Skip to main content

Advertisement

Log in

Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Radiolabeled monoclonal antibodies (mAb) have demonstrated measurable antitumor effects in hematologic malignancies. This outcome has been more difficult to achieve for solid tumors due, for the most part, to difficulties in delivering sufficient quantities of mAb to the tumor mass. Previous studies have shown that nonlytic levels of external beam radiation can render tumor cells more susceptible to T cell-mediated killing. The goal of these studies was to determine if the selective delivery of a radiolabeled mAb to tumors would modulate tumor cell phenotype so as to enhance vaccine-mediated T-cell killing. Here, mice transgenic for human carcinoembryonic antigen (CEA) were transplanted with a CEA expressing murine carcinoma cell line. Radioimmunotherapy consisted of yttrium-90 (Y-90)-labeled anti-CEA mAb, used either alone or in combination with vaccine therapy. A single dose of Y-90-labeled anti-CEA mAb, in combination with vaccine therapy, resulted in a statistically significant increase in survival in tumor-bearing mice over vaccine or mAb alone; this was shown to be mediated by engagement of the Fas/Fas ligand pathway. Mice receiving the combination therapy also showed a significant increase in the percentage of viable tumor-infiltrating CEA-specific CD8+ T cells compared to vaccine alone. Mice cured of tumors demonstrated an antigen cascade resulting in CD4+ and CD8+ T-cell responses not only for CEA, but for p53 and gp70. These results show that systemic radiotherapy in the form of radiolabeled mAb, in combination with vaccine, promotes effective antitumor response, which may have implications in the design of future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brooks PC, Roth JM, Lymberis SC, DeWyngaert K, Broek DFormenti SC (2002) Ionizing radiation modulates the exposure of the HUIV26 cryptic epitope within collagen type IV during angiogenesis. Int J Radiat Oncol Biol Phys 54(4):1194–1201

    Article  PubMed  CAS  Google Scholar 

  2. Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D, Wang HJ, Elashoff RM, McBride WH, Mukherji B, Cochran AJ, Glaspy JAEconomou JS (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9(3):998–1008

    PubMed  CAS  Google Scholar 

  3. Cavacini LA, Duval M, Eder JPPosner MR (2002) Evidence of determinant spreading in the antibody responses to prostate cell surface antigens in patients immunized with prostate-specific antigen. Clin Cancer Res 8(2):368–373

    PubMed  CAS  Google Scholar 

  4. Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CNHodge JW (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170(12):6338–6347

    PubMed  CAS  Google Scholar 

  5. Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom JHodge JW (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64(12):4328–4337

    Article  PubMed  CAS  Google Scholar 

  6. Chamberlain RS, Carroll MW, Bronte V, Hwu P, Warren S, Yang JC, Nishimura M, Moss B, Rosenberg SARestifo NP (1996) Costimulation enhances the active immunotherapy effect of recombinant anticancer vaccines. Cancer Res 56(12):2832–2836

    PubMed  CAS  Google Scholar 

  7. Demaria S, Bhardwaj N, McBride WHFormenti SC (2005) Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63(3):655–666

    PubMed  Google Scholar 

  8. Eades-Perner AM, van der Putten H, Hirth A, Thompson J, Neumaier M, von Kleist SZimmermann W (1994) Mice transgenic for the human carcinoembryonic antigen gene maintain its spatiotemporal expression pattern. Cancer Res 54(15):4169–4176

    PubMed  CAS  Google Scholar 

  9. el-Shami K, Tirosh B, Bar-Haim E, Carmon L, Vadai E, Fridkin M, Feldman MEisenbach L (1999) MHC class I-restricted epitope spreading in the context of tumor rejection following vaccination with a single immunodominant CTL epitope. Eur J Immunol 29(10):3295–3301

    Article  PubMed  CAS  Google Scholar 

  10. Ganss R, Ryschich E, Klar E, Arnold BHammerling GJ (2002) Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res 62(5):1462–1470

    PubMed  CAS  Google Scholar 

  11. Garnett CT, Palena C, Chakraborty M, Tsang KY, Schlom JHodge JW (2004) Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 64(21):7985–7994

    Article  PubMed  CAS  Google Scholar 

  12. Goldenberg DM (2002) Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med 43(5):693–713

    PubMed  CAS  Google Scholar 

  13. Grayson JM, Harrington LE, Lanier JG, Wherry EJAhmed R (2002) Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J Immunol 169(7):3760–3770

