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Abstract
Immune checkpoint inhibitors are currently tested in different combinations in patients with advanced hepatocellular carci-
noma (HCC). Nivolumab, an anti-PD-1 agent, has gained approval in the second-line setting in the USA. Epigenetic drugs 
have immune-mediated antitumor effects that may improve the activity of immunotherapy agents. Our aim was to study 
the therapeutic efficacy of checkpoint inhibitors (anti-CTLA-4 and anti-PD-1 antibodies) in combination with the histone 
deacetylase inhibitor (HDACi) Belinostat. In a subcutaneous Hepa129 murine HCC model, we demonstrated that Belinostat 
improves the antitumor activity of anti-CTLA-4 but not of anti-PD-1 therapy. This effect correlated with enhanced IFN-γ 
production by antitumor T-cells and a decrease in regulatory T-cells. Moreover, the combination induced early upregulation 
of PD-L1 on tumor antigen-presenting cells and late expression of PD-1 on tumor-infiltrating effector T-cells, suggesting 
the suitability of PD-1 blockade. Indeed, Belinostat combined with the simultaneous blockade of CTLA-4 and PD-1 led to 
complete tumor rejection. These results provide a rationale for testing Belinostat in combination with checkpoint inhibitors 
to enhance their therapeutic activity in patients with HCC.
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Introduction

More than 850,000 cases of liver cancer are diagnosed 
annually [2]. Hepatocellular carcinoma (HCC) accounts for 
90% of these cases and is the third most common cause 
of cancer-related death worldwide. Different etiologies are 
involved in HCC development including cirrhosis, hepatitis 
B and C virus infection, excessive alcohol consumption and 
obesity [3]. For patients that are diagnosed with or reach 
the advanced stage, Sorafenib has been the only systemic 
therapy available for almost a decade [4] while only recently 
Regorafenib has proved effective after Sorafenib failure 
[5]. Immunotherapy, mainly the one based on inhibitors 
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of T-cell checkpoint molecules such as CTLA-4 or PD-1/
PD-L1, has demonstrated in the recent years its enormous 
potential against cancer [6–9] and is currently used to treat 
several tumor types. In HCC, signs of activity were first 
shown with the anti-CTLA-4 antibody Tremelimumab [10]. 
More recently, the anti-PD-1 agent Nivolumab has shown 
unequivocal antitumor activity [11] leading to accelerated 
approval by the Food and Drug Administration (FDA) to 
treat patients with advanced HCC previously treated with 
Sorafenib. Combination of these antibodies with therapies 
already used in HCC have also shown promising results 
[12]. Moreover, different clinical trials based on monother-
apies with CTLA-4 or PD-1/PD-L1 blocking antibodies or 
their combinations are ongoing (https ://clini caltr ials.gov). 
However, both in other tumors [13] and in HCC [11] only a 
subset of patients responds to these therapies. To benefit a 
higher proportion of patients, several approaches combining 
these antibodies with new or existing therapies are being 
developed in the preclinical setting or tested in clinical tri-
als [14]. Most of these combinations, nevertheless, are not 
supported by a strong scientific rationale.

Epigenetic drugs targeting modifications at the DNA and 
histone levels are a group of antitumor agents (reviewed in 
Ref. [15]). While the presumed mechanism of action of these 
compounds was a direct antitumor effect, they can simulta-
neously modify antitumor immunity. Thus, they may not 
only act at the level of tumor cells, by modulating antigen 
expression and the machinery responsible for their presenta-
tion and recognition by T-cells [16, 17], but they may also 
directly act on the immune system, activating effector cells 
[18, 19] and inhibiting immunosuppressive mechanisms 
[20, 21]. Accordingly, some of these compounds increase 
the efficacy of checkpoint inhibiting antibodies in different 
murine tumor models [22, 23]. HDACi have demonstrated 
promising effects by improving the antitumor efficacy of 
immunotherapies based on anti-CTLA-4, anti-PD-1 or their 
combination [22, 24]. Belinostat is an HDACi that, accord-
ing to its profile, can be considered as a pan-inhibitor [25]. 
It has been clinically tested in patients with solid and hema-
tological tumors [26–28], but is currently approved by the 
FDA  (Beleodaq®) only for the treatment of peripheral T-cell 
lymphoma (PTCL) [29]. In HCC, although preclinical data 
showed an inhibitory effect of Belinostat on the growth of 
HCC lines [30, 31], no convincing signs of efficacy were 
shown in a phase I/II trial [32]. Nevertheless, as Belinostat 
was well tolerated, it is a good candidate for combination 
therapy.

