Cancer Immunology, Immunotherapy (2019) 68:379-393
https://doi.org/10.1007/5s00262-018-2283-0

ORIGINAL ARTICLE

@ CrossMark

Enhanced anti-tumor efficacy of checkpoint inhibitors in combination
with the histone deacetylase inhibitor Belinostat in a murine
hepatocellular carcinoma model

Diana Llopiz'? - Marta Ruiz' - Lorea Villanueva'? - Tamara Iglesias' - Leyre Silva'? - Josune Egea'? -
Juan J. Lasarte'2® . Perrine Pivette - Véronique Trochon-Joseph® - Bérangére Vasseur® - Graham Dixon?> -
Bruno Sangro®*® . Pablo Sarobe'*?

Received: 17 January 2018 / Accepted: 6 December 2018 / Published online: 13 December 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Immune checkpoint inhibitors are currently tested in different combinations in patients with advanced hepatocellular carci-
noma (HCC). Nivolumab, an anti-PD-1 agent, has gained approval in the second-line setting in the USA. Epigenetic drugs
have immune-mediated antitumor effects that may improve the activity of immunotherapy agents. Our aim was to study
the therapeutic efficacy of checkpoint inhibitors (anti-CTLA-4 and anti-PD-1 antibodies) in combination with the histone
deacetylase inhibitor (HDACi) Belinostat. In a subcutaneous Hepal29 murine HCC model, we demonstrated that Belinostat
improves the antitumor activity of anti-CTLA-4 but not of anti-PD-1 therapy. This effect correlated with enhanced IFN-y
production by antitumor T-cells and a decrease in regulatory T-cells. Moreover, the combination induced early upregulation
of PD-L1 on tumor antigen-presenting cells and late expression of PD-1 on tumor-infiltrating effector T-cells, suggesting
the suitability of PD-1 blockade. Indeed, Belinostat combined with the simultaneous blockade of CTLA-4 and PD-1 led to
complete tumor rejection. These results provide a rationale for testing Belinostat in combination with checkpoint inhibitors
to enhance their therapeutic activity in patients with HCC.
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of T-cell checkpoint molecules such as CTLA-4 or PD-1/
PD-L1, has demonstrated in the recent years its enormous
potential against cancer [6-9] and is currently used to treat
several tumor types. In HCC, signs of activity were first
shown with the anti-CTLA-4 antibody Tremelimumab [10].
More recently, the anti-PD-1 agent Nivolumab has shown
unequivocal antitumor activity [11] leading to accelerated
approval by the Food and Drug Administration (FDA) to
treat patients with advanced HCC previously treated with
Sorafenib. Combination of these antibodies with therapies
already used in HCC have also shown promising results
[12]. Moreover, different clinical trials based on monother-
apies with CTLA-4 or PD-1/PD-L1 blocking antibodies or
their combinations are ongoing (https://clinicaltrials.gov).
However, both in other tumors [13] and in HCC [11] only a
subset of patients responds to these therapies. To benefit a
higher proportion of patients, several approaches combining
these antibodies with new or existing therapies are being
developed in the preclinical setting or tested in clinical tri-
als [14]. Most of these combinations, nevertheless, are not
supported by a strong scientific rationale.

Epigenetic drugs targeting modifications at the DNA and
histone levels are a group of antitumor agents (reviewed in
Ref. [15]). While the presumed mechanism of action of these
compounds was a direct antitumor effect, they can simulta-
neously modify antitumor immunity. Thus, they may not
only act at the level of tumor cells, by modulating antigen
expression and the machinery responsible for their presenta-
tion and recognition by T-cells [16, 17], but they may also
directly act on the immune system, activating effector cells
[18, 19] and inhibiting immunosuppressive mechanisms
[20, 21]. Accordingly, some of these compounds increase
the efficacy of checkpoint inhibiting antibodies in different
murine tumor models [22, 23]. HDACi have demonstrated
promising effects by improving the antitumor efficacy of
immunotherapies based on anti-CTLA-4, anti-PD-1 or their
combination [22, 24]. Belinostat is an HDACi that, accord-
ing to its profile, can be considered as a pan-inhibitor [25].
It has been clinically tested in patients with solid and hema-
tological tumors [26-28], but is currently approved by the
FDA (Beleodaq®) only for the treatment of peripheral T-cell
lymphoma (PTCL) [29]. In HCC, although preclinical data
showed an inhibitory effect of Belinostat on the growth of
HCC lines [30, 31], no convincing signs of efficacy were
shown in a phase I/II trial [32]. Nevertheless, as Belinostat
was well tolerated, it is a good candidate for combination
therapy.

