Skip to main content

Advertisement

Log in

Mutations and regulatory anomalies effecting tumor cell immune functions

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The immune system is capable of interacting with tumor cells in such a way as to lead to tumor cell death, and this knowledge has inspired therapies to manipulate patient immune systems to eradicate cancer. However, tumor cells are able to mitigate the antitumor immune response, a fact that has rarely been addressed in the design of immunotherapies. There are many different tumor cell immune functions that play a role in mitigating the antitumor immune response. In some cases, these functions appear to be intimately associated with the tumor cell abnormalities that lead to loss of growth control, such as the cases where classical tumor suppressor proteins regulate tumor cell immune function genes. In other cases, tumor cell mutations appear to affect only the antitumor response, such as tumor cell mutations that eliminate MHC class I expression. Here I review the bases for tumor cell immune functions, noting in particular where tumor cell mutations, the gold standard for identifying a tumor-specific function, are known to be responsible for the tumor cell immune function. This review also discusses other known regulatory anomalies, in the absence of a known mutation, that are apparently important for tumor development and that regulate tumor cell immune functions. Surprisingly, in many cases where the tumor cell immune function is well understood in terms of its effect on the antitumor immune response, the tumor abnormality underlying the tumor cell immune function is completely uncharacterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

NK:

natural killer (cell)

MHC:

major histocompatibility complex

SPIF:

specialized immune function (cell)

KIR:

killer cell inhibitory receptor

STAT:

SIGNAL transducer and activator of transcription

IFN:

interferon

TAP:

transporter for antigen processing

LOH:

loss of heterozygosity

CIITA:

class II transactivator

HDAC:

histone deacetylase

IRF-1:

interferon regulatory factor-1

IL-8:

interleukin 8

TGF-β:

transforming growth factor β

VEGF:

vascular endothelial cell growth factor

ICAM:

intracellular adhesion molecule

MMP:

matrix metalloprotease

References

  1. Gilboa E (1999) How tumors escape immune destruction and what we can do about it. Cancer Immunol Immunother 48:382–385

    CAS  PubMed  Google Scholar 

  2. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    PubMed  Google Scholar 

  3. Wang Z, Seliger B, Mike N, Momburg F, Knuth A, Ferrone S (1998) Molecular analysis of the HLA-A2 antigen loss by melanoma cells SK-MEL-29.1.22 and SK-MEL-29.1.29. Cancer Res 58:2149–2157

    CAS  PubMed  Google Scholar 

  4. Wang Z, Marincola FM, Rivoltini L, Parmiani G, and Ferrone S (1999) Selective histocompatibility leukocyte antigen (HLA)-A2 loss caused by aberrant pre-mRNA splicing in 624MEL28 melanoma cells. J Exp Med 190:205–215

    Article  PubMed  Google Scholar 

  5. Koopman LA, Der Slik AR, Giphart MJ, Fleuren GJ (1999) Human leukocyte antigen class I gene mutations in cervical cancer. J Natl Cancer Inst 91:1669–1677

    Article  CAS  PubMed  Google Scholar 

  6. Chen HL, Gabrilovich D, Virmani A, Ratnani I, Girgis KR, Nadaf-Rahrov S, Fernandez-Vina M, Carbone DP (1996) Structural and functional analysis of beta2 microglobulin abnormalities in human lung and breast cancer. Int J Cancer 67:756–763

    CAS  PubMed  Google Scholar 

  7. Maleno I, Lopez-Nevot MA, Cabrera T, Salinero J, Garrido F (2002) Multiple mechanisms generate HLA class I altered phenotypes in laryngeal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Cancer Immunol Immunother 51:389–396

    CAS  PubMed  Google Scholar 

  8. Bernards R, Dessain SK, Weinberg RA (1986) N-myc amplification causes down-modulation of MHC class I antigen expression in neuroblastoma. Cell 47:667–674

    CAS  PubMed  Google Scholar 

  9. Lenardo M, Rustgi AK, Schievella AR, Bernards R (1989) Suppression of MHC class I gene expression by N-myc through enhancer inactivation. EMBO J 8:3351–3355

    CAS  PubMed  Google Scholar 

  10. Van't Veer LJ, Beijersbergen RL, Bernards R (1993) N-myc suppresses major histocompatibility complex class I gene expression through down-regulation of the p50 subunit of NF-kappa B. EMBO J 12:195–200

    PubMed  Google Scholar 

  11. Maschek U, Pulm W, Segal S, Hammerling GJ (1989) Major histocompatibility complex class I genes in murine fibrosarcoma IC9 are down regulated at the level of the chromatin structure. Mol Cell Biol 9:3136–3142

    CAS  PubMed  Google Scholar 

  12. Nava G, Ocadiz R, Ortega V, Alfaro G (1992) Damage in B2m genes and DNA methylation of H-2 genes are involved in loss of expression of class I MHC products on the membrane of LR.4, a cell line derivative of the T-cell lymphoma L5178Y. Eur J Immunogenet 19:141–158

    CAS  PubMed  Google Scholar 

  13. Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, Wang LD, Yang CS (2001) DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22:1615–1623

    Article  CAS  PubMed  Google Scholar 

  14. Nie Y, Yang G, Song Y, Zhao X, So C, Liao J, Wang LD, Yang CS (2001) DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22:1615–1623

    Article  CAS  PubMed  Google Scholar 

  15. Geertsen R, Boni R, Blasczyk R, Romero P, Betts D, Rimoldi D, Hong X, Laine E, Willers J, Dummer R (2002) Loss of single HLA class I allospecificities in melanoma cells due to selective genomic abbreviations. Int J Cancer 99:82–87

