Skip to main content

Advertisement

Log in

Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study is to assess the elastic and anisotropic properties of normal calcaneal tendon in vivo by transient shear wave elastography (SWE).

Materials and methods

This study was approved by our institutional ethics committee. Eighty healthy subjects over 18 years of age were prospectively included. Data on the patients’ height, weight, sporting activities, and take-off foot were assessed. The thickness, width, and cross-sectional area of the calcaneal tendons were measured. The shear wave propagation velocity (Vmean) was measured by three radiologists on axial and sagittal SWE images at four different degrees of ankle flexion, enabling to calculate elasticity modulus (Emean), and relative anisotropy coefficient (A) values.

Results

In complete plantar flexion, Vmean was 6.8 ± 1.4 m.s−1 and 5.1 ± 0.8 m.s−1, respectively, on the sagittal and axial SWE image, resulting in an elastographic anisotropy A of 0.24 ± 0.16. The best interobserver correlation coefficient of Emean and Vmean was 0.43 and 0.46, respectively, in the sagittal SWE for complete plantar flexion. Vmean and Emean significantly increase when the tendon is stretched by ankle dorsiflexion. The maximal values in sagittal SWE were Vmean = 16.1 ± 0.7 m.s−1, Emean = 779.5 ± 57.1kPa and A = 0.63 ± 0.07.

Conclusions

SWE allows the elastic properties of the calcaneal tendon to be evaluated quantitatively in vivo, but interobserver reproducibility is questionable. It confirms the tendinous elastographic anisotropy and stiffness augmentation of stretched tendon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reeves ND. Adaptation of the tendon to mechanical usage. J Musculoskelet Neuronal Interact. 2006;6(2):174–80.

    PubMed  CAS  Google Scholar 

  2. Narici MV, Maganaris CN. Adaptability of elderly human muscles and tendons to increased loading. J Anat. 2006;208(4):433–43.

    Article  PubMed  Google Scholar 

  3. Jarvinen TA, Kannus P, Paavola M, Jarvinen TL, Jozsa L, Jarvinen M. Achilles tendon injuries. Curr Opin Rheumatol. 2001;13(2):150–5.

    Article  PubMed  CAS  Google Scholar 

  4. Jarvinen TA, Kannus P, Maffulli N, Khan KM. Achilles tendon disorders: etiology and epidemiology. Foot Ankle Clin. 2005;10(2):255–66.

    Article  PubMed  Google Scholar 

  5. Hess GW. Achilles tendon rupture: a review of etiology, population, anatomy, risk factors, and injury prevention. Foot Ankle Spec. 2010;3(1):29–32.

    Article  PubMed  Google Scholar 

  6. Jung HJ, Fisher MB, Woo SL. Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):9.

    Article  PubMed  Google Scholar 

  7. Hashemi J, Chandrashekar N, Slauterbeck J. The mechanical properties of the human patellar tendon are correlated to its mass density and are independent of sex. Clin Biomech (Bristol, Avon). 2005;20(6):645–52.

    Article  Google Scholar 

  8. Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol. 2003;548(Pt 3):971–81.

    Article  PubMed  CAS  Google Scholar 

  9. Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol. 1999;521(Pt 1):307–13.

    Article  PubMed  CAS  Google Scholar 

  10. Maganaris CN. Tensile properties of in vivo human tendinous tissue. J Biomech. 2002;35(8):1019–27.

    Article  PubMed  Google Scholar 

  11. Kubo K, Kanehisa H, Fukunaga T. Effects of different duration isometric contractions on tendon elasticity in human quadriceps muscles. J Physiol. 2001;536(Pt 2):649–55.

    Article  PubMed  CAS  Google Scholar 

  12. Sandrin L, Tanter M, Catheline S, Fink M. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49(4):426–35.

    Article  PubMed  Google Scholar 

  13. Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

    Article  PubMed  Google Scholar 

  14. Gennisson JL, Renier M, Catheline S, Barriere C, Bercoff J, Tanter M, et al. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force. J Acoust Soc Am. 2007;122(6):3211–9.

    Article  PubMed  Google Scholar 

  15. Boisserie-Lacroix M. Elastography: an old concept for a new tool. J Radiol. 2007;88(5 Pt 1):625–6.

    Article  PubMed  CAS  Google Scholar 

  16. Athanasiou A, Tardivon A, Tanter M, Sigal-Zafrani B, Bercoff J, Deffieux T, et al. Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology. 2010;256(1):297–303.

    Article  PubMed  Google Scholar 

  17. Bavu E, Gennisson JL, Couade M, Bercoff J, Mallet V, Fink M, et al. Noninvasive in vivo liver fibrosis evaluation using supersonic shear imaging: a clinical study on 113 hepatitis C virus patients. Ultrasound Med Biol. 2011;37(9):1361–73.

