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Abstract
Variation in cognitive abilities is thought to be linked to variation in brain size, which varies across species with either social
factors (Social Intelligence Hypothesis) or ecological challenges (Ecological Intelligence Hypothesis). However, the nature of the
ecological processes invoked by the Ecological Intelligence Hypothesis, like adaptations to certain habitat characteristics or
dietary requirements, remains relatively poorly known. Here, we review comparative studies that experimentally investigated
interspecific variation in cognitive performance in relation to a species’ degree of ecological specialisation. Overall, the relevant
literature was biased towards studies of mammals and birds as well as studies focusing on ecological challenges related to diet.
We separated ecological challenges into those related to searching for food, accessing a food item andmemorising food locations.
We found interspecific variation in cognitive performance that can be explained by adaptations to different foraging styles.
Species-specific adaptations to certain ecological conditions, like food patch distribution, characteristics of food items or sea-
sonality also broadly predicted variation in cognitive abilities. A species’ innovative problem-solving and spatial processing
ability, for example, could be explained by its use of specific foraging techniques or search strategies, respectively. Further,
habitat generalists were more likely to outperform habitat specialists. Hence, we found evidence that ecological adaptations and
cognitive performance are linked and that the classification concept of ecological specialisation can explain variation in cognitive
performance only with regard to habitat, but not dietary specialisation.

Keywords Cognition . Ecological adaptation . Foraging style . Habitat complexity . Ecological Intelligence Hypothesis . Brain
size

Introduction

Cognition can be defined as the ability to perceive, memo-
rise and process information from an individual’s social as
well as ecological environment (Shettleworth 2009), and
variation in this ability is thought to be positively correlated

with brain size. Relative brain size varies considerably
among species (e.g. Mace et al. 1981; Sol et al. 2008) and
is indeed associated with variation in average species-
typical cognitive performance (Deaner et al. 2006; Reader
et al. 2011). Several hypotheses have been proposed to ex-
plain this link between interspecific variation in brain size
and the associated cognitive abilities. The most prominent
hypotheses are the Social Intelligence Hypothesis (SIH,
Humphrey 1976) and the Ecological Intel l igence
Hypothesis (EIH, Parker and Gibson 1977; Milton 1988),
which have been subsequently refined as the Domain-
General Hypothesis (Deaner et al. 2006), Domain-Specific
Hypothesis (Whiten and Byrne 1988), Adaptive Intelligence
Hypothesis (Tooby and Cosmides 2003), Machiavellian
Intelligence Hypothesis (Whiten and Byrne 1988),
Cultural Intelligence Hypothesis (Herrmann et al. 2007;
van Schaik and Burkart 2011), Social Brain Hypothesis
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(Dunbar 1998; Dunbar and Shultz 2007) and Cognitive
Buffer Hypothesis (CBH, Deaner et al. 2003)) (see Fig. 1).

The SIH suggests that bigger brains co-evolved with in-
creasing social complexity, i.e. cognitive challenges to man-
age social relationships, which, in turn, have evolved asmeans
of solving ecological problems (Jolly 1966; Humphrey 1976;
Whiten and Byrne 1988; Barton 1996; Dunbar 1998; Kudo
and Dunbar 2001; Dunbar and Shultz 2007; Byrne and Bates
2010). In contrast, the EIH posits that ecological challenges in
food acquisition, including spatial or spatiotemporal processes
to memorise seasonally available food or manipulative skills
for extractive foraging, have ultimately selected for larger
brains (e.g. Clutton-Brock and Harvey 1980; Heldstab et al.
2016; DeCasien et al. 2017; Powell et al. 2017). At the end of
the day, the brains evolve within species, where environmen-
tally induced changes in physiological traits, such as glucose
concentrations and hormone levels, impact cognitive perfor-
mance (Roth et al. 2010; Thornton and Lukas 2012; Maille
and Schradin 2016).

Comparative studies investigating the link between mea-
sures of brain size and socioecological factors revealed incon-
sistent results, finding either a positive relationship between
measures of brain size and sociality in primates and ungulates
(Dunbar 1998; Pérez-Barbería et al. 2007; Dunbar and Bever
2010) or equivocal support in carnivores (Holekamp et al.
2007; Pérez-Barbería et al. 2007; Finarelli and Flynn 2009),

for instance. Among primates, the most recent comparative
analyses indicated that brain size is better predicted by eco-
logical than social factors (DeCasien et al. 2017; Powell et al.
2017). However, compared to social factors (Ashton et al.
2018b), less is known about the extent to which variation in
specific ecological factors predicts cognitive performance
(Fig. 1). Here, we therefore explore the question whether eco-
logical adaptations can explain interspecific variation in cog-
nitive abilities by first briefly summarising hypotheses about
the evolution of cognitive abilities addressing potential links
between cognition and brain size and sociality, as well as
ecology, respectively. Second, we provide a summary of com-
parative studies relating interspecific variation in cognitive
performance with ecology, specifically the degree of ecolog-
ical specialisation. Using these studies, we also explore the
relative impact of sociality and brain size on variation in cog-
nitive performance. Finally, we discuss the effects of the de-
gree of ecological specialisation, potentially confounding fac-
tors in experimental studies, and limitations of this review that
may inform future research on this topic.

The link between cognition and brain size

Some comparative studies have suggested that measures of
brain size covary positively with performance in cognitive
tests (see Appendix 1 Table 3 for explanations of cognitive

Fig. 1 Relationships between ecology, sociality, brain size measures and
cognitive abilities. Main hypotheses related to particular links are
represented with coloured thick lines: red for the Social Intelligence
Hypothesis (challenges related to sociality drive brain development;
Humphrey 1976), green for the Ecological Intelligence Hypothesis
(challenges related to ecology drive brain evolution; Parker and Gibson
1977), blue for the Social Brain Hypothesis (ecological challenges predict

sociality which drives brain size; Dunbar 1998; Dunbar and Shultz 2017)
and yellow for the Cognitive Buffer Hypothesis (environmental variation
drives brain size which favours adaptive behavioural flexibility; Deaner
et al. 2003). Thinner black lines represent previously reported relation-
ships between cognitive abilities and sociality, behavioural flexibility and
brain size. The dashed line represents the relationship between cognitive
abilities and ecology discussed in this article
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terms), such as performance in inhibitory control across ver-
tebrates (MacLean et al. 2012), a general intelligence (g)-
factor extracted from performance in innovation, social learn-
ing, tool use, extractive foraging and tactical deception
(Reader and Laland 2002; Reader et al. 2011), a g-factor ex-
tracted from performance in tests on spatial and causal under-
standing, reversal learning and delayed response (Deaner et al.
2006, 2007) or performance in problem-solving (Benson-
Amram et al. 2016). In addition, guppies (Poecilia reticulata)
selected for larger brains outperformed those with smaller
brains in a numerical learning assay (Kotrschal et al. 2013),
demonstrating this link also at the intraspecific level.

