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Abstract Positron Emission Tomography/Magnetic Reso-
nance Imaging (PET/MR) scanners are expected to offer a
new range of clinical applications. Attenuation correction
is an essential requirement for quantification of PET data
but MRI images do not directly provide a patient-specific
attenuation map.
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Methods We further validate and extend a Computed
Tomography (CT) and attenuation map (u-map) synthesis
method based on pre-acquired MRI-CT image pairs. The
validation consists of comparing the CT images synthe-
sised with the proposed method to the original CT images.
PET images were acquired using two different tracers
('8F-FDG and !'8F-florbetapir). They were then recon-
structed and corrected for attenuation using the synthetic
p-maps and compared to the reference PET images cor-
rected with the CT-based w-maps. During the validation, we
observed that the CT synthesis was inaccurate in areas such
as the neck and the cerebellum, and propose a refinement
to mitigate these problems, as well as an extension of the
method to multi-contrast MRI data.

Results With the improvements proposed, a significant
enhancement in CT synthesis, which results in a reduced
absolute error and a decrease in the bias when reconstruct-
ing PET images, was observed. For both tracers, on average,
the absolute difference between the reference PET images
and the PET images corrected with the proposed method
was less than 2%, with a bias inferior to 1%.

Conclusion With the proposed method, attenuation infor-
mation can be accurately derived from MRI images by
synthesising CT using routine anatomical sequences. MRI
sequences, or combination of sequences, can be used to
synthesise CT images, as long as they provide sufficient
anatomical information.

Keywords Image synthesis - Attenuation correction -
PET/MR

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00259-015-3082-x-x&domain=pdf
http://orcid.org/0000-0002-4668-2006
http://dx.doi.org/10.1007/s00259-015-3082-x
mailto:n.burgos.12@ucl.ac.uk
mailto:s.ourselin@ucl.ac.uk

1448

Eur J Nucl Med Mol Imaging (2015) 42:1447-1458

Introduction

Recent clinical studies have shown the advantages
of Positron Emission Tomography/Magnetic Resonance
(PET/MR) imaging in neuro-oncology [1], epilepsy [2]
and neurodegenerative diseases such as Alzheimer’s disease
(AD) [3]. Correcting for photon attenuation is essential to
accurately quantify the radionuclide uptake, especially in
neuroimaging where the skull attenuation coefficients are
high. In the absence of a transmission source, Computed
Tomography (CT) image or time-of-flight PET, the atten-
uation information can only be derived from MRI images.
However, MRI image intensities do not reflect the electron
density, which prevents a direct estimation of the attenuation
coefficients. With MRI images, a specific challenge is to
differentiate between bone and air as they often both have
low intensity. A lack of accuracy in the bone delineation
has been shown to lead to a strong spatial bias of the PET
activity [4].

MRI-based attenuation correction methods can be classi-
fied in two main categories: segmentation and registration-
based approaches [5]. The segmentation-based strategy
consists of assigning uniform linear attenuation coeffi-
cients to tissue classes obtained by segmenting a T1-
weighted MRI image [6], or images derived from Dixon [7]
and/or Ultrashort-Echo-Time (UTE) sequences [8—12]. In
the brain, the use of Dixon sequences is limited to water-fat
separation while UTE sequences allow cortical bone seg-
mentation. This class of methods can produce inaccuracies
in areas such as the sinuses, where differentiation between
bone and air is required, and the resulting attenuation maps
do not reflect the range of attenuation values present in the
body.

In registration-based methods, an attenuation map (u-
map) template, derived from pre-acquired CT or transmis-
sion images, is deformed to match the patient’s anatomy.
In the method from [13], the CT template is directly reg-
istered to the patient MRI image while in other methods
[14-17], an MRI image is associated with the p-map tem-
plate and the mapping is performed between the template
and patient MRI images. Used on its own, image registra-
tion proves to be insufficient to generate accurate p-maps
but has shown promising results when associated with a
Gaussian process [15] or a voxel-wise weighting scheme
[16, 17].

