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On between-individual and residual (co)variances
in the study of animal personality: are you
willing to take the “individual gambit”?
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Summary A recent discussion in this journal (Dingemanse
et al. Behav Ecol Sociobiol 66: 1543-1548, 2012;
Garamszegi and Herczeg Behav Ecol Socibiol 66:1651—
1658, 2012) deals with a core issue in animal personality
research: Can animal personality research quantify correlat-
ed behaviors on the between-individual level, or is this too
demanding in terms of design and analysis of the data, and
should behavioral ecologists therefore take the “individual
gambit” and work on the phenotypic level only. Taking this
gambit implies accepting that the between-individual corre-
lation in behavioral traits (which is the correlation of inter-
est) may be masked by a residual correlation of different
magnitude or sign. Understanding (co)variances on different
levels is the main thrust of quantitative genetics, and animal
personality research can make good use of the plethora of
ideas and analytical approaches developed in this field. I,
here, outline reasons why the “individual gambit” may or
may not work out and its relationship to the quantitative
genetic “phenotypic gambit”. 1 especially emphasize the
meaning of residuals and phenotypic plasticity which has
not been fully appreciated in the debate thus far. I conclude
that instead of a priori assuming that between-individual
correlations are captured sufficiently well by the phenotypic
correlation, animal personality researchers should set up
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more ambitious data collection and analysis designs to crit-
ically test this conjectured equality.

Introduction

When a metric of behavior is repeatable, it is commonly
considered a trait which quantifies an aspect of animal
personality. Correlated behavioral traits, e.g., boldness and
aggression, are considered a behavioral syndrome (Réale et
al. 2007; Sih et al. 2004). Recently, an interesting discussion
has started concerning how we should define and measure
this “correlation” (Dingemanse et al. 2012; Garamszegi and
Herczeg 2012). Personality research emphasizes the
between-individual (co)variation of behavioral traits. Just
like the between-individual, variance is only a part of the
total phenotypic variance (typically 37 %, Bell et al. 2009);
the between-individual covariance is only a part of the
phenotypic covariance. Partitioning out the between-
individual correlation from the phenotypic one is potentially
important because a between-individual correlation need not
be captured adequately by the phenotypic correlation (de-
tailed in Dingemanse and Dochtermann 2013). Clearly,
partitioning the covariance into these different levels re-
quires repeated measures to be taken on individuals. This
means that data collection and study design should be ad-
justed accordingly.

Garamszegi and Herczeg (2012) state that “Until the
problems with separating between- and within-individual
behavioral correlations are convincingly solved, we suggest
focusing on the phenotypic correlations of individual-
specific estimates of traits (or their ranks) together with the
repeatability of behaviors”. These authors advocate a kind
of mixed approach, where between-individual variance is
the focus in a study of a single trait, but when multiple traits
are studied; their phenotypic covariance is conjectured to be
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sufficient in capturing correlated aspects of animal per-
sonality or behavioral syndromes. Their argument bases
on the assertion that (1) partitioning the phenotypic cor-
relation into a between-individual and residual correlation
has a problematic basis, and (2) the sample size needed
to statistically reliably do this is too large for behavioral
ecologists to collect in reality. Although technical, the
ongoing discussion on partitioning of covariances is in-
teresting because it circles around a core question. On
what level (phenotype, between-individual, genotype)
should we aim to study animal personality? In this paper,
I look at these issues from the perspective of quantitative
genetics. | outline that the basis for partitioning (co)
variances has a long and proven history in this field. I
continue by pointing out some assumptions of the nature
of residuals and their covariance, which appear to have
been appreciated insufficiently, and which may have
caused confusion in the ongoing debate.

Foundation for partitioning covariances
and correlations

Most behavioral ecologists would emphasize that animal
personality concerns “consistency in behavior”, and empha-
size the statistical concept of repeatability and thus of
between-individual variance. Conceptually, this means that
we hypothesize that there is a single intrinsic value for each
individual for the behavioral trait under study. In the context
of animal personality, the existence of an intrinsic value is
for example implied when referring to individuals falling on
a continuum (e.g., boldness to shy, fast to slow explorers,
Réale et al. 2007). Although an individual has one intrinsic
value, our phenotypic measure may not be equal to this
value because of random deviations. Thus, phenotypic mea-
sures z of traits x and y taken at time ¢ on a specific
individual n can be considered