    Article  CAS  PubMed  Google Scholar 

  16. Feenstra M, Veltkamp M, van Kuik J, Wiertsema S, Slootweg P, van den Tweel J, de Weger R, Tilanus M (1999) HLA class I expression and chromosomal deletions at 6p and 15q in head and neck squamous cell carcinomas. Tissue Antigens 54:235–245

    CAS  PubMed  Google Scholar 

  17. Restifo NP, Esquivel F, Kawakami Y, Yewdell JW, Mule JJ, Rosenberg SA, Bennink JR (1993) Identification of human cancers deficient in antigen processing. J Exp Med 177:265–272

    CAS  PubMed  Google Scholar 

  18. Seliger B, Maeurer MJ, Ferrone S (2000) Antigen-processing machinery breakdown and tumor growth. Immunol Today 21:455–464

    Article  CAS  PubMed  Google Scholar 

  19. Cresswell AC, Sisley K, Laws D, Parsons MA, Rennie IG, Murray AK (2001) Reduced expression of TAP-1 and TAP-2 in posterior uveal melanoma is associated with progression to metastatic disease. Melanoma Res 11:275–281

    Article  CAS  PubMed  Google Scholar 

  20. Cresswell AC, Sisley K, Laws D, Parsons MA, Rennie IG, Murray AK (2001) Reduced expression of TAP-1 and TAP-2 in posterior uveal melanoma is associated with progression to metastatic disease. Melanoma Res 11:275–281

    Article  CAS  PubMed  Google Scholar 

  21. Cromme FV, Airey J, Heemels MT, Ploegh HL, Keating PJ, Stern PL, Meijer CJ, Walboomers JM (1994) Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J Exp Med 179:335–340

    CAS  PubMed  Google Scholar 

  22. Chen HL, Gabrilovich D, Tampe R, Girgis KR, Nadaf S, Carbone DP (1996) A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat Genet 13:210–213

    CAS  PubMed  Google Scholar 

  23. Seliger B, Ritz U, Abele R, Bock M, Tampe R, Sutter G, Drexler I, Huber C, Ferrone S (2001) Immune escape of melanoma: first evidence of structural alterations in two distinct components of the MHC class I antigen processing pathway. Cancer Res 61:8647–8650

    CAS  PubMed  Google Scholar 

  24. Ritz U, Momburg F, Pilch H, Huber C, Maeurer MJ, Seliger B (2001) Deficient expression of components of the MHC class I antigen processing machinery in human cervical carcinoma. Int J Oncol 19:1211–1220

    CAS  PubMed  Google Scholar 

  25. Dovhey SE, Ghosh NS, Wright KL (2000) Loss of interferon-gamma inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line. Cancer Res 60:5789–5796

    CAS  PubMed  Google Scholar 

  26. Zhu K, Wang J, Zhu J, Jiang J, Shou J, Chen X (1999) p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene 18:7740–7747

    Article  CAS  PubMed  Google Scholar 

  27. Ostrand-Rosenberg S, Thakur A, Clements V (1990) Rejection of mouse sarcoma cells after transfection of MHC class II genes. J Immunol 144:4068–4071

    CAS  PubMed  Google Scholar 

  28. Armstrong TD, Clements VK, Ostrand-Rosenberg S (1998) Class II-transfected tumor cells directly present endogenous antigen to CD4+ T cells in vitro and are APCs for tumor-encoded antigens in vivo. J Immunother 21:218–224

    CAS  PubMed  Google Scholar 

  29. Baskar S, Azarenko V, Garcia Marshall E, Hughes E, Ostrand-Rosenberg S (1994) MHC class II-transfected tumor cells induce long-term tumor- specific immunity in autologous mice. Cell Immunol 155:123–133

    Article  CAS  PubMed  Google Scholar 

  30. Baskar S, Glimcher L, Nabavi N, Jones RT, Ostrand-Rosenberg S (1995) Major histocompatibility complex class II+B7–1+ tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice. J Exp Med 181:619–629

    CAS  PubMed  Google Scholar 

  31. Baskar S, Clements V, Glimcher L, Nabavi N, Ostrand-Rosenberg S (1996) Rejection of MHC class II–transfected tumor cells requires induction of tumor–encoded B7–1 and/or B7–2 costimulatory molecules. J Immunol 156:3821–3827

    CAS  PubMed  Google Scholar 

  32. Ostrand-Rosenberg S (1994) Tumor immunotherapy: the tumor cell as an antigen-presenting cell Curr Opin Immunol 6:722–727

    Google Scholar 

  33. Frey AB, Cestari S (1997) Killing of rat adenocarcinoma 13762 in situ by adoptive transfer of CD4+ anti-tumor T cells requires tumor expression of cell surface MHC class II molecules. Cell Immunol 178:79–90

    Article  CAS  PubMed  Google Scholar 

  34. Mongini C, Lockhart MS, Waldner CI, Alvarez EMC, Gravisaco MJ, Roig MI, Hajos SE (1996) Enhancement of anti-tumor immunity in syngeneic mice after MHC class II gene transfection. Br J Cancer 74:258–263

    CAS  PubMed  Google Scholar 

  35. Armstrong TD, Clements VK, Martin BK, Ting JP, Ostrand-Rosenberg S (1997) Major histocompatibility complex class II–transfected tumor cells present endogenous antigen and are potent inducers of tumor-specific immunity. Proc Natl Acad Sci U S A 94:6886–6891