Combining segmentation and registration, Izquierdo-
Garcia et al. [18] propose to generate attenuation maps
using the Statistical Parametric Mapping (SPM) software.
The patient’s MRI image is first segmented into 6 tissue
classes and then non-rigidly registered to a segmented MRI
template. The CT template, aligned with the MRI template,
is finally mapped into the patient’s space by applying the
inverse transformation.
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In this paper, we validate a CT and attenuation map
synthesis algorithm based on a multi-atlas information prop-
agation scheme developed by Burgos et al. [16, 17] and
compare it to a state-of-the-art method [18] based on a pack-
age widely used in the neuro-imaging community (SPM).
In order to mitigate some limitations that we observed, we
also propose a better estimation of the local image sim-
ilarity and an extension of the method to multi-contrast
MRI data. The method was validated with 22 subjects with
various dementia syndromes, who had MR imaging and
two PET/CT scans with different tracers: '8F-FDG and
I8F_florbetapir. The validation was done jointly using two
PET tracers to confirm the independence of the method
to the radiopharmaceutical administered. We assessed the
accuracy of the CT synthesis by comparing to the original
CT images. The PET reconstruction accuracy was assessed,
for both tracers, by comparing the reference PET images,
corrected for attenuation using the reference CT-based u-
map, to the PET images corrected using the proposed
method. We analysed results both across the full brain but
also in regions of particular interest, e.g. when studying
dementia.

Materials and methods
PET/CT and MRI data acquisition

Twenty-two sets of '3F-FDG PET, '®F-florbetapir PET, CT
and MRI brain images were used in order to validate our
attenuation correction method. The 22 individuals (5 with
posterior cortical atrophy, 5 with semantic dementia, 4 with
progressive nonfluent aphasia, 3 with logopenic progres-
sive aphasia and 5 healthy controls) each attended for three
imaging sessions on three consecutive days. At the first
visit, MR imaging was acquired on a 3T Siemens Magne-
tom Trio scanner (Siemens Healthcare, Erlangen, Germany)
and includes a T1-weighted magnetisation-prepared rapid
gradient-echo (3.0 T; acquisition time 9 min 23 s; TE/TR/TI,
2.9 ms/2200 ms/900 ms; flip angle 10°; voxel size 1.1 x
1.1 x 1.1 mm?) and a T2-weighted (3.0 T; acquisition time
4 min 43 s; TE/TR, 401 ms/3200 ms; flip angle 120°; voxel
size 1.1 x 1.1 x 1.1 mm?) volumetric scans. For the second
and third visits, imaging was performed on a GE Discovery
ST PET/CT scanner (GE Healthcare systems, Waukesha,
WI), providing CT (voxel size 0.59 x 0.59 x 2.5 mm?,
120 kVp, 300 mA) and PET (voxel size 1.95 x 1.95 x
3.27 mm?) images. For visit two, images were acquired
for 10 minutes, 50 minutes after injection of 200 MBq
I8E_florbetapir; for visit three, images were acquired for
20 minutes, 30 minutes after injection of 185 MBq '3F-
FDG. The local ethics committee approved the study and all
subjects gave written, informed consent.
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Because of the separate PET and MRI acquisitions,
sequences used for MR-based attenuation correction, such
as Dixon or UTE sequences, were not acquired. We refer the
reader to [17] for a comparison between the CT synthesis
and UTE-based methods.

Validation on '8F-FDG and 8F-florbetapir PET
tracers

The aim of this paper is to validate the MR-based atten-
uation correction method proposed by [17] for '3F-FDG
and '3F-florbetapir PET tracers. To do so, pseudo CT
(pCT) images, synthesised from MRI images as explained in
section “CT synthesis”, were used during the reconstruction
of PET images to correct for attenuation.

A common practice in the neuroimaging community is
to normalise PET images using a reference region [19, 20].
For the FDG PETs, the mean uptake value in the pons [19]
was used to normalise the PET images of each subject,
thus allowing for a comparable range of values. For the
florbetapir PETSs, the mean value in the cerebellar grey mat-
ter [20] was used. These reference regions were extracted
from parcellated T1-weighted MRI images. The parcella-
tions were obtained from a multi-label fusion algorithm, as
implemented in NiftySeg [21].

Once the PET images were normalised, the analysis con-
sisted in providing quantitative regional assessment of the
mean absolute error and the mean voxel bias between the
PET images corrected with the method proposed and the
PET images corrected with the attenuations maps derived
from the reference CT images. The full brain region, poste-
rior cingulate gyrus, angular gyrus, superior frontal gyrus,
fusiform gyrus and anterior cingulate gyrus, regions relevant
to dementia pathologies, were obtained from the parcel-
lated T1-weighted MRI images and propagated to the PET
images.