Based on the potential for a true synergistic effect, we
hypothesized that the combined administration of Belin-
ostat with checkpoint inhibitors may lead to an enhanced
therapeutic effect. We thus tested the therapeutic efficacy of
Belinostat in combination with anti-CTLA-4 or anti-PD-1
antibodies in a preclinical model of C3H mice injected
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with Hepal29 HCC cells, analyzing antitumor efficacy of
these combinations as well as associated immune-mediated
mechanisms.

Materials and methods
Reagents

Belinostat (AMRI, Rensselaer, NY, USA) was dissolved in
buffer containing 50 mg/ml L-Arginine as formulated in the
commercialized i.v. form Beleodaq®. Antibodies against
CTLA-4 (9D9), PD-1 (RMP1-14) or isotype control (rat
IgG2a, 2A3) were purchased from BioXcell.

Mice

Eight-week-old female C3H mice were maintained in path-
ogen-free conditions.

Tumor cells

Hepal29 HCC cells [33] were grown in complete medium
(RPMI 1640 supplemented with 10% heat-inactivated
bovine serum and antibiotics). Cell stocks were generated
upon cell-line receipt and early passages were used for tumor
experiments. They were routinely tested for mycoplasma.

Tumor treatment experiments

Mice were injected subcutaneously with 10® Hepal29
tumor cells. To determine therapeutic efficacy, treatment
started 1 week later, when tumors had reached 5 mm in
diameter (day 0). Mice received intraperitoneal (i.p.) injec-
tions of therapeutic or control antibodies (50 pg/mouse) at
days 0 and 7. Some groups received daily administration of
Belinostat for 3 weeks (days 0-21), either i.p. (90 mg/kg)
or orally (45 mg/kg). In experiments used to analyze intra-
tumor immune parameters, treatment started when tumors
had reached 8 mm. Tumor volume was calculated using the
formula: V = (length x width?)/2. Mice were killed when
tumor diameter reached 17 mm.

ELISPOT

T cells producing IFN-y were determined by ELISPOT (BD-
Biosciences) as described [34]. Briefly, splenocytes (5 x 10%/
well) were stimulated with 5 X 10* irradiated tumor cells,
previously treated for 24 h with 500 U/ml of murine IFN-y.
The in vitro effect of Belinostat on tumor cells was tested
using cells previously treated with 0.5 uM Belinostat. After
1 day of culture, the number of spot-forming cells was enu-
merated with an automated counter.
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In vitro assays to test the effect of Belinostat

In the case of tumor cells, effect of Belinostat on acetyla-
tion was tested by culturing Hepa129 cells (10%well) with
different Belinostat concentrations in 24-well plates for 2 h
and then harvested. When measuring effect on inhibition of
tumor cell growth, cells (10%well) were cultured for 48 h,
harvested and the proportion of surviving cells was deter-
mined after staining with Trypan Blue. IC;, was determined
using the GraphPad Prism software after plotting Belinostat
concentrations and cell survival. After that, cells were rou-
tinely treated with this concentration and 24 h later they
were harvested for flow cytometry or antigen presentation
assays.

Belinostat effect on macrophages was tested by cultur-
ing bone marrow cells (10° cells/well) in 12-well plates in
3 ml in the presence of 100 ng/ml of macrophage colony-
stimulating factor (m-CSF). After 5 days, cells were polar-
ized towards M1 macrophages with IFN-y (25 ng/ml) and
LPS (100 ng/ml), M2 with IL-4 (10 ng/ml) or left untreated,
with or without 0.1 uM Belinostat. One day later, cells were
harvested and M1 markers CD86 and CD38 were analyzed
by flow cytometry.

Western blot

In vitro cultured tumor cells were lysed in a buffer contain-
ing 10 mM tris(hydroxymethyl)aminomethane hydrochlo-
ride (Tris—HCI) pH 7.4, 10 mM NaCl and 3 mM MgCl, and
histones extracted as described in Ref. [35]. Then, proteins
were separated, transferred to nitrocellulose membranes and
detected by incubating the membrane with anti-acetylated
H4 histone (1/10,000 dilution; Abcam) or anti-H2A.X his-
tone (1/10,000 dilution; Abcam) antibodies, followed by
1/10,000 dilution of HRP-conjugated goat anti-rabbit IgG
(Millipore). Protein bands were detected by enhanced chemi-
Iuminescence (ECL) (Amersham).