Zx,nﬁt:l'lx"i_ix,n_"gx,n,t (1)
Zy,nﬁt =Ky + iy,n + €yt

Where, for convenience, the individual »'s intrinsic value
i for each trait is considered as a deviation from the mean
value p. The distribution of i across individuals is assumed
to be normal, with a mean of zero and a certain between-
individual variance. Further, £ are residuals, i.e., random
values drawn from a normal distribution with a certain
(residual) variance and a mean of zero. Because of these
residuals, phenotypic measures taken at different time steps
will tend to differ from each other and from the individual's
intrinsic value i. Traits that are expressed repeatedly by the
same individual are termed labile traits, such as many be-
havioral and life-history traits (Lynch and Walsh 1998).
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Dropping the subscripts, repeatability (+°) can in general
be denoted as

1 = var (i) / var (z) = var (i) / [var (i) + var (¢)], (2)

where var (i) stands for variance between individuals in their
intrinsic value, and var (z) and var (¢) quantify the variances
in the phenotypic and residuals, respectively (Falconer and
MacKay 1996).

Starting from these premises, we can follow the logic of
Searle (1961). Briefly, using the definition of a covariance
and Eq. (1), the covariances between traits x and y measured
on a set of individuals can be partitioned as

cov (zy, z,) = cov (iy, iy) + cov (ex, &)

+ cov iy, &) 4 cov (&y, iy) (3a)

= cov (iy, iy) + cov (ey, &) (3b)

Thus, the phenotypic covariance cov (z,, z,) is broken up
into a sum of the covariance between individuals cov (iy, i)
and between the residuals cov (g,, €,). The covariance
between the intrinsic values of trait x and the residuals of
trait y (and vice versa) cancel out of Eq (32) to form Eq. (3b)
because the residuals values are random deviations (Eq. (1)).
Scaling the covariances to a correlation produces

cov (zx, zy) _ cov (ix, iy)
\/ var (z,) var (z,) \/ var (z,) var (z,)
cov (e, &) (4a)
var (z,) var (z,)
cov (zy, z) cov (iy, iy)

\/ var (z,) var (z,) \/ var (z) var (z,)

i)
i)

—~

var (i) var

—~

var (i) var

cov (&, &)

—~

var (z,) var (z,)

y var (&) var (&) (4b)
var (&) var (&)

rp(x,y) =r (x, y) rfrf +7r(x, ) \/(l —rf) (l —r}z,),
(4c)
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where rp denotes the phenotypic correlation, r; the between-
individual correlation, and 7. the residual correlation. Eq.
(4c) was also derived by Dingemanse et al. (2012) in an-
other fashion. The basis of this equation is established
within the field of quantitative genetics, which hinges upon
statistically partitioning (co)variances into hierarchically
structured levels. The critical assumptions are that the ef-
fects on the different levels are additive (Eq. 1) and inde-
pendent from each other (Eq. (3a): cov (i, €,) and cov (g, ,
i,) are zero). Partitioning of (co)variances has been done in
multivariate mixed models for decades and can readily be
extended to include further levels when relevant.

Because the interest in life-history traits has been consid-
erable in evolutionary ecology, there exists a strong frame-
work for the analysis of labile traits (Roff 2007; Lynch and
Walsh 1998). In particular, it is useful to widen the interpre-
tation of the intrinsic value i. From the perspective of
quantitative genetics, i can be assumed to be the sum of the
breeding value (@) and the permanent environmental effect
(pe). The breeding value is the expected value of the trait in
case it was solely determined by the additive effects of the
many loci which are assumed to determine its expression. The
permanent environment effect captures nonheritable effects
which are associated to the individual such as maternal or
natal effects or effects related to the conditions an individual
experienced during its lifetime. It also includes nonadditive
genetic effects (dominance). Searle (1961) originally derived
Eq. (4c) for a nonlabile trait, where the partitioning was
between the breeding value of the trait and it's residual (cf.
Roff 1997), but its logic applies equally to between-individual
differences. Assuming additive genetic and permanent envi-
ronmental effects are additive and independent from each
other, this additional level of (co)variance can be included,
since cov (iy, i,)=CoV (ay, a,)+cov (pe,, pe,) to realize that

rp (x, y) =ra (x, ¥) \/ B3 B} + rpe (X, ¥) \ /P D3

e f-r) (1-2), )

where 4% and p* denote the proportion of phenotypic variance
due to additive genetic effects (heritability) and permanent
environmental effects, respectively. The sum of these two is
the repeatability /*: That is, Eq. (5) is a further partitioning of
Eq (4¢). The correlations 7, and 7pg are defined on the genetic
and permanent environmental level, respectively. Because an
individual's intrinsic trait value 7 is determined by both the
additive genetic effect @ and a permanent environmental effect
pe, the repeatability is considered the upper estimate of heri-
tability (Falconer and MacKay 1996). It is the upper estimate
because an individual's trait expression will be partly due to
permanent environmental effects and a trait's heritability will
therefore be lower than the repeatability (Lynch and Walsh

