Skip to main content

Advertisement

Log in

An IL-15 superagonist/IL-15Rα fusion complex protects and rescues NK cell-cytotoxic function from TGF-β1-mediated immunosuppression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells are innate cytotoxic lymphocytes that play a fundamental role in the immunosurveillance of cancers. NK cells of cancer patients exhibit impaired function mediated by immunosuppressive factors released from the tumor microenvironment (TME), such as transforming growth factor (TGF)-β1. An interleukin (IL)-15 superagonist/IL-15 receptor α fusion complex (IL-15SA/IL-15RA; ALT-803) activates the IL-15 receptor on CD8 T cells and NK cells, and has shown significant anti-tumor activity in several in vivo studies. This in vitro study investigated the efficacy of IL-15SA/IL-15RA on TGF-β1-induced suppression of NK cell-cytotoxic function. IL-15SA/IL-15RA inhibited TGF-β1 from decreasing NK cell lysis of four of four tumor cell lines (H460, LNCap, MCF7, MDA-MB-231). IL-15SA/IL-15RA rescued healthy donor and cancer patient NK cell-cytotoxicity, which had previously been suppressed by culture with TGF-β1. TGF-β1 downregulated expression of NK cell-activating markers and cytotoxic granules, such as CD226, NKG2D, NKp30, granzyme B, and perforin. Smad2/3 signaling was responsible for this TGF-β1-induced downregulation of NK cell-activating markers and cytotoxic granules. IL-15SA/IL-15RA blocked Smad2/3-induced transcription, resulting in the rescue of NK cell-cytotoxic function from TGF-β1-induced suppression. These findings suggest that in addition to increasing NK cell function via promoting the IL-15 signaling pathway, IL-15SA/IL-15RA can function as an inhibitor of TGF-β1 signaling, providing a potential remedy for NK cell dysfunction in the immunosuppressive tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

EGFR:

Epidermal growth factor receptor

E:T:

Effector cell:target cell

FDA:

Food and Drug Administration

IFN:

Interferon

IL:

Interleukin

IL-15SA/IL-15RA:

Interleukin-15 N72D superagonist/interleukin-15 receptor α Sushi-Fc fusion complex

mAb:

Monoclonal antibody

MFI:

Mean fluorescence intensity

MHC:

Major histocompatibility complex

mTOR:

Mammalian target of rapamycin

NK:

Natural killer

PBMC:

Peripheral blood mononuclear cell

PCR:

Polymerase chain reaction

PD-L1:

Programmed death-ligand 1

TGF:

Transforming growth factor

TME:

Tumor microenvironment

References

  1. Carotta S (2016) Targeting NK cells for anticancer immunotherapy: clinical and preclinical approaches. Front Immunol 7:152. https://doi.org/10.3389/fimmu.2016.00152

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guillerey C, Huntington ND, Smyth MJ (2016) Targeting natural killer cells in cancer immunotherapy. Nat Immunol 17:1025–1036. https://doi.org/10.1038/ni.3518

    Article  CAS  PubMed  Google Scholar 

  3. Baginska J, Viry E, Paggetti J, Medves S, Berchem G, Moussay E, Janji B (2013) The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol 4:490. https://doi.org/10.3389/fimmu.2013.00490

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tsushima H, Kawata S, Tamura S et al. (1996) High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology. 110: 375–382

    Article  Google Scholar 

  5. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10: 415–424. https://doi.org/10.1038/nrc2853

    Article  Google Scholar 

  6. Lippitz BE (2013) Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 14:e218–228. https://doi.org/10.1016/S1470-2045(12)70582-X

    Article  Google Scholar 

  7. Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol. 10: 554–567. https://doi.org/10.1038/nri2808

    Article  Google Scholar 

  8. Yu J, Wei M, Becknell B et al. (2006) Pro- and antiinflammatory cytokine signaling: reciprocal antagonism regulates interferon-gamma production by human natural killer cells. Immunity. 24: 575–590. https://doi.org/10.1016/j.immuni.2006.03.016