However, it is questionable whether simple measures of
brain size can be used to infer its impact on the solution of
a specific problem (Healy and Rowe 2007). In addition,
different neuroanatomical measures of brain size have
been combined with inconsistently labelled methods and
various cognitive response measures (Healy and Rowe
2007). To circumvent these problems, some studies ex-
tracted a general intelligence factor, which is a statistical
value derived from correlating performance in several
cognitive tasks (Spearman 1904; Jensen 1985). In pri-
mates (Reader and Laland 2002; Deaner et al. 2006;
Deaner et al. 2007; Reader et al. 2011), the g-factor co-
varied positively with brain size. Although some other
studies provided evidence for a g-factor in humans
(Jensen 1985), non-human primates (Fernandes et al.
2014; Damerius et al. 2019), rodents, rabbits, cats, dogs
(Galsworthy et al. 2014) and birds (Sol et al. 2005;
Ducatez et al. 2014a), we lack validation that this correla-
tion factor represents general intelligence (Burkart et al.
2017). In fact, it can simply reflect the selection of cogni-
tive tasks that tap into similar cognitive domains, which
would not necessarily validate the notion of general intel-
ligence (Shaw and Schmelz 2017; Bräuer et al. 2020).

Alternatively, domain-specific cognition might support the
notion of mosaic brain evolution (Barton and Harvey 2000).
The vertebrate brain consists of several functionally different
structures, of which many vary in size within and between
clades (Striedter 2006). Differences in the relative size of dif-
ferent brain regions are thought to ref lec t both
neurodevelopmental/functional size changes and selection
for ecologically relevant cognitive and sensory specialisation
(Barton 1996). For example, food-caching birds have relative-
ly, but not absolutely, larger hippocampi (Krebs 1990), and
brain regions associated with spatial processing are enlarged
in species with better spatial abilities (Sherry et al. 1992;
Clayton 1998). Moreover, group-living primates with high-
quality diets have larger brain regions for olfactory or visual
processing, whereas solitary species or those with low-quality
diets have larger brain regions for processing spatial memory
(DeCasien and Higham 2019). Finally, the number of neurons
in the mammalian cerebral cortex, or in the bird pallium,

appears to be good predictors of inhibitory control
(Herculano-Houzel 2017). Hence, specific neuroanatomical
measures can be broadly associated with variation in cognitive
performance.

The link between cognition and sociality

Cognitive abilities have been linked to traits associated with
variation in social factors. Variation in sociality is often
operationalised in terms of group size (Lukas and Clutton-
Brock 2013; Kappeler 2019), which varies from solitary
individuals and small pair-bonded units to large aggrega-
tions. The need for several social skills, like effective com-
munication or coordination with other group members, re-
quires specific neural structures (Dunbar and Shultz 2007;
Peckre et al. 2019). Thus, group size or group dynamics are
contributing to the complex social challenges an animal
faces (Kappeler 2019).

Accordingly, primates living in dynamic fission-fusion
systems (Aureli et al. 2008) performed better in inhibitory
control tasks than those living in more stable groups, sug-
gesting that the former exhibit greater behavioural flexibil-
ity (Amici et al. 2008; Amici et al. 2018). In lemurs and
birds, species organised into more complex social groups
outperformed others in transitive inference tasks (Bond
et al. 2003; MacLean et al. 2008). A similar interspecific
difference was found in birds subjected to a reversal learn-
ing task (Bond et al. 2007). Moreover, within species,
Australian magpies (Gymnorhina tibicen dorsalis) living
in larger groups performed better in several cognitive tests
(inhibitory control, associative and reversal learning abili-
ties, spatial memory and innovation) than those living in
smaller groups (Ashton et al. 2018a, 2019). Since traits such
as inhibitory control and (reversal) learning abilities reflect
behavioural flexibility, the underlying variation in cogni-
tion can be related to variation in sociality.

The link between cognition and ecology

Ecological challenges, such as variable schedules of re-
source availability, habitat complexity, predation risk or
parasite exposure, may have contributed to cognitive evo-
lution (Garamszegi et al. 2007; Lefebvre and Sol 2008;
Shumway 2008; Soler et al. 2012; Morand-Ferron et al.
2016; Sayol et al. 2016). With respect to resource varia-
tion, the CBH posits that larger brains evolved to allow
species to adjust their behaviour adaptively in response to
variable environmental conditions (Deaner et al. 2003).
For instance, frugivorous species, which have on average
larger brains than folivorous species, rely more on re-
sources that vary in their spatiotemporal distribution than
folivorous species (Clutton-Brock and Harvey 1980; Mace
et al. 2009). Moreover, birds and Old World primates
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exposed to seasonal changes in food availability tend to
have larger brains than species living in non-seasonal habitats
(van Woerden et al. 2012; Sayol et al. 2016). Innovativeness,
which is adaptive in variable environmental conditions, corre-
lates positively with brain size in primates and birds (Reader
and Laland 2002; Lefebvre et al. 2004; Overington et al. 2009),
but it also correlates positively with parasitism and immuno-
competence in birds (Møller et al. 2005; Garamszegi et al.
2007; Vas et al. 2011), though the link between innovation
and the transmission mode of parasite types is not obvious
(Ducatez et al. 2020a). Finally, in line with the EIH, brain size
was best predicted by diet or home range size in primates
(DeCasien et al. 2017; Powell et al. 2017).

Comparisons within species also revealed evidence that
variation in cognitive abilities is associated with parasitism
(Dunn et al. 2011; Bókony et al. 2014), predation (Brown
and Braithwaite 2005; Park et al. 2008; Ferrari 2014), habitat
complexity (Roth et al. 2010; Tebbich and Teschke 2014;
Croston et al. 2017; Morand-Ferron et al. 2019) or foraging
behaviour (Mazza et al. 2019; Sonnenberg et al. 2019).
However, only a few comparative studies explicitly explored
which cognitive skills might be associated with which
species-specific ecological challenges. In birds, innovation
was positively correlated with parasitism (Garamszegi et al.
2007; Vas et al. 2011; Soler et al. 2012) or habitat breadth
(Overington et al. 2011), but not with predation (Overington
et al. 2011). In primates, abundance of socially transmitted
parasites was positively associated with rates of social learning,
and environmentally transmitted parasites were positively asso-
ciated with rates of exploration (McCabe et al. 2015). Habitat
complexity was positively correlated with spatial cognition and
brain size in rodents (Mackay and Pillay 2018) and fish (White
and Brown 2015a, b). Hence, some results point towards an
association between cognitive performance and ecological ad-
aptations and a systematic summary of respective associations
across species may contribute to a better understanding of po-
tential causalities and their relative effect sizes.

The required assessment of a species’ ecological adaptation
can be based on a characterisation of its niche, which is a
multidimensional space comprising all ecological factors that
determine species viability (Hutchinson 1953; MacArthur
1957). Specialisation and generalisation represent the ex-
tremes of the continuous variation along each of the dimen-
sions (Sargeant 2007). Utilising this niche concept, however,
involves some difficulties. First, it is important to differentiate
between intrinsic specialisations due to evolutionary adapta-
tions (i.e. an individual’s genetics describing its fundamental
niche) and extrinsic specialisations due to interspecific com-
petition over resources (i.e. the observed realised niche), for
instance (Hutchinson 1957; Devictor et al. 2010). Second,
niche breadth can be defined by the diversity of resources used
by a species, or by its overlap, measured as the deviation from
other species’ resource values (Sargeant 2007). Considering

niche breadth, a specialist would then be a species consistently
using a narrower niche than other species (Roughgarden
1972; Bolnick et al. 2003). Considering niche overlap, how-
ever, a specialist would use items/tactics that are rarely used
within other species’ niches (Bolnick et al. 2002). Moreover,
classifications refer to only one niche axis (Futuyma and
Moreno 1988), leading to species that can be highly
specialised along one ecological gradient while being a gen-
eralist along another ecological gradient. It has therefore been
proposed to use species co-occurrence as a measure of habitat
breadth (Ducatez et al. 2014b). Finally, different studies use
different terms for similar concepts without stating their defi-
nition, or they ignore differences between niche breadth and
niche overlap, hampering broader comparisons (Colwell and
Futuyma 1971; Devictor et al. 2010).