Based on the potential for a true synergistic effect, we 
hypothesized that the combined administration of Belin-
ostat with checkpoint inhibitors may lead to an enhanced 
therapeutic effect. We thus tested the therapeutic efficacy of 
Belinostat in combination with anti-CTLA-4 or anti-PD-1 
antibodies in a preclinical model of C3H mice injected 

with Hepa129 HCC cells, analyzing antitumor efficacy of 
these combinations as well as associated immune-mediated 
mechanisms.

Materials and methods

Reagents

Belinostat (AMRI, Rensselaer, NY, USA) was dissolved in 
buffer containing 50 mg/ml L-Arginine as formulated in the 
commercialized i.v. form  Beleodaq®. Antibodies against 
CTLA-4 (9D9), PD-1 (RMP1-14) or isotype control (rat 
IgG2a, 2A3) were purchased from BioXcell.

Mice

Eight-week-old female C3H mice were maintained in path-
ogen-free conditions.

Tumor cells

Hepa129 HCC cells [33] were grown in complete medium 
(RPMI 1640 supplemented with 10% heat-inactivated 
bovine serum and antibiotics). Cell stocks were generated 
upon cell-line receipt and early passages were used for tumor 
experiments. They were routinely tested for mycoplasma.

Tumor treatment experiments

Mice were injected subcutaneously with  106 Hepa129 
tumor cells. To determine therapeutic efficacy, treatment 
started 1 week later, when tumors had reached 5 mm in 
diameter (day 0). Mice received intraperitoneal (i.p.) injec-
tions of therapeutic or control antibodies (50 µg/mouse) at 
days 0 and 7. Some groups received daily administration of 
Belinostat for 3 weeks (days 0–21), either i.p. (90 mg/kg) 
or orally (45 mg/kg). In experiments used to analyze intra-
tumor immune parameters, treatment started when tumors 
had reached 8 mm. Tumor volume was calculated using the 
formula: V = (length ×  width2)/2. Mice were killed when 
tumor diameter reached 17 mm.

ELISPOT

T cells producing IFN-γ were determined by ELISPOT (BD-
Biosciences) as described [34]. Briefly, splenocytes (5 × 105/
well) were stimulated with 5 × 104 irradiated tumor cells, 
previously treated for 24 h with 500 U/ml of murine IFN-γ. 
The in vitro effect of Belinostat on tumor cells was tested 
using cells previously treated with 0.5 µM Belinostat. After 
1 day of culture, the number of spot-forming cells was enu-
merated with an automated counter.

https://clinicaltrials.gov
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In vitro assays to test the effect of Belinostat

In the case of tumor cells, effect of Belinostat on acetyla-
tion was tested by culturing Hepa129 cells  (106/well) with 
different Belinostat concentrations in 24-well plates for 2 h 
and then harvested. When measuring effect on inhibition of 
tumor cell growth, cells  (104/well) were cultured for 48 h, 
harvested and the proportion of surviving cells was deter-
mined after staining with Trypan Blue.  IC50 was determined 
using the GraphPad Prism software after plotting Belinostat 
concentrations and cell survival. After that, cells were rou-
tinely treated with this concentration and 24 h later they 
were harvested for flow cytometry or antigen presentation 
assays.

Belinostat effect on macrophages was tested by cultur-
ing bone marrow cells  (106 cells/well) in 12-well plates in 
3 ml in the presence of 100 ng/ml of macrophage colony-
stimulating factor (m-CSF). After 5 days, cells were polar-
ized towards M1 macrophages with IFN-γ (25 ng/ml) and 
LPS (100 ng/ml), M2 with IL-4 (10 ng/ml) or left untreated, 
with or without 0.1 µM Belinostat. One day later, cells were 
harvested and M1 markers CD86 and CD38 were analyzed 
by flow cytometry.

Western blot

In vitro cultured tumor cells were lysed in a buffer contain-
ing 10 mM tris(hydroxymethyl)aminomethane hydrochlo-
ride (Tris–HCl) pH 7.4, 10 mM NaCl and 3 mM  MgCl2 and 
histones extracted as described in Ref. [35]. Then, proteins 
were separated, transferred to nitrocellulose membranes and 
detected by incubating the membrane with anti-acetylated 
H4 histone (1/10,000 dilution; Abcam) or anti-H2A.X his-
tone (1/10,000 dilution; Abcam) antibodies, followed by 
1/10,000 dilution of HRP-conjugated goat anti-rabbit IgG 
(Millipore). Protein bands were detected by enhanced chemi-
luminescence (ECL) (Amersham).