CT synthesis

The CT synthesis method developed in [17] relies on a
pre-acquired set of aligned MRI/CT image pairs from mul-
tiple subjects forming an MRI-CT database. To generate the
CT from a target MRI image, each MRI image from the
database are deformed to the target MRI image using affine
followed by non-rigid registration [22]. The CT images in
the database are then mapped using the same transformation
to the target MRI image. A local image similarity mea-
sure [23] between the target MRI and the set of registered
MRIs from the database is used as a surrogate of the under-
lying morphological similarity, under the assumption that,
if two MRIs are similar at a certain spatial location, the
two CTs will also be similar at this location. To generate
the pseudo CT, the set of registered CTs is fused using a

voxel-wise weighting scheme [21, 24]. Finally, the CT val-
ues, expressed in HU, are converted to linear attenuation
coefficients, in cm™!, using a piecewise linear transfor-
mation [25]. The resulting attenuation maps are smoothed
using a Gaussian filter with a kernel standard deviation of
2 voxels (1.172 x 1.172 x 2.5 mm?) to approximate the
PET’s point spread function (PSF), and resampled to the
PET’s discretisation grid.

While providing an accurate p-map synthesis, we found
through experimentations (see section “Results”) that the
method described in [17] had a few limitations related to
the field-of-view (FOV) and the lack of complementary
information, resulting in localised reconstruction inaccura-
cies close to critical areas used for standard uptake value
ratio (SUVR) normalisation. Thus, rather than only validat-
ing the method in [17] for two tracers, we developed novel
methodologies to address these limitations.

Convolution-based ROI-LNCC

The FOV of the MRI images usually contains the head
and neck of the subject, while in the CT FOV only the
head is visible, which can lead to mismatching informa-
tion when images from the two modalities are aligned.
A similar mismatch can occur with inter-subject map-
ping. If the mismatch between FOVs is not taken into
account, the inter-subject mapping and resampling pro-
cesses introduce areas where no information is available,
which can lead to severe underestimation of the u-map.
Those areas have to be accounted for when the similar-
ity measure is computed and during the intensity fusion
process. We extend the convolution-based local normalised
correlation coefficient (LNCC) method by Cachier et al.[23]
to irregular regions-of-interest (ROI) (see Appendix A).
Thanks to this process, LNCC values are only valid
within the bounds of the FOV. The ROI-LNCC at each
voxel is then ranked across all atlas images and the
ranks are converted to weights by applying an exponen-
tial decay function. These weights are used in a spa-
tially varying weighted averaging to reconstruct the target
CT [17].

Exploiting MRI multiple contrasts

The algorithm developed by [17] relies on the ability to
accurately map T1 brain images from different subjects,
a process that can be challenging in low-contrast areas
such as the sinuses and the bone/dura/cerebrospinal fluid
(CSF) boundary. As T1-weighted and T2-weighted MRI
sequences provide complementary information to describe
the underlying subject’s anatomy, we propose to combine
information from both sequences at the registration and
image similarity stages.

@ Springer
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To do so, T1 and T2 images are affinely aligned to
form a T1-T2 pair. The inter-subject coordinate mapping
is obtained using a symmetric global registration followed
by a cubic B-spline parametrised non-rigid registration,
using multivariate normalised mutual information, as imple-
mented in NiftyReg [22]. All the CTs in the database are
then mapped to the target subject using the transforma-
tion that maps the subject’s corresponding MRI pair in the
database to the target MRI. The multivariate ROI-LNCC
used for the local atlas ranking procedure is here defined as
the sum of the ROI-LNCC of each channel (Appendix B).

SPM-based approach

For comparison purposes, we implemented the approach
presented by Izquierdo-Garcia et al. [18]. The initial step
consists of creating an MRI and a CT template. To do so,
the T1-weighted MRI images from the MRI-CT database
are first segmented into 6 tissue classes (grey matter, white
matter, CSF, bone, soft tissue, and air) using SPM12 [26].
The 22 segmented images are then non-rigidly co-registered
using Dartel [27] to form the MRI template. The same trans-
formations are applied to the CT images from the MRI-CT
database, and the CT template is created by averaging the
22 co-registered CT images. To generate a pseudo CT, the
patient’s MRI image is segmented into 6 tissue classes and
non-rigidly registered to the MRI template. The associated
CT template is finally mapped into the patient’s space by
applying the inverse transformation.

PET reconstruction

We used the PET images provided by the PET/CT scanner
as input for a simulation technique. To evaluate the effect of
different ;-maps on the PET images, we followed a projec-
tion/reconstruction technique described in [17]. The original
PET image and the reference CT-based p-map were pro-
jected to obtain simulated sinograms. The scatter sinogram
was estimated from the emission data and the attenuation
maps using a single scatter simulation algorithm [28]. Pro-
jection data were rescaled to account for attenuation and
the estimated scatter sinogram was added to produce a non-
corrected sinogram, similar to the data acquired by the
PET/CT scanner. The non-corrected PET sinogram was then
reconstructed with both scatter estimation and attenuation
correction based on the reference CT or pseudo CT p-maps.
The PET image reconstructed using the reference CT-based
u-map was considered as the reference PET. An Ordered
Subsets Expectation Maximisation (OSEM) algorithm with
3 iterations of 21 subsets was used. Effects of PSF and ran-
doms were not included and post-reconstruction smoothing
was not applied. The simulation and reconstruction were
performed using STIR [29].
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Algorithmic comparison