1998), possibly substantially lower. The further partitioning of
i into a breeding value and a permanent environmental effect
is the focus of a special class of linear mixed models, the
animal model (Lynch and Walsh 1998; Kruuk 2004; Wilson et
al. 2010). The latter is a quantitative genetic model, whose key
business is the estimation of additive genetic (co)variances,
because these—together with selection—determine the evo-
lutionary dynamics of the traits (Lynch and Walsh 1998).
Conceptually, however, interpretation of i as a first-line esti-
mate of the breeding value goes a long way, both in seeing the
parallels of studying animal personality to the theoretical
framework of quantitative genetics and in applying the ana-
lytical methods developed within this framework. It should be
clear, however, that the statistical foundation for partitioning
(co)variances into multiple levels is solidly established and
not something new and unproven.

The “individual gambit” in syndrome research

Behavioral ecologists noted early on that Eq. (5) implies that
the phenotypic correlation may poorly reflect the genetic
correlation (Krebs and Davis 1978). The genetic correlation
is “hidden” beneath several additional layers of other factors
(i.e., pe and ¢) affecting the phenotype. Each of these factors
often has a large effect, and thus largely determines the
resulting phenotypic correlation. Based chiefly on pragmatic
reasons, the phenotypic correlation was argued to be a
reasonable proxy for the genetic one (Cheverud 1988).
Making this assumption has been termed the “phenotypic
gambit” (Grafen 1984). From an evolutionary perspective, it
is important to ask whether this gambit holds, since the
genetic correlations between traits will determine how they
respond to selection (Lynch and Walsh 1998). The ongoing
discussion on the importance of distinguishing the between-
individual correlation from the phenotypic correlation can
be understood as a special (because one level higher) case of
the phenotypic gambit. The bulk of research on behavioral
syndromes to date implicitly assumes that the phenotypic
correlation between behavioral traits is a reasonable proxy
for the between-individual correlation across traits, and
thereby makes what could be termed the “individual
gambit”.

This “individual gambit” may hold: A standard assump-
tion in statistics is that residuals are random and therefore
uncorrelated, both across observations made for a single
trait and, by extension, between traits. The expectation is,
therefore, that the residual correlation is low (r.~0). When
repeatability and heritability are low, as for many life-
history and behavioral traits, the phenotypic correlation will
mostly reflect the residual correlation [Eq. (4)] (cf.
Dingemanse and Dochtermann 2013). As a consequence,
if 7.=0, the phenotypic correlation 7» will reflect the sign,

@ Springer



1030

Behav Ecol Sociobiol (2013) 67:1027-1032

but will underestimate the magnitude, of the between-
individual correlation r;. Hence, the null assumption is that
the phenotypic correlation is biased towards zero in com-
parison to the between-individual correlation, such that
finding a nonzero phenotypic correlation between behavior-
al traits would, under the null assumption of noncorrelated
residuals, constitute evidence for a behavioral syndrome.
Dochtermann (2011) reviewed the phenotypic gambit made
in animal personality research and indeed found that the
phenotypic correlation 7p is correlated to the genetic corre-
lation r, but underestimates its magnitude. An explicit in-
vestigation of the “individual gambit” is currently lacking,
but the notion of r.~0, and thus of the gambit holding, is
consistent with the results obtained in the meta-analysis of
Garamszegi et al. (2012), who find that the phenotypic
correlation between behavioural traits correlates positively
with the geometric mean repeatability of these traits.

The problem is, of course, that the null assumption of
uncorrelated residuals may be violated. Because repeatabil-
ity of behavioral traits is low, a positive or negative residual
covariance effectively determines the sign and magnitude of
the phenotypic correlation and thereby masks the between-
individual correlation. Residual covariance is possible
whenever traits have been measured on the same individ-
uals. This covariance may occur because of correlated mea-
surement error (a clear risk when doing more subjective
behavioral assays). Another mechanism for residual covari-
ance is that there is an unidentified variable which affects
both traits. This scenario is especially plausible for re-
searchers working in wild populations where the environ-
mental conditions under which measures are taken are
difficult to control. Several behavioral traits may, for
example, be affected by an element of the habitat which
is not recognized or measured on the individual level (e.
g., territory quality or food supply experienced by an
individual). If this factor varies over the time it takes
to collect the repeated measures on the individuals and
its effect is not modeled, then it may create covariation
between traits which ends up in the residual covariance.
Despite the statistical null assumption of uncorrelated
residuals, there is a clear possibility for a nonzero resid-
ual correlation in a behavioral syndrome. This makes it
risky to take the “individual gambit”. In particular, a
negative correlation on the between-individual level (e.g., a
trade-off) can be masked by a strong positive residual covari-
ance driven by positive effects of the unmeasured variable on
both behavioral traits. As a consequence, the phenotypic
correlation of traits with low repeatability will mostly reflect
this positive residual correlation. This scenario is well
established in the study of life-history traits where trade-offs
(e.g., between reproduction and survival) are expected (van
Noordwijk and de Jong 1986; Price et al. 1988; Roff and
Fairbairn 2007).
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Interpreting the residual correlation