We, thus, use the concept of ecological specialisation as
formalised by Hutchinson (1957) and similarly to Hughes
(2000). Accordingly, we consider a dietary specialist as a spe-
cies consuming a lower variety of food types and a habitat
specialist as a species occurring in a lower variety of habitat
types than a dietary generalist or habitat generalist, respective-
ly. We use this distinction always relative to the species in
comparison, not as an absolute attribute. Since animals are
expected to have evolved cognitive adaptations to exploit
these respective conditions as efficiently as possible
(Mettke-Hofmann 2014), generalists and specialists are ex-
pected to vary in their performances across cognitive tasks
but also in some personality traits. Hence, generalists have
been suggested to be more explorative, to have better working
memory, to learn faster, to exhibit greater behavioural flexi-
bility and to have a higher innovative potential than special-
ists. Specialists are instead expected to exhibit better long-
term memory, despite having smaller brains, than generalists
(Reader 2003; Mettke-Hofmann 2014).

Below, we review relevant studies that explicitly investigated
interspecific variation in cognitive performance posed by prob-
lems that are related to species-specific adaptations to factors
reflecting the degree of ecological specialisation. Using the
search query “(ecolog* or generali* or speciali* or “life style”
or opportunist*) and (cogniti* or learn* or memory) and animal”
in “topic” (including titles, abstracts, keywords and keywords
plus) in the Web of Science [https://apps.webofknowledge.
com/, accessed on 2019-07-14] and complementing the
collection with other relevant studies via cross-references, we
found a total of N = 25 studies that fit our criteria.

Merriam’s
All selected studies (1) experimentally compared (2) cog-

nitive abilities between (3) at least two species with the aim of
investigating (4) different ecological adaptations with a focus
on the degree of ecological specialisation. We controlled for
potential phylogenetic effects by excluding studies comparing
species across taxonomic classes. The remaining studies either
compared species within the same genus (40%), family
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(48%), or order (12%). Most of the studies compared wild-
caught or semi-free ranging (72%) individuals in mammals
(56%) or birds (24%) (N = 2 for each in reptiles and fish, N
= 1 for invertebrates). The investigated ecological adaptations
were mostly related to dietary challenges and variation in hab-
itat complexity (Table 1). As studies of cognitive performance
often differ in experimental conditions (animal housing, feed-
ing regimes, environmental conditions, local and temporal
conditions, experimental task and procedure, role of experi-
menter, etc.), measurement of cognitive performance and
analysis in interspecific comparisons, we focused on explicitly
comparative studies. Since only a few species were explicitly
labelled as either generalist or specialist in the original studies,
we assessed the relative degrees of habitat and/or dietary spe-
cialisation between the species investigated using additional
literature. Similarly, if not mentioned in the original study, we
gleaned information on group and brain size or proxies for
brain size by consulting additional literature (Table 2).

Cognitive performance and ecological
specialisation

Ecological challenges are of various nature, including the
avoidance of predators and parasites and securing access to
shelter or resources. However, most existing studies investi-
gated variation in cognitive performance related to experi-
enced foraging challenges. In the following, we distinguish
among challenges related to habitat exploration while
searching and finding food, accessing food items and
memorising previous resource locations, and summarise their
associations with the degree of ecological specialisation.

Habitat exploration while searching and finding food

Exploring different habitat types while searching for foodmay
require different foraging techniques. More complex habitats
with variable and unpredictable environments may require
superior spatial learning abilities, allowing animals to flexibly
adjust to these variable environments. Bats have been widely
studied across habitats since their echolocation varies with
landscape features (Schnitzler et al. 2003). Geoffroy’s bats
(Myotis emarginatus) and greater mouse-eared bats
(M. myotis), which forage in more complex and less stable
habitats, learned a complex spatial discrimination faster and
showed more flexibility when reward contingencies changed,
than long-fingered bats (M. capaccinii), which forages in sim-
pler and more stable open water habitats (Clarin et al. 2013).
Similarly, Cocos frillgobies (Bathygobius cocosensis) and
Krefft’s gobies (B. krefftii) that occur in spatially complex
rock pool habitats performed better in a spatial learning test
than Eastern long-finned gobies (Favonigobius lentiginosus)
and Hoese’s sandgobies (Istigobius hoesei) occurring in

homogenous sandy shores (White and Brown 2015a). Also
bank voles (Myodes glareolus), which occur in more complex
habitats, exhibited better spatial search behaviour than root
voles (Microtus oeconomus), which occur in more open hab-
itats (Pleskacheva et al. 2000). Moreover, omnivorous bank
voles and herbivorous common voles (M. arvalis) were sim-
ilar in their efficiency of exploiting stable habitats, but the
omnivorous bank voles were more efficient in exploiting hab-
itats with temporally changing food locations (Haupt et al.
2010). However, striped mice (Rhabdomys pumilio,
R. bechuanae, R. dilectus) occurring in habitats of different
complexity did not differ in spatial learning abilities, possibly
due to phylogenetic constraints (Mackay and Pillay 2018).
Finally, adapting to and persisting in urban landscapes have
been suggested to be associated with behavioural flexibility in
several species (Sih 2013; Sol et al. 2013; Ducatez et al.
2020b). However, Eastern blue-tongued skinks (Tiliqua
scincoides scincoides) originating from urbanised areas did
not perform better in a reversal learning task than sleepy liz-
ards (T. rugosa asper) originating from rural areas (Szabo and
Whiting 2020). Hence, variation in habitat complexity seems
to covary with learning abilities in most cases, in particular
spatial learning abilities and decision-making.

Regarding the search for food, animals use specific ranging
behaviour to track the spatiotemporal distribution of dietary
items. By using specific navigational heuristics, i.e., decision
rules applied to certain situations (Gigerenzer 2008), animals
can improve their exploitation of the environment while re-
ducing cognitive effort and energy expenditure. The use of
such heuristics varies with the distribution of food items or
the mobility of preferred food items. In primates, the more
frugivorous Tonkean macaques (Macaca tonkeana) exhibited
more goal-directed search strategies while foraging than the
less frugivorous long-tailed macaques (M. fascicularis) or ca-
puchin monkeys (Sapajus apella; Trapanese et al. 2019). The
mobility of food items also influenced search strategies in
three lemur species (Teichroeb and Vining 2019). Fat-tailed
dwarf lemurs (Cheirogaleus medius), which are specialised on
stationary fruits, performed best in a multi-destination array
with several feeding platforms. Their superiority was ex-
plained by the efficient use of specific heuristics for explora-
tion and feeder exploitation. In comparison, dietary generalist
grey mouse lemurs (Microcebus murinus), which feed on sta-
tionary food items like flowers and gum but also on mobile
food items such as insects, used fewer heuristics. Aye-ayes
(Daubentonia madagascariensis), which are specialised on
mobile and ephemeral insect larvae, used basically no heuris-
tics at all, resulting in greater explorative effort and lower
cognitive task performance. Similarly, Saussure’s long-
nosed bats (Leptonycteris yerbabuenae), which are specialised
on nectar, foraged more efficiently in a feeder setup with artifi-
cial flowers by revisiting the feeders less often and depleting
them more than long-tongued bats (Glossophaga soricina),
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Table 1 Table of studies comparing cognitive abilities between at least two species within the same phylogenetic class expressing different ecological
adaptations

Reference Species Phylogenetic
distance

Test
environment

Cognitive measure
(experimental task)

Greater performance
(ecological characteristic)

Habitat exploration while searching and finding food
Clarin et al.

