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Abstract

The phyllosphere, or plant leaf surface, represents a microbial ecosystem of considerable size, holding extraordinary bio-
diversity and enormous potential for the discovery of new products, tools, and applications in biotechnology, agriculture,
medicine, and elsewhere. This mini-review highlights the applied microbiology of the phyllosphere as an original field of
study concerning itself with the genes, gene products, natural compounds, and traits that underlie phyllosphere-specific
adaptations and services that have commercial and economic value for current or future innovation. Examples include plant-
growth-promoting and disease-suppressive phyllobacteria, probiotics and fermented foods that support human health, as
well as microbials that remedy foliar contamination with airborne pollutants, residual pesticides, or plastics. Phyllosphere
microbes promote plant biomass conversion into compost, renewable energy, animal feed, or fiber. They produce foodstuffs
such as thickening agents and sugar substitutes, industrial-grade biosurfactants, novel antibiotics and cancer drugs, as well
as enzymes used as food additives or freezing agents. Furthermore, new developments in DNA sequence-based profiling
of leaf-associated microbial communities allow for surveillance approaches in the context of food safety and security, for
example, to detect enteric human pathogens on leafy greens, predict plant disease outbreaks, and intercept plant pathogens
and pests on internationally traded goods.

Key points

o Applied phyllosphere microbiology concerns leaf-specific adaptations for economic value
e Phyllobioprospecting searches the phyllosphere microbiome for product development

e Phyllobiomonitoring tracks phyllosphere microbial profiles for early risk detection

Keywords Bioprospecting - Biomonitoring - Bioprocessing - Biosupplementing - Phylloremediation - Phyllosphere

Introduction baccatins, which are precursors to the cancer drug pacli-

taxel), and recreational drugs (e.g., nicotine, cannabis); they

Plant foliage is one of the largest and most important
resources sustaining life on our planet. Terrestrial vegeta-
tion across both hemispheres represents an estimated leaf
mass of 30 Gt and a surface area that is twice that of the land
mass surface (Bar-On and Milo 2019). Plant leaves provide
many services to humans and other life on Earth. They are
a source of oxygen, pharmaceuticals (e.g., artemisinin or
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offer shade and landscape aesthetics; serve as nourishment
(e.g., leafy greens), drink (e.g., tea), or animal feed (e.g.,
grass-fed cows); and support through their photosynthetic
properties the production of plant-based foods (e.g., fruits,
nuts, and vegetables) and other products (e.g., fiber, fuel,
lumber, and paper). An underappreciated but crucial source
of many other services associated with plant foliage is the
rich and diverse microbial communities that plants carry on
their leaf surfaces (Bashir et al. 2022). In this review, we will
explore these communities in detail, with a particular focus
on how the properties, genes, and gene products of these leaf
surface microbiota may be applied and exploited for improv-
ing plant, human, and environmental health. The novelty of
this review lies in the focused and specialized synthesis of
the current literature to highlight an active and exciting field
of study known as applied microbiology of the phyllosphere,
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which is presented here in terms of bioprospecting, biosup-
plementing, bioprocessing, and biomonitoring.

Microbial traits and adaptations to survive
and thrive in the leaf surface environment

As a habitat for microorganisms, plant leaves are referred
to as the phyllosphere (Koskella 2020; Leveau et al. 2023a;
Sohrabi et al. 2023). Microorganisms inhabiting aerial leaf
surfaces include bacteria, fungi, yeasts, protists, archaea, and
viruses. State-of-the-art DNA-based community profiling
techniques have revealed an enormous diversity in the types
and functions of leaf surface colonizers (Fadiji and Babalola
2020). Bacteria and filamentous fungi are among the most
researched members of the phyllosphere, but the number of
studies related to community composition of other micro-
bial groups, for example, yeasts (Gouka et al. 2022), protists
(Taerum et al. 2023) and viruses (ter Horst et al. 2023), is
on the rise. DNA-based approaches have also revealed that
only a fraction of the microbes that can be recovered from
leaf surfaces can be cultured in the lab (Miiller and Ruppel
2014). In terms of numbers, bacteria are by far the most
abundant colonizers of leaf surfaces and can typically be
found at densities between 10° and 10% cells/cm? (Andrews
and Harris 2000; Hirano and Upper 2000). Microorgan-
isms that survive and multiply on aerial plant surfaces are
called residual (as opposed to transient) epiphytes and are
often labeled as pathogens, saprophytes, beneficials, or
commensals, depending on the outcome of the interactions
that they have with their plant host. Relative abundances of
these bacterial epiphytes in the phyllosphere are impacted
by a large number of factors such as plant genotype and
health, leaf age, environmental conditions, plant neighbor-
hood, geographical location, and the interactions that the
epiphytes have among themselves (Bao et al. 2020; Beil-
smith et al. 2019; Kumar et al. 2019; Lajoie and Kembel
2021; Meyer et al. 2022; Mina et al. 2020; Schlechter et al.
2019; Shakir et al. 2021; Zhang et al. 2019). The use of gno-
tobiotic environments for plant growth has allowed a better
understanding of the factors shaping phyllosphere microbial
communities, including leaf genotype (Schifer et al. 2022),
phytopathogenesis (Vogel et al. 2021), and abiotic stresses
(Molina et al. 2020; Yuan et al. 2016).