Flow cytometry

Spleens and tumors were obtained after treatment, incu-
bated with collagenase/DNase for 15 min and subsequently 
homogenized. Cells were incubated for 10 min with Fc 
Block™ (BD-Biosciences) and stained with specific anti-
bodies. To analyze antigen-presenting cells (APC) and 
PD-L1 expression antibodies CD45-APC-Cy7, CD11c-
BV570, F4/80-Pacific Blue, CD11b-APC, Ly6C-PerCP/
Cy5.5 and Ly6G-PE-Cy7 were used to define dendritic 
cells (DC), monocytes, granulocytes and macrophages 
(M1 detected with anti-CD38 PerCP/Cy5.5 and M2 with 
anti-CD206 PE-Cy7, among CD11b and F4/80 positive 
cells) and anti-PD-L1-PE. Antibodies were purchased 
from Biolegend, except those targeting CD45, Ly6G and 

PD-L1 (BD-Biosciences). Analysis of lymphocyte subsets 
and expression of PD-1 on these cells was carried out using 
antibodies CD45-APC-Cy7, CD3-PE-Cy5 (AbD serotec), 
CD8-BV421 (Biolegend), CD4-BV570 (Biolegend), CD25-
PE-Cy7 (TONBO Biosciences) and PD-1-PerCP/Cy5.5 
(Biolegend). Cells were then fixed, permeabilized and finally 
intracellularly stained with anti-Foxp3-APC (TONBO). 
Tumor cells treated in vitro with Belinostat were stained 
with anti-H-2Kk-FITC (BD-Biosciences), PD-L1-PE (BD-
Biosciences) and CD86-PE-Cy5 (Biolegend). Samples were 
acquired with a FACSCantoII flow cytometer (Becton Dick-
inson) and analyzed using FlowJo software (Tree Star Inc).

Protein array

Mice (2–3/group) with 8 mm tumors received different 
treatments for 19 days as described above and tumors were 
excised, weighted, homogenized in Radioimmunoprecipita-
tion assay (RIPA) buffer and total protein content measured 
using the bicinchoninic acid assay. The concentration of 
different cytokines, chemokines and growth factors in the 
samples was determined using a protein array (Quantibody 
Mouse Cytokine Array 5; RayBiotech) according to manu-
facturer’s instructions.

Statistical analysis

Tumor size and immune responses were analyzed using 
Student’s t tests. P < 0.05 was taken to represent statistical 
significance.

Results

Expression of CTLA‑4 and PD‑1/PD‑L1 in Hepa129 
tumors and sensitivity of immune and tumor cells 
to Belinostat

The efficacy of combinations of Belinostat with checkpoint 
inhibitors in HCC was analyzed using the Hepa129 tumor 
model. Tumors growing after subcutaneous inoculation of 
Hepa129 cells contained infiltrating  CD4+ Tregs, at levels 
clearly above those observed in the spleen of these tumor-
bearing animals or in the spleen of naïve mice without 
tumors (Fig. 1a). A significant percentage of these  CD4+ 
Tregs, as opposed to effector CD4 or CD8 T-cells, expressed 
CTLA-4 (Fig. 1b). As for the PD-1/PD-L1 axis, although 
PD-L1 was not expressed by tumor cells in vitro (data not 
shown), it was detected in vivo on tumor cells and on infil-
trating  CD45+ leukocytes (Fig. 1c). Moreover, a significant 
proportion of CD4 and CD8 infiltrating T-cells was PD-1+ 
(Fig. 1d). These features resembled some of the conditions 
observed in HCC patients [36–39] and suggested that they 
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could be amenable to treatment with checkpoint inhibiting 
antibodies.

Epigenetic drugs have been described to regulate 
properties of tumor cells. Thus, before administering 

Belinostat in combination with checkpoint inhibitors, 
we tested its capacity to modulate histone acetylation in 
Hepa129 tumor cells. In vitro experiments demonstrated 
evident histone acetylation when cells were treated with 
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different Belinostat concentrations (Fig. 1e). This effect 
was accompanied by a dose-dependent inhibition of cell 
proliferation in vitro. In several experiments, we observed 
that Belinostat inhibited growth of these cells at an  IC50 
of 0.4567 ± 0.070 µM (Fig. 1f).

Thus, the presence of the immune checkpoint targets in 
Hepa129 tumors and the sensitivity of hepatoma cells to 
Belinostat suggested this tumor model could be suitable 
for testing combinatorial therapies.