(2013)
Long-fingered bat (Myotis

capaccinii)
Greater mouse-eared bat (M. myotis)
Geoffroy’s bat (M. emarginatus)

Same genus Wild-caught Spatial discrimination
(plus maze)

No difference between
M. capaccinii (open water
forager), M. myotis (passive
listening gleaner) and
M. emarginatus (clutter
specialist)

Clarin et al.
(2013)

Long-fingered bat (M. capaccinii)
Greater mouse-eared bat (M. myotis)
Geoffroy’s bat (M. emarginatus)

Same genus Wild-caught Spatial reversal learning
(plus maze)

M. myotis (passive listening
gleaner) andM. emarginatus
(clutter specialist)

Clarin et al.
(2013)

Long-fingered bat (M. capaccinii)
Greater mouse-eared bat (M. myotis)
Geoffroy’s bat (M. emarginatus)

Same genus Wild-caught Complex spatial
discrimination
(extended plus maze)

M. myotis (passive listening
gleaner) andM. emarginatus
(clutter specialist)

Day et al. (1999a) Nidua fringe-toed lizard
(Acanthodactylus scutellatus)

Bosc’s fringe-toed lizard
(A. boskianus)

Same genus Wild-caught Visual discrimination
(colour/shape/pattern
discrimination)

No difference between
A. scutellatus (sit-and-wait
predator) and A. boskianus
(active forager)

Day et al. (1999a) Nidua fringe-toed lizard
(A. scutellatus)

Bosc’s fringe-toed lizard
(A. boskianus)

Same genus Wild-caught Behavioural flexibility
(colour/shape/pattern
reversal learning)

A. boskianus (active forager)

Gingins and
Bshary (2016)

Bluestreak cleaner wrasse (Labroides
dimidiatus)

Other labrids (Pseudocheilinus
hexataenia, Halichoeres
melanurus, Thalassoma lunare,
Hemigymnus melapterus,
Labrichthys unilineatus)

Same family Wild-caught Spatial discrimination
(association of food
source with location)

No difference between 6 labrid
species due to ecological
irrelevance of the task

Haupt et al.
(2010)

Common vole (Microtus
arvalis)
Bank vole (Myodes glareolus)

Same family Captivity Spatial reference memory
(operant home cage)

M. glareolus (more complex
habitat, omnivorous)

Haupt et al.
(2010)

Common vole (M. arvalis)
Bank vole (M. glareolus)

Same family Captivity Spatial working memory
(win-shift task)

M. glareolus (more complex
habitat, omnivorous)

Henry and Stoner
(2011)

Saussure’s long-nosed bat
(Leptonycteris yerbabuenae)

Palla’s long-tongued bat
(Glossophaga soricina)

Same family Wild-caught Spatial working memory
(foraging task)

L. yerbabuenae (dietary
specialist)

Jones et al.
(2017)

Sprague Dawley rat
(Rattus norvegicus)

D57BL/6J mouse
(Mus musculus)

Same family Laboratory Learning (Go/NoGo
judgement bias task)

Differential learning:
R. norvegicus
(opportunistically omnivorous,
moving food) learns NoGo
condition; M. musculus
(largely herbivorous, active
predators, static food) learns
Go condition

Mackay and
Pillay (2018)

Three striped mice (Rhabdomys
pumilio, R. bechuanae,
R. dilectus)

Same genus Wild-caught Spatial learning (Barnes
maze)

No difference betweenR. pumilio
(low scrubby bushes, open
habitat), R. bechuanae (grassy
cover, savanna) and R. dilectus
(grassy cover, mosaic forest)

Pleskacheva et al.
(2000)

Bank vole (Myodes glareolus)
Root vole (Microtus oeconomus)

Same family Wild-caught Spatial search (Morris
water test)

M. glareolus (more complex
habitat, dispersed seeds)

Szabo and
Whiting
(2020)

Sleepy lizard (Tiliqua rugosa asper)
Eastern blue-tongued skink

(T. scincoides scincoides)

Same genus Wild-caught Visual discrimination
(colour/pattern
discrimination)

No difference between T. r. asper
(rural habitat) and T. s.
scincoides (urban habitat)

Szabo and
Whiting
(2020)

Sleepy lizard
(Tiliqua rugosa asper)

Eastern blue-tongued skink
(T. scincoides scincoides)

Same genus Wild-caught Behavioural flexibility
(colour/pattern reversal
learning)

T. r. asper (rural habitat)
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Table 1 (continued)

Reference Species Phylogenetic
distance

Test
environment

Cognitive measure
(experimental task)

Greater performance
(ecological characteristic)

Teichroeb and
Vining (2019)

Grey mouse lemur (M. murinus)
Fat-tailed dwarf lemur (Cheirogaleus

medius)
Aye-aye (Daubentonia

madagascariensis)

Same order Captivity Spatial navigation
(multi-destination array
with 6 feeding
platforms)

C. medius (stationary food) >
M. murinus (stationary and
mobile/ephemeral food)

Trapanese et al.
(2019)

Tonkean macaque (Macaca
tonkeana)

Long-tailed macaque
(M. fascicularis)

Capuchin monkey (Sapajus apella)

Same order Semi-free
ranging

Foraging decision and
goal-directed travel
(feeding boxes)

M. tonkeana (most frugivory)

White & Brown
(2015a)

Cocos frillgoby (Bathygobius
cocosensis)

Krefft’s goby (B. krefftii)
Eastern long-finned goby

(Favonigobius lentiginosus)
Hoese’s Sandgoby (Istigobius

hoesei)

Same family Wild-caught Spatial learning
(T-maze)

B. cocosensis & B. krefftii (more
complex habitat)

Accessing food sources
Day et al. (2003) Lion tamarin (Leontopithecus spp.)

Tamarin (Saguinus spp.)
Marmoset (Callithrix spp.)

Same family Captivity Innovative abilities
(novel extractive
foraging tasks)

Leontopithecus spp.
(manipulative extractive
foraging) > Callithrix spp.
(extractive foraging)

Griffin and
Diquelou
(2015)

Indian myna (Acridotheres tristis)
Noisy myner (Manorina

melanocephala)

Same order Wild-caught Innovative abilities
(novel foraging tasks)

A. tristis (opportunistic niche
occupation, introduced
species)

Henke-von der
Malsburg and
Fichtel (2018)

Grey mouse lemur (Microcebus
murinus)

Mme Berthe’s mouse lemur
(M. berthae)

Same genus Wild-caught Innovative abilities
(novel food extraction
task)

M. berthae (diet and habitat
specialist)

Memorising (previous) resource locations
Barkley and

Jacobs (2007)
Merriam’s kangaroo rat (Dipodomys

merriami)
Great Basin kangaroo rat

(D. microps)

Same genus Wild-caught Spatial memory accuracy
(cache simulation task)

D. merriami (intensive scatter
hoarder)

Bond et al. (2007) Pinyon jays (Gymnorhinus
cyanocephalus)

Clark’s nutcrackers (Nucifraga
columbiana)

Western scrub jays (Aphelocoma
californica)

Same family Wild-caught Visual discrimination
(colour discrimination)

No difference between
N. columbiana (highly
dependent on food-caching),
G. cyanocephalus (less
dependent on food-caching)
and A. californica (not depen-
dent on food-caching)

