WRNMMC), and serum protein levels. Predictive models were generated with leave-one-out-cross-

validation using the variable selection method of backward elimination (BE) and the machine learning algorithms of

random forests (RF) and logistic regression (LR). BE was attempted with two predictor sets: (1) all variables and (2)

serum proteins alone.

Results Incidence of pneumonia was 12% (n = 9). Different variable sets were produced by BE when considering all

variables and just serum proteins alone. BE selected the variables ISS, AIS chest, and cryoprecipitate within the first

24 h following injury for the first predictor set 1 and FGF-basic, IL-2R, and IL-6 for predictor set 2. Using both

variable sets, a RF was generated with AUCs of 0.95 and 0.87—both higher than LR algorithms.

Conclusion Advanced modeling allowed for the identification of clinical and biomarker data predictive of pneu-

monia in a cohort of predominantly blast-injured combat trauma patients. The generalizability of the models

developed here will require an external validation dataset.
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Background

Nosocomial infections are frequent complications of the

critically ill trauma patient. With a reported incidence as

high as 50%, they are the leading cause of late death fol-

lowing traumatic injury [1–3]. Pneumonia is the most

common nosocomial infections in the intensive care unit

population and a significant complication among trauma

patients [4–6]. The majority of nosocomial pneumonias

that develop in the critically ill are ventilator-associated

pneumonias (VAP), and among trauma patients, the

prevalence of VAP has been reported to be four times

higher than that in non-trauma patients [7–9]. The down-

stream consequences of a patient developing a nosocomial

pneumonia are substantial. It is associated with an increase

in the number of days of mechanical ventilation, intensive

care unit (ICU) length of stay, and overall hospital length

of stay [10, 11]. In addition, pneumonia is the leading

cause of death among nosocomial infections with corre-

sponding mortality rates of 20% in trauma patients and as

high as 80% in patients with VAP [5, 12]. Furthermore, the

burden to the healthcare system has been estimated to cost

billions of dollars [13, 14].

Recognizing the clinical and economic implications of

nosocomial pneumonia has led to the implementation of

widespread strategies to prevent its occurrence [15, 16].

Despite these initiatives, the risk of pneumonia remains a

critical problem. While several independent risk factors

have been associated with nosocomial pneumonia, current

diagnostic tools include variables from symptomatic

patients [17, 18]. Thus, the use of these algorithms,

unfortunately, leads to late diagnosis and treatment often

after the patient has clinically deteriorated. The ability to

predict who will develop pneumonia prior to the onset of

symptomatic declines could prove to be highly beneficial.

A clinical decision support (CDST) designed to assist

clinicians in predicting those patients at highest risk of

nosocomial pneumonia could lead to improved preventa-

tive strategies and earlier diagnosis.

In that regard, we sought to develop a predictive model

to identify patients at higher risk of nosocomial pneumonia

in a cohort of combat trauma patients as a stepping stone to

creating a CDST. We hypothesized that we could accu-

rately predict those injured service members at highest risk

of nosocomial pneumonia through advanced modeling.

Methods

This retrospective study of combat casualties with

extremity wounds injured in Iraq or Afghanistan and

evacuated to a single continental US military treatment

facility between 2007 and 2012 was approved by the

Walter Reed National Military Medical Center

(WRNMMC) Institutional Review Board (IRB). This work

was done under the umbrella of the Surgical Critical Care

Initiative (SC2i), a multi-institutional military–civilian

collaboration and a center at the Uniformed Services

University of Health Sciences. These prospective data

informed the development of a CDST for timing of wound

closure. As part of an ongoing analysis, we looked at other

outcomes including pneumonia.

Modeling was performed with the statistical programming

language of R (version 3.3.3) upon the operating system

macOS Sierra 10.12.6. Random forest models were generated

with the ranger package (version 0.10.1), which has a C? ?

back-end [19]. Logistic regression is a function provided by

base R. The backward elimination procedure described below

was generated in-house. ROC curves were generated with the

pROC package (version 1.13.0) [20]. Boxplots were gener-

ated with the ggplot2 package (version 2.2.0).

Pneumonia incidence

All cases of nosocomial pneumonia were defined with

radiographic imaging (chest X-ray or computed tomogra-

phy) concerning for pneumonia (infiltrate, consolidation, or

cavitation), isolated organism on quantitative respiratory

culture (105 organisms by bronchial alveolar lavage or 106

organisms on tracheobronchial aspirate), and treatment

with a course of antibiotics. Ventilator-associated pneu-

monia was defined as the above in the setting of casualties

mechanically ventilated for greater than 48 h.