The leaf surface is considered a harsh environment for
microorganisms, as it poses numerous challenges to sur-
vival and reproductive success. Many members of the phyl-
losphere-associated microbiota have acquired and evolved
specific adaptations to deal with stresses that are common
on the leaf surface, including low nutrient availability, expo-
sure to ultraviolet (UV) light, desiccation, and fluctuating
temperatures (Leveau 2019). Such adaptations often rep-
resent strategies of “tolerance” (Beattie and Lindow 1995)
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such as the synthesis of pigments to reduce the effects of
harmful ultraviolet radiation (Jacobs et al. 2005; Kumar
et al. 2016) and the production of protective biofilms to
prevent desiccation (Arun et al. 2020). The latter adapta-
tion is an example of “niche construction” (Manching et al.
2017) or “ecosystem engineering” where microbes change
their local environment to increase their chances of survival
(Baquero et al. 2021). Other examples involve the secretion
of enzymes (Rocky-Salimi et al. 2016) or plant hormones
such as indole 3-acetic acid or IAA (Vanderhoef and Dute
1981) to access nutrients, biosurfactants to enhance surface
mobility (Nogales et al. 2015), or ice nucleation proteins
which not only raise the temperature of freezing thereby
breaking plant cells to release nutrients (Avalos-Ruiz et al.
2022) but also contribute to microbial airborne movement
between plants (Maki et al. 2023).

Microbial survival in the phyllosphere not only relies on
coping with the harsh conditions of a leaf surface but also
requires interaction with other cohabitating microorgan-
isms. The multitude of interactions that members of the leaf
microbiota have with each other are key to shaping microbial
community structure in the phyllosphere (Chaudhry et al.
2021; Rangel et al. 2021). Examples of such interactions
are competition for nutrients and space (Schlechter et al.
2023), antibiosis through the production of lytic compounds,
enzymes, secondary metabolites, and toxins (Qi et al. 2021;
Rangel and Bolton 2022), or signal interference (e.g., quo-
rum quenching) (Ma et al. 2013; Theodora et al. 2019). Each
one of these interactions can by itself or in combination with
others influence the growth, suppression, or even death of
microorganisms inhabiting the same leaf or section of the
leaf (Remus-Emsermann and Schlechter 2018). It has been
demonstrated that early arrivers to the leaf surface can exert
a so-called priority effect and outcompete immigrating
microbes (Carlstrom et al. 2019), thus impacting ecologi-
cal succession through niche pre-emption (Maignien et al.
2014). However, the survival of these keystone species is
also affected by the growth stage of the host, with the per-
sistence of core members contingent on core functions that
are adapted for success in the leaf environment (Bell et al.
2021; Miiller et al. 2016b). Another type of interaction in the
phyllosphere is facilitation: examples include the promotion
of fitness of bacterial foliar pathogens through intra-species
communication (Li et al. 2019a) and the increased survival
of bacterial species through inter-species signaling (He et al.
2022; Li and Tian 2012).

A powerful demonstration of the uniqueness of the leaf
surface as a microbial habitat and of the specific microbial
adaptations that allow life on the leaf surface comes from
the comparative genomics analysis of two closely related
foliar bacterial pathogens (Feil et al. 2005): Pseudomonas
syringae pv. syringae B728a, which is a highly competent
epiphyte and Pseudomonas syringae pv. tomato DC3000,



Applied Microbiology and Biotechnology ~ (2024) 108:211

Page3of16 211

which does not survive the leaf surface very well and prefers
an endophytic lifestyle (i.e., inside the leaf tissue). It was
shown that many of the genes and gene products unique to
B728a are known to contribute to epiphytic fitness or “epi-
phytness” (Leveau et al. 2023b), such as the ice nucleation
protein, an enzymatic pathway for the production of IAA,
and genes for antibiosis and repair of UV-damaged DNA
(Feil et al. 2005).