Bond et al. (2007) Pinyon jays (G. cyanocephalus)
Clark’s nutcrackers (N. columbiana)
Western scrub jays (A. californica)

Same family Wild-caught Spatial discrimination
(two-choice task)

N. columbiana (highly dependent
on food-caching)

Bond et al. (2007) Pinyon jays (G. cyanocephalus)
Clark’s nutcrackers (N. columbiana)
Western scrub jays (A. californica)

Same family Wild-caught Behavioural flexibility
(colour/spatial reversal
learning)

G. cyanocephalus (less
dependent on food-caching)

Cristol et al.
(2003)

Two dark-eyed juncos (Junco
hyemalis hyemalis, J. h.
carolinensis)

Different
subspecies

Wild-caught Spatial memory accuracy
(one-trial associative
memory test)

J. h. hyemalis (migratory)

Gibson and Kamil
(2005)

Pinyon jays (G. cyanocephalus)
Clark’s nutcrackers (N. columbiana)
Western scrub jays (A. californica)

Same family Wild-caught Spatial discrimination
(landmark distance
discrimination)

A. californica (not dependent on
food caching; pilfer caches of
conspecifics) and
G. cyanocephalus (highly
dependent on food caching;
pilfer caches of conspecifics)

Healy and
Suhonen
(1996)

Willow tit (Poecile montanus)
Marsh tit (P. palustris)

Same genus Wild-caught Food retrieval
performance
(retrieving stored
food after delays)

No difference between
P. montanus (store food for a
several weeks) and P. palustris
(store food for a few
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which complement their nectar and pollen diet additionally with
fruits and insects according to seasonal availability (Henry and
Stoner 2011). Thus, the reliance on more mobile food items
seems to increase exploration, which results in lower task per-
formance in spatial cognition tests.

Variation in cognitive performance is also associated with
foraging style. In rodents, faster exploringmice (Musmusculus)
learned contingencies between an auditory cue and a food re-
ward or punishment differently than slower exploring rats
(Rattus norvegicus). Both rodents could learn either of the re-
ward contingency, i.e. to stay in the initial compartment or
move to a second compartment, to receive a food reward.
However, they were unable to overcome their baseline activity
tendencies to avoid a punishment: the more active mice only
reached the learning criterion when they had to move to the
second compartment, while rats only reached the learning cri-
terion when they had to stay in the initial compartment to avoid
punishment (Jones et al. 2017). In reptiles, the actively foraging
Bosc’s fringe-toed lizard (Acanthodactylus boskianus) learned
a visual reversal learning paradigm faster than the Nidua fringe-
toed lizard (A. scutellatus), which is a sit-and-wait predator
(Day et al. 1999a). Thus, a more proactive foraging style is

consistently associated with superior performance in various
cognitive tests.

Accessing food items

Once an animal has solved the problem of locating a given
food patch, it encounters the next challenge: the extraction of
the actual food item. Depending on the item’s characteristics,
superior sensorimotor coordination or manipulative skills, in-
cluding extractive foraging techniques or tool use, are benefi-
cial but also energetically more costly and ultimately require a
larger brain (Parker and Gibson 1977; Heldstab et al. 2016).
Sensorimotor control and extractive foraging abilities seem to
be especially helpful for solving innovative problems, and the
majority of innovative behaviours has indeed been recorded in
the foraging domain (Reader and Laland 2002);. Indianmynas
(Acridotheres tristis), which exhibited greater diversity in mo-
tor behaviours, were more innovative than noisy miners
(Manorina melanocephala) (Griffin and Diquelou 2015).
Madame Berthe’s mouse lemurs (Microcebus berthae) that
expressed better motor control than grey mouse lemurs sub-
sequently learned a modified innovative problem faster

Table 1 (continued)

Reference Species Phylogenetic
distance

Test
environment

Cognitive measure
(experimental task)

Greater performance
(ecological characteristic)

hours/days)
Platt et al. (1996) Wied’s marmoset (Callithrix kuhlii)

Golden lion tamarin (Leontopithecus
rosalia)

Same family Captivity Spatial memory retention
(radial maze, delayed
matching-to-sample
task; short retrieval in-
tervals)

C. kuhlii (revisit food patches
several times a day)

Platt et al. (1996) Wied’s marmoset (C. kuhlii)
Golden lion tamarin (L. rosalia)

Same family Captivity Spatial memory retention
(radial maze, delayed
matching-to-sample
task; long retrieval in-
tervals)

L. rosalia (revisit food patches
several times a week)

Rosati and Hare
(2012)

Chimpanzee (Pan troglodytes)
Bonobo (P. paniscus)

Same genus Semi-free
ranging

Spatial working memory
(foraging task)

P. troglodytes (dependence on
patchily distributed food)

Rosati et al.
(2014)

Ruffed lemur (Varecia spp.)
Ring-tailed lemur (Lemur catta)
Mongoose lemur (Eulemur mongoz)
Coquerel’s sifaka (Propithecus

coquereli)

Same family Captivity Spatial memory
(food retrieval tasks)

Varecia spp.
(most frugivorous diet)

Other challenges
Bednekoff and

Balda (1996)
Clark’s nutcracker (N. columbiana)
Mexican jay (Aphelocoma

ultramarina)

Same family Wild-caught Observational spatial
memory (pair
cache/recovery tasks)

A. ultramarina
(non-specialized cacher)

Day et al. (1999a) Nidua fringe-toed lizard
(A. scutellatus)

Bosc’s fringe-toed lizard
(A. boskianus)

Same genus Wild-caught Spatial memory accuracy
(Barnes maze, local cue
version)

No difference between
A. scutellatus (distributed
mobile prey) and A. boskianus
(clumped sedentary prey)

Hoedjes et al.
(2012)

3 wasps (Nasonia vitripennis,
N. longicornis, N. giraulti)

Same genus Laboratory Olfactory memory
(T-maze olfactometer)

N. vitripennis (host generalist),
N. longicornis (lesser host
generalist)

Criteria for selection were that (1) at least two study species (2) within the same phylogenetic class were compared in (3) at least one cognitive ability
using an experimental approach (4) taking some kind of ecological difference into account
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(Henke-von der Malsburg and Fichtel 2018). In seven species
of callitrichid monkeys, the existence of extractive foraging
techniques predicted innovative abilities, with lion tamarins
(Leontopithecus spp.), which are manipulative extractive for-
agers with a higher innovative potential, exceeding the gum-
specialised, extractive foraging marmosets (Callithrix spp.)
and the non-extractive, but only visually, foraging tamarins
(Saguinus spp.) (Day et al. 2003). These examples suggests
that efficient access to food sources can vary with cognitive
abilities such as innovative behaviours, which also seemed to
be influenced by motor coordination.