Flow cytometry

Spleens and tumors were obtained after treatment, incu-
bated with collagenase/DNase for 15 min and subsequently
homogenized. Cells were incubated for 10 min with Fc
Block™ (BD-Biosciences) and stained with specific anti-
bodies. To analyze antigen-presenting cells (APC) and
PD-L1 expression antibodies CD45-APC-Cy7, CDllc-
BV570, F4/80-Pacific Blue, CD11b-APC, Ly6C-PerCP/
Cy5.5 and Ly6G-PE-Cy7 were used to define dendritic
cells (DC), monocytes, granulocytes and macrophages
(M1 detected with anti-CD38 PerCP/Cy5.5 and M2 with
anti-CD206 PE-Cy7, among CD11b and F4/80 positive
cells) and anti-PD-L1-PE. Antibodies were purchased
from Biolegend, except those targeting CD45, Ly6G and

PD-L1 (BD-Biosciences). Analysis of lymphocyte subsets
and expression of PD-1 on these cells was carried out using
antibodies CD45-APC-Cy7, CD3-PE-Cy5 (AbD serotec),
CD8-BV421 (Biolegend), CD4-BV570 (Biolegend), CD25-
PE-Cy7 (TONBO Biosciences) and PD-1-PerCP/Cy5.5
(Biolegend). Cells were then fixed, permeabilized and finally
intracellularly stained with anti-Foxp3-APC (TONBO).
Tumor cells treated in vitro with Belinostat were stained
with anti-H-2K*-FITC (BD-Biosciences), PD-L1-PE (BD-
Biosciences) and CD86-PE-Cy5 (Biolegend). Samples were
acquired with a FACSCantoll flow cytometer (Becton Dick-
inson) and analyzed using FlowJo software (Tree Star Inc).

Protein array

Mice (2-3/group) with 8 mm tumors received different
treatments for 19 days as described above and tumors were
excised, weighted, homogenized in Radioimmunoprecipita-
tion assay (RIPA) buffer and total protein content measured
using the bicinchoninic acid assay. The concentration of
different cytokines, chemokines and growth factors in the
samples was determined using a protein array (Quantibody
Mouse Cytokine Array 5; RayBiotech) according to manu-
facturer’s instructions.

Statistical analysis

Tumor size and immune responses were analyzed using
Student’s ¢ tests. P <0.05 was taken to represent statistical
significance.

Results

Expression of CTLA-4 and PD-1/PD-L1 in Hepa129
tumors and sensitivity of immune and tumor cells
to Belinostat

The efficacy of combinations of Belinostat with checkpoint
inhibitors in HCC was analyzed using the Hepal29 tumor
model. Tumors growing after subcutaneous inoculation of
Hepal29 cells contained infiltrating CD4* Tregs, at levels
clearly above those observed in the spleen of these tumor-
bearing animals or in the spleen of naive mice without
tumors (Fig. 1a). A significant percentage of these CD4*
Tregs, as opposed to effector CD4 or CD8 T-cells, expressed
CTLA-4 (Fig. 1b). As for the PD-1/PD-L1 axis, although
PD-L1 was not expressed by tumor cells in vitro (data not
shown), it was detected in vivo on tumor cells and on infil-
trating CD45% leukocytes (Fig. 1¢). Moreover, a significant
proportion of CD4 and CDS infiltrating T-cells was PD-1*
(Fig. 1d). These features resembled some of the conditions
observed in HCC patients [36—39] and suggested that they
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could be amenable to treatment with checkpoint inhibiting  Belinostat in combination with checkpoint inhibitors,
antibodies. we tested its capacity to modulate histone acetylation in

Epigenetic drugs have been described to regulate =~ Hepal29 tumor cells. In vitro experiments demonstrated
properties of tumor cells. Thus, before administering  evident histone acetylation when cells were treated with

@ Springer



Cancer Immunology, Immunotherapy (2019) 68:379-393

383

«Fig. 1 Expression of CTLA-4 and PD-1/PD-L1 in Hepal29 tumors
and sensitivity of tumor cells to Belinostat C3H mice were injected
with 10° Hepal29 tumor cells and 10 days later tumors were har-
vested, homogenized and stained with antibodies to analyze tumor
cells and infiltrating leukocytes. a Percentage of Tregs among total
CD4 T-cells in their tumor, spleen and in the spleen of control
naive mice. Representative dot plots (left) and summary of results
from four mice (right) (**p<0.01). b Percentage of CTLA-4" cells
in tumor effector and regulatory CD4 T-cells and in CD8 T-cells. ¢
Expression of PD-L1 on infiltrating CD45" leukocytes and in CD45~
tumor cells. d Percentage of PD-1" cells in tumor-infiltrating CD4
and CDS8 T-cells. e In vitro effect of Belinostat on histone H4 acetyla-
tion in Hepal29 cells treated with different concentrations and ana-
lyzed 2 h later. f In vitro inhibitory effect of Belinostat on Hepal29
cells, corresponding to one representative experiment out of three
carried out

different Belinostat concentrations (Fig. le). This effect
was accompanied by a dose-dependent inhibition of cell
proliferation in vitro. In several experiments, we observed
that Belinostat inhibited growth of these cells at an ICy,
of 0.4567 + 0.070 uM (Fig. 1f).