    Article  PubMed  Google Scholar 

  18. Aubry S, Risson JR, Barbier-Brion B, Tatu L, Vidal C, Kastler B. Transient elastography of calcaneal tendon: preliminary results and future prospects. J Radiol. 2011;92(5):421–7.

    Article  PubMed  CAS  Google Scholar 

  19. Arda K, Ciledag N, Aktas E, Aribas BK, Kose K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol. 2011;197(3):532–6.

    Article  PubMed  Google Scholar 

  20. Abate M, Gravare Silbernagel K, Siljeholm C, Di Iorio A, De Amicis D, Salini V, et al. Pathogenesis of tendinopathies: inflammation or degeneration? Arthritis Res Ther. 2009;11(3):235.

    Article  PubMed  Google Scholar 

  21. Holmes GB, Lin J. Etiologic factors associated with symptomatic Achilles tendinopathy. Foot Ankle Int. 2006;27(11):952–9.

    PubMed  Google Scholar 

  22. De Zordo T, Fink C, Feuchtner GM, Smekal V, Reindl M, Klauser AS. Real-time sonoelastography findings in healthy Achilles tendons. AJR Am J Roentgenol. 2009;193(2):W134–138.

    Article  PubMed  Google Scholar 

  23. De Zordo T, Chhem R, Smekal V, Feuchtner G, Reindl M. Fink C, et al. Real-time sonoelastography: findings in patients with symptomatic Achilles tendons and comparison to healthy volunteers. Ultraschall Med; 2009.

  24. Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol. 2009;64(12):1196–202.

    Article  PubMed  CAS  Google Scholar 

  25. Sconfienza LM, Silvestri E, Cimmino MA. Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes. Clin Exp Rheumatol. 2010;28(3):373–8.

    PubMed  Google Scholar 

  26. Hall TJ, Zhu Y, Spalding CS. In vivo real-time freehand palpation imaging. Ultrasound Med Biol. 2003;29(3):427–35.

    Article  PubMed  Google Scholar 

  27. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    PubMed  CAS  Google Scholar 

  28. Zimmer JE, Cost JR. Determination of the elastic constants of an unidirectional fiber composite using ultrasonic velocity measurements. J Acoust Soc Am. 1970;47:795–803.

    Article  CAS  Google Scholar 

  29. Kuo PL, Li PC, Li ML. Elastic properties of tendon measured by two different approaches. Ultrasound Med Biol. 2001;27(9):1275–84.

    Article  PubMed  CAS  Google Scholar 

  30. Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol. 2010;36(5):789–801.

    Article  PubMed  Google Scholar 

  31. Maganaris CN, Narici MV, Maffulli N. Biomechanics of the Achilles tendon. Disabil Rehabil. 2008;30(20–22):1542–7.

    Article  PubMed  Google Scholar 

  32. Smith CW, Young IS, Kearney JN. Mechanical properties of tendons: changes with sterilization and preservation. J Biomech Eng. 1996;118(1):56–61.

    Article  PubMed  CAS  Google Scholar 

  33. Haut RC, Lancaster RL, DeCamp CE. Mechanical properties of the canine patellar tendon: some correlations with age and the content of collagen. J Biomech. 1992;25(2):163–73.

    Article  PubMed  CAS  Google Scholar 

  34. Woo SL, Ritter MA, Amiel D, Sanders TM, Gomez MA, Kuei SC, et al. The biomechanical and biochemical properties of swine tendons–long term effects of exercise on the digital extensors. Connect Tissue Res. 1980;7(3):177–83.

    Article  PubMed  CAS  Google Scholar 

  35. Tallon C, Maffulli N, Ewen SW. Ruptured Achilles tendons are significantly more degenerated than tendinopathic tendons. Med Sci Sports Exerc. 2001;33(12):1983–90.

    Article  PubMed  CAS  Google Scholar 

  36. Khoury V, Cardinal E. "Tenomalacia": a new sonographic sign of tendinopathy? Eur Radiol. 2009;19(1):144–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Frances Sheppard (Clinical Investigation Center of Besançon, Inserm CIT 808) for translating the manuscript into English, and Philippe Manzoni (University Hospital of Besançon) for technical support.

Conflict of interest declaration

The authors declare that they have no conflicts of interest.

Acknowledgments of funding and grants

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Aubry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, S., Risson, JR., Kastler, A. et al. Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skeletal Radiol 42, 1143–1150 (2013). https://doi.org/10.1007/s00256-013-1649-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1649-9

Keywords

Navigation