Memorising previous resource locations

When animals are highly reliant on cached food or when they
migrate to other habitats, usually due to seasonal food short-
age (Wall and Stephen 1990; Dingle 2014), they require well-
developed spatial cognitive abilities. In both cases, animals
with good spatial processing abilities are better at memorising
locations of food patches than animals with no or only basic
spatial processing abilities (Shettleworth 1990; Sherry et al.
1992). For example, compared to non-migratory dark-eyed
juncos (Junco hyemalis carolinensis), migratory dark-eyed
juncos (J. h. hyemalis) showed greater accuracy in remember-
ing feeder locations that have been visited only once before a
certain retrieval interval (Cristol et al. 2003). Moreover,
Merriam’s kangaroo rat (Dipodomys merriami), an intensive
scatter hoarder, showed better spatial memory accuracy in a
cache simulation task than the Great Basin kangaroo rat
(D. microps), a leaf-eating specialist that does not rely on
scatter hoarding (Barkley and Jacobs 2007). Furthermore,
food-caching Clark’s nutcrackers (Nucifraga columbiana)
performed better in an initial spatial discrimination task than
less food-caching pinyon (Gymnorhinus cyanocephalus) and
non-food-caching Western scrub jays (Aphelocoma
californica). Pinyon jays, however, performed better than
the other two corvid species in serial reversal learning tasks
(Bond et al. 2007) and Western scrub jays performed better in
a distance discrimination task (Gibson and Kamil 2005).
Thus, the reliance on food-caching can covary with spatial
memory, but not necessarily with other cognitive abilities.

Although primates do not rely on food-caching, spatial
memory abilities can be beneficial for relocating a certain food
patch. Indeed, chimpanzees (Pan troglodytes) that feed on
more patchy distributed foods than bonobos (P. paniscus) ex-
hibited better retrieval performance when food items were
hidden by a human demonstrator (Rosati and Hare 2012).
Similarly, lemurs varied in performance in spatial memory
tasks according to their diet. The most frugivorous ruffed le-
murs (Varecia spp.) showed better spatial memory than ring-
tailed lemurs (Lemur catta), mongoose lemurs (Eulemur
mongoz) and Coquerel’s sifakas (Propithecus coquereli), the
latter being the most folivorous species (Rosati et al. 2014).T
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Wied’s marmosets (Callithrix kuhlii) performed better than
golden lion tamarins (Leontopithecus rosalia) in spatial mem-
ory experiments with relatively short retention intervals (5 or 30
min). However, they performed poorly after longer retention
intervals (24 or 48 h), while the tamarins could maintain their
performance level (Platt et al. 1996). Again, the observed inter-
specific differences match the species’ foraging strategies:
while marmosets revisit single food patches several times per
day (Rylands 1989), tamarins do so only every 3 days (Peres
1989). Hence, spatial memory abilities also vary in accordance
with a species-typical foraging ecology.

Ecological generalism versus ecological specialisation

Empirical comparisons of cognitive performance between gener-
alists and specialists have either investigated effective habitat ex-
ploration in, for instance, spatial memory tasks (Pleskacheva et al.
2000; Haupt et al. 2010), or specific foraging abilities like innova-
tive propensities (Day et al. 2003; Overington et al. 2009;
Overington et al. 2011; Griffin and Diquelou 2015; Henke-von
der Malsburg and Fichtel 2018), associative learning (Hoedjes
et al. 2012) or behavioural flexibility (Day et al. 1999a), using a
variety of problem-solving experiments, including food extraction
tasks, visual or olfactory discriminations or reversal learning tasks.

Habitat exploration and the degree of habitat specialisation

Occurring across larger and more complex areas, habitat gen-
eralists would benefit from advanced navigational strategies to
efficiently explore these areas, specifically when they feed on
patchy distributed but potentially predictable food sources. The
habitat generalist bank vole, for instance, showed increased
spatial memory compared to the more specialised root vole
(Pleskacheva et al. 2000). In lemurs, the species with greater
habitat specialisation performed better in the spatial memory
task due to more efficient use of navigational heuristics
(Teichroeb and Vining 2019). In bats, Saussure’s long-nosed
bats, a relative habitat generalist, exhibitedmore efficient feeder
exploitation than the sympatric but more specialised long-
tongued bats (Henry and Stoner 2011). Similarly, the relative
habitat generalists, the greater mouse-eared and Geoffroy’s
bats, learned a complex visual discrimination faster and were
more flexible in a reversal learning task than the most
specialised long-fingered bat (Clarin et al. 2013).

Migratory vertebrates tend to be more habitat specialists
than generalists, possibly because they need to disperse fur-
ther to find a habitat patch with suitable conditions (Martin
and Fahrig 2018). In a comparative study on spatial memory
accuracy in two junco subspecies (Cristol et al. 2003), the
migratory subspecies performed better than the residential
subspecies. However, since both subspecies rely on compara-
ble diets and occur in similar habitats throughout the year, and
due to a lack of data on population densities and different

habitat types, it is neither possible to calculate a species spe-
cialisation index (Martin and Fahrig 2018), nor to classify the
migratory subspecies as more specialised than the residential
one. Overall, one may argue, however, that the degree of
habitat specialisation tends to covary with spatial memory
accuracy, learning flexibility and decision-making.

Foraging and the degree of dietary specialisation

Food storing or caching can be considered a behavioural adap-
tation to variable resource abundance. While a positive link
between these behaviours and spatial memory abilities has been
reported (Clayton andKrebs 1994a, b; Bednekoff et al. 1997), it
is not clear how the degree of ecological generalismmay fit into
this relationship. The aforementioned example on spatial mem-
ory accuracy in a cache simulation task reported the better
performing kangaroo rat to be a leaf-eating specialist (Barkley
and Jacobs 2007), but others classified them as less specialised
because they also, although more rarely, feed on seeds like
other kangaroo rats (Cassola 2016; Timm et al. 2016), indicat-
ing that the classification into generalists and specialists is not
always straightforward.

The degree of dietary breadth was related to discriminative
learning abilities in a comparative study of parasitic wasps. The
more dietary generalists (Nasonia vitripennis, N. longicornis)
learned an association between an odour and a rewarding host
better than the more specialised N. giraulti (Hoedjes et al.
2012). Also, the dietary generalist bank vole performed better
in a spatial learning task with temporally changing food loca-
tions than the more dietary specialist common vole (Haupt et al.
2010). Hence, dietary generalism seems to covary with discrim-
inative and spatial learning ability.

Individuals with greater innovative abilities are also expect-
ed to deal more efficiently with changing environmental condi-
tions, including diet (Sol et al. 2005). Since generalist species
are by definition exposed to more variable conditions, they are
suggested to express greater behavioural flexibility and greater
innovative propensities than specialists (Ducatez et al. 2014a;
Navarrete et al. 2016). Among birds, habitat generalist species
have indeed higher innovation rates than habitat specialists
(Overington et al. 2011). Moreover, the omnivorous Indian
myna showed a higher innovative propensity than the noisy
miner, which is specialised on honey (Griffin and Diquelou
2015). In contrast, the more dietary and habitat specialised
Madame Berthe’s mouse lemur outperformed the sympatric
generalist grey mouse lemur in innovative extractive foraging
tasks with variable difficulties (Henke-von der Malsburg and
Fichtel 2018). The better performance of the specialist might
have been a result of enhanced executive control enabling in-
dividuals to inhibit the use of a previously learned problem-
solving technique and to develop an adjusted solution to a
modified problem, indicating that other factors than ecological
specialisation may explain variation in performance. Across
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primates, however, performance in inhibitory control tests was
best predicted by absolute brain size and dietary breadth, sug-
gesting that species differences in dietary specialisation might
indeed be related to levels of self-control (MacLean et al. 2014).
Hence, dietary specialisation seems to covary with learning
ability, spatial learning and inhibitory control.

In general, cognitive performance can be related to the
degree of ecological specialisation. Twenty-one of the inter-
specific comparisons reviewed here report cognitive differ-
ences between species expressing a different degree of
habitat/dietary specialisation, while four do not (sign-test: p
< 0.001). Habitat generalists (N = 14) were more likely to
outperform habitat specialists (N = 4; sign-test: p = 0.031),
but the degree of dietary specialisation could not explain in-
terspecific variation in cognitive performance (sign-test:
Ngeneralist = 13, Nspecialist = 8, p = 0.383).