Thus, the presence of the immune checkpoint targets in
Hepal29 tumors and the sensitivity of hepatoma cells to
Belinostat suggested this tumor model could be suitable
for testing combinatorial therapies.

Belinostat improves therapeutic efficacy
of anti-CTLA-4 but not of anti-PD-1 antibodies

Combination of Belinostat with checkpoint inhibiting
antibodies was studied by treating mice bearing 5-mm
tumors with daily i.p. administration of Belinostat for 3
weeks (days 0-21), together with antibody administration
at days 0 and 7. Monotherapy with Belinostat, despite
its in vitro effect, did not show any antitumor in vivo
effect at the dose tested. Similarly, anti-PD-1 antibodies
had a poor effect, a result that was not improved after
combination with Belinostat. Anti-CTLA-4, however,
clearly delayed tumor growth, an effect that was more
evident when combined with Belinostat (Fig. 2a). Indeed,
analysis of tumor size at day 18, when control animals
treated with isotype antibodies had still a survival above
70%, showed a statistically significant antitumor effect,
observed only in mice treated with anti-CTLA-4 + Belin-
ostat (Fig. 2b). Regarding survival, all mice treated with
anti-CTLA-4 + Belinostat were still alive at day 30, com-
pared to 75% of those treated with anti-CTLA-4 alone.
By contrast, less than 40% survival was observed in the
remaining groups (Fig. 2¢). These results strongly sug-
gest that the antitumor effect induced by anti-CTLA-4 is
improved by combination with Belinostat.

Belinostat enhances antitumor immunity
and decreases Tregs in anti-CTLA-4-treated mice

To understand the immune mechanisms behind the observed
effect, immune parameters were analyzed in the spleen of
tumor-bearing mice subjected to a 14-day treatment, when
anti-CTLA-4-treated mice showed stable tumor size while
the remaining groups had growing tumors. Although CD4
and CD8 T-cell proportions did not show significant differ-
ences between groups (Fig. 3a, b), the percentage of CD4
Tregs decreased in mice treated with anti-CTLA-4 + Belin-
ostat compared to anti-CTLA-4 alone (Fig. 3c). Antitumor
immunity was tested by stimulating splenocytes with irra-
diated tumor cells, and using IFN-y production as read out.
While Belinostat did not enhance the immune response in
mice treated with isotype control or anti-PD-1 antibodies, it
significantly promoted a stronger response in mice treated
with anti-CTLA-4 (Fig. 3d). Finally, Belinostat decreased
the proportion of PD-17 cells in CD4 but not CD8 T-cells
during anti-CTLA-4 treatment, but not in mice treated with
control or anti-PD-1 antibodies (Fig. 3e, f). These results
suggest that Belinostat enhances antitumor immunity while
down regulating inhibitory mechanisms in animals treated
with anti-CTLA-4 but not with anti-PD-1, an effect that is
associated with the enhanced antitumor effect.

To test if the enhanced immune responses induced by
Belinostat + anti-CTLA-4 were mediated by modulation of
tumor cell antigenicity/immunogenicity, we performed addi-
tional experiments in vitro. Hepal29 cells barely expressed
MHC-I, CD86 or PD-L1 in vitro, and Belinostat did not
modify their levels (Supplementary Fig. 1a—c). Accordingly,
tumor-specific T-cells obtained from cured mice recog-
nized untreated and Belinostat-treated tumor cells similarly
(Supplementary Fig. 1d), suggesting that mechanisms dif-
ferent from direct modulation of tumor cell properties are
involved in the enhanced antitumor effect induced by the
combination.

Enhanced antitumor effect

of anti-CTLA-4 + Belinostat combination

is associated with increased early infiltration of M1
macrophages and PD-L1 upregulation

To understand the mechanisms associated with the superior
efficacy of anti-CTLA-4 + Belinostat, we studied intratu-
mor immune parameters at different time points. At day 7,
although the combination group had the highest proportion
of CD45* infiltrating leukocytes, the difference did not reach
statistical significance (Supplementary Fig. 2a, p=0.07; iso-
type vs anti-CTLA-4 + Belinostat). Regarding innate immu-
nity mediated by APC, lower percentages of DC were found
in the combination group and no differences existed in the
proportion of monocytic and granulocytic cells or in the
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Fig.2 Belinostat improves therapeutic efficacy of anti-CTLA-4 but
not of anti-PD-1 antibodies. Mice (n=14-16/group) bearing 5 mm
tumors were treated with isotype control, anti-PD-1 or anti-CTLA-4
antibodies (days 0 and 7) with or without Belinostat (days 0-21). a

entire macrophage population. Interestingly though, a sig-
nificant increase in M1 macrophages (CD38™) and a trend
towards less M2 macrophages (CD206%) was observed in the
combination group compared to anti-CTLA-4 (Fig. 4a). To
study the effect of Belinostat on M1 macrophage increase,
in vitro experiments were carried out. Addition of Belin-
ostat to unpolarized or IL-4-polarized (M2) macrophages
led to an increase in the percentage of macrophages express-
ing CD38 and CD86 M1 markers (Fig. 4b). These effects
were not observed when adding Belinostat to M1-polarized