Variable collection

Potential predictors—a total of 44 variables—included

measures of injury severity, transfusion blood products

received, and serum protein levels. The potential variables

were present for each member of our cohort, and this

allowed us to use it in entirety (see Table 1 for full list).

The injury severity measures were the multiple body

region-specific values for Abbreviated Injury Scale (AIS)

and the single-composite Injury Severity Score (ISS). The

transfusion blood product variables consisted of red blood

cells, whole blood cells, platelets, fresh frozen plasma, and

cryoprecipitate—separate measures were used for those

delivered on the field (within 24 h of injury) or during

hospitalization at WRNMMC. Serum samples were

assayed for a panel of 32 inflammatory cytokines using the

Luminex platform. Serum collection and biomarker anal-

ysis have been previously described [21]. Briefly, periph-

eral blood was collected prior to each surgical debridement

occurring in the continental USA. Serum was subsequently

fractionated and stored at - 70C until analysis. Serum was
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then analyzed using both Beadlyte� Human 30 and 2-plex

cytokine detection systems on the Luminex� 100 IS

xMAP Bead Array Platform (Millipore Corp., Ontario,

Canada). Reported serum measurement is based on either

one or two measurements. Values lower than the lower

limit of detection were set to the threshold value, and less

frequently, a similar adjustment was made for being above

the upper limit.

Variable selection

The 44 potential predictive variables were reduced with

backward elimination (BE) to two smaller subsets via

complementary approaches: (1) initiated with all variables

(clinical and serum proteins) and (2) using only serum

proteins after removing highly correlated ones (r[ 0.3). A

random forest (RF) was used for the BE process. The

‘‘backward’’ nature of the process lends itself to variables

being eliminated if they provide redundant information. BE

was employed with the initial feature set by first deter-

mining the number of iterations required for a baseline

level of RF overall performance (OP) with a derived metric

consisting of the sum of AUC and sensitivity/specificity

(defined at the threshold where their product is maxi-

mized). A ‘‘baseline level’’ was determined by requiring

OP to remain ‘‘similar’’ for 4 increases in the number of

iterations with steps sizes of 50. ‘‘Similar’’ was defined as

OP not changing by more than 0.01. Following the deter-

mination of the number of iterations, the effect of dropping

variables was assessed by dropping variables one-at-a-

time. A variable was dropped if OP decreased by more than

0.02. BE was run recursively till the features in the model

remained constant. After the selection of the final set of

features, if needed, additional iterations were run for con-

vergence—defined as a combined change of \ 0.01—of

AUC, sensitivity, and specificity.

Employed machine learning algorithms

The machine learning methods used here consisted of the

random forest (RF) with BE and also logistic regression

(LR). LR was used with the variables resulting from BE.

The following RF tuning parameters were employed:

minimum bucket size = 5, mtry = square root of the

number of features, and number of trees = 500. Multiple

iterations of leave-one-out-cross-validation (LOOCV) were

used for the generation of LR and RF models. For each

iteration, a pair of patients (1 control, 1 case) was held out

of for testing, and the remaining patients were upsampled

to create a balanced cohort for training. Test patient

probabilities were aggregated across iterations to generate

ROC curves.

Results

A total of 73 patients were enrolled during the study time

period. All casualties in our cohort were males (age in

years: median = 22, first quartile = 20, third quar-

tile = 30). The primary mechanism of injury was blast

(91%), and the average injury severity score (ISS) was

strongly skewed (median = 16, first quartile = 10, third

quartile = 22). Almost half (44%) of the patients sustained

a major vascular injury, and there were 116 extremity

wounds among the 73 casualties; our cohort included those

with single extremity wounds as well as those with mul-

tiple injuries. Patients underwent a median of three oper-

ations after arrival to WRNMMC. The incidence of

pneumonia in our cohort was 12% (9/73). Of the nine cases

of pneumonia, five qualified as VAP (* 56%). As in other

studies, the occurrence of pneumonia was associated with

overall hospital length of stay, number of days on a ven-

tilator, and the number of ICU days (Wilcoxon rank-sum

tests, p values\\ 0.01).

Before attempting to build a binary classification model

for the prediction of pneumonia, we determined whether

potential variables (blood products received, injury severity

measures, and serum protein) were collected prior to the

date of pneumonia diagnosis. Both blood products and

injury severity variables were collected prior to diagnosis.