Variation in cognitive performance in relation
to group size

Because performance in cognitive tests in these studies might
be explained by consistent differences in sociality, we scored
the species included in this review with respect to their group
size to index their social complexity (Table 2). While half of
the comparisons (N = 13) are controlled for group size effects,
the other half (N = 11) compared species living in differently
sized groups, which also exhibit interspecific cognitive varia-
tion. However, we do not find species living in larger groups
to generally perform better than those living in smaller groups,
which might also be due to our small sample size (sign-test:
Nlarger = 6, Nsmaller = 5, p = 1).

Five studies supported a positive link between group size and
cognitive performance: Mexican and pinyon, as well asWestern
scrub jays, which live in larger flocks, performed better in spatial
learning paradigms than Clark’s nutcrackers (Bednekoff and
Balda 1996; Gibson and Kamil 2005); Saussure’s long-nosed
bat, which form larger colonies, performed better in a spatial
working paradigm than Palla’s long-tongued bat (Henry and
Stoner 2011); pair-living sleepy lizards were more behaviourally
flexible in a visual reversal learning task than solitary Eastern
blue-tongued skinks (Szabo andWhiting 2020); and golden lion
tamarins, which live in relatively larger groups, showed better
memory retention for longer retention intervals thanWied’smar-
mosets (Platt et al. 1996). However, Wied’s marmosets
outperformed golden lion tamarins in the same task using a
shorter retrieval period (Platt et al. 1996). In lemurs, performance
in a spatial memory task was not linearly related to group size
across four species (Rosati et al. 2014). Moreover, in innovative
problem-solving paradigms, primates living in intermediate-
sized (Day et al. 2003) or birds living in smaller groups
(Griffin andDiquelou 2015) outperformed the respective species
living in relatively larger groups.

Based on the currently available evidence, it is therefore not
possible to determine whether sociality covaries with cognitive
performance scores in these studies. First, we set the focus on
studies comparing species with variation in ecological adapta-
tions, which were not designed to compare species with differ-
ent group size. Second, we indexed sociality in terms of group
size but disregarded group composition, stability, cohesion or
hierarchy. Finally, most of the cognitive tests were not explic-
itly designed to have any functional relevance in terms of soci-
ality or variation in social traits, so that a correlation with per-
formance scores is unlikely. Hence, to address the relative im-
portance of either ecological or social factors driving the evo-
lution of brain size, comprehensive cognitive test batteries ad-
dressing both sets of factors are required (Shaw and Schmelz
2017; Völter et al. 2018; Fichtel et al. 2020).

Variation in cognitive performance in relation
to brain size

Brain size can be assessed via absolute or relative brain mass or
volume, via an encephalisation quotient (Jerison 1973; Hartwig
et al. 2011) or neural connectivity, for instance. Since the stud-
ies included in this review were not designed to compare po-
tential effects of a certain brain size measure, we had to find
comparable measures or proxies elsewhere (Table 2). With this
information, we did not find evidence for a link between exper-
imental cognitive performance and brain size in this sample
(sign-test: Nbigger = 9, Nsmaller = 8, p = 1). Since the available
brain size measures differed between these relatively few stud-
ies, the observed lack of an effect of brain size on cognitive
performance might reflect this methodological shortcoming.

Discussion

In this review, we summarised comparative research investi-
gating variation in cognitive performance in relation to specif-
ic adaptations to ecological factors animals are exposed to in
their daily life. Although these ecological factors can vary
greatly among species in the same taxonomic group, studies
systematically investigating the relationship between ecologi-
cal factors and cognitive performance are still rare. Most stud-
ies reported a predicted relationship between the measured
cognitive performance and an ecological factor differentiating
the study species (Table 1), but we cannot know whether this
pattern is affected by a publication bias against studies
reporting no effect. Our rough control indicated that phyloge-
ny as well as group and brain size did not have pervasive
effects on the observed pattern. Nonetheless, some studies
failed to find an effect of ecology, perhaps due to unsuitable
study designs (Bednekoff and Balda 1996; Healy and
Suhonen 1996) and/or ecological irrelevance of the respective
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cognitive ability tested (Day et al. 1999a; Gingins and Bshary
2016). Below, we discuss the main correlates of interspecific
variation in cognitive performance in terms of flexible forag-
ing strategies, spatiotemporal habitat exploration and food
patch exploitation, as well as the degree of ecological special-
isation. Further, we highlight the importance of considering
potentially confounding factors when designing a study ap-
propriate for the investigation of species-specific ecological
adaptations (Shaw and Schmelz 2017; Schubiger et al. 2020).

Adaptations to particular ecological factors correlate
with cognitive performance

Flexible foraging strategies

Interspecific differences in cognitive performance have been re-
ported as a function of variation in ranging behaviour and search
strategies (Teichroeb and Vining 2019; Trapanese et al. 2019),
foraging activity (Day et al. 1999a; Day et al. 2003; Jones et al.
2017), foraging techniques (Day et al. 2003), characteristics of
preferred dietary items (Pleskacheva et al. 2000; Henry and
Stoner 2011; Teichroeb and Vining 2019), adaptations to habitat
complexity (Pleskacheva et al. 2000; Clarin et al. 2013; White
and Brown 2015a) or adaptations to seasonality (Cristol et al.
2003; Barkley and Jacobs 2007; Henry and Stoner 2011) (Fig.

2). Active or manipulative extractive foragers have been reported
to learnmore flexibly (Day et al. 1999a) or to bemore innovative
(Day et al. 2003), respectively. Flexible learning and innovative
abilities can be linked to innovators that possess the ability to
invent a new behaviour or to modify an existing behaviour
(Reader and Laland 2003) and to incorporate these into the be-
havioural repertoire via flexible learning mechanisms (Dukas
and Ratcliffe 2009). In contrast to sit-and-wait predators, active
foragers need to rapidly adjust the current foraging strategy to the
behaviour of the prey of interest as well as to the environment
while searching and hunting for prey. They would specifically
benefit by learning the association of a certain stimulus with a
reward (i.e. the prey) and to flexibly update such associations
whenever the stimulus or other conditions change. This underly-
ing behavioural flexibility is then an advantageous characteristic
when environmental conditions change (Lee 2003; Lefebvre
et al. 2004). Further, innovations appear predominantly in the
foraging context (Reader andMacDonald 2003), favouring a link
with a species’ foraging ecology rather than with its sociality.

Spatiotemporal habitat exploration and food patch
exploitation

When searching for food, animals always need to deal with
the tradeoff between habitat exploration and food patch

Fig. 2 Links between ecology
and cognition. We identified
several links (thick lines) between
cognitive abilities and adaptations
to ecological factors (thin lines)
such as certain habitat
characteristics, characteristics of
dietary items or ecological
challenges related to the foraging
process (including the search for
food, access to food items and
memorising resource locations).
Positive relationships between
specific adaptations and cognitive
abilities are represented with thick
solid lines while negative
relationships are represented with
dashed lines

154    Page 18 of 26 Behav Ecol Sociobiol (2020) 74: 154



exploitation (Hills et al. 2015). The decision of when to switch
from one to the other varies with the spatiotemporal distribu-
tion of food items since this determines the energetic costs of
habitat exploration and energy intake during patch exploita-
tion. Habitat exploration is particularly costly when food items
are sparse or patchily distributed or when food abundance is
(seasonally) low. Using specific navigational heuristics or in-
vestment in spatial memory can reduce foraging costs under
these conditions. However, the underlying capacities are en-
ergetically constrained and should, therefore, evolve in spe-
cies that feed on stationary rather than mobile food items, on
dispersed rather than highly abundant items, or in species, that
are exposed to harsh environments (Roth and Pravosudov
2009).