Belinostat improves therapeutic efficacy 
of anti‑CTLA‑4 but not of anti‑PD‑1 antibodies

Combination of Belinostat with checkpoint inhibiting 
antibodies was studied by treating mice bearing 5-mm 
tumors with daily i.p. administration of Belinostat for 3 
weeks (days 0–21), together with antibody administration 
at days 0 and 7. Monotherapy with Belinostat, despite 
its in vitro effect, did not show any antitumor in vivo 
effect at the dose tested. Similarly, anti-PD-1 antibodies 
had a poor effect, a result that was not improved after 
combination with Belinostat. Anti-CTLA-4, however, 
clearly delayed tumor growth, an effect that was more 
evident when combined with Belinostat (Fig. 2a). Indeed, 
analysis of tumor size at day 18, when control animals 
treated with isotype antibodies had still a survival above 
70%, showed a statistically significant antitumor effect, 
observed only in mice treated with anti-CTLA-4 + Belin-
ostat (Fig. 2b). Regarding survival, all mice treated with 
anti-CTLA-4 + Belinostat were still alive at day 30, com-
pared to 75% of those treated with anti-CTLA-4 alone. 
By contrast, less than 40% survival was observed in the 
remaining groups (Fig. 2c). These results strongly sug-
gest that the antitumor effect induced by anti-CTLA-4 is 
improved by combination with Belinostat.

Belinostat enhances antitumor immunity 
and decreases Tregs in anti‑CTLA‑4‑treated mice

To understand the immune mechanisms behind the observed 
effect, immune parameters were analyzed in the spleen of 
tumor-bearing mice subjected to a 14-day treatment, when 
anti-CTLA-4-treated mice showed stable tumor size while 
the remaining groups had growing tumors. Although CD4 
and CD8 T-cell proportions did not show significant differ-
ences between groups (Fig. 3a, b), the percentage of CD4 
Tregs decreased in mice treated with anti-CTLA-4 + Belin-
ostat compared to anti-CTLA-4 alone (Fig. 3c). Antitumor 
immunity was tested by stimulating splenocytes with irra-
diated tumor cells, and using IFN-γ production as read out. 
While Belinostat did not enhance the immune response in 
mice treated with isotype control or anti-PD-1 antibodies, it 
significantly promoted a stronger response in mice treated 
with anti-CTLA-4 (Fig. 3d). Finally, Belinostat decreased 
the proportion of PD-1+ cells in CD4 but not CD8 T-cells 
during anti-CTLA-4 treatment, but not in mice treated with 
control or anti-PD-1 antibodies (Fig. 3e, f). These results 
suggest that Belinostat enhances antitumor immunity while 
down regulating inhibitory mechanisms in animals treated 
with anti-CTLA-4 but not with anti-PD-1, an effect that is 
associated with the enhanced antitumor effect.

To test if the enhanced immune responses induced by 
Belinostat + anti-CTLA-4 were mediated by modulation of 
tumor cell antigenicity/immunogenicity, we performed addi-
tional experiments in vitro. Hepa129 cells barely expressed 
MHC-I, CD86 or PD-L1 in vitro, and Belinostat did not 
modify their levels (Supplementary Fig. 1a–c). Accordingly, 
tumor-specific T-cells obtained from cured mice recog-
nized untreated and Belinostat-treated tumor cells similarly 
(Supplementary Fig. 1d), suggesting that mechanisms dif-
ferent from direct modulation of tumor cell properties are 
involved in the enhanced antitumor effect induced by the 
combination.

Enhanced antitumor effect 
of anti‑CTLA‑4 + Belinostat combination 
is associated with increased early infiltration of M1 
macrophages and PD‑L1 upregulation

To understand the mechanisms associated with the superior 
efficacy of anti-CTLA-4 + Belinostat, we studied intratu-
mor immune parameters at different time points. At day 7, 
although the combination group had the highest proportion 
of  CD45+ infiltrating leukocytes, the difference did not reach 
statistical significance (Supplementary Fig. 2a, p = 0.07; iso-
type vs anti-CTLA-4 + Belinostat). Regarding innate immu-
nity mediated by APC, lower percentages of DC were found 
in the combination group and no differences existed in the 
proportion of monocytic and granulocytic cells or in the 

Fig. 1  Expression of CTLA-4 and PD-1/PD-L1 in Hepa129 tumors 
and sensitivity of tumor cells to Belinostat C3H mice were injected 
with  106 Hepa129 tumor cells and 10 days later tumors were har-
vested, homogenized and stained with antibodies to analyze tumor 
cells and infiltrating leukocytes. a Percentage of Tregs among total 
CD4 T-cells in their tumor, spleen and in the spleen of control 
naive mice. Representative dot plots (left) and summary of results 
from four mice (right) (**p < 0.01). b Percentage of CTLA-4+ cells 
in tumor effector and regulatory CD4 T-cells and in CD8 T-cells. c 
Expression of PD-L1 on infiltrating  CD45+ leukocytes and in  CD45− 
tumor cells. d Percentage of PD-1+ cells in tumor-infiltrating CD4 
and CD8 T-cells. e In vitro effect of Belinostat on histone H4 acetyla-
tion in Hepa129 cells treated with different concentrations and ana-
lyzed 2 h later. f In vitro inhibitory effect of Belinostat on Hepa129 
cells, corresponding to one representative experiment out of three 
carried out