    Article  CAS  PubMed  Google Scholar 

  36. Clements VK, Baskar S, Armstrong TD, Ostrand-Rosenberg S (1992) Invariant chain alters the malignant phenotype of MHC class II+ tumor cells. J Immunol 149:2391–2396

    CAS  PubMed  Google Scholar 

  37. Siegrist C, Martinez-Soria E, Kern I, Mach B (1995) A novel antigen processing defective phenotype in major histocompatibility complex class II positive CIITA transfectants is corrected by interferon-gamma treatment. J Exp Med 182:1793–1799

    CAS  PubMed  Google Scholar 

  38. Riese RJ, Wolf PR, Bromme D, Natkin LR, Villadangos JA, Ploegh HL, Chapman HA (1996) Essential role for cathepsin S in MHC class II-associated invariant chain. Immunity 4:357–366

    CAS  PubMed  Google Scholar 

  39. Shi GP, Villadangos JA, Dranoff G, Small C, Gu L, Haley KJ, Riese R, Ploegh HL, Chapman HA (1999) Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10:197–206

    CAS  PubMed  Google Scholar 

  40. Riese RJ, Mitchell RN, Villadangos JA, Shi GP, Palmer HT, Karp ER, De Sanctis GT, Ploegh HL, Chapman HA (6–1-1998) Cathepsin S activity regulates antigen presentation and immunity. J Clin Invest 101:2351–2363

    Google Scholar 

  41. Qi L, Rojas JM, Ostrand-Rosenberg S (2000) Tumor cells present MHC class II-restricted nuclear and mitochondrial antigens and are the predominant antigen presenting cells in vivo. J Immunol 165(10):5451–5461

    CAS  PubMed  Google Scholar 

  42. Truman JP, Ericson ML, Choqueux-Seebold CJ, Charron DJ, Mooney N (1994) Lymphocyte programmed cell death is mediated via HLA class II DR. Int Immunol 6:887–896

    CAS  PubMed  Google Scholar 

  43. Sotomayor EM, Borrello I, Tubb E, Allison JP, Levitsky HI (1999) In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc Natl Acad Sci U S A 96:11476–11481

    Article  CAS  PubMed  Google Scholar 

  44. Lu Y, Tschickardt M, Schmidt B, Blanck G (1997) IFN-gamma inducibility of class II transactivator is specifically lacking in human tumor lines: relevance to retinoblastoma protein rescue of IFN-gamma inducibility of the HLA class II genes. Immunol Cell Biol 75:325–332

    CAS  PubMed  Google Scholar 

  45. Eason DD, Blanck G (2001) High level class II trans-activator induction does not occur with transient activation of the IFN-gamma signaling pathway. J Immunol 166:1041–1048

    CAS  PubMed  Google Scholar 

  46. Novelli F, Di Pierro F, Francia di Celle Bertini S, Affaticati P, Garotta G, Forni G (1994) Environmental signals influencing expression of the IFN-gamma receptor on human T cells control whether IFN-gamma promotes proliferation or apoptosis. J Immunol 152:496–504

    CAS  PubMed  Google Scholar 

  47. Celada A, Schreiber RD (1987) Internalization and degradation of receptor-bound interferon-gamma by murine macrophages: demonstration of receptor recycling. J Immunol 139:147–153

    CAS  PubMed  Google Scholar 

  48. Xi H, Eason D Ghosh D, Dovhey S, Wright K, Blanck G (1999) Co-occupancy of the interferon regulatory element of the class II transactivator (CIITA) Type IV promoter by interferon regulatory factors 1 and 2. Oncogene 18:5889–5903

    Article  CAS  PubMed  Google Scholar 

  49. Xi H, Blanck G (2000) Interferon regulatory factor-2 point mutations in human pancreatic tumors. Int J Cancer 87:803–808

    Article  CAS  PubMed  Google Scholar 

  50. Lu Y, Ussery GD, Muncaster MM, Gallie BL, Blanck G (1994) Evidence for retinoblastoma protein (RB) dependent and independent IFN-gamma responses: RB coordinately rescues IFN-gamma induction of MHC class II gene transcription in noninducible breast carcinoma cells. Oncogene 9:1015–1019

    CAS  PubMed  Google Scholar 

  51. Lu Y, Boss JM, Hu S-X, Xu H-J, Blanck G (1996) Apoptosis-independent retinoblastoma protein rescue of HLA class II messenger RNA IFN-gamma inducibility in non-small cell lung carcinoma cells. J Immunol 156:2495–2502

    CAS  PubMed  Google Scholar 

  52. Osborne A, Tschickardt M, Blanck G (1997) Retinoblastoma protein expression facilitates chromatin remodeling at the HLA-DRA promoter. Nucleic Acids Res 25:5095–5102

    Article  CAS  PubMed  Google Scholar 

  53. Osborne A, Zhang H, Yang WM, Seto E, Blanck G (2001) Histone deacetylase activity represses gamma interferon-inducible HLA-DR gene expression following the establishment of a DNase I-hypersensitive chromatin conformation. Mol Cell Biol 21:6495–6506

    Article  CAS  PubMed  Google Scholar 

  54. Zhu X, Pattenden S, Bremner R (1999) pRB is required for interferon-gamma-induction of the MHC class II A-beta gene. Oncogene 4940–4947

  55. Eason DD, Coppola D, Livingston S, Shepherd AT, Blanck G (2001) Loss of MHC class II inducibility in hyperplastic tissue in Rb-defective mice. Cancer Lett 171:209–214