The performance of the proposed synthesis algorithm was
compared with ground truth data for 22 subjects following
a leave-one-out cross-validation scheme. For each subject,
and both PET tracers, 5 pseudo CTs were synthesised using
a database of 21 subjects following the method from [17]
and the improvements proposed. An additional pseudo CT
was synthesised using the SPM-based approach [18]:

— pCTgpy using the method described in [18] given the
T1 image;

— pCTrpy using the method described in [17] given the T1
image;

—  pCTr, using the method described in [17] given the T2
image;

— npCTry; using the ROI-LNCC on the T1 image;

— npCTr, using the ROI-LNCC on the T2 image;

—  npCTyy 1, using the MV-ROI-LNCC on the T1-T2 pair
of images.

In order to preserve the alignment of the CT and PET
images, the two PET/CT acquisitions were considered inde-
pendently, meaning that we created two MR-CT databases:
one with the CT images from the '8F-FDG PET/CT scan
and the MR images; and another one with the CT images
from the '8F-florbetapir PET/CT scan and the MR images.

The quantitative validation consisted of two steps:

1. The pseudo CTs were compared to the subject’s original
CT image, validating the accuracy of the CT synthesis.

2. For both FDG and florbetapir tracers, the simulated
PET data were reconstructed using the different pCT
u-maps, and compared with the reference PET recon-
structed using the CT-based p-map, validating the
accuracy of the PET attenuation correction.

Statistical significance was assessed using the paired one-
tailed Wilcoxon signed-rank test, with a 5% significance
level.

Pseudo CT accuracy

For every subject, the mean absolute error and the mean
error, defined respectively as

1
MAE = — I, — R,| and
Ny veV
1
ME = =30 =Ry, (M

were calculated between the reference CT (R = CT) and
each of the pseudo CTs (I = pCT), in aregion of interest V
comprising Ny voxels. This region of interest is limited to a
mask defined by segmenting the head from the background
using the original CT. The MAE provides information about
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reconstruction error and deviations from the expected values
while the ME gives information about an inherent bias in
the methodology.

To localise the error and bias introduced by each
approach, the original CTs and pseudo CTs from the 22
subjects were mapped to a common space via a group-
wise registration [30]. Difference maps were then computed
between the original CT and the pseudo CTs and averaged
across all the subjects. Results are presented using a mean
intensity projection: the mean value along a projection line
is assigned to the pixel represented on the projected image.

PET accuracy

We first computed the relative MAE and ME in the refer-
ence regions, defined respectively as

I, — R
MAE = 100 Zuevlh = Rl and
ZUGV RU
I, — R
ME = 100 M , )
Zvev RU

between the reference PET (R = PETcr,,r) and each
of the PETs corrected with the synthetic w-maps (I =
PETyct,ref)- This analysis aims at characterising the pres-
ence of error and bias in the reference regions.

In order to provide a quantitative regional assessment
of the error and bias after normalisation by the reference
region, we computed the relative MAE and ME between
the normalised reference PET (R = PETcr/mean;.f)
and each of the PETs corrected with the synthetic p-maps
(I = PETycr/mean,.s). To assess the performance of
the proposed method in areas relevant to dementia patholo-
gies, we analysed results in the full brain region, but also in
the posterior cingulate gyrus, angular gyrus, superior frontal
gyrus, fusiform gyrus and anterior cingulate gyrus.

Finally, the PET images from the 22 subjects were
mapped to a common space via a CT-based groupwise regis-
tration [30]. Difference maps were then computed between
the reference PET and each of the PETs corrected with
the pCT p-maps, and their average and standard deviation,
across all the subjects, displayed using a mean intensity
projection.

Results
Pseudo CT accuracy

The average, standard deviation (SD), minimum and max-
imum values of the MAEs and MEs computed in the
full head are presented in Table 1. We note that the
MAE is smaller with the proposed method than with the
SPM-based approach. Using the ROI-LNCC instead of the
classical LNCC [17] significantly (p < 10’4) decreases
the MAE with further reduction in MAE (p < 10_4)
when exploiting the multi-contrast approach. By combin-
ing these two steps, the CT synthesis error is decreased,
on average, by 30%. The ME results presented in Table 1
show that using the ROI-LNCC instead of the classi-
cal LNCC also reduces the bias. An example of original
CT and pseudo CTs is presented in Fig. 1 for the FDG
cohort.