    Article  Google Scholar 

  9. Trotta R, Dal Col J, Yu J et al (2008) TGF-beta utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J Immunol 181:3784–3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosenberg SA (2014) IL-2: the first effective immunotherapy for human cancer. J Immunol 192:5451–5458. https://doi.org/10.4049/jimmunol.1490019

    Article  CAS  PubMed  Google Scholar 

  11. Mier JW, Brandon EP, Libby P, Janicka MW, Aronson FR (1989) Activated endothelial cells resist lymphokine-activated killer cell-mediated injury. Possible role of induced cytokines in limiting capillary leak during IL-2 therapy. J Immunol 143:2407–2414

    CAS  PubMed  Google Scholar 

  12. Sim GC, Radvanyi L (2014) The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev. 25: 377–390. https://doi.org/10.1016/j.cytogfr.2014.07.018

    Article  Google Scholar 

  13. Conlon KC, Lugli E, Welles HC et al (2015) Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 33:74–82. https://doi.org/10.1200/JCO.2014.57.3329

    Article  CAS  PubMed  Google Scholar 

  14. Zamai L, Ponti C, Mirandola P, Gobbi G, Papa S, Galeotti L, Cocco L, Vitale M (2007) NK cells and cancer. J Immunol 178:4011–4016

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi H, Carrasquillo JA, Paik CH, Waldmann TA, Tagaya Y (2000) Differences of biodistribution, pharmacokinetics, and tumor targeting between interleukins 2 and 15. Cancer Res 60:3577–3583

    CAS  PubMed  Google Scholar 

  16. Zhu X, Marcus WD, Xu W, Lee HI, Han K, Egan JO, Yovandich JL, Rhode PR, Wong HC (2009) Novel human interleukin-15 agonists. J Immunol. 183: 3598–3607. https://doi.org/10.4049/jimmunol.0901244

    Article  Google Scholar 

  17. Han KP, Zhu X, Liu B et al. (2011) IL-15:IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine. 56: 804–810. https://doi.org/10.1016/j.cyto.2011.09.028

    Article  Google Scholar 

  18. Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J (2006) Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci USA 103:9166–9171. https://doi.org/10.1073/pnas.0600240103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stoklasek TA, Schluns KS, Lefrancois L (2006) Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo. J Immunol 177:6072–6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu W, Jones M, Liu B et al (2013) Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor alphaSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res 73:3075–3086. https://doi.org/10.1158/0008-5472.CAN-12-2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gomes-Giacoia E, Miyake M, Goodison S et al (2014) Intravesical ALT-803 and BCG treatment reduces tumor burden in a carcinogen induced bladder cancer rat model; a role for cytokine production and NK cell expansion. PLoS One 9:e96705. https://doi.org/10.1371/journal.pone.0096705

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mathios D, Park CK, Marcus WD, Alter S, Rhode PR, Jeng EK, Wong HC, Pardoll DM, Lim M (2016) Therapeutic administration of IL-15 superagonist complex ALT-803 leads to long-term survival and durable antitumor immune response in a murine glioblastoma model. Int J Cancer. 138: 187–194. https://doi.org/10.1002/ijc.29686

    Article  Google Scholar 

  23. Kim PS, Kwilas AR, Xu W, Alter S, Jeng EK, Wong HC, Schlom J, Hodge JW (2016) IL-15 superagonist/IL-15RalphaSushi-Fc fusion complex (IL-15SA/IL-15RalphaSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8 + T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget 7:16130–16145. https://doi.org/10.18632/oncotarget.7470

    PubMed  PubMed Central  Google Scholar 

  24. Felices M, Chu S, Kodal B et al. (2017) IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer. Gynecol Oncol. 145: 453–461. https://doi.org/10.1016/j.ygyno.2017.02.028

    Article  Google Scholar 

  25. Rhode PR, Egan JO, Xu W et al (2016) Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol Res 4:49–60. https://doi.org/10.1158/2326-6066.CIR-15-0093-T