Also, when relocating a certain food patch, irrespective of
the length of a retrieval interval, the energetic investment in
spatial memory capacities can be beneficial. At least in birds,
rodents and primates, there is evidence that the evolution of
spatial memory abilities parallels a species-specific foraging
ecology. Better spatial cognition has been reported for species
feeding on dispersed items of rather unpredictable abundance
(Platt et al. 1996; Pleskacheva et al. 2000; Rosati and Hare
2012; Clarin et al. 2013), frugivorous species (Rosati et al.
2014; Teichroeb and Vining 2019; Trapanese et al. 2019),
scatter hoarders (Barkley and Jacobs 2007) or migrating spe-
cies (Cristol et al. 2003). In such cases, better-adapted species
evolve greater hippocampi as an adaptation to the highly de-
manding ecological challenge of memorising previous food
locations or caches.

Other ecological adaptations

Evidence for a general association between cognitive perfor-
mance and ecological factors might be biased since most stud-
ies measuring interspecific variation conducted experiments
on only a few cognitive skills such as spatial processing, flex-
ible learning or innovative problem-solving. It remains to be
investigated, however, whether other cognitive tasks, such as
those estimating the ability of causal reasoning or numerical
understanding, or a combination of different tasks in a valid
test battery can also be linked to ecological factors (Shaw and
Schmelz 2017). Also, the potential effects of other ecological
factors, such as predation and parasite risk, on relevant cogni-
tive abilities remain largely unstudied (Garamszegi et al.
2007; Soler et al. 2012). Thus, there is a need for additional
studies to obtain a more comprehensive understanding of the
ecology-cognition link.

How does cognitive performance correlate with the
degree of ecological specialisation?

In several studies, we found the degree of ecological specialisa-
tion to be correlated with variation in certain cognitive abilities

(Platt et al. 1996; Pleskacheva et al. 2000; Day et al. 2003;
Barkley and Jacobs 2007; Haupt et al. 2010; Henry and Stoner
2011; Hoedjes et al. 2012; Rosati et al. 2014; Griffin and
Diquelou 2015; Henke-von der Malsburg and Fichtel 2018).
We found that habitat generalists generally outperform habitat
specialists, but the degree of dietary specialisation did not con-
sistently vary with cognitive performance. Given that habitat
generalists regularly face more challenges by exploring a
broader, more variable habitat than specialists, they might spe-
cifically exhibit better spatial processing abilities and more be-
havioural flexibility (Overington et al. 2011), at least in the sense
of ‘behavioural flexibility’ allowing for adaptations to variable
environments (Lea et al. 2020). However, behavioural flexibility
does not necessarily result in better cognitive performance per se
because less behaviourally flexible species, as specialists, may
instead possess other behavioural characteristics that promote
better performance in certain cognitive skills (Henke-von der
Malsburg and Fichtel 2018). In studies reporting the more
specialised species to exhibit better performance than the gener-
alist (e.g. Teichroeb and Vining 2019), better performance was
linked to specific adaptations for habitat exploration or exploita-
tion. In this context, efficiency can be of various nature: to not
use certain paths multiple times while foraging, to deplete a
certain food patch to a certain extent varyingwith search decision
rules (Wilke et al. 2009) or to not use ineffective solutions but to
inhibit the execution of related behaviours. Greater efficiency
might be more likely to vary with specific adaptations to certain
ecological challenges than to the degree of ecological generalism
per se and would require a more detailed investigation than the
currently available evidence allows.

Confounding factors and limitations of the review

Several factors may confound a putative relationship between
a particular ecological factor and a corresponding cognitive
ability. First, the cognitive trait under study must have ecolog-
ical relevance. This problem becomes apparent, for example,
in a study designed to compare cognitive abilities in an eco-
logically non-relevant context, i.e. spatial discrimination abil-
ities across six species of labrid fishes (Gingins and Bshary
2016). Because these cleaner fish do not rely on advanced
spatial abilities, as they do not actively search for food patches
but are visited by parasitised client fish, it is not surprising that
they exhibited similar performances when associating a food
source with a location.

Second, social factors that differ systematically between spe-
cies may obscure the effects of ecological factors on cognitive
abilities. For example, more social Mexican jay performed better
than food-caching Clark’s nutcrackers in a spatial memory task
in which the birds’ recovery performance of food caches made
by conspecifics was measured (Bednekoff and Balda 1996).
Similarly, of three corvid species, pinyon jays, who live in the
most socially complex environment, performed better in a
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reversal learning task than Clark’s nutcracker and Mexican jays
with a more generalist ecology (Bond et al. 2007).

Finally, given the currently available sample size of studies
meeting our criteria, the purported link between ecological spe-
cialisation and cognitive performance might reflect a publication
bias. Comparisons of mostly mammals (especially primates) and
birds and the focus on ecological challenges related to foraging
may also create a bias. Nonetheless, we hope that the present
review will stimulate more comparative research regarding this
interesting topic, using additional taxa and, most importantly, a
wider range of ecologically relevant cognitive traits in order to
draw firm conclusions about the relative importance of various
ecological factors in shaping cognitive abilities.
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Table 3 Definitions and explanations of cognitive terms

General terms

Cognitive ability Ability to perceive, process and memorise information from the environment or other individuals.

Decision-making Determination of an action considering environmental cues and experience.

Learning Any change in behaviour as result of experience; operationalised by an increase in performance.

Cognitive task
performance

Operationalisation for an individual’s learning abilities, often measured as success latency or ratio to solve a problem.

Problem-solving ability Ability to solve problems incorporating objects (i.e. inanimate objects, food), e.g. puzzle box, object manipulation test.

General intelligence
(g-factor)

Composite factor derived from correlating cognitive performances across various cognitive tasks.

Cognitive test battery Array of at least two different cognitive tasks; often conducted to investigate correlations between cognitive abilities.

Cognitive abilities related to perception

Discrimination learning Learning contingencies between events via conditioning. In a visual discrimination learning task, usually objects differing
in shape, colour, pattern, and/or location serve as stimuli, of which only one is associated with a reward. Performance is
measured as trials or time until a specified learning criterion is reached.

Reversal learning Reversed learning after an initial discrimination learning with the previously rewarded stimulus becoming unrewarded.

Numerical learning Learning of contingencies in relation with numbers, e.g. the ability to discriminate between quantities.

Cognitive abilities related to processing

Behavioural flexibility Ability to flexibly adjust the behaviour according to the actual circumstances.

Innovation Solution to a novel problem or novel solution to a modified problem; operationalised using problem-solving tasks.

Causal reasoning Cognitive ability to relate two events with each other using causal understanding instead of arbitrary contingencies like
space or time; operationalised using, e.g. a string-pulling task where pulling a string should be related to getting access to
an attached reward.

Tool use Behaviour in which an animal uses a secondary object as a specific tool to solve a given problem.

Cognitive abilities related to memory

Shor-term memory Holding information that is currently being processed, e.g. the memorisation of a certain learning contingency from one
experimental session to the other.

Long-term memory Relatively persistent storing of information; can be manifested via several repetitions.

Spatial memory
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