Seeing that the phyllosphere is a unique microbial habitat
that requires a specific set of microbial adaptations and traits
to increase chances of survival in the face of a range of biotic
and abiotic challenges, we can expect that foliar microbial
communities harbor species, strains, genes, and gene func-
tions that have potential to be exploited for the discovery,
development, and/or commercialization of novel products
(Thapa and Prasanna 2018). Here, we provide an overview
of functions that phyllosphere inhabitants are known to pos-
sess and that may be harnessed into products, processes, and
technologies (Table 1). We will cover how the approach of
bioprospecting (Miiller et al. 2016a) contributes to the dis-
covery of phyllosphere-derived microorganisms, enzymes,
and metabolites with useful properties. We will also touch
upon the use of biomonitoring, as it has been applied to
other microbial habitats (Meyer et al. 2023; Michéan et al.
2021), defined here as the practice of extracting information
from microbial communities on leaf surfaces for the purpose
of assessment and decision-making in the face of pathogen
threats or other foliar risks.

Biosupplementing for plant health

“Plant probiotics” is an umbrella term for microorganisms
that offer some defined benefit to their plant host (Berlec
2012). Well-known examples of plant probiotics are the so-
called plant-growth-promoting rhizobacteria (PGPRs), of
which formulations are sold commercially as single or mixed
strain products (Kumari et al. 2019). The concept of plant-
growth-promoting phyllobacteria (PGPPs) is not as devel-
oped as that of PGPRs (Orozco-Mosqueda et al. 2021), but
there are many ways in which phyllosphere microbes have
been shown to contribute to plant health (Stone et al. 2018).
The ability to fix atmospheric nitrogen on the leaf surface is
one of them (Abadi et al. 2021; Li et al. 2019b). Under natu-
ral conditions, this ability is particularly relevant in tropical
rainforest systems where the lack of seasonal leaf senescence
and poor soil conditions rely heavily on bacterial-leaf N,
fixation (Goncalves et al. 2014; Stanton et al. 2019). The
foliar application of nitrogen-fixing bacteria onto agricultur-
ally significant crops has shown increased nitrogen uptake
and a reduced need for nitrogen fertilizer input (Abadi et al.
2021; Madhaiyan et al. 2015). Other proposed mechanisms
of plant growth stimulation by phyllobacteria that occur

naturally but have potential biotechnological utilization are
phosphorus solubilization, siderophore production, and the
secretion of hormones such as IAA (Abadi et al. 2020; Arun
et al. 2020; Berg and Koskella 2018; Cernava et al. 2019;
Chacén et al. 2022). Phyllosphere bacteria and fungi also
have been shown to alleviate drought stress, for example in
rice seedlings (Abadi et al. 2020; Arun et al. 2020; Cernava
et al. 2019; Chacén et al. 2022) and panic grass (Aimone
et al. 2023).

A major line of research on how to protect plants from
foliar diseases involves the isolation and characterization
of so-called biological control agents (BCAs). These BCAs
antagonize pathogens or pests through a variety of mecha-
nisms including direct antagonism (parasitism and preda-
tion), mixed-path antagonism (production of antibiotics,
lytic enzymes, waste products, and chemical interference), or
indirect antagonism (competition for limited resources and
induction of host plant resistance) (He et al. 2021). Commer-
cialized formulations of both fungal and bacterial antago-
nists exist (Keswani et al. 2016; Lahlali et al. 2022). One of
the classical success stories of phyllosphere-derived biocon-
trol of plant disease is a product that is registered under the
name BlightBan A506® that contains, as the active ingredi-
ent, Pseudomonas fluorescens A506, a bacterial isolate from
a pear tree in Healdsburg, CA (Wilson and Lindow 1993).
AS506 has been shown to protect plants from pathogen-
induced frost damage (Lindow et al. 1996) and fruit russet-
ing (Lindow et al. 1998) and from symptoms associated with
bacterial fire blight caused by Erwinia amylovora (NuFarm
2024). The mechanisms underlying these activities include
preemptive exclusion and antibiotic production (Anderson
et al. 2004; Temple et al. 2004). Although registration has
expired for its use, BlightBan C9-1® was another commer-
cial product for use against fire blight and is derived from
the phyllosphere isolate Pantoea vagans C9-1. Interestingly,
mixtures of the two BlightBan strains did not provide greater
protection against fire blight, because P. fluorescens A506
produces an extracellular protease that inactivates the anti-
biotic production in P. vagans C9-1 (Anderson et al. 2004).