    Article  CAS  PubMed  Google Scholar 

  56. Tschickardt ME, Lu Y, Jacim M, Ussery GD, Steimle V, Mach B, Blanck G (1995) RB and a novel E2F binding protein in MHC class II deficient B-cell lines and normal IFN-gamma induction of the class II transactivator CIITA in class II non-inducible RB-defective tumor lines. Int J Cancer 62:461–465

    CAS  PubMed  Google Scholar 

  57. Zhang H, Shepherd AT, Eason DD, Wei S, Diaz JI, Djeu JY, Wu GD, Blanck G (1999) Retinoblastoma protein expression leads to reduced Oct-1 DNA-binding activity and enhances interleukin-8 expression. Cell Growth Differ 10:457–465

    CAS  PubMed  Google Scholar 

  58. Das G, Herr W (1993) Enhanced activation of the human histone H2B promoter by an Oct-1 variant generated by alternative splicing. J Biol Chem 268:25026–25032

    CAS  PubMed  Google Scholar 

  59. Segil N, Roberts S, Heintz N (1991) Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science 254:1814–1816

    CAS  PubMed  Google Scholar 

  60. Roberts SB, Segil N, Heintz N (1991) Differential phosphorylation of the transcription factor Oct-1 during the cell cycle. Science 253:1022–1026

    CAS  PubMed  Google Scholar 

  61. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (6–23–1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95:7556–7561

    Article  Google Scholar 

  62. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFN-gamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    CAS  PubMed  Google Scholar 

  63. Aoudjit F, Potworowski EF, Springer TA, St-Pierre Y (1998) Protection from lymphoma cell metastasis in ICAM-1 mutant mice: a posthoming event. J Immunol 161:2333–2338

    CAS  PubMed  Google Scholar 

  64. Fernandez-Real JM, Villabona C, Feernandez-Castaner M, Sagarra E, Gomez-Saez JM, Soler J (1996) Expression of ICAM-1 in distant metastatic thyroid carcinoma. J Endocrinol Invest 19:183–185

    CAS  PubMed  Google Scholar 

  65. Miele ME, Bennett CF, Miller BE, Welch DR (2000) Enhanced metastatic ability of TNF-alpha-treated malignant melanoma cells reduced by intercellular adhesion molecule-1 (ICAM-1, CD54) antisense oligonucleotides. Exp Cell Res 214:231–241

    Article  Google Scholar 

  66. Sun R, Hojo H, Kato K, Hashimoto Y (1996) Effects of anti-intercellular adhesion molecule-1 and anti-lymphocyte-function-associated antigen-1 monoclonal antibodies on the metastasis of murine tumors. Invasion Metastasis 16:39–48

    CAS  PubMed  Google Scholar 

  67. Look DC, Pelletier MR, Holtzman MJ (1994) Selective interaction of a subset of interferon-gamma response element-binding proteins with the intercellular adhesion molecule-1 (ICAM-1) gene promoter controls the pattern of expression on epithelial cells. J Biol Chem 269:8952–8958

    CAS  PubMed  Google Scholar 

  68. Muhlethaler-Mottet A, Otten LA, Steimle V, Mach B (1997) Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J 16:2851–2860

    CAS  PubMed  Google Scholar 

  69. Goodwin BL, Xi H, Tejiram R, Eason DD, Ghosh N, Wright KL, Nagarajan U, Boss JM, Blanck G (2001) Varying functions of specific major histocompatibility class II transactivator promoter III and IV elements in melanoma cell lines. Cell Growth Differ 12:327–335

    CAS  PubMed  Google Scholar 

  70. Deffrennes V, Vedrenne J, Stolzenberg MC, Piskurich J, Barbieri G, Ting JP, Charron D, Alcaide-Loridan C (2001) Constitutive expression of MHC class II genes in melanoma cell lines results from the transcription of class II transactivator abnormally initiated from its B cell-specific promoter. J Immunol 167:98–106

    CAS  PubMed  Google Scholar 

  71. Lee JL, Kim YH, Lee JM, Kim JD, Kim SJ, Park JH (1999) Molecular analysis of HLA-DR gene expression induced by IFN-gamma in malignant melanoma cell lines. Yonsei Med J 40:30–39

    CAS  PubMed  Google Scholar 

  72. Maio M, Gulwani B, Tombesi S, Langer JA, Duigou GJ, Kerbel RS, Fisher PB, Ferrone S (1988) Differential induction by immune interferon of the gene products of the HLA-D region on the melanoma cell line MeWo and its metastatic variant MeM 50–10. J Immunol 141:913–920

    CAS  PubMed  Google Scholar 

  73. Smith DR, Polverini PJ, Kunkel SL, Orringer MB, Whyte RI, Burdick MD, Wilke CA, Strieter RM (1994) Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 179:1409–1415

    CAS  PubMed  Google Scholar 

  74. Lucas M, Huang S, Gershenwald JE, Singh RK, Reich R, Bar-Eli M (1997) Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol 151:1105–1113

    PubMed  Google Scholar 

  75. Kitadai Y, Haruma K, Sumii K, Yamamoto S, Ue T, Yokozaki H, Yasui W, Ohmoto Y, Kajiyama G, Fidler IJ, Tahara E (1998) Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am J Pathol 152:93–100

    CAS  PubMed  Google Scholar 

  76. Luca M, Huang S, Gershenwald JE, Singh RK, Reich R, Bar-Eli M (1997) Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol 151:1105–1113

    PubMed  Google Scholar 

  77. Arenberg DA, Kunkel SL, Polverini PJ, Glass M, Burdick MD, Strieter RM (6–15–1996) Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J Clin Invest 97:2792–2802

