Skip to main content

Advertisement

Log in

Magnetic resonance elastography: evaluation of new inversion algorithm and quantitative analysis method

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

To assess mean shear hepatic stiffness calculations using various region of interest (ROI) techniques, a new inversion algorithm, and a confidence threshold mask.

Methods

Seventy-three patients (49 with abnormal liver function tests/known chronic liver disease and 24 healthy liver transplant donors) underwent liver biopsy and magnetic resonance elastography (MRE). MRE data processed with the current inversion algorithm [multiscale direct inversion (MSDI)] was assessed using 2 ROI methods (single vs. triple). The data were then reprocessed using the new inversion algorithm (multimodel direct inversion [MMDI]) Hepatic stiffness calculations were performed using a single (70%) ROI method, with/without a 95% confidence threshold mask, and compared with MSDI.

Results

For MSDI, average stiffness difference between single and triple ROI methods was not statistically significant by the 2-sample t test [0.15 kilopascals (kPa); P = .77]. For the 2 algorithms, there was little difference in average stiffness measurements of MSDI and MMDI (mean, 0.32 kPa; 9%) using a confidence mask with good agreement [intraclass correlation coefficient (ICC), 0.986 (95% CI 0.975–0.994)]. Use of the confidence mask showed excellent consistency and less variance [ICC, 0.995 (95% CI 0.993–0.998)] compared to either the inter-observer or intra-observer freehand technique.

Conclusion

MRE analysis showed no significant difference between the 2 freehand ROI techniques. With a 9% average kPa variance, stiffness measurements for MSDI and MMDI were also not significantly different. The use of the confidence mask reduces calculated stiffness variability, which impacts the use of MRE for assessing therapy response and initial/longitudinal assessment of chronic liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ICC:

Intraclass correlation coefficient

kPA:

Kilopascals

MMDI:

Multimodel direct inversion

MRE:

Magnetic resonance elastography

MSDI:

Multiscale direct inversion

ROI:

Region of interest

References

  1. Jepsen P, Vilstrup H, Andersen PK, Lash TL, Sorensen HT (2008) Comorbidity and survival of Danish cirrhosis patients: a nationwide population-based cohort study. Hepatology 48(1):214–220

    Article  PubMed  Google Scholar 

  2. Wan Y, Tang MH, Chen XC, et al. (2014) Inhibitory effect of liposomal quercetin on acute hepatitis and hepatic fibrosis induced by concanavalin A. Braz J Med Biol Res 47(8):655–661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Li J, Li X, Xu W, et al. (2014) Antifibrotic effects of luteolin on hepatic stellate cells and liver fibrosis by targeting AKT/mTOR/p70S6K and TGFβ/Smad signalling pathways. Liver Int. doi:10.1111/liv.12638

    Google Scholar 

  4. Jobara K, Kaido T, Hori T, et al. (2014) Whey-hydrolyzed peptide-enriched immunomodulating diet prevents progression of liver cirrhosis in rats. Nutrition 30(10):1195–1207

    Article  CAS  PubMed  Google Scholar 

  5. Giannitrapani L, Soresi M, Bondi ML, Montalto G, Cervello M (2014) Nanotechnology applications for the therapy of liver fibrosis. World J Gastroenterol 20(23):7242–7251

    Article  PubMed Central  PubMed  Google Scholar 

  6. Rey JW, Jahn-Eimermacher A, Doernberger V, et al. (2014) To biopsy or not to biopsy: evaluation of a large German cohort of patients with abnormal liver tests of unknown etiology. Digestion 89(4):310–318

    Article  PubMed  Google Scholar 

  7. Nalbantoglu I, Brunt EM (2014) Role of liver biopsy in nonalcoholic fatty liver disease. World J Gastroenterol 20(27):9026–9037

    PubMed Central  PubMed  Google Scholar 

  8. Perrault J, McGill DB, Ott BJ, Taylor WF (1978) Liver biopsy: complications in 1000 inpatients and outpatients. Gastroenterology 74(1):103–106

    CAS  PubMed  Google Scholar 

  9. Thampanitchawong P, Piratvisuth T (1999) Liver biopsy: complications and risk factors. World J Gastroenterol 5(4):301–304