In the field of biocontrol research, there is a growing
interest in using mixtures of microorganisms with plant-
protective properties. For example, a cocktail of endophytic
bacterial wheat isolates prevented fungal spore germination
and protected wheat seedlings from wheat stripe rust caused
by Puccinia striiformis f. sp. tritici, both in greenhouse and
semi-field conditions (Kiani et al. 2021). Another study
found that microbial consortia consisting of bacteria and
fungi displayed broad-spectrum hindrance of foliar phy-
topathogens as a result of their combined broad gene func-
tionality (Minchev et al. 2021). Although it is challenging to
register products containing more than one microbial strain
(Keswani et al. 2016), ongoing research will likely continue
to focus on the compatibility and synergy of BCAs and their
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modes of action in pursuit of improved control of foliar
pathogens (Hawkes et al. 2021; Li et al. 2022). An excit-
ing recent development is the demonstration that protection
against foliar disease may be achieved as an emergent prop-
erty of whole microbial communities (Berg and Koskella
2018) and those disease-suppressive microbial communities
may be developed through passaging of leaf microbiota from
one generation of plant leaves to the next, in the presence of
a foliar pathogen and by selection for low disease phenotype
after each passage (Ehau-Taumaunu and Hockett 2023).

Phyllosphere microbiology and human
health

Phyllosphere-associated microbial communities play
a role not only in the health of plants but also in that of
humans who consume plant vegetation, for example, as
leafy greens. Unfortunately, consumption of fresh pro-
duce carries an increased risk of foodborne diseases due
to incomplete removal or inactivation of microorganisms
that are pathogenic to humans, for example, norovirus, E.
coli, Salmonella, and Cyclospora (Machado-Moreira et al.
2019). However, not all microorganisms on plant foliage are
harmful to human consumers. In fact, the concept of the
“edible microbiome” is based on the idea that with the inges-
tion of raw plant foods; we load our gut with microbes that
associate with these foods that might have probiotic quali-
ties (Berg et al. 2014a; Soto-Giron et al. 2021). Depending
on the type of vegetables consumed, and where and how
they are grown, humans are exposed to a variety of different
microorganisms on and in their food (Leff and Fierer 2013;
Marco et al. 2022; Rook 2013). Of special interest are the
lactic acid bacteria (LABs) that are commonly found on leaf
surfaces (Yu et al. 2020). Many of these LABs confer health
benefits to humans. For example, the plant-associated bac-
terium Lactiplantibacillus plantarum (formerly Lactobacil-
lus plantarum) can survive gastrointestinal-like conditions,
break down food compounds that its human host cannot,
antagonize human pathogens, and persist via adherence to
epithelial cells (Vitali et al. 2012). Further study into the
edible microbiome may uncover additional probiotic strains
that could change how we choose or grow our foods, or that
serve as the basis for new probiotic products deriving from
the phyllosphere which could have an impact on human
health and even thwart off human pathogens (Ercolini and
Fogliano 2018; Wicaksono et al. 2023b).

Another way in which phyllosphere microbes may benefit
human health is by stimulating the immune system. This
has been referred to as “natural vaccination” (Berg et al.
2014b) which works by eliciting prophylactic and therapeu-
tic responses in the host. In one study, the microbiota of
raw Brassica vegetables were sequenced and screened for
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isolates that were able to produce an enzyme linked to can-
cer prevention (Wassermann et al. 2017). Enriched among
these were members of the Enterobacteriaceae family. Inter-
estingly, this family represents a major group in the loading
of the gut microbiome through the consumption of fresh
produce (Erlacher et al. 2015; Rastogi et al. 2012). Arguably,
these bacteria represent a long-established part of the human
diet and studies have shown that foodborne microbes that
accompany plant-based diets can indeed seed the human gut
(David et al. 2014; Wicaksono et al. 2023a).