Note that the difference observed between the FDG and
florbetapir cohorts (Table 1) is small and is only due to
differences in the affine alignment between the CT and
MRI images used to form the two databases. Using a single
database would have been sufficient but we chose to pro-
cess the two PET/CT acquisitions separately to maintain the
alignment of the CT and PET images, and thus not favour
an acquisition while analysing the PET results.

The difference maps computed between the original
CT and the pseudo CTs, and averaged across all the

Table 1 Mean, standard deviation (SD), minimum and maximum of the MAE and ME computed for the full head between the reference CT and

the pseudo CTs for the '8F-FDG and '8F-florbetapir PET/CT scans

FDG cohort Florbetapir cohort

MAE (HU) ME (HU) MAE (HU) ME (HU)

Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max
pCTspm 130 33 95 246 —24 27 —61 49 129 32 90 244 —-23 25 —62 49
pCTry 122 21 90 158 -39 22 =77 10 118 22 82 161 -33 19 —63
pCTr, 119 21 87 162 -33 25 —-69 17 116 20 84 158 -29 22 —67 5
npCTr, 89 11 73 122 3 16 —24 44 89 11 70 126 4 14 -21 30
npCTr, 88 9 75 107 7 17 —18 53 88 8 76 102 7 14 —-16 37
npCTp 1y 82 8 69 101 4 15 —-19 47 82 7 70 97 4 13 —14 32
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Fig. 1 For arepresentative CT
subject, the acquired CT, T1 and
T2 images (left), and the pseudo
CTs with the associated
difference images
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subjects, are presented in Figure 2 for the '3F-FDG  “Convolution-based ROI-LNCC”. Regardless of the method
PET/CT scan. Large errors at the top and bottom of the  applied, the largest errors are now mostly located in the
head, when the LNCC of [17] is used, disappear when  sinus area and at the bone/dura/CSF boundary. Similar
the FOV are properly handled as described in section  results were obtained for the '3F-florbetapir PET/CT scan.

Fig. 2 Mean intensity
projection of the difference,
averaged over 22 subjects,
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Table 2 Average & SD of the relative MAE and ME between the '8F-
FDG and '8F-florbetapir PETs corrected with the CT-based p-maps
and the PETs corrected with the synthetic u-maps in 7 ROIs: the ref-
erence region used for normalisation, the brain region, angular gyrus

(AG), superior frontal gyrus (SFG), posterior cingulate gyrus (PCG),
fusiform gyrus (FG) and anterior cingulate gyrus (ACG)