    PubMed  CAS  Google Scholar 

  14. Hallahan D, Kuchibhotla JWyble C (1996) Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res 56(22):5150–5155

    PubMed  CAS  Google Scholar 

  15. Hilburger Ryan M Abrams SI (2001) Characterization of CD8+ cytotoxic T lymphocyte/tumor cell interactions reflecting recognition of an endogenously expressed murine wild-type p53 determinant. Cancer Immunol Immunother 49(11):603–612

    Article  Google Scholar 

  16. Hodge JW, McLaughlin JP, Kantor JASchlom J (1997) Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine 15(6–7):759–768

    Article  PubMed  CAS  Google Scholar 

  17. Hodge JW, Rad AN, Grosenbach DW, Sabzevari H, Yafal AG, Gritz LSchlom J (2000) Enhanced activation of T cells by dendritic cells engineered to hyperexpress a triad of costimulatory molecules. J Natl Cancer Inst 92(15):1228–1239

    Article  PubMed  CAS  Google Scholar 

  18. Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MGSchlom J (1999) A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 59(22):5800–5807

    PubMed  CAS  Google Scholar 

  19. Horning SJ (2003) Future directions in radioimmunotherapy for B-cell lymphoma. Semin Oncol 30(6 Suppl 17):29–34

    Article  PubMed  CAS  Google Scholar 

  20. Huang AY, Gulden PH, Woods AS, Thomas MC, Tong CD, Wang W, Engelhard VH, Pasternack G, Cotter R, Hunt D, Pardoll DMJaffee EM (1996) The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci USA 93(18):9730–9735

    Article  PubMed  CAS  Google Scholar 

  21. Irvine KR, Chamberlain RS, Shulman EP, Surman DR, Rosenberg SARestifo NP (1997) Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. J Natl Cancer Inst 89(21):1595–1601

    Article  PubMed  CAS  Google Scholar 

  22. Kaminski MS, Estes J, Zasadny KR, Francis IR, Ross CW, Tuck M, Regan D, Fisher S, Gutierrez J, Kroll S, Stagg R, Tidmarsh GWahl RL (2000) Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 96(4):1259–1266

    PubMed  CAS  Google Scholar 

  23. Kass E, Panicali DL, Mazzara G, Schlom JGreiner JW (2001) Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant. Cancer Res 61(1):206–214

    PubMed  CAS  Google Scholar 

  24. Koppe MJ, Bleichrodt RP, Oyen WJ, Boerman OC (2005) Radioimmunotherapy and colorectal cancer. Br J Surg 92(3):264–276

    Article  PubMed  CAS  Google Scholar 

  25. Kudo-Saito C, Schlom JHodge JW (2005) Induction of an antigen cascade by diversified subcutaneous/intratumoral vaccination is associated with antitumor responses. Clin Cancer Res 11(6):2416–2426

    Article  PubMed  CAS  Google Scholar 

  26. Kuroki M, Greiner JW, Simpson JF, Primus FJ, Guadagni FSchlom J (1989) Serologic mapping and biochemical characterization of the carcinoembryonic antigen epitopes using fourteen distinct monoclonal antibodies. Int J Cancer 44(2):208–218

    Article  PubMed  CAS  Google Scholar 

  27. Lacabanne V, Viguier M, Guillet JGChoppin J (1996) A wild-type p53 cytotoxic T cell epitope is presented by mouse hepatocarcinoma cells. Eur J Immunol 26(11):2635–2639

    Article  PubMed  CAS  Google Scholar 

  28. Lee JK, Sayers TJ, Brooks AD, Back TC, Young HA, Komschlies KL, Wigginton JMWiltrout RH (2000) IFN-gamma-dependent delay of in vivo tumor progression by Fas overexpression on murine renal cancer cells. J Immunol 164(1):231–239

    PubMed  CAS  Google Scholar 

  29. Markiewicz MA, Fallarino F, Ashikari AGajewski TF (2001) Epitope spreading upon P815 tumor rejection triggered by vaccination with the single class I MHC-restricted peptide P1A. Int Immunol 13(5):625–632

    Article  PubMed  CAS  Google Scholar 

  30. Marshall JL, Hoyer RJ, Toomey MA, Faraguna K, Chang P, Richmond E, Pedicano JE, Gehan E, Peck RA, Arlen P, Tsang KYSchlom J (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18(23):3964–3973

    PubMed  CAS  Google Scholar 

  31. Modrak DE, Gold DV, Goldenberg DMBlumenthal RD (2003) Colonic tumor CEA, CSAp and MUC-1 expression following radioimmunotherapy or chemotherapy. Tumour Biol 24(1):32–39

    Article  PubMed  CAS  Google Scholar 

  32. Muraro R, Wunderlich D, Thor A, Lundy J, Noguchi P, Cunningham RSchlom J (1985) Definition by monoclonal antibodies of a repertoire of epitopes on carcinoembryonic antigen differentially expressed in human colon carcinomas versus normal adult tissues. Cancer Res 45(11 Pt 2):5769–5780