◂
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entire macrophage population. Interestingly though, a sig-
nificant increase in M1 macrophages  (CD38+) and a trend 
towards less M2 macrophages  (CD206+) was observed in the 
combination group compared to anti-CTLA-4 (Fig. 4a). To 
study the effect of Belinostat on M1 macrophage increase, 
in vitro experiments were carried out. Addition of Belin-
ostat to unpolarized or IL-4-polarized (M2) macrophages 
led to an increase in the percentage of macrophages express-
ing CD38 and CD86 M1 markers (Fig. 4b). These effects 
were not observed when adding Belinostat to M1-polarized 

macrophages (data not shown), which already had high 
expression of these markers.

Regarding PD-L1, despite similar levels of PD-L1 expres-
sion when considering total  CD45+ tumor leukocytes (Sup-
plementary Fig. 2b), increased proportions of PD-L1+ cells 
induced by the combination were found in most APC popu-
lations, the difference being statistically significant for DC 
as well as for M1 and M2 macrophages (Fig. 4c). This was 
accompanied by higher per cell expression levels, meas-
ured as mean fluorescence intensity. Although PD-L1 can 

Fig. 2  Belinostat improves therapeutic efficacy of anti-CTLA-4 but 
not of anti-PD-1 antibodies. Mice (n = 14–16/group) bearing 5  mm 
tumors were treated with isotype control, anti-PD-1 or anti-CTLA-4 
antibodies (days 0 and 7) with or without Belinostat (days 0–21). a 

Tumor growth of each individual mouse was plotted. b Tumor vol-
ume at day 18 (*,**,***p < 0.05, 0.01 or 0.001, respectively). c Mice 
were killed when tumor reached 17 mm and the percentage of those 
not reaching this tumor size was represented
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be also expressed by tumor cells,  CD45− cells expressed 
similar PD-L1 levels irrespective of treatment (Supplemen-
tary Fig. 2c), a result in agreement with the lack of effect 
of Belinostat on PD-L1 expression when used in vitro with 
tumor cells (Supplementary Fig. 1c).

Analyses of the proportion and phenotype (PD-L1 expres-
sion) of APC subsets at later stages (days 14 or 19 after 
treatment) did not show relevant differences between groups 
(data not shown).

Anti‑CTLA‑4 + Belinostat combination modulates 
PD‑1 expression in Tregs and effector T‑cells 
associated with higher effector cytokine levels

The early differences observed in innate intratumor immu-
nity (in terms of APC proportions and PD-L1 expression), 
and considering the effect that these events may have on 
adaptive immunity, prompted us to study tumor-infiltrating 
T-cells at day 7. As opposed to innate immunity, no relevant 
differences were detected in the proportion of CD4, CD8 or 
Treg cells (data not shown). By contrast, higher proportions 

of CD4 and CD8 T-cells were found at day 14 in Belin-
ostat-treated mice, as compared mainly with the combina-
tion group. Moreover, mirroring the splenic cell compart-
ment (Fig. 3), a lower proportion of Tregs were observed 
in the tumor compartment in the combination group com-
pared with anti-CTLA-4, a difference that almost reached 
statistical significance (p = 0.06) (Fig. 5a). Furthermore, 
anti-CTLA-4 increased the proportion of PD-1+ cells in 
all T-cell subsets. Interestingly, combination with Belin-
ostat decreased these values both in CD4 Tregs and in CD8 
T-cells, but not in effector CD4 T-cells (Fig. 5b).

Changes observed at day 14 led us to analyze these 
parameters at day 19, when mice treated with the combina-
tion had lower tumor burden than those treated with anti-
CTLA-4 alone. The only significant change in terms of cell 
proportions was a decrease in CD4 T-cells (as observed at 
day 14), whereas the decrease in the proportion of CD8 or 
Tregs was no longer statistically significant (Fig. 5c). Of 
note, as opposed to day 14, where anti-CTLA-4 but not the 
combination increased PD-1 expression, day 19 was char-
acterized by PD-1 upregulation in effector CD8 and CD4 

Fig. 3  Belinostat enhances antitumor immunity and decreases Tregs 
in anti-CTLA-4-treated mice. Mice (n = 5–6/group) bearing 5  mm 
tumors were treated with isotype control, anti-PD-1 or anti-CTLA-4 
antibodies (days 0 and 7) with or without Belinostat (days 0–14) and 
spleens were harvested for immunological analyses. Percentages of 

CD4 (a), CD8 (b) and regulatory T-cells (c), as well as the expres-
sion of PD-1 on CD8 (e) and CD4 (f) T-cells was determined by flow 
cytometry. The antitumor immune response was analyzed by ELIS-
POT measuring IFN-γ-producing cells after stimulation of spleno-
cytes with irradiated tumor cells (d) (**p < 0.01)
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T-cells induced by the combination. Simultaneously, the 
combination decreased the proportion of PD-1-expressing 
Tregs (Fig. 5d). These results indicate that the combina-
tion not only modifies the proportion of infiltrating T-cells, 
but also the expression of PD-1 in effector and regulatory 
T-cells over time.