    Google Scholar 

  78. Strieter RM, Polverini PJ, Arenberg DA, Walz A, Opdenakker G, Van Damme J, Kunkel SL (1995) Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. J Leukoc Biol 57:752–762

    CAS  PubMed  Google Scholar 

  79. Wang J, Huang M, Lee P, Komanduri K, Sharma S, Chen G, Dubinett SM (1996) Interleukin-8 inhibits non-small cell lung cancer proliferation: a possible role for regulation of tumor growth by autocrine and paracrine pathways. J Interferon Cytokine Res 16:53–60

    CAS  PubMed  Google Scholar 

  80. Lee LF, Schuerer-Maly CC, Lofquist AK, van Haaften-Day C, Ting JP, White CM, Martin BK, Haskill JS (1996) Taxol-dependent transcriptional activation of IL-8 expression in a subset of human ovarian cancer. Cancer Res 56:1303–1308

    CAS  PubMed  Google Scholar 

  81. Lejeune P, Reisser D, Onier N, Lagadec P, Lindley I, Jeannin J (1994) Interleukin-8 has antitumor effects in the rat which are not associated with polymorphonuclear leukocyte cytooxicity. Cancer Immunol Immunother 38:167–170

    Article  CAS  PubMed  Google Scholar 

  82. Xu L, Xie K, Mukaida N, Matsushima K, Fidler IJ (1999) Hypoxia-induced elevation in interleukin-8 expression by human ovarian carcinoma cells. Cancer Res 59:5822–5829

    CAS  PubMed  Google Scholar 

  83. Zhang H, Wei S, Sun J, Coppola D, Zhong B, Wu GD, Goodwin B, Sebti S, Djeu JY, Blanck G (2000) Retinoblastoma protein activation of interleukin 8 expression inhibits tumor cell survival in nude mice. Cell Growth Differ 11:635–699

    CAS  PubMed  Google Scholar 

  84. Lee L-F, Hellendall RP, Wang Y, Haskill JS, Mukaida N, Matsushima K, Ting J-P (2000) IL-8 reduced tumorigenicity of human ovarian cancer in vivo duo to neutrophil infiltration. J Immunol 164:2769–2775

    CAS  PubMed  Google Scholar 

  85. Bergmann-Leitner ES, Abrams SI (2000) Influence of interferon gamma on modulation of Fas expression by human colon carcinoma cells and their subsequent sensitivity to antigen-specific CD8+ cytotoxic T lymphocyte attack. Cancer Immunol Immunother 49:193–207

    CAS  PubMed  Google Scholar 

  86. Cascino I, Papoff G, De Maria R, Testi R, Ruberti G (1996) Fas/Apo-1 (CD95) receptor lacking the intracytoplasmic signaling domain protects tumor cells from Fas-mediated apoptosis. J Immunol 156:13–17

    CAS  PubMed  Google Scholar 

  87. Lee SH, Shin MS, Park WS, Kim SY, Kim HS, Han JY, Park GS, Dong SM, Pi JH, Kim CS, Kim SH, Lee JY, Yoo NJ (1999) Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene 18:3754–3760

    CAS  PubMed  Google Scholar 

  88. Lee SH, Shin MS, Park WS, Kim SY, Dong SM, Pi JH, Lee HK, Kim HS, Jang JJ, Kim CS, Kim SH, Lee JY, Yoo NJ (1999) Alterations of Fas (APO-1/CD95) gene in transitional cell carcinomas of urinary bladder. Cancer Res 59:3068–3072

    CAS  PubMed  Google Scholar 

  89. Muschen M, Warskulat U, Beckmann MW (2000) Defining CD95 as a tumor suppressor gene. J Mol Med 78:312–325

    Article  CAS  PubMed  Google Scholar 

  90. Ivanov VN, Bhoumik A, Krasilnikov M, Raz R, Owen-Schaub LB, Levy D, Horvath CM, Ronai Z (2001) Cooperation between STAT3 and c-jun suppresses Fas transcription. Mol Cell 7:517–528

    CAS  PubMed  Google Scholar 

  91. Tamura T, Aoyama N, Saya H, Haga H, Futami S, Miyamoto M, Koh T, Ariyasu T, Tachi M, Kasuga M et al (1995) Induction of Fas-mediated apoptosis in p53-transfected human colon carcinoma cells. Oncogene 11:1939–1946

    CAS  PubMed  Google Scholar 

  92. Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282:290–293

    Google Scholar 

  93. Peli J, Schroter M, Rudaz C, Hahne M, Meyer C, Reichmann E, Tschopp J (1999) Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J 18:1824–1831

    CAS  PubMed  Google Scholar 

  94. Kopp R, Classen S, Wolf H, Gholam P, Possinger K, Wilmanns W (2001) Predictive relevance of soluble CD44v6 serum levels for the responsiveness to second line hormone- or chemotherapy in patients with metastatic breast cancer. Anticancer Res 21:2995–3000

    CAS  PubMed  Google Scholar 

  95. Scott DA, Stapleton JA, Palmer RM, Wilson RF, Sutherland G, Coward PY, Gustavsson G, Odell EW, Poston RN (2000) Plasma concentrations of reputed tumor-associated soluble CD44 isoforms (v5 and v6) in smokers are dose related and decline on smoking cessation. Cancer Epidemiol Biomarkers Prev 9:1211–1214

    CAS  PubMed  Google Scholar 

  96. Wakatsuki T, Kimura K, Kimura F, Shinomiya N, Ohtsubo M, Ishizawa M, Yamamoto M (1995) A distinct mRNA encoding a soluble form of ICAM-1 molecule expressed in human tissues. Cell Adhes Commun 3:283–292