Fermented foods represent another health benefit related
to phyllosphere microorganisms (Marco et al. 2017). A
growing body of knowledge suggests that the consumption
of live microbes associated with fermented foods can alter
the gut microbiome (Roselli et al. 2021). Fermentation into
foods such as sauerkraut and kimchi typically depends on
the microbes that naturally occur on plant leaf surfaces. Lac-
tobacillus species play an important role in the final stages
of the fermentation process, and these strains have been
shown to have effects on insulin sensitivity (Zhong et al.
2021), Alzheimer’s disease (Kumar et al. 2022) and have
anti-cancer (Eweys et al. 2022), anti-mutagenic (Mazanko
et al. 2022), immune function (Rastogi and Singh 2022) and
anti-obesity (Zhu et al. 2019) properties. We are just begin-
ning to understand the importance of the edible leaf micro-
biome (Leeming et al. 2021; Tomas-Barberan and Rodriguez
2022), whether raw or fermented and further research will
be necessary to unravel how diet and health are related to
the incorporation of phyllosphere microbes.

Bioprocessing for environmental health

Phylloremediation refers to the ability of leaf-surface bacte-
ria to degrade airborne or leaf-surface pollutants (Wei et al.
2017). Examples of these are polycyclic aromatic hydrocar-
bons that build up from deposition of urban area smog (Ali
et al. 2015; Gandolfi et al. 2017), residual pesticides that per-
sist as a result of overuse (Katsoula et al. 2020; Kucharska
et al. 2020; Scheublin and Leveau 2013), micro- and nano-
plastics (Adomako and Yu 2023), or climate-active gases
(Bringel and Couee 2015; Crombie et al. 2018). Several
studies suggest that the process of phylloremediation may
be harnessed by inoculating leaves with plant-associated
pollutant-degrading microorganisms (Weyens et al. 2015).
Bacteria that degrade phenanthrene (Dharmasiri et al. 2023)
or xylene (Sangthong et al. 2016) and fungi that break down
aromatic hydrocarbons (Imperato et al. 2021) have success-
fully been isolated from leaf surfaces. Levels of hydrocar-
bon pyrene deposits were significantly reduced on jungle
geranium leaves after artificially inflating native populations
of phyllosphere isolate Kocuria sp. IC3, while the appli-
cation of a biosurfactant reduced these levels even further
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(Siriratruengsuk et al. 2017). Similarly, the application of
native bacterial degraders of aromatic organic pollutants was
shown to reduce aerial concentrations of these compounds
(Jindachot et al. 2018). The observation that phenol degrada-
tion genes were induced in bacteria from the common phyl-
losphere genus Arthrobacter during leaf colonization, even
in the absence of phenol (Scheublin et al. 2014), suggests
that phyllosphere microbiota harbor an untapped and primed
capacity to destroy unwanted pollutants and/or chemicals.
The future challenge lies in finding out how to expand these
efforts of “phylloremediation” to achieve the same effects
on a larger scale, e.g., near cities where industrial and vehi-
cle emissions are high (Molina et al. 2021). Phyllosphere
bacteria have been shown to degrade phthalates, a common
plasticizer in agricultural films. When a phthalate-degrading
Rhodococcus isolate from activated sludge was applied onto
vegetables grown in plastic filmed greenhouses, the bacte-
rium readily established and foliar accumulation of phtha-
lates from the air was reduced (Zeng et al. 2022). Bacterial
degradation of phthalates has also been documented in rice
crops where a native Bacillus species was not only capable
of degradation, but following its inoculation also shifted the
endosphere community towards increased phthalate bio-
degradation (Liu et al. 2023). The real-world implication of
using these types of plastic-degrading isolates or communi-
ties is far-reaching, from environmental cleanup to minimiz-
ing the consumption of microplastics in our food.

