Skip to main content

Advertisement

Log in

EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

These guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The purpose of the guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting the results of fluorine-18 fluoro-2-deoxyglucose ([18F]FDG) PET imaging of the brain. The aim is to help achieve a high standard of FDG imaging, which will increase the diagnostic impact of this technique in neurological and psychiatric practice. The present document replaces a former version of the guidelines that were published in 2002 [1] and includes an update in the light of advances in PET technology, the introduction of hybrid PET/CT systems and the broadening clinical indications for FDG brain imaging. These guidelines are intended to present information specifically adapted for European practice. The information provided should be taken in the context of local conditions and regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartenstein P, Asenbaum S, Catafau A, et al. European Association of Nuclear Medicine procedure guidelines for brain imaging using [(18)F]FDG. Eur J Nucl Med Mol Imaging 2002;29:BP43–8.

    CAS  PubMed  Google Scholar 

  2. Kuwert T, Bartenstein P, Grünwald F, et al. Clinical value of positron emission tomography in neuromedicine. Position paper on results of an interdisciplinary consensus conference. Nervenarzt 1989;69:1045–160.

    Article  Google Scholar 

  3. Asenbaum S. Guideline for the use of FDG PET in Neurology and Psychiatry. Austrian Society of Nuclear Medicine 2001. http://www.ogn.at.

  4. Schelbert HR, Hoh CK, Royal HD, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. Society of Nuclear Medicine. J Nucl Med 1998;39:1302–5.

    CAS  PubMed  Google Scholar 

  5. Society of Nuclear Medicine Brain Imaging Council. Ethical clinical practice of functional brain imaging. J Nucl Med 1996;37:1256–9.

    Google Scholar 

  6. Messa C, Fazio F, Costa DC, Ell PJ. Clinical brain radionuclide imaging. Semin Nucl Med 1995;25:111–43.

    Article  CAS  PubMed  Google Scholar 

  7. Setani K, Schreckenberger M, Sabri O, et al. Comparison of different methods for attenuation correction in brain PET: effect on the calculation of the metabolic rate of glucose. Nuklearmedizin 2000;39:50–5.

    CAS  PubMed  Google Scholar 

  8. Herholz K, Salmon E, Perani D, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002;17:302–16.

    Article  CAS  PubMed  Google Scholar 

  9. Herholz K, Carter SF, Jones M. Positron emission tomography imaging in dementia. Br J Radiol 2007;80:S160–7.

    Article  PubMed  Google Scholar 

  10. Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 2008;49:390–8.

    Article  PubMed  Google Scholar 

  11. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734–46.

    Article  PubMed  Google Scholar 

  12. Kaschten B, Stevenaert A, Sadzot B, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998;39:778–85.

    CAS  PubMed  Google Scholar 

  13. Henry TR, Votaw JR. The role of positron emission tomography with [18F]fluorodeoxyglucose in the evaluation of the epilepsies. Neuroimaging Clin N Am 2004;14:517–35.

    Article  PubMed  Google Scholar 

  14. Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere K. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol 2007;20:194–202.

    Article  PubMed  Google Scholar 

  15. Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005;26:912–21.

    Article  PubMed  Google Scholar 

  16. Eckert T, Tang C, Ma Y, Brown N, Lin T, Frucht S, et al. Abnormal metabolic networks in atypical parkinsonism. Mov Disord 2008;5:727–33.

    Article  Google Scholar 

  17. Hasselbalch SG, Knudsen GM, Videbaek C, et al. No effect of insulin on glucose blood-brain barrier transport and cerebral metabolism in humans. Diabetes 1999;48:1915–21.

    Article  CAS  PubMed  Google Scholar 

  18. Cranston I, Marsden P, Matyka K, et al. Regional differences in cerebral blood flow and glucose utilization in diabetic man: the effect of insulin. J Cereb Blood Flow Metab 1998;18:130–40.

    Article  CAS  PubMed  Google Scholar 

  19. Spanaki MV, Siegel H, Kopylev L, et al. The effect of vigabatrin (gamma-vinyl GabA) on cerebral blood flow and metabolism. Neurology 1999;53:1518–22.

    CAS  PubMed  Google Scholar 

  20. Berding G, Odin P, Brooks DJ, et al. Resting regional cerebral glucose metabolism in advanced Parkinson´s disease studied in the off and on conditions with [18F]FDG-PET. Mov Disord 2001;6:1014–22.