    CAS  PubMed  Google Scholar 

  97. Becker JC, Dummer R, Hartmann AA, Burg G, Schmidt RE (1991) Shedding of ICAM-1 from human melanoma cell lines induced by IFN-gamma and tumor necrosis factor-alpha: functional consequences on cell-mediated cytotoxicity. J Immunol 147:4398–4401

    CAS  PubMed  Google Scholar 

  98. Champagne B, Tremblay P, Cantin A, St Pierre Y (1998) Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J Immunol 161:6398–6405

    CAS  PubMed  Google Scholar 

  99. Barnett CC, Jr, Moore EE, Moore FA, Carl VS, Biffl WL (1996) Soluble ICAM-1 (sICAM-1) provokes PMN elastase release. J Surg Res 63:6–10

    Article  CAS  PubMed  Google Scholar 

  100. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904

    CAS  PubMed  Google Scholar 

  101. Cichy J, Bals R, Potempa J, Mani A, Pure E (2002) Proteinase-mediated release of epithelial cell-associated CD44: extracellular CD44 complexes with components of cellular matrices. J Biol Chem 277:44440–44447

    Article  CAS  PubMed  Google Scholar 

  102. Hansen HP, Kisseleva T, Kobarg J, Horn-Lohrens O, Havsteen B, Lemke H (1995) A zinc metalloproteinase is responsible for the release of CD30 on human tumor cell lines. Int J Cancer 63:750–756

    CAS  PubMed  Google Scholar 

  103. Hansen HP, Dietrich S, Kisseleva T, Mokros T, Mentlein R, Lange HH, Murphy G, Lemke H (2000) CD30 shedding from Karpas 299 lymphoma cells is mediated by TNF-alpha-converting enzyme. J Immunol 165:6703–6709

    CAS  PubMed  Google Scholar 

  104. Josimovic-Alasevic O, Durkop H, Schwarting R, Backe E, Stein H, Diamantstein T (1989) Ki-1 (CD30) antigen is released by Ki-1-positive tumor cells in vitro and in vivo. I. Partial characterization of soluble Ki-1 antigen and detection of the antigen in cell culture supernatants and in serum by an enzyme-linked immunosorbent assay. Eur J Immunol 19:157–162

    CAS  PubMed  Google Scholar 

  105. Gonzalez-Clemente JM, Ribera JM, Campo E, Bosch X, Montserrat E, Grau JM (1991) Ki-1+ anaplastic large-cell lymphoma of T-cell origin in an HIV-infected patient. AIDS 5:751–755

    CAS  PubMed  Google Scholar 

  106. Chadburn A, Cesarman E, Jagirdar J, Subar M, Mir RN, Knowles DM (1993) CD30 (Ki-1) positive anaplastic large cell lymphomas in individuals infected with the human immunodeficiency virus. Cancer 72:3078–3090

    CAS  PubMed  Google Scholar 

  107. Mir SS, Richter BW, Duckett CS (2000) Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood 96:4307–4312

    CAS  PubMed  Google Scholar 

  108. Wendtner CM, Schmitt B, Gruss HJ, Druker BJ, Emmerich B, Goodwin RG, Hallek M (1995) CD30 ligand signal transduction involves activation of a tyrosine kinase and of mitogen-activated protein kinase in a Hodgkin's lymphoma cell line. Cancer Res 55:4157–4161

    CAS  PubMed  Google Scholar 

  109. Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG (1994) Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 83:2045–2056

    CAS  PubMed  Google Scholar 

  110. Zinzani PL, Pileri S, Bendandi M, Buzzi M, Sabattini E, Ascani S, Gherlinzoni F, Magagnoli M, Albertini P, Tura S (1998) Clinical implications of serum levels of soluble CD30 in 70 adult anaplastic large-cell lymphoma patients. J Clin Oncol 16:1532–1537

    CAS  PubMed  Google Scholar 

  111. Pizzolo G, Vinante F, Chilosi M, Dallenbach F, Josimovic-Alasevic O, Diamantstein T, Stein H (1990) Serum levels of soluble CD30 molecule (Ki-1 antigen) in Hodgkin's disease: relationship with disease activity and clinical stage. Br J Haematol 75:282–284

    CAS  PubMed  Google Scholar 

  112. Gause A, Jung W, Schmits R, Tschiersch A, Scholz R, Pohl C, Hasenclever D, Diehl V, Pfreundschuh M (1992) Soluble CD8, CD25 and CD30 antigens as prognostic markers in patients with untreated Hodgkin's lymphoma. Ann Oncol 3[Suppl 4]:49–52

  113. Gause A, Pohl C, Tschiersch A, da Costa L, Jung W, Diehl V, Hasenclever D, Pfreundschuh M (1991) Clinical significance of soluble CD30 antigen in the sera of patients with untreated Hodgkin's disease. Blood 77:1983–1988

    CAS  PubMed  Google Scholar 

  114. Nadali G, Vinante F, Ambrosetti A, Todeschini G, Veneri D, Zanotti R, Meneghini V, Ricetti MM, Benedetti F, Vassanelli A et al (1994) Serum levels of soluble CD30 are elevated in the majority of untreated patients with Hodgkin's disease and correlate with clinical features and prognosis. J Clin Oncol 12:793–797

    CAS  PubMed  Google Scholar 

  115. Nadali G, Vinante F, Chilosi M, Pizzolo G (1997) Soluble molecules as biological markers in Hodgkin's disease. Leuk Lymphoma 26[Suppl 1]:99–105