PD-1 is an inhibitory receptor induced by Ag recogni-
tion and concomitant TCR signaling [40]. Although it has 
been associated with exhausted T-cells, it can be also consid-
ered an activation marker [41]. Therefore, we measured the 
production of cytokines in tumor tissue at day 19, coincid-
ing with PD-1 upregulation on T-cells. These experiments 

Fig. 4  Characterization of tumor-infiltrating antigen-presenting cells 
and expression of PD-L1. Mice (n = 5–6/group) bearing 8 mm tumors 
were treated with isotype control or anti-CTLA-4 antibodies with or 
without Belinostat, tumors were harvested at day 7 and analyzed by 
flow cytometry. a Proportion of DC, monocytes, granulocytes and 
macrophages (total and M1/M2) amongst  CD45+ infiltrating cells. b 
Expression of M1 macrophage markers CD38 and CD86 in unpolar-

ized or M2-polarized macrophages treated in  vitro with Belinostat. 
Results shown are the sum of two different experiments with a single 
well per experiment. c Expression of PD-L1 in APC subsets obtained 
from mice shown in panel a. Results are represented as % of posi-
tive cells (left panel) or as mean fluorescence intensity (right panel) 
(*p < 0.05)
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showed an overall increase in cytokines associated with 
T-cell effector functions (e.g., IFN-γ, IL-2, TNF-α) in 
mice treated with the combination (Fig. 6). Interestingly, 
there were also enhanced levels of cytokines produced by 
innate immune cells and chemokines, suggesting that the 
higher proportion of PD-1+ cells is associated with stronger 
immune activation.

Addition of PD‑1‑blocking antibodies 
to the anti‑CTLA‑4 + Belinostat combination induces 
complete tumor rejection

Since the strong but incomplete antitumor efficacy of the 
anti-CTLA-4 + Belinostat combination was associated with 
enhanced levels of antitumor cytokines and modulation of 
expression of receptors/ligands of the PD-1/PD-L1 axis, we 
hypothesized that simultaneous blockade of this pathway 
may improve the antitumor effects of the combination. Thus, 
tumor-bearing mice were treated with the triple combination 
(anti-PD-1 + anti-CTLA-4 + Belinostat).

Although we did not have previous data on the efficacy 
of Belinostat by oral route, pharmacokinetic studies in mice 
comparing Belinostat administered via different routes 
showed that, despite reaching different maximum plasma 
concentrations (Cmax), drug elimination was rapid and the 

concentration remained up to 1 µM for at least 1 h—inde-
pendent of the route of administration (Supplementary 
Fig. 3). Moreover, Steele et al. [42] had reported that his-
tone H4 hyperacetylation in PBMCs after oral dosing was 
comparable to that achieved after i.v. administration. There-
fore, these data prompted us to include additional groups 
for testing oral administration of Belinostat, both in mono-
therapy and in combinations. No differences were observed 
when Belinostat was administered i.p. or orally, neither as 
monotherapy nor combined with anti-CTLA-4. The triplet 
induced tumor rejection in all treated mice (Fig. 7a) and 
a 100% long-term survival in this group, as opposed to 
60–70% survival in mice treated with anti-CTLA-4 + Belin-
ostat combination or the dual (anti-PD-1 + anti-CTLA-4) 
checkpoint blockade (Fig. 7b).

Discussion

The immunomodulatory effects reported for epigenetic 
drugs [43], including HDACi, prompted us to determine if 
the HDACi Belinostat could improve the efficacy of immu-
notherapy based on checkpoints inhibitors in a murine 
HCC model. Although we are aware that subcutaneous 
tumors do not fully reflect the particular liver environment, 