@ Springer

c
100
o N80
Sn
S 5
25
2 E 40
SE
E 820-
< E
0 T T T T
0 10 20 30 40 50

Days after treatment

—-O— Isotype —-@— Isotype + Belinostat
1 oCTLA-4 _m oCTLA-4+ Belinostat
—\— oPD-1 —A— oPD-1+ Belinostat

Tumor growth of each individual mouse was plotted. b Tumor vol-
ume at day 18 (¥*****p <(.05, 0.01 or 0.001, respectively). ¢ Mice
were killed when tumor reached 17 mm and the percentage of those
not reaching this tumor size was represented

macrophages (data not shown), which already had high
expression of these markers.

Regarding PD-L1, despite similar levels of PD-L1 expres-
sion when considering total CD45" tumor leukocytes (Sup-
plementary Fig. 2b), increased proportions of PD-L1* cells
induced by the combination were found in most APC popu-
lations, the difference being statistically significant for DC
as well as for M1 and M2 macrophages (Fig. 4c). This was
accompanied by higher per cell expression levels, meas-
ured as mean fluorescence intensity. Although PD-L1 can
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Fig. 3 Belinostat enhances antitumor immunity and decreases Tregs
in anti-CTLA-4-treated mice. Mice (n=5-6/group) bearing 5 mm
tumors were treated with isotype control, anti-PD-1 or anti-CTLA-4
antibodies (days 0 and 7) with or without Belinostat (days 0-14) and
spleens were harvested for immunological analyses. Percentages of

be also expressed by tumor cells, CD45™ cells expressed
similar PD-L1 levels irrespective of treatment (Supplemen-
tary Fig. 2c), a result in agreement with the lack of effect
of Belinostat on PD-L1 expression when used in vitro with
tumor cells (Supplementary Fig. 1c).

Analyses of the proportion and phenotype (PD-L1 expres-
sion) of APC subsets at later stages (days 14 or 19 after
treatment) did not show relevant differences between groups
(data not shown).

Anti-CTLA-4 + Belinostat combination modulates
PD-1 expression in Tregs and effector T-cells
associated with higher effector cytokine levels

The early differences observed in innate intratumor immu-
nity (in terms of APC proportions and PD-L1 expression),
and considering the effect that these events may have on
adaptive immunity, prompted us to study tumor-infiltrating
T-cells at day 7. As opposed to innate immunity, no relevant
differences were detected in the proportion of CD4, CDS8 or
Treg cells (data not shown). By contrast, higher proportions

= Control == + Belinostat

= Control == + Belinostat

CD4 (a), CD8 (b) and regulatory T-cells (c), as well as the expres-
sion of PD-1 on CDS (e) and CD4 (f) T-cells was determined by flow
cytometry. The antitumor immune response was analyzed by ELIS-
POT measuring IFN-y-producing cells after stimulation of spleno-
cytes with irradiated tumor cells (d) (**p <0.01)

of CD4 and CDS8 T-cells were found at day 14 in Belin-
ostat-treated mice, as compared mainly with the combina-
tion group. Moreover, mirroring the splenic cell compart-
ment (Fig. 3), a lower proportion of Tregs were observed
in the tumor compartment in the combination group com-
pared with anti-CTLA-4, a difference that almost reached
statistical significance (p =0.06) (Fig. 5a). Furthermore,
anti-CTLA-4 increased the proportion of PD-1% cells in
all T-cell subsets. Interestingly, combination with Belin-
ostat decreased these values both in CD4 Tregs and in CD8
T-cells, but not in effector CD4 T-cells (Fig. 5b).

Changes observed at day 14 led us to analyze these
parameters at day 19, when mice treated with the combina-
tion had lower tumor burden than those treated with anti-
CTLA-4 alone. The only significant change in terms of cell
proportions was a decrease in CD4 T-cells (as observed at
day 14), whereas the decrease in the proportion of CD8 or
Tregs was no longer statistically significant (Fig. 5¢). Of
note, as opposed to day 14, where anti-CTLA-4 but not the
combination increased PD-1 expression, day 19 was char-
acterized by PD-1 upregulation in effector CD8 and CD4
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Fig.4 Characterization of tumor-infiltrating antigen-presenting cells
and expression of PD-L1. Mice (n=5-6/group) bearing 8§ mm tumors
were treated with isotype control or anti-CTLA-4 antibodies with or
without Belinostat, tumors were harvested at day 7 and analyzed by
flow cytometry. a Proportion of DC, monocytes, granulocytes and
macrophages (total and M1/M2) amongst CD45* infiltrating cells. b
Expression of M1 macrophage markers CD38 and CD86 in unpolar-

T-cells induced by the combination. Simultaneously, the
combination decreased the proportion of PD-1-expressing
Tregs (Fig. 5d). These results indicate that the combina-
tion not only modifies the proportion of infiltrating T-cells,
but also the expression of PD-1 in effector and regulatory
T-cells over time.