    Google Scholar 

  116. Nadali G, Tavecchia L, Zanolin E, Bonfante V, Viviani S, Camerini E, Musto P, Di Renzo N, Carotenuto M, Chilosi M, Krampera M, Pizzolo G (1998) Serum level of the soluble form of the CD30 molecule identifies patients with Hodgkin's disease at high risk of unfavorable outcome. Blood 91:3011–3016

    CAS  PubMed  Google Scholar 

  117. Chilosi M, Pizzolo G, Semenzato G, Cetto GL (1986) Detection of a soluble form of the receptor for interleukin 2 in the serum of patients with hairy cell leukaemia. Int J Biol Markers 1:101–104

    CAS  PubMed  Google Scholar 

  118. Pizzolo G, Chilosi M, Vinante F, Dazzi F, Lestani M, Perona G, Benedetti F, Todeschini G, Vincenzi C, Trentin L et al (1987) Soluble interleukin-2 receptors in the serum of patients with Hodgkin's disease. Br J Cancer 55:427–428

    CAS  PubMed  Google Scholar 

  119. Kono N, Kanda Y, Yamamoto R, Chizuka A, Suguro M, Hamaki T, Arai C, Matsuyama T, Takezako N, Miwa A, Togawa A (2000) Prognostic significance of serum soluble interleukin-2 receptor level in non-Hodgkin's lymphoma: a single center study in Japan. Leuk Lymphoma 37:151–156

    CAS  PubMed  Google Scholar 

  120. Niitsu N, Iijima K, Chizuka A (2001) A high serum-soluble interleukin-2 receptor level is associated with a poor outcome of aggressive non-Hodgkin's lymphoma. Eur J Haematol 66:24–30

    Article  CAS  PubMed  Google Scholar 

  121. Fierro MT, Lisa F, Novelli M, Bertero M, Bernengo MG (1992) Soluble interleukin-2 receptor, CD4 and CD8 levels in melanoma: a longitudinal study. Dermatology 184:182–189

    CAS  PubMed  Google Scholar 

  122. Lai KN, Ho S, Leung JC, Tsao SY (1991) Soluble interleukin-2 receptors in patients with nasopharyngeal carcinoma. Cancer 67:2180–2185

    CAS  PubMed  Google Scholar 

  123. Saito H, Tsujitani S, Ikeguchi M, Maeta M, Kaibara N (1999) Serum level of a soluble receptor for interleukin-2 as a prognostic factor in patients with gastric cancer. Oncology 56:253–258

    Article  CAS  PubMed  Google Scholar 

  124. Ginns LC, De Hoyos A, Brown MC, Gaumond BR (1990) Elevated concentration of soluble interleukin-2 receptors in serum of smokers and patients with lung cancer: correlation with clinical activity. Am Rev Respir Dis 142:398–402

    CAS  PubMed  Google Scholar 

  125. Rabitti PG, Pacelli L, Uomo G, Laccetti M, Spada OA, Esposito G, Visconti M (1994) Soluble interleukin-2 receptor: a new marker in pancreatic adenocarcinoma? Minerva Gastroenterol Dietol 40:101–103

    CAS  PubMed  Google Scholar 

  126. Waldner C, Mongini C, Alvarez E, Roig I, Hajos SE (1994) Inhibitory activity of soluble IL-2R in sera, ascites and culture supernatants from murine leukaemic cells. Scand J Immunol 40:308–316

    CAS  PubMed  Google Scholar 

  127. Sheu BC, Hsu SM, Ho HN, Lien HC, Huang SC, Lin RH (2001) A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 61:237–242

    CAS  PubMed  Google Scholar 

  128. Huang A, Quinn H, Glover C, Henderson DC, Allen-Mersh TG (2002) The presence of interleukin-2 receptor alpha in the serum of colorectal cancer patients is unlikely to result only from T cell up-regulation. Cancer Immunol Immunother 51:53–57

    Article  PubMed  Google Scholar 

  129. Rubin LA, Galli F, Greene WC, Nelson DL, Jay G (1990) The molecular basis for the generation of the human soluble interleukin 2 receptor. Cytokine 2:330–336

    CAS  PubMed  Google Scholar 

  130. Lissoni P, Barni S, Rovelli F, Viviani S, Maestroni GJ, Conti A, Tancini G (1990) The biological significance of soluble interleukin-2 receptors in solid tumors. Eur J Cancer 26:33–36

    CAS  PubMed  Google Scholar 

  131. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    CAS  PubMed  Google Scholar 

  132. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160:1224–1232

    CAS  PubMed  Google Scholar 

  133. Saito H, Tsujitani S, Ikeguchi M, Maeta M, Kaibara N (1998) Relationship between the expression of vascular endothelial growth factor and the density of dendritic cells in gastric adenocarcinoma tissue. Br J Cancer 78:1573–1577

    CAS  PubMed  Google Scholar 

  134. Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T, Kerbel RS (1995) Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55:4575–4580

    CAS  PubMed  Google Scholar 

  135. Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D (1995) Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J Biol Chem 270:25915–25919

    CAS  PubMed  Google Scholar 

  136. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21:2000–2008

    Article  CAS  PubMed  Google Scholar 

  137. Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. ClinCancer Res 8:945–954

    CAS  Google Scholar 

  138. Kube D, Platzer C, von Knethen A, Straub H, Bohlen H, Hafner M, Tesch H (1995) Isolation of the human interleukin 10 promoter. Characterization of the promoter activity in Burkitt's lymphoma cell lines. Cytokine 7:1–7