To relieve our dependence on oil and to reduce atmos-
pheric emissions of air pollutants, the search for renewable
alternative fuel sources focuses on microbes that can trans-
form plant lignocellulose waste into useful biofuels (Rai
et al. 2022). Many epiphytes harbor enzymes for the pro-
duction of ethanol and butanol (Amadi et al. 2020; Minty
et al. 2013), biodiesel or lipid-based fuels (Miao et al. 2020),
or methane and hydrogen (Miftah et al. 2022). Hydrogen
fuel is of interest because it is carbon-free and produces
minimal pollution (Sen et al. 2016). Among the naturally
occurring microbes of wheat straw that produce hydrogen,
Lactobacillus plays a major role in lignocellulose conversion
(Ayala-Campos et al. 2022). Wheat straw microbes outper-
formed cow manure-, ruminal fluid-, and anaerobic sludge-
associated microbes in producing hydrogen, revealing plant
materials to be an excellent substrate for manufacturing
bioenergy (Pérez-Rangel et al. 2015; Valdez-Vazquez et al.
2017). Additionally, the phyllosphere microbiota of crops
used specifically for bioenergy has been well-studied for its
capacity to benefit host plants (i.e., aid in nutrient acquisi-
tion), defend against pathogens, and mitigate drought or salt
stresses (Zhalnina et al. 2021). The microbiome of bioenergy
crops such as switchgrass and miscanthus has been tracked
over seasons to reveal useful functions and core microbes
to supply a foundation for future manipulation to maximize
yields (Grady et al. 2019; Howe et al. 2023).

Bioprospecting the leaf microbiome

Bioprospecting is the search for genes, natural compounds,
and whole organisms in nature that have commercial eco-
nomic value (Miiller et al. 2016a). Perhaps the best-docu-
mented example of bioprospecting in the context of phyl-
losphere microbiology is the isolation and application of
microorganisms for the management of foliar diseases and
pests, for instance, the aforementioned BlightBan A506.
Many other examples exist of industrial products or appli-
cations that have their origin within the leaf-associated
microbiota and are produced commercially and at-scale for
use in markets as diverse as cosmetics, food, pharmaceu-
tics, and textiles (Miiller et al. 2016a). One is xanthan gum,
which is sold under the name Keltro® or Xantural®, and
is used as a thickening agent for stabilizing emulsified sus-
pensions (CPKelco 2024). The bacterium that produces this
compound naturally is the leaf-colonizing pathogen Xan-
thomonas campestris, a causative agent of bacterial leaf
spots on brassicas worldwide. Xanthan is a virulence factor
in this organism, as it plays a significant role in biofilm for-
mation, producing a hydrated, protected environment dur-
ing leaf colonization (Bianco et al. 2016). For the produc-
tion of this economically important polymer, which is used
in foods, household cleaners, pesticides, paints, cosmetics,
pharmaceuticals, textile dyes, and petrol recovery and pro-
duction, cultures of X. campestris are grown in large bio-
reactors (Elella et al. 2021). Another phyllosphere-based
product is erythritol which is widely used as a zero-calorie
sugar substitute but is also an additive in some pharmaceu-
ticals (Rzechonek et al. 2018). The biosynthetic pathway
for producing erythritol is widespread among osmophilic
phyllosphere bacteria, yeast, and fungi, including mem-
bers of Pseudozyma sp., Aureobasidium sp., Aspergillus
nidulans, Ustilaginomycetes, and the lactic acid bacteria
Leuconostoc oenos, L. plantarum, and Acetobacter xylinum
(Monedero et al. 2010; Moon et al. 2010). Often, the eryth-
ritol biosynthetic pathway genes from these microbes are
cloned into organisms that are more easily managed for the
production of this sweetener (Regnat et al. 2018).
Biosurfactants are biological molecules that have both
hydrophobic and hydrophilic qualities that allow for
reduced surface tension. This property is useful for solu-
bilizing compounds and creating emulsifications. Many
types of biosurfactants are produced by microorganisms
including those that are members of the microbial com-
munities that associate with plant leaf surfaces. Bacte-
rial biosurfactants are cheaper and easier to produce than
their synthetic chemical counterparts. Pathways from leaf-
dwelling bacteria such as Arthrobacter sp., Pseudomonas
sp., Acinetobacter sp., and Bacillus sp. are utilized for
petrol recovery, foods, pharmaceuticals, and cosmetics
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(Campos et al. 2013; Varvaresou and Takovou 2015). Doz-
ens of companies market biosurfactants for various uses
in what is a multibillion-dollar industry (Sarubbo et al.
2022).