PCTspm pCTr, pCTr, npCTr, npCTp, npCTry 12
FDG Ref rMAE (%) 238+ 1.12 1.88 = 0.71 1.81 £ 0.75 1.79 + 0.64 1.72 £ 0.62 1.64 + 0.60
tME (%) 0.65 +2.04 —0.40 £ 1.26 —0.14 £ 1.16 —0.12 £ 1.37 0.09 £ 1.23 -0.15 £ 1.21
Brain rMAE (%) 2776 £ 1.13 2.254+0.75 2.09 £0.72 1.96 + 0.56 1.85 £ 0.64 1.71 £ 0.62
rME (%) —0.51 £ 1.61 0.46 + 1.06 0.41 £ 0.58 0.58 = 0.97 0.54 £+ 1.08 0.56 = 0.98
AG rMAE (%) 2.93 + 1.60 2.99 +2.36 2.48 + 1.54 279+ 191 232+ 1.45 2.10 + 1.41
rME(%) —0.84 £ 2.95 1.83 +3.09 1.37 £ 2.46 1.58 +2.69 1.17 £ 2.33 0.98 +2.17
SFG rMAE (%) 3.63 +3.04 2.16 = 1.26 1.72 £ 1.07 2.01 +1.17 1.66 + 1.02 1.53 +1.01
rME (%) —0.37 £ 3.49 0.61 +2.10 0.90 + 1.65 0.38+1.95 0.69 £ 1.65 0.57 = 1.58
PCG rMAE (%) 1.56 £ 1.09 1.21 £ 0.85 1.14 £ 0.79 1.11 £ 0.73 1.10 £ 0.74 1.06 = 0.74
rME (%) —0.62 + 1.79 0.74 £ 1.24 0.59 +£1.23 0.50 = 1.19 041 +1.24 0.44 +1.20
FG rMAE (%) 2.23+1.09 1.87 £ 0.59 1.91 £ 0.63 1.83 £ 0.56 1.84 + 0.63 1.68 = 0.57
rME (%) —0.59 £ 1.85 0.78 £ 1.17 0.40 £+ 1.31 0.71 £ 1.17 0.38 £ 1.27 0.55+1.12
ACG rMAE (%) 1.57 £ 1.01 1.23 +0.70 1.08 = 0.75 1.14 + 0.60 1.09 + 0.69 1.05 £+ 0.66
tME (%) —0.49 + 1.76 0.64 + 1.19 0.49 £ 1.16 0.36 = 1.18 0.27 £ 1.21 039+ 1.14
Florbetapir ~ Ref rMAE (%) 2.73 £0.62 2.74 £ 0.95 2,77+ 1.09 2.02 + 0.59 2.11+0.74 1.93 £ 0.62
tME (%) —0.74 £ 1.51 —1.05+1.24 —0.95 + 1.48 042 +1.21 0.50 £ 1.36 0.39 + 1.20
Brain  rMAE (%) 276 +£1.13 2.56 £ 1.17 238+ 1.14 1.87 £ 0.39 1.74 + 0.48 1.60 = 0.41
tME (%) 0.94 + 1.45 1.27 + 1.49 1.24 + 1.40 0.04 +0.92 0.02 £ 0.99 —0.02 + 0.87
AG rMAE (%) 282+ 1.54 3.324+2.43 248 £+ 1.64 2.67+1.43 1.90 &+ 1.05 1.82 £ 0.94
tME (%) 0.76 £+ 2.85 2.16 £3.25 1.71 £ 2.28 0.68 +2.53 0.27 £ 191 0.06 £ 1.77
SFG rMAE (%) 3.62 +4.13 2.36 £ 1.36 212+ 1.32 1.86 £0.78 1.50 + 0.85 1.38 £ 0.72
tME (%) 1.43 +4.45 1.18 £ 2.22 1.42 4+ 1.93 —0.33 + 1.66 —0.07 £ 1.54 —0.28 = 1.34
PCG rMAE (%) 1.46 £ 0.93 1.66 £ 1.21 1.62 £ 1.22 1.07 £ 0.53 1.09 £ 0.69 1.05 + 0.59
tME (%) 0.65 £ 1.59 1.34 £ 1.55 1.27 &+ 1.57 —0.11 £ 1.16 —0.15+1.24 —0.17 £ 1.16
FG rMAE (%) 2.20 + 0.90 224 +1.15 2.07 £ 1.05 1.57 £ 0.36 1.58 & 0.41 1.49 + 0.36
tME (%) 0.72 + 1.50 1.64 £ 1.50 1.33 £ 1.41 0.25+0.92 —0.02 + 0.89 0.11 £ 0.85
ACG rMAE (%) 1.61 £ 1.04 1.59 £ 1.15 1.62 £ 1.21 1.11 £ 0.58 1.20 + 0.82 1.04 £ 0.68
tME (%) 0.89 £ 1.63 1.22 + 1.47 1.21 £ 1.56 —0.27 £ 1.16 —0.26 + 1.37 —-0.22 + 1.17
PET accuracy cerebellum will lead to normalisation-derived inaccuracies

The average and SD of the rMAEs and rMEs are presented
in Table 2. Results for the brain region are also displayed
with box plots in Fig. 3. Box plots displaying results
in the other ROIs are available in the supplemental data
(Figs. S1 and S2).

Errors in the reference regions are lower for the FDG
PET than for the florbetapir PET as the regions surrounding
the pons are better synthesised than the cerebellum, which
is closer to the border of the FOV. In both cases, with the
improvements proposed, the error is less than 2%. Note that,
when using the method from [17], the larger errors in the

in the full brain.

For both tracers, in the brain region, the rMAE is smaller
with the proposed method compared to the SPM-based
approach. When the ROI-LNCC similarity measure is com-
puted instead of the standard LNCC [17], the rMAE signifi-
cantly decreases. Exploiting MRI multiple contrasts further
reduces the rMAE. By combining the two improvements,
the PET reconstruction error in the brain is on average
decreased, by 25% for the FDG tracer and 40% for the
florbetapir tracer, and remains below 2% (Fig. 3). In ROIs
close to the skull (superior frontal gyrus, angular gyrus and
fusiform gyrus), the rMAE does not exceed 3%, while in
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Fig. 3 Boxplots displaying the median, lower and upper quartiles, minimum, maximum and outliers of the rMAE (red) and rME (blue) calculated
between the reference PETs and the PETs corrected with the synthetic ;-maps, in the brain region for both tracers

deeper structures (posterior cingulate gyrus, and anterior
cingulate gyrus), with the new improvements, the rMAE is
below 1.2%. A summary of the significance tests between
the different methods is presented in Fig. 4.