    PubMed  CAS  Google Scholar 

  33. Nikitina EY Gabrilovich DI (2001) Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int J Cancer 94(6):825–833

    Article  Google Scholar 

  34. Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ, Frelinger JARobinson BW (2003) Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol 170(10):4905–4913

    PubMed  CAS  Google Scholar 

  35. Pilon SA, Kelly CWei WZ (2003) Broadening of epitope recognition during immune rejection of ErbB-2-positive tumor prevents growth of ErbB-2-negative tumor. J Immunol 170(3):1202–1208

    PubMed  CAS  Google Scholar 

  36. Press OW (2003) Radioimmunotherapy for non-Hodgkin’s lymphomas: a historical perspective. Semin Oncol 30(2 Suppl 4):10–21

    PubMed  CAS  Google Scholar 

  37. Press OW, Unger JM, Braziel RM, Maloney DG, Miller TP, LeBlanc M, Gaynor ER, Rivkin SEFisher RI (2003) A phase 2 trial of CHOP chemotherapy followed by tositumomab/iodine I 131 tositumomab for previously untreated follicular non-Hodgkin lymphoma: Southwest Oncology Group Protocol S9911. Blood 102(5):1606–1612

    Article  PubMed  CAS  Google Scholar 

  38. Robbins PF, Kantor JA, Salgaller M, Hand PH, Fernsten PDSchlom J (1991) Transduction and expression of the human carcinoembryonic antigen gene in a murine colon carcinoma cell line. Cancer Res 51(14):3657–3662

    PubMed  CAS  Google Scholar 

  39. Rosato A, Santa SD, Zoso A, Giacomelli S, Milan G, Macino B, Tosello V, Dellabona P, Lollini PL, De Giovanni CZanovello P (2003) The cytotoxic T-lymphocyte response against a poorly immunogenic mammary adenocarcinoma is focused on a single immunodominant class I epitope derived from the gp70 Env product of an endogenous retrovirus. Cancer Res 63(9):2158–2163

    PubMed  CAS  Google Scholar 

  40. Ryschich E, Harms W, Loeffler T, Eble M, Klar ESchmidt J (2003) Radiation-induced leukocyte adhesion to endothelium in normal pancreas and in pancreatic carcinoma of the rat. Int J Cancer 105(4):506–511

    Article  PubMed  CAS  Google Scholar 

  41. Sharkey RM Goldenberg DM (2005) Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med 46(Suppl 1):115S–127S

    Google Scholar 

  42. Tempero M, Leichner P, Baranowska-Kortylewicz J, Harrison K, Augustine S, Schlom J, Anderson J, Wisecarver JColcher D (2000) High-dose therapy with 90Yttrium-labeled monoclonal antibody CC49: a phase I trial. Clin Cancer Res 6(8):3095–3102

    PubMed  CAS  Google Scholar 

  43. Tempero M, Leichner P, Dalrymple G, Harrison K, Augustine S, Schlam J, Anderson J, Wisecarver JColcher D (1997) High-dose therapy with iodine-131-labeled monoclonal antibody CC49 in patients with gastrointestinal cancers: a phase I trial. J Clin Oncol 15(4):1518–1528

    PubMed  CAS  Google Scholar 

  44. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, Pohlman BL, Bartlett NL, Wiseman GA, Padre N, Grillo-Lopez AJ, Multani PWhite CA (2002) Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20(10):2453–2463

    Article  PubMed  CAS  Google Scholar 

  45. Yang JC Perry-Lalley D (2000) The envelope protein of an endogenous murine retrovirus is a tumor-associated T-cell antigen for multiple murine tumors. J Immunother 23(2):177–183

    Article  Google Scholar 

  46. Zwaveling S, Vierboom MP, Ferreira Mota SC, Hendriks JA, Ooms ME, Sutmuller RP, Franken KL, Nijman HW, Ossendorp F, Van Der Burg SH, Offringa RMelief CJ (2002) Antitumor efficacy of wild-type p53-specific CD4(+) T-helper cells. Cancer Res 62(21):6187–6193

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical assistance of Marion Taylor and the editorial assistance of Bonnie L. Casey in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Schlom.

Additional information

This research was supported by the Intramural Research Program of the Center for Cancer Research, NCI, NIH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, M., Gelbard, A., Carrasquillo, J.A. et al. Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects. Cancer Immunol Immunother 57, 1173–1183 (2008). https://doi.org/10.1007/s00262-008-0449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0449-x

Keywords

Navigation