Correlated residuals flag a potential violation of the standard
statistical assumption that the residual ¢ is a random deviation
from 7. It is important to verify that a residual correlation does
not arise from the fact that, for example, individuals with a high
intrinsic value 7 for trait x and y tend to have positive residual
values, and individuals with a low i tend to have negative
residuals. Careful inspection of the residuals using standard
procedures (e.g., the covariance between the residuals to the
fitted values) is warranted. It is also worthwhile to critically
consider the possibility of correlated measurement error and
whether additional factors can be included in the model or in
the measuring protocol in order to reduce the residual correla-
tion. Most importantly, however, is the realization that a resid-
ual is not a property of the individual. Dingemanse et al. (2012)
and Garamszegi and Herczeg (2012) use the term “within-
individual” instead of residual, which can be erronecously
thought to reflect some adjustments in behavior the individual
makes. This view is problematic because it belies the assump-
tion of random residuals underlying the model used to generate
fixed effect estimates of interest and quantification of repeat-
ability. The arguments and examples provided by Dingemanse
et al. (2012) and Dingemanse and Dochtermann (2013) are
based on an apparent believe that there is considerable biology
in the residual correlation, which leads these researchers to
expect it to deviate from zero and thereby determine the
phenotypic correlation between behavioral traits. Again, this
is not an assumption born from the underlying statistics and, as
far as I am aware, also not solidly founded in available esti-
mates. It may be true, but we do not know this for certain yet. A
second particular example of interpreting residuals as having a
biological meaning stems from Garamszegi and Herczeg
(2012) who consider residuals as plasticity. Plasticity means
that individuals change their trait value as a function of an
environmental covariate; e.g., they become more aggressive
when the ambient temperature is warmer. Statistically, howev-
er, such an effect is no longer a residual effect because it
hypothesizes a specific factor affecting the individual's intrin-
sic value i (in the case of plasticity on the level of the individual
rather than the genetic level, Nussey et al. 2007). Thus, plas-
ticity implies an expansion of Eq. (1) where the potential
modification of the environmental value E is described on
the intrinsic value itself. For example, the phenotypic value z
of individual » measured in different environments (or con-
texts) £ can be modeled as

Zn,E:u+E+ﬁ (-xa E)+EH‘E7 (6)

where p denotes the fixed-effect mean, and E the environmen-
tal value fitted as a fixed effect, and  the residual error, which
is here allowed to be specific for each value for £ (heteroge-
neous residuals). Random-regression function f; (x, E)
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describes an orthogonal polynomial of order x on the between-
individual level (Henderson 1982; Kirkpatrick and Heckman
1989). These are random effects modeling the difference to the
fixed effect mean specific to each environmental value. For
example, a first-order polynomial of f; would represent the
function iy n i), n X £, where the variances between individuals
in iy (elevation) and i;_, (slope) and the covariance between
slope and elevation are estimated. This approach is outlined in
more detail by Nussey et al. (2007). The important point here is
that plasticity (captured by f; (x, E) in Eq. (6) ) is defined
separate from the residuals. If a researcher believes that part
of the residuals could be due to a specific environmental value
E, then this hypothesis can be explored by comparing the fit of
the model described by Eq. (6) to that of Eq. (1). This differ-
ence is not trivial because the presence of plasticity alters the
definition of repeatability. If there is variation in plasticity
across individuals, the between-individual variances and the
between-individual covariances depend on where these (co)
variances are evaluated along the environmental gradient
(Meyer 1998). This means that repeatability of the behavioral
trait is no longer defined by Eq. (1), but instead becomes a
function of the environmental context (£) under which it is
measured, and the contextual information on E therefore needs
to be included when calculating and presenting the repeatabil-
ity. Depending on the pattern of variation in plasticity across
the individuals, a behavior may be repeatable only under
certain environmental conditions, and the correlation in the
behavior across environmental contexts may be low. Worked
examples on how a random regression approach can be used to
study variation in plasticity of behavioral traits are provided,
e.g., by Kontiainen et al. (2009) and Kluen and Brommer
(2013), and an overview is provided by Dingemanse and
Dochtermann (2013). In general, several so-called function-
valued approaches can be used to model plasticity
(Stinchcombe et al. 2012), or the trait measured can be con-
sidered as specific to each environment (character-state ap-
proach, Lynch and Walsh 1998).