In order to analyse the presence of bias in the PET
images, we computed the rME between the reference PETs
and the PETs corrected with the synthetic p-maps. In the
full brain region, the rME results indicate a low bias: the
rME is on average below 0.6% for the FDG tracer, and
below 0.1% for the florbetapir tracer, with a standard devi-
ation of 1% for both tracers. For the FDG tracer, the region
presenting the greatest bias is the angular gyrus with an ME

Brain AG

Ref

pCTspm

pCTr1

(O] pCTr2
a

w  npCTn

npCTr2

pCTr1,12
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T2
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Florbetapir

Fig. 4 Results of the one-tailed Wilcoxon signed-rank test at the 5%
significance level for the rMAE computed between the reference PET
and each of the PETs corrected with the pCT p-maps in the reference
regions, the full brain and 5 ROIs. The colour green indicates a sig-
nificant decrease in rMAE for the row method when compared to the
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of 0.98 £ 2.17%. For the florbetapir tracer, the superior
frontal gyrus presents the greatest bias, with an ME of -0.28
+ 1.34%.

An example of PET images reconstructed with the CT-
based u-maps and synthetic u-maps (npCTrpy 1) is pre-
sented in Fig. 5.

The average and SD across all the subjects of the
difference maps computed between the normalised refer-
ence PETs and PETs,cr are presented in Fig. 6. Large
errors are visible in the cerebellum when the LNCC
of [17] is used (Fig 6, pCTt; & pCTr,) but are reduced
when the ROIs are properly handled as described in

column method, while the red indicates that the difference in rMAE
is not significant. Note that, for most ROIs, npCTy; 15 is significantly
better
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section “Convolution-based ROI-LNCC” (Fig 6, npCTy,;
& npCTp,). Moreover, the error decreases further when
the multi-contrast data are used (Fig 6, npCTyy 1))
Note that, as the cerebellar grey matter is used to nor-
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malise the !3F-florbetapir PET images, the presence
of bias in this area leads to major activity misesti-
mations in the full brain (Fig 6, Florbetapir, pCTr,
& pCTro).
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Fig. 6 Mean intensity projection of the average and SD over 22 subjects of the difference maps. The difference maps were computed between
the normalised '8F-FDG (top) and 18F—ﬂorbetapir (bottom) reference PETs and the PETs corrected with the synthetic p-maps
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Discussion

Correcting for attenuation is an essential requirement to per-
form an accurate quantitative analysis of PET data. In this
paper, we jointly validated an MR-based attenuation cor-
rection method on two different tracers using 22 subjects
with dementia. Each subject underwent two PET/CT scans,
with '"8F-FDG and '3F-florbetapir tracers, providing ref-
erence CT and PET images, and an MRI scan providing
T1-weighted and T2-weighted images. The evaluation was
conducted both in the full brain and in ROIs relevant for
dementia (posterior cingulate gyrus, angular gyrus, superior
frontal gyrus, fusiform gyrus and anterior cingulate gyrus).

While validating the method using the pseudo CTs
from [17], we noticed problems in locations close to the
edges of the template database field-of-view, such as the
areas surrounding the cerebellum. This was problematic
because the cerebellum was used as a SUVR normalising
region. By introducing some methodological improvements,
we were able to improve the CT synthesis accuracy. First,
we proposed a new similarity measure for irregular regions-
of-interest (ROI-LNCC) to increase the accuracy of the
synthesis at the borders of the field-of-view. As a second
step, we extended the method from [17] to multi-contrast
MR data, allowing the introduction of complementary infor-
mation. We showed that one can synthesise CT from T1
images, T2 images, but also combinations of MR con-
trasts. Combining complementary information describing
the underlying subject’s anatomy, at both the registration
and image similarity stages, reduces the ill-posedness of
the problem. As a consequence, the CT synthesis error
decreases, which leads to reduced errors when comparing
PET images to the reference PETs. By combining these two
improvements, the average MAE in the full brain for the
florbetapir PET images decreased from 2.56% to 1.60%,
with a reduction in MAE variance from 1.17% to 0.41%
(Table 2).

When analysing the results of the CT synthesis, we note
that the errors are mostly located in the sinus area and at
the bone/dura/CSF boundaries (Fig. 2), regions with a low
tissue discriminative power. We demonstrated that, for both
tracers, in the brain region, the error when comparing PET
images corrected with the pseudo CTs to the reference PET
images corrected using the original CT is less than 2%
(Table 2). While in ROIs close to the skull (superior frontal
gyrus, angular gyrus and fusiform gyrus), the MAE can be
up to 3%, in deeper structures (posterior cingulate gyrus,
and anterior cingulate gyrus), the MAE is below 1.2%. The
variance in SUVR explained by the attenuation correction
error is likely to be smaller than the intrinsic PET noise
variance [31].