However, serum was collected prior to diagnosis for seven

of nine patients with pneumonia (*78%); pre-diagnosis

serum collection days were 1, 2, 9, 10, 16, 32, and 41.

However, serum was collected prior to diagnosis for seven

of nine patients with pneumonia (*78%); pre-diagnosis

serum collection days were 1, 2, 9, 10, 16, 32, and 41. For

the other two pneumonia patients, serum was collected on

the day of diagnosis and 3 days later.

Four models were generated using the two algorithms of

RF and LR. Selected variables for the algorithms first were

identified by BE performed on all included variables in the

dataset and then by BE performed only on serum proteins.

Model performance of each algorithm is shown in Table 2.

In general, RF outperformed LR regardless of variable set

selected. The best model for predicting pneumonia was the

RF algorithm using the variables ISS, AIS chest, and cry-

oprecipitate given within the first 24 h, which were selec-

ted from BE performed on all included variables in the
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dataset. This RF algorithm produced a sensitivity of 1.0,

specificity of 0.89, and AUC of 0.97. ROC curves for the

four algorithms are shown in Fig. 1. The solitary contri-

butions of each variable can be seen from the plots (Fig. 3)

in Figs. 2 and 3.

Discussion

We developed several predictive models for the develop-

ment of pneumonia in our cohort of combat casualties. Our

models are meant to serve the purpose of risk stratification

which will be used to determine specific treatments. Given

that our dataset consisted of a military trauma cohort, we

modeled with and without clinical and demographic vari-

ables—our reasoning being that a model with serum pro-

teins alone may be more generalizable to a civilian

population. It is likely that a civilian cohort may differ

from our military cohort in terms of injury severity as

reflected by variables such as ISS and the amount of

transfused cryoprecipitate—variables selected in our

modeling process. However, a civilian cohort may express

similar serum protein expression to combat casualties,

which could reflect more on the inflammatory processes

leading to pneumonia, regardless of the injury severity.

Moving forward, we plan to externally validate beyond

combat casualties and refine these models with civilian

trauma and non-trauma critically ill patients.

Table 1 Potential variables

Clinical variables Serum variables

AIS (head) Epidermal growth factor

AIS (face) Eotaxin

AIS (chest) Basic fibroblast growth factor

AIS (abdomen) Granulocyte colony-stimulating factor

AIS (extremity) Granulocyte–macrophage colony-stimulating factor

ISS Human hepatocyte growth factor

Red blood cells Interferon alpha

Whole blood Interferon gamma

Platelets Interleukin-1 alpha

Fresh frozen plasma Interleukin-1 beta

Cryoprecipitate Interleukin-1 receptor antagonist

Interleukin-2

Interleukin-2 receptor

Interleukin-3

Interleukin-4

Interleukin-5

Interleukin-6

Interleukin-7

Interleukin-8

Interleukin-10

Interleukin-12

Interleukin-13

Interleukin-15

Interleukin-17

Interferon gamma-inducible protein

Monocyte chemoattractant protein-1

Monokine induced by interferon-gamma

Macrophage inflammatory protein-1 alpha

Macrophage inflammatory protein-1 beta

RANTES

Tumor necrosis factor alpha

Vascular endothelial growth factor
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The machine learning algorithms of random forest (RF)

and logistic regression (LR) were chosen because of their

complementary strengths. The RF algorithm has consis-

tently demonstrated strong classification performance [22].

A relative strength of the RF algorithm is its ability to

handle many predictive variables relative to the number of

observations (i.e., patients). In contrast, the LR algorithm’s

benefits include the ease of interpretability and its common

utilization in clinical research.

Predictive modeling and the use of CDSTs are not a

novel concept. The Laboratory Risk Indicator for Necro-

tizing Fasciitis (LRINEC) score, the Alvarado score for

appendicitis, and the Clinical Pulmonary Infection Score

(CPIS) are all examples of previously developed and cur-

rently operational tools [18, 23, 24]. The CPIS tool has

been shown to have moderate reliability and accuracy in

diagnosing nosocomial pneumonia [25, 26]. However,

much like other tools, CPIS is based on radiographic and

laboratory values after the patient has become symp-

tomatic. Thus, CPIS may assist with narrowing clinician’s

differential for a patient’s decompensation, but treatment

becomes delayed instead of proactive.

Several previous studies have identified predictive risk

factors for nosocomial pneumonia in trauma patients.