    Article  CAS  PubMed  Google Scholar 

  139. Kitagawa N, Goto M, Kurozumi K, Maruo S, Fukayama M, Naoe T, Yasukawa M, Hino K, Suzuki T, Todo S, Takada K (2000) Epstein-Barr virus-encoded poly(A)(-) RNA supports Burkitt's lymphoma growth through interleukin-10 induction. EMBO J 19:6742–6750

    Article  CAS  PubMed  Google Scholar 

  140. Kube D, Laser H, von Knethen A, Tesch H (1999) The AT-rich region between −54 to −66 is important for the promoter activity of interleukin-10 in Epstein-Barr virus positive Burkitt's lymphoma cells. Genes Immun 1:105–114

    Article  CAS  PubMed  Google Scholar 

  141. Yang BC, Wang YS, Liu HS, Lin SJ (2000) Ras signaling is involved in the expression of Fas-L in glioma. Lab Invest 80:529–537

    CAS  PubMed  Google Scholar 

  142. Perez-Villar JJ, Melero I, Navarro F, Carretero M, Bellon T, Llano M, Colonna M, Geraghty DE, Lopez-Botet M (1997) The CD94/NKG2-A inhibitory receptor complex is involved in natural killer cell-mediated recognition of cells expressing HLA-G1. J Immunol 158:5736–5743

    CAS  PubMed  Google Scholar 

  143. Burt D, Johnston D, Rinke de Wit TF, Van den Elsen P, Stern PL (1991) Cellular immune recognition of HLA-G-expressing choriocarcinoma cell line Jeg-3. Int J Cancer Suppl 6:117–122

    CAS  PubMed  Google Scholar 

  144. Stern PL, Rinke de Wit TF (1991) The role of MHC class I expression in developmental tumours. Semin Cancer Biol 2:11–16

    CAS  PubMed  Google Scholar 

  145. Paul P, Rouas-Freiss N, Khalil-Daher I, Moreau P, Riteau B, Le Gal FA, Avril MF, Dausset J, Guillet JG, Carosella ED (1998) HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci U S A 95:4510–4515

    Article  CAS  PubMed  Google Scholar 

  146. Malmberg KJ, Levitsky V, Norell H, de Matos CT, Carlsten M, Schedvins K, Rabbani H, Moretta A, Soderstrom K, Levitskaya J, Kiessling R (2002) IFN-gamma protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J Clin Invest 110:1515–1523

    Article  CAS  PubMed  Google Scholar 

  147. Pazmany L, Mandelboim O, Vales-Gomez M, Davis DM, Reyburn HT, Strominger JL (1996) Protection from natural killer cell-mediated lysis by HLA-G expression on target cells. Science 274:792–795

    PubMed  Google Scholar 

  148. Malmberg KJ, Levitsky V, Norell H, de Matos CT, Carlsten M, Schedvins K, Rabbani H, Moretta A, Soderstrom K, Levitskaya J, Kiessling R (2002) IFN-gamma protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J Clin Invest 110:1515–1523

    Article  CAS  PubMed  Google Scholar 

  149. Nocito M, Montalban C, Gonzalez-Porque P, Villar LM (1997) Increased soluble serum HLA class I antigens in patients with lymphoma. Hum Immunol 58:106–111

    CAS  PubMed  Google Scholar 

  150. Le J, Hua JC (1995) Production of soluble HLA-class-I molecules by IFN-gamma-induced colon-adenocarcinoma cells. Int J Cancer 60:576–581

    CAS  PubMed  Google Scholar 

  151. Demaria S, Schwab R, Gottesman SR, Bushkin Y (1994) Soluble beta 2-microglobulin-free class I heavy chains are released from the surface of activated and leukemia cells by a metalloprotease. J Biol Chem 269:6689–6694

    CAS  PubMed  Google Scholar 

  152. Yang D, Le J (1994) Targeted amplification of alternatively spliced transcripts of major histocompatibility complex class I heavy chain. J Immunol Methods 176:265–270

    Article  CAS  PubMed  Google Scholar 

  153. Demaria S, Bushkin Y (2000) Soluble HLA proteins with bound peptides are released from the cell surface by the membrane metalloproteinase. Hum Immunol 61:1332–1338

    Article  CAS  PubMed  Google Scholar 

  154. Mizuki N, Ota M, Kimura M, Ohno S, Ando H, Katsuyama Y, Yamazaki M, Watanabe K, Goto K, Nakamura S, Bahram S, Inoko H (1997) Triplet repeat polymorphism in the transmembrane region of the MICA gene: a strong association of six GCT repetitions with Behcet disease. Proc Natl Acad Sci U S A 94:1298–1303

    CAS  PubMed  Google Scholar 

  155. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  CAS  PubMed  Google Scholar 

  156. Muncaster MM, Cohen BL, Phillips RA, Gallie BL (1992) Failure of RB1 to reverse the malignant phenotype of human tumor cell lines. Cancer Res 52:654–661

    CAS  PubMed  Google Scholar 

  157. Zhou Y, Li J, Xu K, Hu SX, Benedict WF, Xu HJ (1994) Further characterization of retinoblastoma gene-mediated cell growth and tumor suppression in human cancer cells. Proc Natl Acad Sci U S A 91:4165–4169

    CAS  PubMed  Google Scholar 

  158. Lang RA, Bishop JM (1993) Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74:453–462

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks members of the Moffitt Cancer Immunology Program for critical reading of the manuscript. The author's work described above was supported by grants from the National Institutes of Health and the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Blanck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanck, G. Mutations and regulatory anomalies effecting tumor cell immune functions. Cancer Immunol Immunother 53, 1–16 (2004). https://doi.org/10.1007/s00262-003-0418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0418-3

Keywords

Navigation