We also compared our approach to a state-of-the-art,
template-based, method using SPM. The pseudo CT is
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generated by non-rigidly registering the segmented patient’s
T1 image to a segmented T1 template and by applying the
inverse transformation to the associated CT template. Gen-
erating the MRI and CT templates through a co-registration
and averaging process leads to smooth pseudo CT images.
Moreover, the outcome of the process depends on a sin-
gle registration, which might be inaccurate. As a result,
for both PET tracers, the proposed method outperforms the
SPM-based approach.

To the best of our knowledge, this is the first time
that an MR-based attenuation correction method has been
jointly validated with two different PET tracers. While
the FDG PET images were only moderately affected by
the inaccuracies at the border of the FOV of the original
pseudo CTs [17], these inaccuracies had a major impact
on the florbetapir PET images as they were normalised
using the cerebellar grey matter. With the improvements
proposed, CT images were more accurately synthesised
at the borders of the FOV, which includes the cerebel-
lum area, thus reducing the errors observed in the flor-
betapir PET images. Our validation showed that, for both
tracers, the PET images were accurately corrected for
attenuation.

The proposed method does not require the acquisition
of PET analysis specific MRI sequences, such as Dixon
or UTE, which means that the acquisition protocol can be
entirely dedicated to clinically-relevant sequences. In this
paper, we used T1 and T2 images as these sequences are
usually acquired as part of many standard acquisition proto-
cols, but the method could be extended to any combination
of sequences providing enough structural information and
structural contrast. The resolution of both the T1 and T2
images was high (1.1 mm isotropic), which might not
always be the case in clinical practice. For example, if the
resolution of the T2 image is lower than the resolution
of the T1 image, its contribution to the synthesis process
may be limited. The quality of the results obtained is likely
to be between the quality reached when using two high-
resolution images and the quality reached when only using
one sequence.

The scope of applications of the proposed methodology
exceeds the field of PET/MR. For example, p-map synthe-
sis methods can also be used to correct the PET images for
attenuation when the radiation dose needs to be kept to a
minimum, such as for paediatric subjects. Using an appro-
priate database, a pseudo CT could be synthesised from an
MRI image acquired during a previous examination, then
registered to the non corrected PET image and finally used
to correct the PET data.

While we focused our work on brain applications using
subjects who do not present unusual or highly abnormal
skull anatomies, further experiments are required to validate
the method on subjects with pathologies affecting regions
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critical for attenuation correction, such as the skull, and in
other regions of the body. As long as the morphological
variability is represented in the database and the registration
between MRI pairs is sufficiently accurate, the technique
could, in theory, be applied to other body parts. Further-
more, the inclusion of clinical information (patient’s gender,
age, weight or ethnicity), as suggested by [32], could be
used to improve the bone-density estimates.

Conclusion

This paper presents a validation on '8F-FDG and '3F-
florbetapir PET tracers of an improved CT and attenuation
map synthesis method based on the work by Burgos et al.
[17]. The difference between the PET images corrected for
attenuation with the CT-based p-maps and the PET images
corrected using the synthetic p-maps is, on average, less
than 2% for both tracers. The proposed method can be
beneficial for clinical practice as it does not require the
acquisition of task-specific MRI sequences.
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Appendix A: Convolution-based LNCC applied
to irregular regions-of-interest

Let the target subject’s MRI be denoted by 7™ &/ and, for
each of the N atlases in the database, let the mapped MRI

images of atlas n be denoted by J,f” Rl The ROI-LNCC
between IMR! and J,f” RI at voxel v is then given by:

(IMRI’ J%R[)U

ROI-LNCC,, , = .
n,v U(IMRI)UU(]HMRI)U

3

Let Q be a density function equal to 1 where the fields
of view overlap, and 0 otherwise. The means and standard
deviations at voxel v are calculated using a Gaussian kernel
G with standard deviation o = 3 voxels through density
normalised convolution:

_ Go, %1 —  _
1v=7[ o 11, o)y =y 1% ~T,

ILDo=1-Ty—1y-Ty ,
[Gog 2] v (L) v—"1y-Jy

v

where * denotes the convolution operator and G4, * 2 rep-
resents a density normalisation term that compensates for
areas with missing information. As the values of LNCC
are only valid within the bounds of the FOV, LNCC values
outside the FOV are set to —oo.

Appendix B: Multivariate ROI-LNCC

The multivariate ROI-LNCC (MV-ROI-LNCC) used for the
local atlas ranking procedure in the case of multiple MR
constrats is here defined as

MV-ROI-LNCC, = ROI-LNCC (1“, 1{‘) + ROI-LNCC (1 T2 T 2) W
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