Antonelli and colleagues found that combined thoracic and

abdominal injury increased the risk of early onset pneu-

monia 11-fold in trauma patients [17]. In addition to tho-

racic trauma, others have found traumatic brain injury, age,

and ventilator days as independent predictors for the

development pneumonia among traumatically injured

patients [27, 28]. In patients with retained hemothorax,

blunt mechanism of injury and failure to administer pre-

procedural antibiotics prior to tube thoracostomy were

found to be independent predictors for pneumonia [29].

Similar to these previous studies, we identified chest injury

as a risk factor. However, with supplementary cytokine

analysis we were able to identify additional factors to

predict the development of pneumonia in our cohort: FGF-

basic (FGF2), IL-2R (soluble), and IL-6. FGF-basic has

been shown to be involved in a variety of functions

including angiogenesis [30]. Soluble IL-2R has been found

to be elevated in blunt trauma and thermal injury patients,

and it has been demonstrated to induce alterations in T-cell

mediated immune function [31]. IL-6 is promptly produced

in response to tissue injury and has been shown to be

correlated with severity of injury and complications such as

infections [32]. In particular, IL-6 was recently identified

as a potential marker for pneumonia in brain injured

patients [33].

The ability to accurately predict which patients will

develop pneumonia could provide the opportunity to

change clinical practice and reduce the incidence of

pneumonia. It is anticipated that a predictive tool could

lead to the implementation of more aggressive prophylactic

measures or the initiation of antibiotics earlier in the

patient’s hospital course. It could be argued that initiating

antibiotics in this instance could be considered prophy-

lactic, which have not been shown to be beneficial [34].

However, starting antibiotics should be considered thera-

peutic in the setting of an earlier diagnosis as opposed to

treatment based on symptoms and clinical deterioration. In

essence, a CDST could adapt and tailor management by

providing individualized and patient-focused care.

Diagnosing nosocomial pneumonia in a critically ill

trauma patient can be challenging. Processing clinical,

radiographic, and laboratory information often is not

straightforward particularly in a complex patient. Diagno-

sis and subsequent treatment then can be delayed which

can lead to increased morbidity and mortality for the

patient. It has been reported that errors such as these delays

in diagnosing pneumonia result in almost 100,000 deaths a

year [35]. Likewise, the development of pneumonia and

other nosocomial infections results in a substantial finan-

cial burden to the healthcare system. It is estimated that the

prevention of pneumonia could lead to $1.9 billion and

$10.1 million in annual cost-savings for the US healthcare

system and the US Military Health System, respectively

[36]. Without a commitment to improving diagnoses and

Table 2 Model features and performance

Selected variables Model AUC Sensitivity Specificity

Backward elimination with all

variables

ISS, AIS chest, and cryoprecipitate (received prior to

WRNMMC)

RF 0.97 1.0 0.89

Backward elimination with all

variables

ISS, AIS chest, and cryoprecipitate (received prior to

WRNMMC)

LR 0.86 0.89 0.87

Backward elimination with serum

proteins

FGF-basic, IL-2R, and IL-6 RF 0.87 0.78 0.97

Backward elimination with serum

proteins

FGF-basic, IL-2R, and IL-6 LR 0.75 0.73 0.76
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reducing medical errors, patient safety and outcomes will

continue to decline while costs will continue to rise. The

impact of predictive modeling and CDSTs on lowering the

incidence and/or facilitating earlier diagnosis of certain

diseases such as nosocomial pneumonias could prove to be

invaluable. Moreover, the Committee on Diagnostic Error

in Health Care ‘‘concluded that improving the diagnostic

process is not only possible, but also represents a moral,

professional, and public health imperative’’ [37].

There are a few limitations of our study that deserve

mentioning. Our data were collected from a small and

specific cohort of healthy males (18–42 years) sustaining

combat-related (blast) extremity injuries. In addition, they

were all severely injured and were uniformly treated by

specific protocols. Furthermore, there were limited data

available prior to arriving to our facility and serum bio-

marker data were not collected until several days after

injury. Finally, casualties underwent transcontinental

evacuation and were cared for at multiple military facilities

prior to arrival to our institution. Thus, our cohort may not

be representative of a more general population and this

implies that our models need to be externally validated to

Fig. 1 ROC curves. a RF with variables ISS, AIS chest, and cryoprecipitate (received prior to WRNMMC). b LR with same variables as in

a. c RF with variables, FGF-basic, IL-2R, and IL-6. d LR with same variables as c
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ensure generalizability. Importantly, we are continuing to

collect data on bacterial subgroups and that information

may be critical for additional model refinement.
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