Fig. 5  Characterization of tumor-infiltrating T-cell subsets and 
expression of PD-1. Mice (n = 5–6/group) bearing 8 mm tumors were 
treated with isotype control or anti-CTLA-4 antibodies with or with-
out Belinostat, tumors were harvested at days 14 (a, b) and 19 (c, d), 

and analyzed by flow cytometry. Graphs represent the proportion of 
CD8, effector and regulatory CD4 T-cells, among  CD45+ infiltrating 
cells (a, c) as well as the proportion of PD-1+ cells in the above-men-
tioned subsets (b, d) (*p < 0.05; **p < 0.01)
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important immune features of human HCC patients [36–39] 
were present in our model. Indeed, we observed a leuko-
cyte infiltrate containing CTLA-4+ Tregs and upregulation 
of PD-1 on T-cells. Furthermore, PD-L1 was expressed 
both on infiltrating and tumor cells. A predominance of 
macrophages (mainly of the M2 subset) over lymphocytes 
was also observed. This is in agreement with data on the 
HCC immune landscape [44], and provides evidence of the 
presence of immune subsets equivalent to those found in 
patients, that expressed the relevant targets for immunother-
apy. Moreover, Hepa129 tumors have been used to analyze 
the efficacy of different HCC therapies. Accordingly, ortho-
topic implantation of this cell line has been shown to con-
stitute a relevant HCC model [45]. Not only does it lead to 
a similar growth for subcutaneous and intrahepatic tumors, 
but also a clear expression of relevant HCC tumor mark-
ers glypican-3, 9BA12 and chondroitin sulfate in both loca-
tions [46]. In addition, subcutaneous as well as orthotopic 
Hepa129 tumors have shown equivalent sensitivity to certain 
therapies [47], including immunotherapy [33]. These data 

suggested that, although not directly in the liver environ-
ment, relevant features of this tumor model may be useful 
to test the therapeutic effect of our approach with potential 
relevance for HCC.

Interestingly, despite expression of CTLA-4 and PD-1/
PD-L1 in the tumors, only anti-CTLA-4 and not anti-PD-1 
therapy had a clear antitumor effect, which was further 
enhanced by Belinostat. A greater relevance of CTLA-4 and/
or Tregs than PD-1/PD-L1 as immunosuppressive mecha-
nisms at initial tumor stages may explain the superior sensi-
tivity to anti-CTLA-4 in this setting and at the doses tested. 
Moreover, Belinostat only increased the therapeutic efficacy 
of anti-CTLA-4, associated with improved immune param-
eters, including increased antitumor Th1 immunity (IFN-γ) 
and decreased immunomodulatory mechanisms (Tregs and 
PD-1 expression). Epigenetic drugs may modulate tumor cell 
antigenicity/immunogenicity leading to improved antitumor 
responses [16, 17]. However, our in vitro results regarding 
expression of molecules involved in antigen presentation, 
co-stimulation, co-inhibition as well as T-cell recognition 

Fig. 6  Cytokines, chemokines and growth factors in tumor tissue 
from treated animals. Mice (2–3/group) with 8 mm tumors received 
different treatments for 19 days, when tumors were excised, homog-

enized and the content of different cytokines, chemokines and growth 
factors were determined using a protein array
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of tumor cells treated with Belinostat do not point to this 
effect as the mechanism responsible for the enhanced anti-
tumor efficacy. In fact, it suggests that the increased efficacy 
of the combination therapy may be related to its effect on 
immune cells. Indeed, HDACi have been described as pro-
moters of Treg function and generation [48], associated with 
higher expression of CTLA-4 [49]. This CTLA-4 upregula-
tion would render Tregs more susceptible to depletion by 
anti-CTLA-4, thus explaining the lower Treg proportions 
observed in the anti-CTLA-4 + Belinostat combination but 
not in Belinostat monotherapy.

Analysis of intratumoral immune parameters revealed 
that in terms of innate immunity anti-CTLA-4 + Belinostat 
promoted a decrease in DC, potentially related to a higher 
migration of this important APC subset to secondary lym-
phoid organs, where they could trigger T-cell responses. 
Although HDACi may exert immunomodulatory effects 
on DC [50], no effect on DC counts was observed in mice 

treated only with Belinostat. Moreover, although the HDACi 
Trichostatin A has been described as promoter of a mixed 
M1/M2 phenotype [51], tumor macrophages in the com-
bination group were characterized by higher M1 infiltrate 
and a trend towards lower proportion of M2. Our in vitro 
experiments showed an increase in M1 markers in unpolar-
ized and M2-polarized macrophages treated with Belinostat. 
In vivo, monotherapy with Belinostat, as opposed to the 
combination, did not lead to an increase in M1 macrophages. 
Therefore, we postulate that the inflammatory environment 
created by anti-CTLA-4 antibodies probably reinforces this 
M1-promoting effect of Belinostat, leading to an evident 
increase in vivo only in the combination group.