    PubMed  Google Scholar 

  10. Guo Y, Parthasarathy S, Goyal P, et al. (2014) Magnetic resonance elastography and acoustic radiation force impulse for staging hepatic fibrosis: a meta-analysis. Abdom Imaging. doi:10.1007/s00261-014-0137-6

    Google Scholar 

  11. Venkatesh SK, Ehman RL (2014) Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am 22(3):433–446

    Article  PubMed  Google Scholar 

  12. Friedman SL, Rockey DC, Bissell DM (2007) Hepatic fibrosis 2006: report of the Third AASLD Single Topic Conference. Hepatology 45(1):242–249

    Article  PubMed  Google Scholar 

  13. Yeh WC, Li PC, Jeng YM, et al. (2002) Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med Biol 28(4):467–474

    Article  PubMed  Google Scholar 

  14. Muthupillai R, Lomas DJ, Rossman PJ, et al. (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232):1854–1857

    Article  CAS  PubMed  Google Scholar 

  15. Rouviere O, Yin M, Dresner MA, et al. (2006) MR elastography of the liver: preliminary results. Radiology 240(2):440–448

    Article  PubMed  Google Scholar 

  16. Huwart L, Peeters F, Sinkus R, et al. (2006) Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 19(2):173–179

    Article  PubMed  Google Scholar 

  17. Yin M, Talwalkar JA, Glaser KJ, et al. (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5(10):1207–1213

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mitsufuji T, Shinagawa Y, Fujimitsu R, et al. (2013) Measurement consistency of MR elastography at 3.0 T: comparison among three different region-of-interest placement methods. Jpn J Radiol 31(5):336–341

    Article  PubMed  Google Scholar 

  19. Lee DH, Lee JM, Han JK, Choi BI (2013) MR elastography of healthy liver parenchyma: normal value and reliability of the liver stiffness value measurement. J Magn Reson Imaging 38(5):1215–1223

    Article  PubMed  Google Scholar 

  20. Dzyubak B, Glaser K, Yin M, et al. (2013) Automated liver stiffness measurements with magnetic resonance elastography. J Magn Reson Imaging 38(2):371–379

    Article  PubMed Central  PubMed  Google Scholar 

  21. Goodman ZD (2007) Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol 47(4):598–607

    Article  PubMed  Google Scholar 

  22. Venkatesh SK, Wang G, Lim SG, Wee A (2014) Magnetic resonance elastography for the detection and staging of liver fibrosis in chronic hepatitis B. Eur Radiol 24(1):70–78

    Article  PubMed  Google Scholar 

  23. Bohte AE, Garteiser P, De Niet A, et al. (2013) MR elastography of the liver: defining thresholds for detecting viscoelastic changes. Radiology 269(3):768–776

    Article  PubMed  Google Scholar 

  24. Runge JH, Bohte AE, Verheij J, et al. (2014) Comparison of interobserver agreement of magnetic resonance elastography with histopathological staging of liver fibrosis. Abdom Imaging 39(2):283–290

    Article  PubMed  Google Scholar 

  25. Kim D, Kim WR, Talwalkar JA, Kim HJ, Ehman RL (2013) Advanced fibrosis in nonalcoholic fatty liver disease: noninvasive assessment with MR elastography. Radiology 268(2):411–419

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chen J, Talwalkar JA, Yin M, et al. (2011) Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology 259(3):749–756

    Article  PubMed Central  PubMed  Google Scholar 

  27. Salameh N, Larrat B, Abarca-Quinones J, et al. (2009) Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology 253(1):90–97

    Article  PubMed  Google Scholar 

  28. Hines CD, Bley TA, Lindstrom MJ, Reeder SB (2010) Repeatability of magnetic resonance elastography for quantification of hepatic stiffness. J Magn Reson Imaging 31(3):725–731

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mannelli L, Godfrey E, Graves MJ, et al. (2012) Magnetic resonance elastography: feasibility of liver stiffness measurements in healthy volunteers at 3T. Clin Radiol 67(3):258–262

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Richard L. Ehman holds patents and has a financial interest through royalties related to MRE technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin C. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.M., Grimm, R.C., Glaser, K.J. et al. Magnetic resonance elastography: evaluation of new inversion algorithm and quantitative analysis method. Abdom Imaging 40, 810–817 (2015). https://doi.org/10.1007/s00261-015-0372-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0372-5

Keywords

Navigation