Garamszegi and Herczeg (2012) are particularly concerned
that measures of two traits taken at a different point in time
make it impossible to define the residual covariance and argue
that this is especially problematic in animal personality re-
search because it is almost impossible to measure two behav-
ioral traits at the same time. Again, this concern partly stems
from the confusion of interpreting the residuals as a variable
related to some undefined covariate (which then changes
between measures of the first and consecutive behavioral
traits). If we expect this to be the case, we should of course
model this covariate. For example, Eq. (6) can be expanded to
a bivariate function-valued approach, where both traits x and y
and their covariance are considered as a function of E. Details
of this approach are not relevant for the present argument, but
see Husby et al. (2010) and Dingemanse and Dochtermann
(2013) for worked examples. If we do not know the factor

which may vary between the measures of the various traits,
then clearly the covariance this potentially creates ends up in
the residual covariance, as this term concerns covariance in
unexplained differences between the measured value z and the
intrinsic value 7 of two or more traits. I think of this line of
thought not as a hindrance, but as an illustration for why
researchers need to partition out the residual covariance.
Because the measurement protocol may produce correlated
residuals (which also include correlated measurement error),
potentially correlated residuals form a clear nuisance param-
eter which we need to partition out of the phenotypic covari-
ance. The between-individual correlation can be estimated
across temporally displaced behavioral assays, which is
viewed as a major obstacle by Garamszegi and Herczeg
(2012), provided researchers commit themselves to proper
design and analysis. For example, Wilson et al. (2011) assayed
the same individuals in two different behavioral assays but did
so repeatedly, which allows to separate the individual-level
correlation 7; for the two behaviors (the behavioral syndrome)
from the phenotypic correlation 7 between these behaviors,
by separating the intrinsic value i for each behavior from the
residual noise surrounding it.

Conclusion

Behavioral ecologists agree that a between-individual cor-
relation defines a behavioral syndrome. The core of the
debate concerns differences in willingness to make the “in-
dividual gambit” of a priori assuming that the between-
individual correlation is captured adequately by the pheno-
typic correlation between traits. In essence, this boils down
to how strongly we believe the statistical null assumption of
uncorrelated residuals holds for two or more behavioral
traits. Dingemanse et al. (2012) view this assumption as
problematic and stress that researchers must aim to estimate
the between-individual correlation explicitly by adjusting
their sampling design, study protocol, and analysis accord-
ingly. Garamszegi and Herczeg (2012), on the other hand,
are more willing to make the “individual gambit” and infer
the existence of a syndrome based on the phenotypic corre-
lation only. I believe the important aspect is that researchers
are aware of the assumptions and restrictions of the “indi-
vidual gambit” and properly identify these. A phenotypic
correlation presents weaker evidence for a syndrome than a
between-individual correlation because it necessitates the
assumption of uncorrelated residuals. Using multivariate
mixed models, we can overcome this assumption and study
correlations between behavioral traits on various levels,
where especially the genetic level is important when we
are interested in how natural selection creates and maintains
syndromes. This is because only genes are transmitted down
to further generations and covariances on all other levels,
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especially on the residual level, are transient. Even if the
genetic level is not the prime motivation of the research,
behavioral ecologists can still put the general framework of
quantitative genetics to good use. In addition to quantifying
the between-individual correlation, it can accommodate in-
teractions with the environment (plasticity), indirect effects
between interacting individuals (social interactions), cross-
sex genetic correlations, and trade-offs; all of these are of
interest to personality research and factors which shape the
potential of a species' evolutionary capacity (Moore et al.
1997; Bijma et al. 2007; Roff and Fairbairn 2007; Sprenger
et al. 2012). The goal, even if challenging, should be to
place behavioral ecology within the existing evolutionary
framework (Dochtermann and Roff 2010). To get at these
deeper levels, we need to start partitioning the phenotypic
(co)variances whenever possible. Doing so will clarify
whether we can trust phenotypic correlations to indeed
describe the between-individual correlation sufficiently
well. 1, thus, hope animal personality researchers will in-
creasingly take up the quantitative genetic toolbox to test the
“individual gambit”.
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