@ Springer

ized or M2-polarized macrophages treated in vitro with Belinostat.
Results shown are the sum of two different experiments with a single
well per experiment. ¢ Expression of PD-L1 in APC subsets obtained
from mice shown in panel a. Results are represented as % of posi-
tive cells (left panel) or as mean fluorescence intensity (right panel)
(*p<0.05)

PD-1 is an inhibitory receptor induced by Ag recogni-
tion and concomitant TCR signaling [40]. Although it has
been associated with exhausted T-cells, it can be also consid-
ered an activation marker [41]. Therefore, we measured the
production of cytokines in tumor tissue at day 19, coincid-
ing with PD-1 upregulation on T-cells. These experiments
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expression of PD-1. Mice (n=5-6/group) bearing 8 mm tumors were
treated with isotype control or anti-CTLA-4 antibodies with or with-
out Belinostat, tumors were harvested at days 14 (a, b) and 19 (¢, d),

showed an overall increase in cytokines associated with
T-cell effector functions (e.g., IFN-y, IL-2, TNF-«) in
mice treated with the combination (Fig. 6). Interestingly,
there were also enhanced levels of cytokines produced by
innate immune cells and chemokines, suggesting that the
higher proportion of PD-1% cells is associated with stronger
immune activation.

Addition of PD-1-blocking antibodies
to the anti-CTLA-4 + Belinostat combination induces
complete tumor rejection

Since the strong but incomplete antitumor efficacy of the
anti-CTLA-4 + Belinostat combination was associated with
enhanced levels of antitumor cytokines and modulation of
expression of receptors/ligands of the PD-1/PD-L1 axis, we
hypothesized that simultaneous blockade of this pathway
may improve the antitumor effects of the combination. Thus,
tumor-bearing mice were treated with the triple combination
(anti-PD-1 + anti-CTLA-4 + Belinostat).

Although we did not have previous data on the efficacy
of Belinostat by oral route, pharmacokinetic studies in mice
comparing Belinostat administered via different routes
showed that, despite reaching different maximum plasma

concentrations (C,,), drug elimination was rapid and the

CD3, effector and regulatory CD4 T-cells, among CD45" infiltrating
cells (a, ¢) as well as the proportion of PD-1% cells in the above-men-
tioned subsets (b, d) (*p <0.05; **p<0.01)

concentration remained up to 1 uM for at least 1 h—inde-
pendent of the route of administration (Supplementary
Fig. 3). Moreover, Steele et al. [42] had reported that his-
tone H4 hyperacetylation in PBMCs after oral dosing was
comparable to that achieved after i.v. administration. There-
fore, these data prompted us to include additional groups
for testing oral administration of Belinostat, both in mono-
therapy and in combinations. No differences were observed
when Belinostat was administered i.p. or orally, neither as
monotherapy nor combined with anti-CTLA-4. The triplet
induced tumor rejection in all treated mice (Fig. 7a) and
a 100% long-term survival in this group, as opposed to
60-70% survival in mice treated with anti-CTLA-4 + Belin-
ostat combination or the dual (anti-PD-1 + anti-CTLA-4)
checkpoint blockade (Fig. 7b).

Discussion

The immunomodulatory effects reported for epigenetic
drugs [43], including HDACI, prompted us to determine if
the HDACi Belinostat could improve the efficacy of immu-
notherapy based on checkpoints inhibitors in a murine
HCC model. Although we are aware that subcutaneous
tumors do not fully reflect the particular liver environment,
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Fig.6 Cytokines, chemokines and growth factors in tumor tissue
from treated animals. Mice (2-3/group) with 8 mm tumors received
different treatments for 19 days, when tumors were excised, homog-