    Article  Google Scholar 

  21. Felgin A, Fukuda M, Dhawan V, et al. Metabolic correlates of levodopa response in Parkinson´s disease. Neurology 2001;57:2083–8.

    Google Scholar 

  22. Ruotsalainen U, Suhonen-Polvi H, Eronen E, et al. Estimated radiation dose to the newborn in FDG-PET studies. J Nucl Med 1996;37:387–93.

    CAS  PubMed  Google Scholar 

  23. Wu T-H, Huang Y-H, Lee JJS, Wang S-Y, Wang S-C, Su C-T, et al. Radiation exposure during transmission measurements: comparison between CT- and germanium-based techniques with a current PET scanner. Eur J Nucl Med Mol Imaging 2004;31:38–43.

    Article  PubMed  Google Scholar 

  24. Chen WP, Matsunari I, Noda A, et al. Rapid scanning protocol for brain (18)F-FDG PET: a validation study. J Nucl Med 2005;46:1633–41.

    PubMed  Google Scholar 

  25. Lucignani G, Schmidt KC, Moresco RM, et al. Measurement of regional cerebral glucose utilization with fluorine-18-FDG and PET in heterogeneous tissue: theoretical considerations and practical procedure. J Nucl Med 1993;34:360–9.

    CAS  PubMed  Google Scholar 

  26. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med 2000;41:661–81.

    CAS  PubMed  Google Scholar 

  27. Henry TR, Engel J Jr, Mazziotta JC. Clinical evaluation of interictal fluorine-18-fluordeoxyglucose PET in partial epilepsy. J Nucl Med 1993;34:1892–998.

    CAS  PubMed  Google Scholar 

  28. Schreckenberger M, Spetzger U, Sabri O, et al. Localisation of motor areas in brain tumour patients: a comparison of preoperative 18-FDG-PET and intraoperative cortical electrostimulation. Eur J Nucl Med 2001;28:1394–403.

    Article  CAS  PubMed  Google Scholar 

  29. Herholz K, Pietrzyk U, Karbe H, et al. Individual metabolic anatomy of repeating words demonstrated by MRI-guided positron emission tomography. Neurosci Lett 1994;182:47–50.

    Article  CAS  PubMed  Google Scholar 

  30. Minoshima S, Koeppe RA, Mintun MA, et al. Automated detection of the intercommissural line for stereotactic localization of functional brain images. J Nucl Med 1993;34:322–9.

    CAS  PubMed  Google Scholar 

  31. Graham MM, Muzi M, Spence AM, et al. The FDG lumped constant in normal human brain. J Nucl Med 2002;43:1157–66.

    PubMed  Google Scholar 

  32. Minoshima S, Frey KA, Koeppe RA, et al. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995;36:1238–48.

    CAS  PubMed  Google Scholar 

  33. Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC. Human brain function. London: Academic Press; 1997.

    Google Scholar 

  34. Drzezga A, Arnold S, Minoshima S, et al. F-18 FDG-PET studies in patients with extratemporal and temporal epilepsy: evaluation of an observer-independent analysis. J Nucl Med 1999;40:737–46.

    CAS  PubMed  Google Scholar 

  35. Cook GJ, Maisey MN, Fogelman I. Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 1999;26:1363–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The members of the ENC acknowledge the following persons (in alphabetical order) for their advice and contribution to these and previous guidelines: M. Bardiés, A. Bischof Delaloye, R. Boellaard, K. Frey, K. Herholz, I. Law, F. Lomeña, G. Lucignani, S. Minoshima, M. Nowak Lonsdale, O. Sabri, M. Seppänen, and S. Ziegler, as well as the EANM Dosimetry and Physics Committee.

Disclaimer

These guidelines summarize the views of the ENC of the EANM and reflect recommendations for which the EANM cannot be held responsible. The recommendations should be taken in the context of good practice of nuclear medicine and do not substitute for national and international legal or regulatory provisions. The guidelines have been brought to the attention of the National Societies of Nuclear Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Van Laere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varrone, A., Asenbaum, S., Vander Borght, T. et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36, 2103–2110 (2009). https://doi.org/10.1007/s00259-009-1264-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1264-0

Keywords

Navigation