    Article  CAS  PubMed  Google Scholar 

  26. Jochems C, Tucker JA, Tsang KY, Madan RA, Dahut WL, Liewehr DJ, Steinberg SM, Gulley JL, Schlom J (2014) A combination trial of vaccine plus ipilimumab in metastatic castration-resistant prostate cancer patients: immune correlates. Cancer Immunol Immunother. 63: 407–418. https://doi.org/10.1007/s00262-014-1524-0

    Google Scholar 

  27. Donahue RN, Lepone LM, Grenga I, Jochems C, Fantini M, Madan RA, Heery CR, Gulley JL, Schlom J (2017) Analyses of the peripheral immunome following multiple administrations of avelumab, a human IgG1 anti-PD-L1 monoclonal antibody. J Immunother Cancer 5:20. https://doi.org/10.1186/s40425-017-0220-y

    Article  PubMed  PubMed Central  Google Scholar 

  28. Boyerinas B, Jochems C, Fantini M, Heery CR, Gulley JL, Tsang KY, Schlom J (2015) Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res 3:1148–1157. https://doi.org/10.1158/2326-6066.CIR-15-0059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen JQ, Lee JH, Herrmann MA, Park KS, Heldman MR, Goldsmith PK, Wang Y, Giaccone G (2013) Capillary isoelectric-focusing immunoassays to study dynamic oncoprotein phosphorylation and drug response to targeted therapies in non-small cell lung cancer. Mol Cancer Ther 12:2601–2613. https://doi.org/10.1158/1535-7163.MCT-13-0074

    Article  CAS  PubMed  Google Scholar 

  30. Roberti MP, Rocca YS, Amat M et al. (2012) IL-2- or IL-15-activated NK cells enhance Cetuximab-mediated activity against triple-negative breast cancer in xenografts and in breast cancer patients. Breast Cancer Res Treat. 136: 659–671. https://doi.org/10.1007/s10549-012-2287-y

    Article  Google Scholar 

  31. Lee HM, Kim KS, Kim J (2014) A comparative study of the effects of inhibitory cytokines on human natural killer cells and the mechanistic features of transforming growth factor-beta. Cell Immunol 290:52–61. https://doi.org/10.1016/j.cellimm.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  32. Wilson EB, El-Jawhari JJ, Neilson AL, Hall GD, Melcher AA, Meade JL, Cook GP (2011) Human tumour immune evasion via TGF-beta blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS One 6:e22842. https://doi.org/10.1371/journal.pone.0022842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Castriconi R, Cantoni C, Della Chiesa M et al (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100:4120–4125. https://doi.org/10.1073/pnas.0730640100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425: 577–584. https://doi.org/10.1038/nature02006

    Article  Google Scholar 

  35. Gaarenstroom T, Hill CS (2014) TGF-beta signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol. 32: 107–118. https://doi.org/10.1016/j.semcdb.2014.01.009

    Article  Google Scholar 

  36. Wong C, Rougier-Chapman EM, Frederick JP, Datto MB, Liberati NT, Li JM, Wang XF (1999) Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol Cell Biol 19:1821–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17: 3091–3100. https://doi.org/10.1093/emboj/17.11.3091

    Article  Google Scholar 

  38. Nagarajan RP, Zhang J, Li W, Chen Y (1999) Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J Biol Chem 274:33412–33418

    Article  CAS  PubMed  Google Scholar 

  39. Yokobori T, Nishiyama M (2017) TGF-beta signaling in gastrointestinal cancers: progress in basic and clinical research. J Clin Med. 6. https://doi.org/10.3390/jcm6010011

  40. Berchem G, Noman MZ, Bosseler M et al (2016) Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-beta and miR23a transfer. Oncoimmunology 5:e1062968. https://doi.org/10.1080/2162402X.2015.1062968

    Article  PubMed  Google Scholar 

  41. Chandran PA, Keller A, Weinmann L et al (2014) The TGF-beta-inducible miR-23a cluster attenuates IFN-gamma levels and antigen-specific cytotoxicity in human CD8(+) T cells. J Leukoc Biol 96: 633–645. https://doi.org/10.1189/jlb.3A0114-025R