important immune features of human HCC patients [36—39]
were present in our model. Indeed, we observed a leuko-
cyte infiltrate containing CTLA-4" Tregs and upregulation
of PD-1 on T-cells. Furthermore, PD-L1 was expressed
both on infiltrating and tumor cells. A predominance of
macrophages (mainly of the M2 subset) over lymphocytes
was also observed. This is in agreement with data on the
HCC immune landscape [44], and provides evidence of the
presence of immune subsets equivalent to those found in
patients, that expressed the relevant targets for immunother-
apy. Moreover, Hepal29 tumors have been used to analyze
the efficacy of different HCC therapies. Accordingly, ortho-
topic implantation of this cell line has been shown to con-
stitute a relevant HCC model [45]. Not only does it lead to
a similar growth for subcutaneous and intrahepatic tumors,
but also a clear expression of relevant HCC tumor mark-
ers glypican-3, 9BA12 and chondroitin sulfate in both loca-
tions [46]. In addition, subcutaneous as well as orthotopic
Hepal29 tumors have shown equivalent sensitivity to certain
therapies [47], including immunotherapy [33]. These data
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enized and the content of different cytokines, chemokines and growth
factors were determined using a protein array

suggested that, although not directly in the liver environ-
ment, relevant features of this tumor model may be useful
to test the therapeutic effect of our approach with potential
relevance for HCC.

Interestingly, despite expression of CTLA-4 and PD-1/
PD-L1 in the tumors, only anti-CTLA-4 and not anti-PD-1
therapy had a clear antitumor effect, which was further
enhanced by Belinostat. A greater relevance of CTLA-4 and/
or Tregs than PD-1/PD-L1 as immunosuppressive mecha-
nisms at initial tumor stages may explain the superior sensi-
tivity to anti-CTLA-4 in this setting and at the doses tested.
Moreover, Belinostat only increased the therapeutic efficacy
of anti-CTLA-4, associated with improved immune param-
eters, including increased antitumor Th1 immunity (IFN-y)
and decreased immunomodulatory mechanisms (Tregs and
PD-1 expression). Epigenetic drugs may modulate tumor cell
antigenicity/immunogenicity leading to improved antitumor
responses [16, 17]. However, our in vitro results regarding
expression of molecules involved in antigen presentation,
co-stimulation, co-inhibition as well as T-cell recognition



Cancer Immunology, Immunotherapy (2019) 68:379-393 389
a Isotype Belinostat (ip) + isotype b
2.0 2.0 1
15 15 100 u
1.0 1.0 (g,
o
0.5 5 o N 80 -
08 2% 25 ®
0'Oo 20 4 e 8 %% 20 40 60 80 S 6 l
S £ 60 - A N
Belinostat (oral) + isotype Belinostat (ip) + aCTLA-4 -3
-
2.0 2.0 o
£ § 40 -
— 15] 1.5 o g
€ 10 1.0 Ew 20 -
i < E
GE, 0.5 1 0.5
S 00 %5 % e s % 2 4 e 80 0 T T T )
g PD-1 + aCTLA-4 0 20 40 60 80
Belinostat (oral) + cCTLA-4 aFb-1+a
5 2.0 (oral) 2.0 Days after treatment
£
1.5 . .
IE 1.5 o /- Isotype -/ Belinostatip + aCTLA-4
1.0 : —A— Belinostat ip + isotype {} Belinostat oral + aCTLA-4
0.5 05 -~ Belinostatoral +isotype @~ aPD-1+aCTLA-4
0.0
000 20 4 e a0 o 20 40 60 80 4 Belinostat oral + aPD-1 + oCTLA-4

Belinostat (oral) + aPD-1 + aCTLA-4
2.0

15
1.0
0.5

00 20 40 60 80

Days after treatment
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antiCTLA-4 4+ Belinostat combination induces full tumor rejection.
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of tumor cells treated with Belinostat do not point to this
effect as the mechanism responsible for the enhanced anti-
tumor efficacy. In fact, it suggests that the increased efficacy
of the combination therapy may be related to its effect on
immune cells. Indeed, HDACi have been described as pro-
moters of Treg function and generation [48], associated with
higher expression of CTLA-4 [49]. This CTLA-4 upregula-
tion would render Tregs more susceptible to depletion by
anti-CTLA-4, thus explaining the lower Treg proportions
observed in the anti-CTLA-4 4 Belinostat combination but
not in Belinostat monotherapy.

Analysis of intratumoral immune parameters revealed
that in terms of innate immunity anti-CTLA-4 + Belinostat
promoted a decrease in DC, potentially related to a higher
migration of this important APC subset to secondary lym-
phoid organs, where they could trigger T-cell responses.
Although HDACi may exert immunomodulatory effects
on DC [50], no effect on DC counts was observed in mice

and 7) with or without Belinostat (days 0-21; i.p. or oral). a Tumor
growth of each individual mouse was measured. b Mice were killed
when tumor reached 17 mm and the percentage of those not reaching
this tumor size was represented

treated only with Belinostat. Moreover, although the HDACi
Trichostatin A has been described as promoter of a mixed
M1/M2 phenotype [51], tumor macrophages in the com-
bination group were characterized by higher M1 infiltrate
and a trend towards lower proportion of M2. Our in vitro
experiments showed an increase in M1 markers in unpolar-
ized and M2-polarized macrophages treated with Belinostat.
In vivo, monotherapy with Belinostat, as opposed to the
combination, did not lead to an increase in M1 macrophages.
Therefore, we postulate that the inflammatory environment
created by anti-CTLA-4 antibodies probably reinforces this
MI1-promoting effect of Belinostat, leading to an evident
increase in vivo only in the combination group.