Other phyllosphere-derived industrial products involve
enzymes and other proteins. Phytases break down phytate,
which is the main form of phosphate storage in plants. These
enzymes are commonly found to be produced by plant-asso-
ciated microbes including Aspergillus sp., Pseudomonas
sp., Serratia sp., and Bacillus sp. (Singh et al. 2020). They
are marketed under the names Finase®, Natuphos®, and
Allzyme® and sold commercially to ranchers worldwide
as an amendment to feed for monogastric animals to better
utilize phosphorus (Handa et al. 2020). Another enzyme of
biotech interest is asparaginase which is used as an anti-
cancer treatment by denying asparagine to growing tumor
cells. Asparaginase from E. coli is marketed under different
trade names, but some patients are intolerant to this enzyme,
which is why, instead, wider use of the one from the phyllo-
sphere colonizer (and foliar pathogen) Erwinia chrysanthemi
is employed (Emadi et al. 2018; Salzer et al. 2014), which is
marketed under the name Erwinaze (Keating 2013). Another
therapeutic drug derived from a phyllosphere microorgan-
ism is the antibiotic mupirocin, produced by P. fluorescens
(Khoshnood et al. 2019). It is used for topical treatment
against methicillin-resistant Staphylococcus aureus and is
prescribed under the name Bactroban® (GlaxoSmithKline
2024). The ice-nucleating activity of P. syringae bacteria has
been harnessed and turned into technologies that allow alter-
ing weather by cloud seeding, snow-making at ski resorts,
and freezing foods (Baloh et al. 2019; Pokharel et al. 2021;
Wex et al. 2015). SnoMax® has been one of the most suc-
cessful products based on P. syringae’s ice-nucleating pro-
tein and has been in use since 1987 for the production of
artificial snow (Telemet 2024). Phyllosphere yeasts have
been shown to contribute to the degradation of biodegrad-
able plastics used in compost bags, mulches, and other agri-
cultural supplies (Watanabe et al. 2014). These plastics are
made from molecules similar to the cutin monomer found
in plant cell walls which are the target of degradation by
enzymes produced by certain phyllosphere inhabitants (Kita-
moto et al. 2011; Saika et al. 2019). Enzymes and microbes
with such activities represent an integral part of so-called
life-cycle-engineered plastics (Garcia-Depraect et al. 2021).

Phyllosphere microorganisms have long been known to
participate in carbon cycling by contributing to the decom-
position of leaf litter (Fanin et al. 2021). The process of
decomposition can be harnessed with relatively little human
intervention to produce compost and silage. Composting is
the controlled biodegradation of organic materials, including
leaves and other plant waste, whereas animal silage is pre-
served forage that is used as animal feed during the dry sea-
son. For both compost and silage, the required fermentation
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is carried out by members of the microbial community that
is naturally associated with the plant material (Kraut-Cohen
et al. 2016). Foliar microbes also play a role during the cur-
ing of tobacco and the retting of hemp for fiber production
(Law et al. 2016, 2020; Zhou et al. 2021, 2020). Microbial
succession is important for these processes, and the enzy-
matic activity that facilitates this degradation largely derives
from leaf-associated microbes (Alper and Stephanopoulos
2009). Based on these examples, the phyllosphere presents
an ideal environment from which to isolate microorganisms
with applicable potential for biomass conversion of raw plant
materials or agricultural waste into useful substances.

In recent years, the development of culture-independent,
DNA-based methods has allowed (meta)genomic mining of
diverse microbial environments, including the phyllosphere,
for novel functions (Khoiri et al. 2021; Methe et al. 2020;
Mishra et al. 2021). To give just one example of the power
of such an approach is the study by Helfrich et al. (2018)
who sequenced the genomes of 224 bacterial strains isolated
from Arabidopsis leaves to reveal more than 1000 putative
natural product biosynthetic gene clusters, many predicted
to code for completely novel types of compounds. In mining
the phyllosphere microbiota by metagenomics, it benefits
to cast the net as wide as possible and take full advantage
of the variation that is naturally present in leaf microbial
communities due to geography (i.e., location, growing con-
ditions, and season) and plant genotype (Abdelfattah et al.
2021; Miura et al. 2019). Such an approach also may lead to
new strategies that rely on engineered plant genotypes and/or
artificially imposed environments to select microorganisms
with useful functions (Hale et al. 2014; Singh et al. 2021).