In parallel with these events favoring an antitumor profile, 
counter-regulatory mechanisms such as PD-L1 upregulation 
were triggered. It has been reported that HDACi upregu-
late PD-L1 expression in melanoma cells [24], a result not 
observed in vitro in our HCC model. Although Belinostat 

Fig. 7  Addition of PD-1-blocking antibodies to the 
antiCTLA-4 + Belinostat combination induces full tumor rejection. 
Mice (n = 6–8/group) bearing 5 mm tumors were treated with isotype 
control, anti-CTLA-4, anti-PD-1 + anti-CTLA-4 antibodies (days 0 

and 7) with or without Belinostat (days 0–21; i.p. or oral). a Tumor 
growth of each individual mouse was measured. b Mice were killed 
when tumor reached 17 mm and the percentage of those not reaching 
this tumor size was represented
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alone did not enhance PD-L1 expression in APC subsets 
in vivo, it promoted higher PD-L1 expression when com-
bined with anti-CTLA-4. These results do not fully rule out 
a direct effect of Belinostat on these cells, but they may sug-
gest that its effect on PD-L1 upregulation could be stronger 
in the more inflammatory environment induced by the com-
bination treatment, as reported for the HDACi Romidep-
sin, which synergizes with IFN-γ in the induction of genes 
dependent on this cytokine [52].

Another interesting issue is the evolution of the adaptive 
immune response and associated inhibitory mechanisms 
induced by the combination. No significant changes in the 
proportion of tumor-infiltrating T-cells were found at day 
14. Although enhanced antitumor immunity was observed 
in splenic cells (Fig. 3d), the lack of differences when ana-
lyzing global T-cell proportions in the tumor may not fully 
reflect this activity, requiring thus functional antigen recog-
nition assays to determine the specificity of these T-cells. 
Interestingly, although anti-CTLA-4 therapy enhanced 
the levels of PD-1+ T-cells, combination with Belinostat 
decreased the proportion of these cells (mainly in CD8 and 
Tregs), indicating that a lower number of cells was suscep-
tible to this inhibitory mechanism and suggesting that this 
could be associated with the stronger antitumor immunity 
observed. Analysis of T-cells at day 19 (when therapy-medi-
ated effects on tumor were clear), showed that while PD-1 
levels were still lower in Tregs treated with the combination, 
they were increased both in effector CD4 and CD8 T-cells. 
PD-1 has been considered an exhaustion-related marker, 
but it is also associated with T-cell activation upon anti-
gen recognition and TCR signaling [41]. Indeed, the higher 
proportion of PD-1+ infiltrating T-cells in the combination 
group is associated with upregulation of effector cytokines, 
suggesting that this elevated PD-1 expression may be due to 
an enhanced activation and concomitant antitumor immu-
nity. However, playing a role in negatively regulating T-cell 
activation, PD-1 upregulation may preclude full tumor rejec-
tion at this point. Indeed, although tumor growth was better 
controlled in the combination group at the end of treatment 
(days 18–20) when compared to monotherapy with anti-
CTLA-4, some tumors in mice treated with the combina-
tion rebounded at later stages, once treatment was stopped 
(days 25–35) (Fig. 2).

Upregulation of PD-1/PD-L1 molecules by the combina-
tion therapy at different time points and the lack of complete 
tumor rejection led us to hypothesize that additional block-
ade of this pathway would increase its therapeutic effect. 
Using this approach all mice rejected their tumors, suggest-
ing the relevance of blocking this non-redundant inhibitory 
pathway induced by the double combination. There are 
examples in the literature showing the pertinence of block-
ing PD-1/PD-L1 in combined therapies, which include anti-
CTLA-4 with strategies such as vaccines [53], radiotherapy 

[54] or virotherapy [55]. Thus, partial responses induced by 
anti-CTLA-4-containing combinations, which are linked to 
the emergence of resistance through upregulation of PD-L1 
and exhaustion of PD-1+ T-cells, are improved in the triple 
therapy [54].

Checkpoint inhibitors have demonstrated a superior effi-
cacy in those tumors with a higher mutational load [56], 
due to their increased antigenicity. In addition, it has been 
shown that epigenetic drugs modify tumor cells by promot-
ing tumor antigen expression and presentation [17]. Belin-
ostat is currently used in PTCL, a tumor with low mutational 
rate [57]. On the other hand, HCC has been described to 
possess a higher mutational load than most hematological 
malignancies [58], suggesting that checkpoint inhibitors, in 
combination with a drug that enhances tumor antigenicity, 
might have a superior effect.

In summary, we have demonstrated that Belinostat 
increases the therapeutic effect of anti-CTLA-4 antibodies in 
an HCC model. Moreover, triple therapy including blockade 
of the PD-1 inhibitory pathway induced by the double com-
bination resulted in complete tumor rejection. These results 
suggest that Belinostat may improve the efficacy of single 
agent CTLA-4 therapy as well as combined CTLA-4 plus 
PD-1/PD-L1 treatment in HCC patients.
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