In parallel with these events favoring an antitumor profile,
counter-regulatory mechanisms such as PD-L1 upregulation
were triggered. It has been reported that HDACi upregu-
late PD-L1 expression in melanoma cells [24], a result not
observed in vitro in our HCC model. Although Belinostat
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alone did not enhance PD-L1 expression in APC subsets
in vivo, it promoted higher PD-L1 expression when com-
bined with anti-CTLA-4. These results do not fully rule out
a direct effect of Belinostat on these cells, but they may sug-
gest that its effect on PD-L1 upregulation could be stronger
in the more inflammatory environment induced by the com-
bination treatment, as reported for the HDACi Romidep-
sin, which synergizes with IFN-y in the induction of genes
dependent on this cytokine [52].

Another interesting issue is the evolution of the adaptive
immune response and associated inhibitory mechanisms
induced by the combination. No significant changes in the
proportion of tumor-infiltrating T-cells were found at day
14. Although enhanced antitumor immunity was observed
in splenic cells (Fig. 3d), the lack of differences when ana-
lyzing global T-cell proportions in the tumor may not fully
reflect this activity, requiring thus functional antigen recog-
nition assays to determine the specificity of these T-cells.
Interestingly, although anti-CTLA-4 therapy enhanced
the levels of PD-1" T-cells, combination with Belinostat
decreased the proportion of these cells (mainly in CD8 and
Tregs), indicating that a lower number of cells was suscep-
tible to this inhibitory mechanism and suggesting that this
could be associated with the stronger antitumor immunity
observed. Analysis of T-cells at day 19 (when therapy-medi-
ated effects on tumor were clear), showed that while PD-1
levels were still lower in Tregs treated with the combination,
they were increased both in effector CD4 and CD8 T-cells.
PD-1 has been considered an exhaustion-related marker,
but it is also associated with T-cell activation upon anti-
gen recognition and TCR signaling [41]. Indeed, the higher
proportion of PD-1% infiltrating T-cells in the combination
group is associated with upregulation of effector cytokines,
suggesting that this elevated PD-1 expression may be due to
an enhanced activation and concomitant antitumor immu-
nity. However, playing a role in negatively regulating T-cell
activation, PD-1 upregulation may preclude full tumor rejec-
tion at this point. Indeed, although tumor growth was better
controlled in the combination group at the end of treatment
(days 18-20) when compared to monotherapy with anti-
CTLA-4, some tumors in mice treated with the combina-
tion rebounded at later stages, once treatment was stopped
(days 25-35) (Fig. 2).

Upregulation of PD-1/PD-L1 molecules by the combina-
tion therapy at different time points and the lack of complete
tumor rejection led us to hypothesize that additional block-
ade of this pathway would increase its therapeutic effect.
Using this approach all mice rejected their tumors, suggest-
ing the relevance of blocking this non-redundant inhibitory
pathway induced by the double combination. There are
examples in the literature showing the pertinence of block-
ing PD-1/PD-L1 in combined therapies, which include anti-
CTLA-4 with strategies such as vaccines [53], radiotherapy
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[54] or virotherapy [55]. Thus, partial responses induced by
anti-CTLA-4-containing combinations, which are linked to
the emergence of resistance through upregulation of PD-L1
and exhaustion of PD-1" T-cells, are improved in the triple
therapy [54].

Checkpoint inhibitors have demonstrated a superior effi-
cacy in those tumors with a higher mutational load [56],
due to their increased antigenicity. In addition, it has been
shown that epigenetic drugs modify tumor cells by promot-
ing tumor antigen expression and presentation [17]. Belin-
ostat is currently used in PTCL, a tumor with low mutational
rate [57]. On the other hand, HCC has been described to
possess a higher mutational load than most hematological
malignancies [58], suggesting that checkpoint inhibitors, in
combination with a drug that enhances tumor antigenicity,
might have a superior effect.

In summary, we have demonstrated that Belinostat
increases the therapeutic effect of anti-CTLA-4 antibodies in
an HCC model. Moreover, triple therapy including blockade
of the PD-1 inhibitory pathway induced by the double com-
bination resulted in complete tumor rejection. These results
suggest that Belinostat may improve the efficacy of single
agent CTLA-4 therapy as well as combined CTLA-4 plus
PD-1/PD-L1 treatment in HCC patients.
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