Biomonitoring the leaf microbiota

Phyllobiomonitoring is defined here as the interrogation of
leaf surface microbiota for information that helps with the
assessment of plant leaf-associated risks. This idea may be
applied to several different fields, including agriculture, food
safety, and biosecurity. Typically, biomonitoring involves
metagenomics to establish the normal operating range of
leaf-associated communities in a greenhouse, field, or grove
and to interpret deviations from the normal operating range
as a potential signal for a change in the environment or
physiology of the plant (Burke et al. 2011; Chandran et al.
2020). These analyses may uncover different states of what
constitutes a healthy plant leaf microbiota (Miiller et al.
2016c¢; Vorholt et al. 2017) or whether plants are experi-
encing biotic or abiotic stresses (Chen et al. 2020; Saleem
et al. 2017; Yin et al. 2018). There may be good reason to
consider phyllosphere communities as sentinels for changes
on a global scale. For example, climate disruptions have
been shown to cause perturbations in phyllosphere microbial
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communities, in turn influencing host plant survival, fitness,
ecology, and susceptibility to foliar disease (Perreault and
Laforest-Lapointe 2021; Rosado et al. 2018; Trivedi et al.
2022; Zhu et al. 2021). Global warming has a demonstrable
effect on the structure of bacterial (Aydogan et al. 2020)
and fungal (Faticov et al. 2021) phyllosphere community
structure, as does drought (Debray et al. 2021), suggesting
a role for phyllobiomonitoring in collecting and analyzing
data that can be fed into predictive models for climate warn-
ing systems.

Similar surveillance approaches may be applied to the
field of food safety to alert growers or processors on changes
in the microbiota of their crops which correlate with a
higher probability of plant or human pathogens (Williams
and Marco 2014). The need to monitor for human pathogen
outbreaks has increased dramatically; as diets have shifted,
demand for raw produce has gone up, and the number of
reported cases of enteric disease resulting from the inges-
tion of contaminated fresh produce has risen, in particu-
lar, leafy greens since the 1990s (Marshall et al. 2020).
Whereas sources of contamination and duration of persis-
tence of major enteric human pathogens such as Salmonella
enterica and E. coli O157:H7 on leafy greens have been
studied extensively, it appears that these human pathogens,
which are actually poor leaf colonizers, can benefit from the
presence and activity of naturally present microorganisms
on the leaf surface, both pre-harvest (Brandl et al. 2023;
Cooley et al. 2006; Potnis et al. 2014) and post-harvest (Wil-
liams et al. 2013). Culture-independent community profiling
to monitor for such facilitators of pathogen establishment
would be a great asset to the produce industry.

Microbial forensics utilizes microbiological knowl-
edge and methods to provide evidence in unlawful matters
(Fletcher et al. 2020; Schmedes et al. 2016). Generally, it
concerns the abuse of pathogenic organisms and/or their
metabolites to cause social or economic damage. This field
has become more and more valuable as increased travel
and trade within or between countries have led to greater
opportunities for the transport and introduction of non-native
pathogenic microorganisms (Ochoa-Corona 2011). Current
biosecurity tools for monitoring agricultural products have
addressable gaps in standardization and validation during all
precautionary steps from initial assessment and containment
to control of the pathogen (Schmedes and Budowle 2019).
This threat to food security can occur at any point in the
field-to-table chain, from field to postharvest on domestic
and imported goods. Phyllobiomonitoring may directly tar-
get one or more pathogens at any point in this series. This
has already been implicated in tracking sources of food-
borne outbreaks of human pathogens (Marine et al. 2015;
Ottesen et al. 2019). Tracing bacterial community profiles
at each step of the food processing process could enhance
agricultural biosecurity and give concrete evidence at what

step contamination occurred (Doyle et al. 2017). Snapshots
of community profiles could be uploaded to databases that
include what a “normal” microbiome looks like from crops
grown in specific locations and seasons throughout their pro-
cessing. Technologies regarding new detection or tracking of
phyllosphere microbes will offer safety checks in the chain
of food handling and agricultural trade.

Concluding remarks

Applied microbiology of the phyllosphere is an exciting area
of research and development. Its potential is not bound by
source material: for example, the total number of bacterial
cells estimated to be associated with all of Earth’s combined
terrestrial plant foliage is 10%° (Lindow and Brandl 2003).
This number dwarfs by many orders of magnitude the num-
ber of bacterial (and other microbial) cells that have ever
been cultured, assayed, and/or sequenced in labs around the
world to produce the cumulative body of knowledge that
currently exists on the topic of phyllosphere microbiology,
of which only the tiniest fraction is covered in this review.
The 10%° number is a powerful reminder of the vast func-
tional diversity that is contained in the phyllosphere micro-
biota that we still know very little about. As the examples
in this review make clear, the diversity, and the many agri-
cultural, biotechnological, and other products, applications,
and services that emerge from it, touch on many facets of
life on this planet. Applied phyllosphere microbiology has
a proven impact and future promise to enhance the health
and productivity of plants, humans, and the environment.
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