    Article  Google Scholar 

  42. Rocca YS, Roberti MP, Julia EP et al (2016) Phenotypic and functional dysregulated blood NK cells in colorectal cancer patients can be activated by cetuximab plus IL-2 or IL-15. Front Immunol 7:413. https://doi.org/10.3389/fimmu.2016.00413

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rosario M, Liu B, Kong L et al (2016) The IL-15-based ALT-803 complex enhances fcgammariiia-triggered NK Cell responses and in vivo clearance of B cell lymphomas. Clin Cancer Res 22:596–608. https://doi.org/10.1158/1078-0432.CCR-15-1419

    Article  CAS  PubMed  Google Scholar 

  44. Lee JC, Lee KM, Kim DW, Heo DS (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340

    Article  CAS  PubMed  Google Scholar 

  45. Viel S, Marcais A, Guimaraes FS et al (2016) TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal 9:ra19. https://doi.org/10.1126/scisignal.aad1884

    Article  PubMed  Google Scholar 

  46. Mao Y, van Hoef V, Zhang X et al (2016) IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood 128:1475–1489. https://doi.org/10.1182/blood-2016-02-698027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujii R, Schlom J, Hodge JW (2017) A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. J Neurosurg. 1–9. https://doi.org/10.3171/2017.1.JNS162610

  48. Hodge G, Hodge S, Yeo A, Nguyen P, Hopkins E, Holmes-Liew CL, Reynolds PN, Holmes M (2017) BOS Is associated with increased cytotoxic proinflammatory CD8 T, NKT-like, and NK Cells in the small airways. Transplantation 101:2469–2476. https://doi.org/10.1097/TP.0000000000001592

    Article  CAS  PubMed  Google Scholar 

  49. Jochems C, Hodge JW, Fantini M, Tsang KY, Vandeveer AJ, Gulley JL, Schlom J (2017) ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody. Int J Cancer. 141: 583–593. https://doi.org/10.1002/ijc.30767

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Marion Taylor for excellent technical assistance, and Debra Weingarten for her editorial assistance in the preparation of this manuscript. We thank Jin-Qiu Chen and Xiaoling Luo (Collaborative Protein Technology Resource, NCI/CCR) for capillary-electrophoresis immunoassays.

Funding

This research was supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health, as well as through a Cooperative Research and Development Agreement (CRADA) between Altor BioScience and the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: RF, JWH; Development of methodology: RF, JWH; Acquisition of data: RF, CJ, SRT; Analysis and interpretation of data: RF, JWH; Writing, review of manuscript: RF, HCW, JS, JWH; Administrative, technical or administrative support: JS, JWH; Study supervision: JWH.

Corresponding author

Correspondence to James W. Hodge.

Ethics declarations

Conflict of interest

Hing C. Wong is an officer and stockholder of Altor BioScience Corporation. All other authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants or human participant blood products were in accordance with the ethical standards of the National Institutes of Health Institutional Review Board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Human NK cells were isolated from fresh or frozen peripheral blood of anonymized healthy volunteer donors (NIH Clinical Center Blood Bank (protocol NCT00001846)). Human NK cells were isolated from frozen peripheral blood of anonymized prostate cancer patients (protocol NCT01496131).

Informed consent

Blood donors meeting research donor eligibility criteria were recruited to donate blood by standard phlebotomy and apheresis techniques. The general investigational nature of the studies in which their blood would be used, and the risks and discomforts of the donation process were carefully explained to the donors, and a signed informed consent document was obtained.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 201 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, R., Jochems, C., Tritsch, S.R. et al. An IL-15 superagonist/IL-15Rα fusion complex protects and rescues NK cell-cytotoxic function from TGF-β1-mediated immunosuppression. Cancer Immunol Immunother 67, 675–689 (2018). https://doi.org/10.1007/s00262-018-2121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2121-4

Keywords

Navigation